

NOVELL
Btrieve

Record Manager

re

DiSCLAIMER

Novell, Inc. makes no representations or warranties with respect to the contents or use of this
manual, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any
person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any NetWare
software, and specifically disclaims any express or implied warranties of merchantability or
fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to
any and all parts of NetWare software, at any time, without obligation to notify any person or
entity of such changes.

FCC WARNING

Computing devices and peripherrus manufactured by Novell generate, use, and can radiate radio
frequency energy, and if nqt installed and used in accordance with the instructions in this
manual, may cause interference to radio communications. Such equipment has been tested and
found to comply with the limits for a Class A computing device pursuant to Subpart J of Part 15
of the FCC Rules, which are designed to provide reasonable protection against radio interference
when operated in a commercial environment. Operation of this equipment in a residential area is
likely to cause interference, in which case the user-at his own expense-will be required to take
whatever measures may be required to correct the interference.

Some components may not have been manufactured by Novell, Inc. !fnot, Novell has been
advised by the manufacturer of the component that the component has been tested lind complies
with the Class A computing device limits as described above.

© Copyright 1988 Novell, InC. All rights reserved. No part of this publication may be
reproduced, photocopied, stored on a retrieval system., or transmitted without the
express prior written consent of the publiSher.

Novell Development Products Division
6034 West Courtyard
Suite 220
Austin Texas 78730 USA

October 1988 Edition
Manual Revision 1.00
For Btrieve Software Version 6.0 and Above
Novell Part , 100-000616-001 BSH ••••• 89

/

- .- .~~.- .. ---

(-'"

/

{

IMPORTANT NOTICE

This software product contains

• The Btrieve Record Manager manual;

• The files BSERVERVAP, BROUTERVAP, BREQUEST.EXE, and
BREQUEST.DLL;

• A library oflanguage interface routines;

• The B and BUTIL standalone utilities.

As a part of your Btrieve application, you may distribute the language
interface that is necessary for your product to access Btrieve.

You may NOT distribute any of the following:

• Any portion of the manual

• Unlinked language interfaces

• The Band BUTIL standalone utilities

• BSERVERVAP, BROUTERVAP, BREQUEST.EXE, or
BREQUEST.DLL

/

HOW TO USE THIS MANUAL

This manual is intended to be used as a reference and operations guide for
programmers, systems developers, and systems integrators using the
NetWare Btrieve Record Manager. It explains the concepts and operations
that programmers should understand in order to build application programs
using Btrieve as a record management and retrieval system.

Immediately following this preface is a short section describing the new
features added to Btrieve for this version.

Chapter 1 provides an overview of the features Btrieve provides and includes
a discussion of how Btrieve works.

Chapter 2 discusses Btrieve file structures, file management, and how
Btrieve ensures file integrity.

Chapter 3 explains how to use the BSETUP configuration program to
configure and install Btrieve on a network.

Chapter 4 explains the utility programs that are included with Btrieve.

Chapter 5 discusses how to interface Btrieve with various programming
languages.

Chapter 6 explains the purpose and use of the 36 Btrieve operations.

Appendix A lists the Btrieve operation codes.

Appendix B lists and discusses the status codes and error messages Btrieve
returns to your application.

Appendixes C, D, E, and F use program examples written in Pascal, COBOL,
C, and BASIC to illustrate how to use Btrieve for various record operations.

Appendix G contains discussions and diagrams of the Btrieve extended key
types.

At the end of this manual is a glossary of Btrieve related terms that appear in
this manual.

201lRev 1.00

Btrieve Record Manager

You should read chapters 1 through 3 before you attempt to install and use
Btrieve to develop database systems. If you are only installing Btrieve on a
particular server, you should read and understand the materials contained in
Chapter 3. Chapters 4 through 6, and the appendixes, are useful to
programmers during program development.

ii 2011Revl.OO

(

NEW FEATURES FOR THIS VERSION

Btrieve v5.0 contains several new features. The following paragraphs list the
new features and provide a short description of each.

BROUTER VAP PROCESS

The BROUTER process included with this version provides communication
capabilities between BSERVER and other V APs. This capability allows V APs,
as well as workstation applications, to make Btrieve calls to BSERVER.

DATA COMPRESSION

Btrieve now incorporates an optional data compression algorithm in addition
to the blank truncation feature found in earlier releases. The new data
compression algorithm compresses certain repeating characters in a record
when the application writes the record to the file, and expands the record to
its original size when the application reads the record. When you create a file,
you can specify that you want it to allow data compression.

STEP OPERATIONS

Three Step operations have been added to Btrieve. These operations, Step
First, Step Previous, and Step Last, allow you to traverse a file in either
direction using the physical order of the records. The name of the Step Direct
operation has been changed to Step Next.

BUTll.. CHANGES

A new command, -CLONE, has been added to the BUTIL utility. This
command allows you replicate the structure of an existing file without
destroying the data contained in the original file.

A new option, "Replace Existing File," has been added to the -CREATE
command. This option allows you to specify whether you want to create a new
file if a file of the same name already exists.

2011Revl.OO iii

Btrieve Record Manager

NEW BTRIEVE FILE TYPES

Btrieve now recognizes two new data file types, data-only and key-only, as
well as the standard Btrieve files supported by earlier releases. You can
define a file as being data-only or key-only when you create it.

Data-only Files. Data-only files do not contain any index pages. Instead, the
records are stored on the data pages in chronological order of insertion, and
can be accessed using the Step operations. You may add supplemental
indexes to a data-only file at any time after the file is created.

Key-only Files. Key-only files do not contain any data pages. Instead, the
entire record is stored with the index, improving data insertion and retrieval
times. Key-only files are very useful for quick look up of records, and can be
used as external indexes for other files.

FREE SPACE THRESHOLD FOR VARIABLE LENGTH
RECORDS

When you define a file that contains variable length records, Btrieve allows
you to reserve a certain percentage of the variable length pages for future
expansion of the records. This can reduce fragmentation of the records across
multiple pages, resulting in reduced access times for frequently updated
variable length files.

AUTOINCREMENT KEY TYPE

The autoincrement key type allows a user to define a key for which Btrieve
automatically maintains the value. You can use autoincrement keys as
record numbers which Btrieve automatically increments as records are added
to the file.

MANUAL KEYS

Manual keys allow you to define a key which Btrieve does not automatically
insert into the index tree. Instead, your application controls which records are
to be indexed by the manual key, and can insert records into the index or
remove them from the index as necessary.

iv 201lRevl.OO

)

TABLE OF CONTENTS

Important Note

User Registration Card

Technical Support Registration Card

How To Use This Manual

New Features For This Version

List Of Figures

1 Introduction to Btrieve
Btrieve Features 1-2

Index Maintenance 1-2
File Specifications 1-2
Memory Management 1-3
Concurrency and Security Controls 1-3
Data Integrity 1-4
Btrieve Utilities 1-4
Record Management Operations 1-5

How Btrieve Works .. 1-8
The BSERVER Program . 1-9
The BREQUEST Program 1-9

201lRevl.OO v

Btrieve Record Manager

The BROUTER Program 1-10
Flow of Control 1-10

Access to BSERVER via BREQUEST 1-11)
Access to BSERVER via BROUTER 1-14

Cache Buffers 1-16
The Btrieve Call Parameters 1-16

Operation Code . 1-17
Status Code . 1-17
Position Block . 1-17
Data Buffer ... 1-18
Data Buffer Length 1-19
Key Buffer .. 1-20
Key Number .. 1-20

The Language Interface 1-21

2 Btrieve File Management
Btrieve File Concepts 2-1
Physical File Characteristics 2-1

vi

Header Page (File Control Record) 2-2
Data Pages . 2-2
Index Pages ~ 2-2
B-Trees ... 2-2
Dynamic Expansion. 2-3

Free Space Utilization 2-3

Btrieve File Types 2-3

Standard 13trieve Files . 2-3
Data Only Files. 2-4
Key Only Files ... 2~4

2011Revl.OO

Table of Contents

Records . 2-5
Variable Length Records . 2-5
Keys and Key Attributes . 2-6

Duplicate Keys ... 2-7
Modifiable Keys .. 2-7
Segmented Keys .. 2-7
Descending Keys . 2-8
Null Keys .. 2-8
Manual Keys ... 2-9

Key Types . 2-10
Standard Key Types 2-10
Extended Key Types 2-10

Indexes . 2-11
Disk Utilization 2-12

Determining Record Length and Page Size 2-12
Record Length ... 2-12
Data Page Size .. 2-13

Estimating File Size 2-13
File Preallocation . 2-15

Conserving Disk Space . 2-16
Blank Truncation 2-16
Data Compression '.' 2-16

Positioning . 2-18
Record Retrieval by Physical Location 2-18
Record Retrieval by Key Value 2-19

(~. The Position Block 2-20

2011Revl.OO vii

Btrieve Record Manager

Integrity Processing 2-21
Pre-imaging 2-21
Transaction Tracking System (TTS) 2-23
Transactions 2-23
Transactions And TTS 2-24

Accelerated Access 2-25
Concurrency Controls 2-27

Transaction Control 2-27
Passive Concurrency 2-29
Record Locks 2-32

Restricting Access to a File 2-33
Owner Names 2-33
ExclusiveMode 2-34

3 Running NetWare Btrieve
System Requirements .. 3-1
The Btrieve Diskettes . 3-2
Configuring and Installing Btrieve 3-4

The Btrieve Configuration Options 3-4
Maximum Number of Open Files 3-5
Maximum Number of File Handles 3-5
Maximum Number of Record Locks 3-6
Number of Concurrent Transactions 3-6
Maximum Compressed Record Size 3-7

viii 20ilRevi.OO

)

j

Table o/Contents

Maximum Record Length 3-7
Maximum Page Size 3-8
Maximum Number of Concurrent Sessions 3-8
Console Refresh Delay Count 3-8
Automatic Transaction Flagging 3-9

Installation Options 3-9
Starting BSETUP 3-10
Using BSETUP 3-10

Change File Server 3-11
Set Configuration 3-12
Save Configuration 3-13
Install Btrieve ... 3-14
Remove Btrieve .. 3-16

Stopping the Btrieve V APs . 3-17
The BREQUEST Program 3-17

BREQUEST Start-up Options 3-17
[/R: Mapped Drives] 3-17
[ID: Data Message Length] 3-18
[IS: Number of File Servers] 3-18

BREQUEST for DOS Workstations 3-18
BREQUEST for OS/2 Workstations 3-19

Installing BREQUEST 3-19
Initializing BREQUEST 3-20

Stopping BREQUEST 3-21

2011Revl.OO ix

Btrieve Record Manager

4 Btrieve Utilities
The BUTIL Program. 4-1

Running BUTIL 4-2
BUTIL Error Messages 4-3
BUTIL Description Files . 4-4

Description File Elements 4-4
Rules for Description Files 4-14

Alternate Collating Sequence Files . 4-15
BUTIL Commands 4-16

CLONE : 4-17
t,

COpy ... 4-18
CREATE 4-20
DROP ... 4-23
EXTEND 4-24
INDEX .. 4-25
LOAD ... 4-28
RECOVER 4-31
RESET .. 4-33
SAVE ... 4-34
SINDEX .. 4-37
STAT ' 4-38
STOP ... 4-40
VER .. 4-41

Btrieve Function Executor . 4-42
Console Commands . 4-45

B ACTIVE 4-46
B DOWN 4-48
B OFF ... 4-49

x 201lRevl.OO

'\
)

/

(--

Table oJ Contents

B RESET 4-50
B STATUS 4-51
B USAGE 4-53

5 Language Interfaces
Interfacing Btrieve With BASIC 5-2

Interpretive BASIC . 5-2
The Interpretive BASIC Interface 5-2
Initiating The BASIC Interpreter 5-4

Compiled BASIC 5-5
Calling Btrieve from BASlC .. 5-5
Parameter List Example . 5-9

Interfacing Btrieve with Pascal . 5-10
Linking a Pascal Application with Btrieve 5-11
Calling Btrieve from Pascal 5-11
Parameter List Example 5-14

Interfacing Btrieve with COBOL . 5-17
Linking a COBOL Application with Btrieve 5-17
Calling Btrieve from COBOL 5-18
Parameter List Example 5-21

Interfacing Btrieve with C 5-22
Linking a C Application with Btrieve 5-22
Calling Btrieve from C 5-22
Parameter List Example 5-25

Interfacing Btrieve with Assembly Language 5-26
Storing the Parameters 5-26
Parameter Descriptions ; 5-28
Verify That the Record Manager is Loaded 5-30

2011Revl.OO xi

Btrieve Record Manager

Calling the Record Manager . 5-30
OS/2 Interfaces 5-31

C Language 5-31)
Assembly Language. 5-32
Linking OS/2 Applications 5-32

Interfacing with BROUTER 5-33

6 Btrieve Record Operations
Abort Transaction (21) 6-2
Begin Transaction (19) 6-4
Clear Owner (30) 6-6
Close (1) . 6-8
Create (14) .. 6-10
Create Supplemental Index (31) 6-21
Delete (4) ... 6-24
Drop Supplemental Index (32) 6-26
End Transaction (20) 6-28
Extend (16) 6-30
Get Direct (23) . 6-32
Get Directory (18) 6-35
Get Equal (5) 6-37
Get First (12) . 6-39
Get Greater (8) 6-41
Get Greater Or Equal (9) 6-43
Get Key (+50) 6-45
Get Last (13) 6-47 /

Get Less Than (10) 6-49
Get Less Than Or Equal (11) 6-51

xii 2011Rev1.00

Table o/Contents

Get Next (6) 6-54
Get Position (22) 6-57
Get Previous (7) 6-59
Insert (2) ... 6-62
Locks .. 6-65
Open (0) . 6-69

Reset (28) ... 6-74
Set Directory (17) 6-76
Set Owner (29) 6-78

Stat (15) .. 6-81
Step First (33) . 6-85
Step Last (34) 6-87
Step Next (24) 6-89
Step Previous (35) . 6-91
Stop (25) ... 6-93

Unlock (27) 6-95
Update (3) .. 6-97
Version (26) 6-100

A Btrieve Operation Codes

B Btrieve Status Codes
Btrieve Status Codes B-1

(~-
BREQUEST Status Codes (OS/2) B-16
BREQUEST Error Messages (DOS) B-17
BSERVER and BROUTER Error Messages B-19
BUTIL Error Messages B-20

2011Revl.OO xiii

Btrieve Record Manager

C Pascal Examples
Pascal Abort Transaction C-l
Pascal Begin Transaction C-3
Pascal Close . C-3
Pascal Create C-4
Pascal Create Supplemental Index C-6
Pascal Delete C-7
Pascal Drop Supplemental Index C-9
Pascal End Transaction C-IO
Pascal Extend .. C-12
Pascal Get Direct C-13
Pascal Get Directory .. C-15
Pascal Get Equal .. C-15
Pascal Get First C-17
Pascal Get Greater C-18
Pascal Get Greater Or Equal , C-19
Pascal Get Last .. C-20
Pascal Get Less Than , C-21
Pascal Get Less Than Or Equal , C-22
Pascal Get Next C-23
Pascal Get Position. .. C-24
Pascal Get Previous . '. .. C-26
Pascal Insert .. C-27
Pascal Open. .. C-28
Pascal Set Directory. .. C-29
Pascal Stat C-30
Pascal Step First .. C-3l
Pascal Step Last , .. C-3l

xiv 2011Revl.OO

'\
)

Table of Contents

Pascal Step Next. .. C-32
Pascal Step Previous (??) C-33
Pascal Update. .. C-34

D COBOL Examples
COBOL Abort Transaction .. D-l
COBOL Begin Transaction D-3
COBOL Close D-3
COBOL Create D-4
COBOL Create Supplemental Index D-6
COBOL Delete D-7
COBOL Drop Supplemental Index D-8
COBOL End Transaction .. D-9
COBOL Extend. .. D-ll
COBOL Get Direct D-12
COBOL Get Directory D-14
COBOL Get Equal D-15
COBOL Get First D-16
COBOL Get Greater .. D-17
COBOL Get Greater Or Equal D-18
COBOL Get Last " D-19
COBOL Get Less Than. .. D-20
COBOL Get Less Than Or Equal D-21
COBOL Get Next D-22
COBOL Get Position. .. D-23
COBOL Get Previous D-24
COBOL Insert .. D-26
COBOL Open D-27

201 IRev 1.00 xv

Btrieve Record Manager

COBOL Set Directory D-28
COBOL Stat D-29
COBOL Step First D-30 J

/

COBOL Step Last D-30
COBOL Step Next D-31
COBOL Step Previous D-32
COBOL Update D-34

E C Examples
C Abort Transaction E-l
C Begin Transaction E-3
C Close .. E-3
C Create ... E-4
C Create Supplemental Index E-6
C Delete ... E-8
C Drop Supplemental Index E-9
C End Transaction E-ll
C Extend E-13
C Get Direct E-14
C Get Directory E-15
C Get Equal E-16
C Get First E-18
C Get Greater E-19
C Get Greater Or Equal E-20
C Get Last E-21
C Get Less Than E-22

\

/
,

C Get Less Than Or Equal E-23
C Get Next E-24

xvi 201/Rev1.00

Table o/Contents

C Get Position .. E-25
C Get Previous E-27
C Insert ... E-28
COpen .. E-29
C Set Directory E-30
C Stat ... E-31
C Step First .. E-32
C Step Last E-32
C Step Next E-33
C Step Previous .. E-34
C Update E-35

F BASIC Examples
BASIC Abort Transaction F-l
BASIC Begin Transaction F-2
BASIC Clear Owner F-2
BASIC Close F-3
BASIC Create F-3
BASIC Create Supplemental Index F-4
BASIC Delete F-5
BASIC Drop Supplemental Index F-6
BASIC End Transaction F-6
BASIC Extend F-7
BASIC Get Direct F-8
BASIC Get Directory F-9
BASIC Get Equal " F-I0
BASIC Get First F -11
BASIC Get Greater F-12

2011Rev1.00 xvii

Btrieve Record Manager

BASIC Get Greater Or Equal F -13
BASIC Get Last F-14
BASIC Get Less Than F -15
BASIC Get Less Than Or Equal F-16
BASIC Get Next .. '" F-17
BASIC Get Position F -18
BASIC Get Previous F-19
BASIC Insert F-20
BASIC Open F-21
BASIC Reset F-21
BASIC Set Directory F-22
BASIC Set Owner F-22
BASIC Stat F-23
BASIC Step First F-23
BASIC Step Last F-23
BASIC Step Next F-24
BASIC Step Previous F-25
BASIC Stop F-26
BASIC Unlock F-26
BASIC Update F-26
BASIC Version F-27

xviii 20llRevl.OO

\,
j

Table o/Contents

G Extended Key Types
Extended Key Type Codes G-I
Extended Key Types .. G-2

Autoincrement G-2
Bfloat ... G-3

Date .. G-3

Decimal G-4
Float .. G-4
Integer .. G-5

Logical .. G-5

Lstring .. G-6
Money ... G-6
Numeric G-6
String , G-7
Time , " G-7
Unsigned Binary G-7
Zstring .. G-7

GIQssary

Trademarks

Index

2011Revl.OO xix

(-
LIST OF FIGURES

Table 1.1 Btrieve Operations 1-6

Figure 1.2 Configuration for Two Workstations Using BSERVER .. 1-12

Figure 1.3 Network with Multiple Servers 1-13

Figure 1.4 Using Another VAP with BSERVER 1-15

Figure 2.1 Transaction Locking 2-28

Figure 2.2 Deadlock Example 2-29

Figure 2.3 Passive Method 2-30

Figure 2.4 Transaction and Passive Combination 2-31

Figure 4.1 Sample Description File for CREATE 4-21

(~ Figure 4.2 Sample Description File for INDEX 4-26

Figure 4.3 Record Format for Input File 4-30

Figure 4.4 Sample BUTIL -STAT Output 4-39

Figure 5.1 Map for Memory Resident BASIC Interface 5-4

Figure 5.2 Btrieve Call from BASIC 5-9

Figure 5.3 Btrieve Call from IBM Pascal 5-14

Figure 5.4 Btrieve Call from Turbo Pascal 5-16

l"igure 5.5 Btrieve Call from IBM COBOL 5-21

Figure 5.6 Btrieve Call from C 5-26

Figure 5.7 Btrieve Parameters Structure 5-27

Figure 6.1 Data Buffer Structure for Create Operation 6-11

(' Table 6.2 Owner Name and Data Encryption Codes 6-79

Table 6.3 Data Buffer for Stat Operation 6-83

Figure G.1 Extended Key Type Codes G-l

20ilRevi.OO xxi

\
j

c 1 INTRODUCTION TO BTRIEVE

Btrieve is a ready-made record management system that provides you with
the necessary functions for storing, retrieving, and updating the data in your
database files. Because of Btrieve's advanced techniques and structures, you
can ignore physical file structures, index maintenance, and concurrency
problems, and concentrate on the logical aspects of your files and database.

To access Btrieve, you include specific function calls in your program code,
passing to Btrieve the information it needs to perform the required operation.
Because the calling conventions are different for the various high-level
languages and compilers, Btrieve includes interface routines for many of the
more popular languages and compilers, including the following:

• Microsoft QuickBASIC, IBM Interpreted and Compiled BASIC, Turbo
Basic, and several other BASIC compilers

• IBM (or Microsoft) Pascal, Turbo Pascal, and several other Pascal
compilers

• Microsoft C, Lattice C, Turbo C, and several other C compilers

• Microsoft COBOL, Realia COBOL, MicroFocus COBOL, and several
other COBOL compilers

This manual contains documentation and program examples for BASIC, C,
Pascal, and COBOL. Documentation and additional interface routines for
other languages and compilers are included on the Btrieve diskette. Chapter
4 includes information about the requirements for writing an assembly
language routine to call Btrieve from languages for which no interface is
provided.

2011Rev1.00 1-1

Btrieve Record Manager

BTRIEVE FEATURES

The following sections introduce some of the features that make Btrieve a ~.
uniquely powerful record management system. ~

INDEX MAINTENANCE

Btrieve automatically creates and maintains the indexes in your files as you
insert, update, and delete records. In addition to automatic index
maintenance, Btrieve provides index support in the following ways:

• Support for as many as 24 indexes per file

• Support for adding or dropping supplemental indexes after a file has
been created

• Support for 14 different data types for key values

• Support for duplicate, modifiable, segmented, null, manual, and
descending key values

Chapter 2 contains more detailed information about how you can use
Btrieve's indexing features in your application program.

FILE SPECIFICATIONS

Btrieve allows you to create data files by using function calls from your
application program or by using an external utility program (BUTIL). At the
file level, Btrieve offers you the following features:

• File sizes up to 4 billion bytes

• An unrestricted number of records

• Ability to extend a file across two storage devices

1-2 201lRev1.00

(

Introduction to Btrieve

• Consistent file defmition and management routines

• Consistent file structures

MEMORY MANAGEMENT

Btrieve allows you to specify the amount of memory used by the I/O cache
buffer based on your application's memory requirements and the total
amount of memory installed on your server. The amount of memory you
reserve for the I/O buffer cache can have an effect on Btrieve's performance.

CONCURRENCY AND SECURITY CONTROLS

Btrieve provides capabilities for controlling concurrency and data security in
a network environment. Btrieve maintains file integrity and security by
allowing you to

• Specify single and multiple record level locks;

• Lock data files;

• Define logical transactions;

• Assign owner names to files;

• Specify dynamic encryption and decryption of data.

Chapter 2 contains more information about how Btrieve and your application
handle concurrency and security.

2011Rev1.00 1-3

Btrieve Record Manager

DATA INTEGRITY

Btrieve uses several techniques to ensure the integrity of your data files.
These techniques include

• Using pre-image files to store images of file pages before records are
inserted, updated, or deleted;

• Using transaction processing to maintain consistency between data files
during multiple file updates.

BTRIEVE UTILITIES

Btrieve includes two utility programs, as well as several console commands,
that enable you to perform testing and data management without writing an
application program. These include

• BUTIL.EXE, a command line utility that allows you to create and
manage Btrieve data files.

• B.EXE, an interactive utility program that you can use for instructional
purposes and for testing and debugging your application program logic.

• Console Commands that allow you to monitor and manage NetWare
Btrieve activity on your network.

Refer to Chapter 4 for more information about the Btrieve utilities and
console commands.

1-4 201lRev1.00

,
,/

'\

j

c

(

Introduction to Btrieve

RECORD MANAGEMENT OPERATIONS

Btrieve provides 36 separate operations that you can perform from within
your application program. To perform a Btrieve operation, your application
must complete the following tasks:

• Satisfy any prerequisites the operation requires.

For example, before your application can perform any file 110, it must
first make the file available for access by performing a Btrieve Open
operation for that file.

• Initialize the parameters that the particular Btrieve operation requires.

The parameters are program variables or data structures that
correspond in type and size to the particular values that Btrieve expects
for a given operation.

• Execute the Btrieve function call (BTRV).

The exact format of the Btrieve function call varies from language to
language.

• Evaluate the results of the function call.

Btrieve always returns a status code indicating the success (status = 0)
or failure (status <> 0) of an operation. Your application must always
check for nonzero status codes and take appropriate action.

In addition, Btrieve returns data or other information to the individual
parameters based on the purpose of the operation.

Table 1.1 lists the Btrieve operations and their operation codes and provides a
brief description of the function the operation performs.

201lRev1.00 1-5

Btrieve Record Manager

OPERATION CODE DESCRIPTION

~,

Open 0 Makes a file available for access I

.-/
adse 1 Releases a file from availability

Insen 2 Insens a new record into a file

Update 3 Updates the current record

Delete 4 Removes the current record
from the file

Get Equal 5 Gets the record whose key value
matches the requested key value

Get Next 6 Gets the record following the
current record in the index
path

Get Previous 7 Gets the record preceding the
current record in the index
path

Get Greater 8 Gets the record whose key value
is greater than the requested key
value

)

Get Greater or Equal 9 Gets the record whose key value is
equal to or greater than the
requested key value

Get Less Than 10 Gets the record whose key value
is less than the requested key
value

Get Less Than or Equal 11 Gets the record whose key value
is equal to or less than the
requested key value

Get First 12 Gets the first record in the requested
access path

Get Last 13 Gets the last record in the requested
access path

Create 14 Creates a Btrieve file with the
specified characteristics

Stat 15 Returns file and index characteristics. "

and number of records

Table 1.1
Btrleve Operations

1-6 201lRev1.00

Introduction to Btrieve

Btrieve Record Manager

Refer to Chapter 6 for complete descriptions of all of the Btrieve record
management operations. Chapter 5 contains instructions for calling Btrieve
from BASIC, Pascal, COBOL, and C. Appendixes C, D, E, and F contain
program examples that illustrate how to initialize parameters, execute
Btrieve function calls, and check the returned status code.

HOW BTRIEVE WORKS

NetWare Btrieve is a server-based implementation of the Btrieve Record
Manager operating under Advanced NetWare v2.1 or above. All Btrieve
requests from network stations are processed at a network server. In
comparison with a client~based program, the server-based configuration
improves network database operations for the following reasons:

• Processing at the server is centralized, allowing for efficient multiuser
controls.

• The number of network requests is reduced, resulting in faster network
performance because of improved server utilization.

• Network use is reduced because a smaller quantity of data is
transferred across the network.

Calls to NetWare Btrieve have the same format as calls to Btrieve in other
environments. Single-user Btrieve applications ported to NetWare Btrieve
may require additional status checking because of the concurrency checking
required in a multiuser environment.

In addition to providing a server-based record management system for
workstation applications, NetWare Btrieve also includes a facility that allows
V APs to issue Btrieve calls to BSERVER. The BROUTER program provides
the necessary communication between BSERVER and other V AP programs.

1-8 2011Rev1.00

}

Introduction to Btrieve

THE BSERVER PROGRAM

The BSERVER program should be loaded at every file server that stores
Btrieve files. BSERVER consists of the Btrieve core program that handles the
specific Btrieve requests, a server shell, and a network communications
module. BSERVER performs the following functions:

• It performs all disk 110 for the Btrieve files stored at the server where it
is resident.

• It issues and releases all record-level and file-level locks at the server
where it is resident.

• It packages all Btrieve requests it processes for transmittal either to a
copy of BREQUEST at a workstation, or to a copy of BROUTER at a
server.

Application programs and V APs that issue Btrieve calls always communicate
with BSERVER via either BREQUEST or BROUTER.

(- THE BREQUEST PROGRAM

The BREQUEST program must be loaded at each station that makes Btrieve
requests to the server. Application programs at workstations communicate
with BSERVER via BREQUEST. BREQUEST performs the following
functions:

• It receives Btrieve requests from your application program and relays
them to BSERVER.

• It returns the results of the Btrieve requests to your application.

At OS/2 workstations, the BREQUEST.DLL and BTRCALLS.DLL dynamic
link routines must be available to the application program. The
BTRCALLS.DLL routine must be available in order to maintain compatibility
between NetWare Btrieve and Btrieve for OS/2. The BREQUEST.DLL
routine provides communication between your application program and
BSERVER.

201/Rev1.00 1-9

Btrieve Record Manager

THEBROUTERPROGRAM

The BROUTER program loads at a network file server. It is an interprocess
communications program that allows other V AP programs loaded on network
file servers to communicate with BSERVER. This capability allows you to
write a Btrieve application program as a V AP, making your application
server-based rather than client-based.

The BROUTER program performs the following functions:

• It tracks the Btrieve activity of the VAP that executed the Btrieve
interrupt.

• It tracks the Btrieve activity for each workstation that initiates Btrieve
requests to a V AP.

• It monitors access to Btrieve files stored at a single server or at multiple
servers on the network.

• It serializes Btrieve requests to the BSERVER programs loaded on one
or more servers.

Refer to "Interfacing with BROUTER," beginning on page 5-33, for
instructions about writing an interface to BROUTER.

FLOW OF CONTROL

The NetWare Btrieve programs function as if they were a subroutine of your
application program. NetWare Btrieve supports the following two methods for
accessing BSERVER:

• A workstation application can access BSERVER via the BREQUEST
program.

• A workstation application can call a VAP, which then communicates
with BSERVER via BROUTER.

The following sections describe the two methods of access.

1-10 201IRev1.00

\
/

(

Introduction to Btrieve

ACCESS TO BSERVER VIA BREQUEST

The following steps illustrate the flow of control when a workstation
application accesses BSERVER via the BREQUEST program loaded at the
workstation.

• Your application program issues a Btrieve request in the form of a
function call. The actual call is implemented slightly differently in
different languages. For simplicity, this manual will refer to a Btrieve
call as a function call, or Btrieve call.)

• A short interface routine included in your application program packages
the call parameters in a block of memory, saves the source stack, and
makes the call to BREQUEST.

• BREQUEST packages the request into a network message, determines
which server should receive the request, and routes the message to the
BSERVER program resident at that server.

• BSERVER receives the network message, validates the parameters, and
then executes the instruction. Depending on the nature of the
instruction, this could involve a memory-only operation or an I/O
operation to a system storage device. BSERVER then returns the
results of the operation to the BREQUEST program at the workstation.

• BREQUEST returns the appropriate data and status code to the
parameter variables or structures in your application's memory, restores
the source stack, and returns control to your program.

If an application at a workstation makes Btrieve requests to both a local
(nonshared) drive and a network (shared) drive, a copy of either Btrieve
Single User or Btrieve for DOS 3.1 Networks must be loaded at that
workstation, as well as BREQUEST. BREQUEST determines whether the
request should be transferred to the local Btrieve servicing the non shared
files or to the BSERVER program that services the shared files at the server.

2011Rev1.00 1-11

B trieve Record Manager

Figure 1.2 illustrates a sample configuration for a simple Novell network
using NetWare Btrieve.

I Network Disk I ~ •

DOS3.x

NetWare Shell

BREOUEST

Btrieve Application

Workstation 1
accessing only shared
Btrieve files

FILE SERVER

:J

NetWare Local
Disk

BSERVER.VAP :J I

L.-..+

C

Figure 1.2

DOS3.x

NetWare Shell

Btrieve
Record Manager

BREOUEST

Btrieve Application

Workstation 2
accessing shared and
local Btrieve files

Network Configuration Using BSERVER.VAP
(Note that Workstation 2 accessea both shared and local files.)

]
:J

Figure 1.3 illustrates a network with a multiple file server configuration. In
this diagram, file servers A and B service the shared files on the network.
Notice that all stations on the network can make Btrieve requests to either
file server. The BREQUEST programs loaded at each workstation route the
requests to the appropriate file server. Proper identification of the file servers
and volumes is essential to the correct functioning of the system.

1-12 201lRev1.00

\.

j

(

Introduction to Btrieve

File Server A .1 Shared I NetWare 4 "I Disk

BSERVER.VAP

DOS3.x DOS3.x

NetWare Shell NetWare Shell

f---+ BREOUEST BREOUEST

:=J C Btrieve Btrieve
Application Application

Workstation 1 Workstation 2 I Local 1.-.
DOS3.x

Disk

[
DOS3.x

NetWare Shell NetWare Shell

~ BREOUEST :J Btrieve Record

Btrieve c: Manager

Application BREQUEST c: Workstation 3 Btrieve
Application

Workstation 4

BSERVER.VAP

Shared 4 ~ NetWare
Disk File Server B

Figure 1.3
Network with Multiple File Servers

(Notice that BREQUEST loaded at each workstation can access each Btrieve file server.
Workstation 4 is configured to access both shared and local Btrleve files.)

If you are using multiple file servers or an internetwork, all of the file servers
do not have to be on line when you start BREQUEST at the workstations.
BREQUEST recognizes new file servers or drives when you attach to a new
file server or change your network drive mapping.

2011Rev 1.00 1-13

Btrieve Record Manager

ACCESS TO BSERVER VIA BROUTER

NOTE:
If you are not developing a Value-Added Process (V AP) that
accesses NetWare Btrieve, you may skip this section.

The following steps illustrate the flow of control when a workstation
application calls a V AP which then accesses BSERVER via the BROUTER
program.

• A workstation application issues a request to a VAP. The request may
be formatted as a Btrieve call or in the form required by the V AP.

• An interface routine included in the application program packages the
request into a network message, determines which server should receive
the request, and routes the message to the V AP resident at that server.

• The V AP receives the network message, validates the parameters, and
packages the call parameters as a Btrieve request in a block of memory.
It then stores the client ID in the AX register and executes the 7B
interrupt.

• BROUTER receives the Btrieve request, stores information about the
origin of the call, and calls the copy of BSERVER active at the server
where the file is stored.

• BSERVER processes the request and returns the results of the
operation to BROUTER.

• BROUTER returns the appropriate data and status code to the
parameter variables or structures in the V AP's memory and returns
control to the VAP.

• The V AP returns the appropriate information to the application at the
workstation.

If a workstation application makes Btrieve requests to a local (nonshared)
drive and also to a V AP that calls Btrieve, a copy of either Btrieve Single
User or Btrieve for DOS 3.1 Networks must be loaded at that workstation.

1-14 2011Revi.OO

.".

(

Introduction to Btrieve

Figure 1.4 illustrates the flow of control when a V AP accesses Btrieve files
using NetWare Btrieve.

1. An application at a workstatio
issues a request to VAP1

n

2. The interface for VAP1 sends the
request to the server

3. VAP1 packages a request
and executes Int 7B

4. BROUTER receives
the Btrieve call and
passes it to BSERVER

I
I

Workstation

Application

YAP Interface

,~

•• Server

VAP 1

... - BROUTER

.. - BSERVER

Figure 1.4

.. -

--
--

7. VAP1 returns the results to
the the application at

workstation

I 6. BROUTER r
results to VA

elurns the
P1

I 5. BSERVER pr
the request an
the results 10

ocesses
d passes

BROUTER

. l Disk I

Using Another YAP with BSERVER

2011Revl.00 1-15

Btrieve Record Manager

CACHE BUFFERS

The cache is an area of memory that BSERVER reserves for buffering the
pages that it reads from the disk. You define the size of the cache when you
configure BSERVER. The cache is divided into a number of buffers, each of
which is the size of the largest page your application will access. Generally, a
larger cache improves performance, because it allows more pages to be in
memory at a given time. (Refer to Chapter 3 for more information about
configuring BSERVER.)

When your application makes a request for a record, BSERVER first checks
the cache to see ifthe page containing the record is already in memory. Ifthe
record is already in cache, BSERVER transfers the record from the cache to
your application program's data buffer. If the page is not in cache, BSERVER
copies the page from the disk into a cache buffer before transferring the
requested record to your application.

If every cache buffer is full when BSERVER needs to transfer a new page into
memory, a least-recently-used algorithm (LRU) determines which page in the
cache BSERVER needs to overlay. The LRU reduces processing time by
keeping the most recently referenced pages in memory.

When your application inserts or updates a record, BSERVER first modifies
the page in cache, and then writes the page to the disk. The modified page
remains in cache until the LRU determines that it can be overlaid with a new
page.

THE BTRIEVE CALL PARAMETERS

Btrieve requires certain information from your application in order to perform
record and file management operations. Your application uses the Btrieve
call parameters to specify the information Btrieve needs and to provide places
for Btrieve to return information. On every Btrieve call, your application
must pass to Btrieve every parameter required for the language you are
using, even when Btrieve does not expect a value to be stored in that
parameter. This section gives a general description ofthe parameters and
how Btrieve uses them.

1-16 2011Rev1.00

'\
!

/

(-

Introduction to Btrieve

NOTE:
For specific information about how to use a parameter with a
particular language, refer to Chapter 5, "Language Interfaces."
For information about how Btrieve uses a parameter for a
particular operation, refer to Chapter 6, "Btrieve Record
Operations. "

OPERATION CODE

The operation code parameter tells Btrieve which operation you want to
perform. Your application must specifY a valid operation code for every
Btrieve call. The variable you specifY to hold the operation code must be a
2-byte integer. Btrieve never changes the operation code value.

STATUS CODE

All Btrieve operations return a status code value, informing your application
of any errors. A status code of 0 indicates that the operation was successful.
For some languages, particularly C and Pascal, the Btrieve call is an integer
function, and your application does not have to specifY a separate parameter
to hold the status code. If the language you use requires a separate status
code parameter, specifY a 2-byte integer to contain the return value.

POSITION BLOCK

Btrieve uses the position block parameter to contain positioning pointers and
other information necessary for accessing a particular file. Your application
uses the position block to identify to Btrieve the file you want to access on a
particular operation. Btrieve expects the position block to be a 12B-byte block
of memory. Depending on the application language, the position block can be
a string, an array, or part of the language's file buffer (as in BASIC).

2011Rev1.00 1-17

Btrieve Record Manager

Your application must assign a unique position block to each Btrieve file it
needs to open and initialize the block to blanks or binary zeros before issuing
the Btrieve Open operation. Your application should ~ write to a position
block once it has been initialized and assigned to a file, unless you first issue
a Btrieve Close operation for that file. You can then reinitialize the position
block so that it can be used with another Btrieve file. Writing over the
position block for an open Btrieve file can result in errors or file damage.

DATA BUFFER

The data buffer is a block of memory that holds specific kinds of information
required by a Btrieve operation.

On operations that involve reading from or writing to a Btrieve file, the data
buffer contains the records that your application transfers to and from the
file. For example, when your application retrieves a record from a file,
Btrieve reads the record from the file and then writes the record into the area
of memory designated as the data buffer for that operation.

For other operations, the data buffer contains file specifications, definitions,
and other information that Btrieve needs in order to process the operation.
When your application issues a Create operation, for example, it constructs a
data buffer that contains the specifications for the file you want to create, in
the order that Btrieve expects them. Btrieve then reads the data buffer and
creates the file according to the specifications.

Btrieve recognizes the data buffer as a series of bytes in memory. It does not
distinguish any fields or variables as entities within the data buffer. You can
define the data buffer to be any type of variable that your language supports:
a structure, an array, or a simple string variable. For some versions of
BASIC, the data buffer is the area of the file control block (FCB) defined by
the FIELD statement.

1-18 201lRev1.00

'\
)

Introduction to Btrieve

DATA BUFFER LENGTH

For every operation that requires a data buffer, your application must specifY
the length ofthe data buffer, in bytes, to Btrieve. This is necessary because

• Btrieve allows you to define files that allow variable length records. You
must specifY how many bytes you want Btrieve to read from or write to
those records.

• Btrieve does not recognize any of your program's data structures.
Hence, it does not know implicitly how many bytes long the data buffer
is. This creates the possibility of writing meaningless data to your files,
or of returning more data than your data buffer can hold and
overwriting the area of memory immediately after the data buffer.

Your application should define the data buffer as a 2-byte integer. On all
operations, Btrieve writes a value back to the data buffer length parameter,
even if that value is 0 (indicating that no data was returned). Therefore, you
should always initialize the data buffer to the proper length for an operation
before you issue the Btrieve call.

Use the following guidelines for initializing the value in the data buffer
length parameter:

• When you read from or write to an existing file that contains fixed
length records, specify a value equal to the record length defined for the
file.

• When you read from or write to an existing file that contains variable
length records, specifY a value equal to the length defined for the fixed
length portion of the record, plus the number of bytes that you want to
read or write beyond the fixed length portion.

• When you issue any other operation, specifY the exact length of the data
buffer required for that operation. These requirements are included in
the discussion of the individual Btrieve operations in Chapter 5 of this
manual.

2011Rev1.00 1-19

Btrieve Record Manager

KEY BUFFER

Your application must pass a variable for the key buffer on every Btrieve call. '\
Depending on the particular operation, your application may set the key)
buffer to a particular value, or Btrieve may return a value to the key buffer.

For some languages, Btrieve cannot implicitly determine the length of the key
buffer. Therefore, you should always ensure that the variable you specify for
the key buffer is long enough to hold the entire value required by the
operation. Otherwise, Btrieve requests may destroy other data stored in
memory following the key buffer.

KEY NUMBER

The key number parameter is always a signed 2-byte integer variable. For
most Btrieve operations, this parameter tells the Record Manager which
access path to follow for a particular operation. For other operations, your
application uses the key number parameter to specify the file open mode,
encryption, logical drive, or other information. Btrieve never returns an
altered value to the key number parameter.

When you use the key number parameter to specify an access path for a file,
the number must be in the range from 0 to 23, since Btrieve allows up to 24
keys or key segments in a file.

1-20 2011Rev1.00

(--

Introduction to Btrieve

THE LANGUAGE INTERFACE

The language interface provides communication between your application
program and Btrieve. Language interfaces are specific to certain languages,
compilers, and environments.

When your application makes a Btrieve call, the interface makes preliminary
checks on the parameters and checks to see that the Btrieve Record Manager
is resident in memory. If the interface does not detect any errors, it executes
the appropriate call for the operating environment, activating the Record
Manager program.

NOTE:
Information about the BASIC, Pascal, COBOL, and C interfaces is
included in Chapter 5 of this manual. For specific information
about languages and compilers not included in Chapter 5, refer to
the INTRFACE.DOC file on the Btrieve program diskette.

201lRev1.00 1-21

c 2 BTRIEVE FILE MANAGEMENT

This chapter describes Btrieve file structures and file management
techniques. It also includes a discussion of integrity processing and
concurrency controls.

BTRIEVE FILE CONCEPTS

A file is the highest level database entity that you can access using Btrieve.
You create Btrieve files and define their characteristics either by using the
CREATE utility described in Chapter 4, or by issuing a CREATE operation
from your application program. Btrieve allows a maximum file size of
approximately four billion characters.

Your application can specify filenames in either of the following formats:

\\ <servername> \ <volumename> \ <pathname> \ <filename>
or

<drive>: \ <pathname> \ <filename>

Always terminate the filename with a blank or binary zero.

PHYSICAL FILE CHARACTERISTICS

Btrieve files consist of a series of pages. A page is the unit of storage which
Btrieve transfers between memory and disk during disk I/O. A Btrieve file
can be composed of as many as three different types of pages: index pages,
data pages, and a header page (or File Control Record).

You specify a fixed size for each page when you create the file. The page size
is always some multiple of 512 bytes, up to 4096 bytes. If you need more than
eight key segments, you must specify a size of 1024 bytes or greater. The
optimum page size for your application depends on the number of key
segments in your file and the length of your data records. See "Determining
Record Length and Page Size" beginning on page 2-12 for more information.

2011Rev1.00 2-1

Btrieve Record Manager

HEADER PAGE (FILE CONTROL RECORD)

Every Btrieve file has a single header page, or File Control Record (FCR),
that is always the first page in the file. The FCR contains information about
the file, such as the file size, the page size, the alternate collating sequence (if
any), and other characteristics of the file.

DATA PAGES

Btrieve stores the records your application inserts into a file on data pages.
Btrieve uses two kinds of data pages: fixed length record pages and variable
length record pages.

If a file does not allow variable length records or data compression, its data
pages will all be fixed length record pages. Each data page may contain one or
more data records. The number of data records per page depends on how you
define the record length when you first create a file. Btrieve will not split the
fixed length portion of a record across data pages.

If a file allows variable length records or data compression, or both, it will
contain both fixed length record pages and variable length record pages. The
fixed length record pages contain only the fixed length portions of the records.
The variable length record pages contain only the variable length portions of
the records. If the variable portion of a record is longer than the defined page
size for the file, Btrieve will split the the variable portion over multiple pages.

INDEX PAGES

The index pages contain the key values for accessing data records. Generally,
index pages contain many different key values. Each key value on the page
has a record address (or two addresses when you specify duplicate keys).
Btrieve uses these addresses to retrieve records containing the key value.

B-TREES

Btrieve keeps all indexes to the data records in the form ofB-trees. A B-tree is
a data structure featuring quick access and efficient use of disk space. Once a
B-tree is created, no periodic maintenance is required. A separate B-tree is
created for each key you define within a file.

2-2 201IRev1.00

/

(

Btrieve File Management

DYNAMIC EXPANSION

Btrieve allocates disk space as needed. If there is not enough room in the
current allocation when your application inserts new records, Btrieve
dynamically allocates additional data and index pages to the file. Btrieve also
updates directory structures to reflect the new file size.

Once space has been allocated to a file, that space remains allocated as long
as the file exists. To reduce the space required for a file from which numerous
records have been deleted, you can create a new file with the same
characteristics as the original file, and then either write a small application
which reads the records from the original file and inserts them into the new
file, or use the BUTIL -COPY utility described in Chapter 4. You can then
delete the original file from the disk.

FREE SPACE UTILIZATION

When you delete a record, the space it formerly occupied is put on a list of
free space. When your application inserts new records Btrieve uses the free
space instead of allocating additional pages to the file. Btrieve's method of
reusing free disk space eliminates the need to reorganize files to reclaim disk
space.

BTRIEVE FILE TYPES

Btrieve allows you to define three different types offiles: standard, data-only,
and key-only. The file types are differentiated by the types of pages they
contain. You can define and create any file as either of the two types.

STANDARD BTRIEVE FILES

A standard Btrieve file contains a header page followed by index pages and
data pages. You can define a standard Btrieve file for use with either fixed or
variable length records.

Because standard Btrieve files contain all of the index structures and data
records, Btrieve can dynamically maintain all of the index information for the
records in the file. You can use any of the Btrieve record retrieval operations
to access the information stored in a standard Btrieve file.

201/Rev 1.00 2-3

Btrieve Record Manager

DATA ONLY FILES

Btrieve allows you to create files that hold only data. When you create a data
only file, you do not specify any key characteristics, and Btrieve does not)
allocate any index pages for the file. This results in smaller initial file sizes
than f(lr standard Btrieve files.

When your application inserts records into the file, Btrieve stores them in the
chronological order of insertion. (The chronological order can be disturbed
once you delete records and insert new ones.) Btrieve does not maintain or
create any index pages as the records are inserted. At this point, you can
access the records using only the Step operations, which use physical location
to find records.

At any time after you have created a data only file, you can add an index
using the Create Supplemental Index operation. Once you have added a
supplemental index successfully, you can retrieve records with Get
operations, using the supplemental index.

KEY-ONLY FILES

Key-only files contain only a header page followed by one or more index pages.
In a key-only file, the entire record is stored with the key, so no data pages
are required. A common use for key-only files is as an external index for a
standard Btrieve file.

The following restrictions apply to key-only files:

• The file may contain only a single key.

• The maximum record length you can define is 255 bytes.

• The values stored in the file cannot be updated or deleted once they
have been inserted. The only valid operations that you can perform on
the file are Open, Close, Stat, Insert, and the Get and Step operations.

2-4 2011Revl.OO

• Btrieve File Management

RECORDS

A record represents a set oflogically associated data items in a Btrieve file. It
is the unit transferred between your application program and the Record
Manager in a single operation.

There is no restriction on the number of records allowed in a Btrieve file. A
record can have a fixed length (a ''fixed-length record"), or it can consist of a
fixed length portion followed by a variable length portion (a "variable length
record"). Records in files that use data compression are always variabl~
length. All the keys you define for the file must be located within the fixed
length portion of the record.

The maximum length of the fixed portion of a record depends on the physical
page size you define for the file and the number of duplicate keys you defined
for the file. Btrieve allows the fixed length portion of a record to contain up to
4090 bytes. You can define variable length records up to 64K in length.

See the section called "Determining Page Size and Record Length" beginning
(--. on page 2-12 for more information on maximum record length.

VARIABLE LENGTH RECORDS

When you create a Btrieve file, you can specify that you want the file to use
variable length records. That is, the length of each record in the file can vary.
If you specify that you want the file to use data compression, the file will use
variable length records by default.

When you create a Btrieve file that uses variable length records, you specify a
length in bytes for the fixed length portion of the record. The length you
specify for the fixed length portion of the record is the minimum length the
record can be. You do not define the maximum record length to Btrieve.
Anything beyond the minimum length (up to 64K total bytes) is optional.

When you insert or update a record, your application uses the data buffer
length parameter to specify the length of the record to Btrieve. If the data
buffer length you specify is less than the defined fixed length portion of the
record, Btrieve returns an error status and does not insert or update the
record.

2011Revl.OO 2-5

Btrieve Record Manager

When you read a variable length record and specify a data buffer shorter
than the fixed length portion, Btrieve returns an error status and does not
return any data to your application. If you specify a data buffer length equal
to or longer than the fixed length portion, but not as long as the record you
want to read, Btrieve returns the number of bytes of data you requested and
a status code informing you that Btrieve did not return the entire record.

If you specify a data buffer length longer than the record you want to
retrieve, Btrieve returns only the number of bytes in the actual record. In all
cases, Btrieve informs your application ofthe number of bytes it returned by
setting the data buffer length parameter to that value.

Btrieve stores variable length records on their own data pages, separate from
the fixed length portion of the record. Btrieve leaves a certain amount of free
space, called the free space threshold, on each page where variable length
records are stored. This allows the records to expand when they are updated,
and minimizes fragmentation of a record across multiple pages. When you
create a file, you can specify the amount of free space you want Btrieve to
leave on each variable length page.

KEYS AND KEY ATTRIBUTES

Btrieve uses keys to identify specific records in a file. By using a key, Btrieve
can efficiently select the record you want from the entire collection of records
in a file. Because Btrieve has no way of knowing the exact structure of the
records in each file, you define each key by identifying its offset in bytes from
the beginning of the record, and specifying the number of bytes you want to
use for that key.

For example, suppose a particular key begins at the eighth byte of the record
and extends for four bytes. When you insert the record into the file, Btrieve
will read four bytes, beginning with the eighth byte, and use the value it
finds there to position the record in the index. The keys you define may
overlap each other in the record.

When you create a file, you can specify six different attributes for each key in
the file. The six key attributes are duplicate, modifiable, segmented,
descending, null, and manual.

2-6 20l/Revl.OO

(

Btrieve File Management

DUPLICATE KEYS

You can define a duplicate key to identify a subset of records, all of which can
contain the same value for a particular key. If you specify that a key not
allow duplicates, Btrieve does not allow an application to add multiple
records to the file with the same value in the key field. Btrieve stores
duplicate key values in the chronological order of insertion into the file. If one
segment ofa segmented key allows duplicates, all of the segments must allow
duplicates.

For example, in a file containing customer records you can define the zip code
field as a duplicate key so that many different records can contain the same
value for zip code. However, if you also make the field for the customer
number a key field, you probably would not want to allow duplicates, since
each customer should have a unique number.

MODIFIABLE KEYS

You can also define a key as modifiable. Btrieve then allows your application
to update an existing record and change the value of the key field. For
example, if account balance is a key field, you may allow a program to modify
the value of the field as the customer makes purchases and payments.
However, you probably would make a field such as the account number a
non-modifiable key since the customer's account number should never
change. If one segment of a key is modifiable, all of the segments must be
modifiable.

SEGMENTED KEYS

Keys can consist of one or more segments in each record. A segment generally
corresponds to a field in the record and the segments do not have to be
contiguous. The total length of a key is equal to the sum of the length of the
key segments. The maximum total length is 255 characters. Different key
segments may overlap each other in the record.

2011Revl.OO 2-7

Btrieve Record Manager

A Btrieve file is restricted to a maximum number of key segments rather
than a maximum number of keys. The maximum number of key segments
allowed depends on the page size. You can define as many as eight key
segments if the page size is 512 bytes. For a file with a page size of 1024 bytes
or greater, you can define up to 24 key segments. (See "Determining Record
Length and Page Size" on page 2-12 for more information about page size.)

A file with a page size of 512 bytes or greater may contain one key with eight
segments, eight keys with one segment each, or any combination in between.
If a file has a page size of 1,024 bytes or greater, it may contain one key with
24 segments, 24 keys with one segment, or any combination in between.

The key type can be different for each segment in the key. The sort order,
either ascending or descending, can be different for each segment as well.

DESCENDING KEYS

Btrieve normally orders key values in ascending order (lowest to highest).
However, you can specify that Btrieve order the key values in descending
order (highest to lowest) when you define the key segment.

Btrieve operations produce results based on the order of the key values in the
index, not on the result of a comparison of key values. For example, when you
perform a Get Greater operation on a descending key, Btrieve returns the
record corresponding to the first key value that is lower than the key value
you specify in the key buffer. Likewise, when you perform a Get Less Than
operation using a descending key, Btrieve returns the record with the next
higher key value than the one you specify in the key buffer.

NULL KEYS

You can direct Btrieve to exclude certain records from an index by defining
null keys. When you define a null key, you specify a value that you want
Btrieve to recognize as the null value for that key. If every byte of the key
contains the null value, Btrieve will not include the record in the index for
that key. If you define one segment of a key with the null attribute, you must
define all segments of that key with the null attribute.

2-8 201lRevl.OO

(

(

Btrieve File Management

Btrieve will treat a key as null only if ~ bl1& in the key contains the null
value. If the key is segmented, every byte in~ segment must contain the
null value in order for Btrieve to exclude the key from the index. You can
define different null values for different segments in a segmented key. The
most commonly used null values are ASCII blank (hex 20) and binary 0 (hex
0).

You can use a null value in a key when the data for the key is unavailable, or
when you do not want Btrieve to include that record in the index for that key.
Null keys allow you to avoid searching through meaningless records in an
index path, and eliminate the overhead time required to update the index
each time a blank key is inserted. When the data becomes available, or when
you want to include the record in the index, you can update the record,
replacing the null value with another value.

MANUAL KEYS

The manual key is a modified form of the null key, and can be used to exclude
particular records from the index. Like a null key, you must define a value
that indicates whether you want Btrieve to include the record in the index. If
you define one segment of a key with the manual attribute, you must define
all segments of that key with the manual attribute.

Manual keys have all the attributes of a null key, with one exception. In a
manual key, if every byte of.aIlX.ane. segment contains the null value, Btrieve
will exclude the key from the index.

For example, you can use a manual key segment as a flag to indicate whether
the key is to be indexed. If the segment contains only the null value that you
defined for that segment, Btrieve will not include the key in the index, even
though the rest of the segments in the key contain non-null values. By
updating the flag segment with any value other than the specified null value,
you can instruct Btrieve to include the record in the index.

You can define a key as being both null and manual. In this case, the null
value will always be the same for both the null and manual attributes.
However, the manual attribute will always override the null attribute.

201lRevl.OO 2-9

Btrieve Record Manager

KEY TYPES

Btrieve key types fall into two general categories-standard and extended.
Standard key types are binary and string. Extended key types encompass a
wider set of the most commonly used data types.

STANDARD KEY TYPES

Each standard type key segment is either a binary or string type. Btrieve
sorts standard binary key values as unsigned integers. Internally, Btrieve
compares string keys on a byte-by-byte basis from left to right. It compares
binary keys a word at a time from right to left because the high and low bytes
in an integer are reversed by the Intel 8086 family of processors.

Btrieve sorts string keys according to their ASCII value. However, you can
specify an alternate collating sequence for string keys. An alternate collating
sequence could be used to sort keys according to a non-English alphabet such
as German, Swedish, or Finnish character sets.

EXTENDED KEY TYPES

Extended key types allow Btrieve to recognize and collate key values based on
the internal storage format of 13 of the most commonly used data types. This
capability allows you greater flexibility in designing the indexes of your
Btrieve files.

Some of the types Btrieve supports are IEEE floating point, zero terminated
string, packed decimal, autoincrement, and integer (signed binary). Appendix
G lists and describes the extended key types. Two of the extended key types,
string and unsigned binary, are the same as the two standard key types.

2-10 2011Rev1.00

Btrieve File Management

INDEXES

An index is a structure in a Btrieve file that contains the key values and
maintains them in a sorted order. Btrieve dynamically maintains the indexes
in a balanced B-tree structure. When you insert, update, or delete a record
Btrieve adjusts all the indexes for the file to reflect the latest changes in the
key values contained in the records.

When you create a Btrieve data file, you can define one or more keys for
Btrieve to use to build indexes. Any key you define when you create a file is
called a permanent index, because it exists for the life of the data file.

Btrieve also allows you to define internal indexes for a file after the file has
been created. These indexes are referred to as supplemental indexes. Once
you have created a supplemental index, Btrieve maintains it as the data in
the file changes, just as it does for a permanent index. Positioning rules for a
supplemental index are the same as those for a permanent index. The total
number of permanent and supplemental indexes or segments for a file cannot
exceed 24. Supplemental indexes differ from permanent indexes in two ways.

Unlike a permanent index, you can delete, or "drop," a supplemental index
when it is no longer needed by your application. The space in the file that was
used by the index is freed for data or for other index pages, and Btrieve no
longer maintains that index.

Btrieve collates duplicate key values for a supplemental index in a different
order from those in a permanent index. In a permanent index, Btrieve
collates duplicate values in the chronological order in which the records are
inserted into the file. In a supplemental index, Btrieve enters duplicate
values into the index in the order in which their corresponding records are
physically stored in the file.

You can also specify that the supplemental key use an alternate collating
sequence. If an alternate collating sequence already exists in the file, Btrieve
will use that alternate collating sequence for the new supplemental key key,
if the key is so defined. Ifno alternate collating sequence exists, you can
include one with the definition of the new supplemental index.

201lRevl.OO 2-11

Btrieve Record Manager

DISK UTILIZATION
You can reduce the amount of disk space a file uses by reducing the amount
of unused space on data and index pages. The following sections describe how
to achieve the most efficient use of disk space and how to estimate your file's
total size.

NOTE:
The following discussion and the formulas for determining file size
do not apply to files that use data compression, since the record
length for those files depends on the number of repeating
characters in each record.

DET~RMINING RECORD LENGTH AND PAGE SIZE
When you create a file, you must specify the physical page size and the logical
record length. The following sections will help you determine the optimum
page size. For files that allow variable record lengths, logical record length
refers to the fixed length portion of the record.

RECORD LENGTH
First, determine the logical record length (how many bytes of data you need
to store in the fixed length portion of each record). You specify this value
when you create the file: You must then determine the physical record length
(how many bytes of data, including Btrieve's overhead, are required to store
the fixed length portion of each record).

For files with fixed length records and no duplicate keys, the physical record
length equals the logical record length.

The number of bytes required to store each record on the disk depends on
how many duplicate keys you assign in the file definition. Btrieve stores eight
extra bytes of information with the record for each key that allows duplicates.

Thus, to determine your file's physical record length, add eight bytes to the
logical record length for each key that allows duplicates. Add an additional
four bytes if the file allows variable length records, or six bytes if the file
allows blank truncation.

2-12 2011Rev1.00

\
J

(

Btrieve File Management

DATA PAGE SIZE

Btrieve stores as many records as possible in each data page in the file. Each
data page requires six bytes for overhead information. The fixed length
portion of records do not span pages, so there will be unused space in the file
if the page size minus six bytes is not an exact multiple of the physical record
length. Of course, if you use the data compression feature, there is no way to
precisely know what the stored length of each record will be.

To maximize disk utilization, select a page size that can buffer your records
with the least amount of unused space. Page size must always be some
multiple of512 bytes, up to 4096 bytes. Larger page sizes usually result in
more efficient use of disk space.

For example, suppose you need to store 320 bytes of data in each record and
one of the keys in the file allows duplicates. The logical record length you
specify when creating the file is 320. The file's physical record length is 328
bytes because of the eight-byte overhead for one duplicate key.

If you select a page size of 512, only one record can be stored per page and
178 (512 - 6 - 328) bytes of each page would be unused. However, if you
select a page size of 1024, three records can be stored per page and only 34
(1024 - 6 - (328 * 3» bytes of each page would be unused.

ESTIMATING FILE SIZE

You can estimate the number of pages required to store a Btrieve file with the
formulas below. These formulas are based on the maximum storage (worst
case) required.

The B-tree index structure guarantees at least 50% utilization ofthe key
pages. Therefore, the key page calculations shown below multiply by two the
minimum number of key pages required to account for the worst possible
case.

Most files win require less space, but you should consider these maximum
sizes when estimating file size. These formulas do not take into consideration
the increased index page utilization available if you load Btrieve with the
Index Compaction option.

201lRevl.OO 2-13

Btrieve Record Manager

These formulas apply to files with fixed length records. Any variable length
portions of records are packed in additional pages.

Calculate the number of data pages using the following formula:

Data Pages = Number of Records /
((Page Size - 6) /

(Record Length + (8 * Number of Duplicate Key
Fields)))

Calculate the number of index pages for each defined key field using the
following formula:

For key fields that allow duplicates:

Index Pages = (Number of Unique Key Values /
((Page Size - 12) / (Key Length + 12))) * 2

For key fields that don't allow duplicates:

Index Pages = (Number of Key Values /
«Page Size - 12) / (Key Length + 8))) * 2

Mer you calculate the individual index pages, calculate the pages required
for the file by adding the individual index pages, the data pages, and an
additional page for the File Control Record as follows:

Total file pages = 1 + Data Pages + Index Pages(1)
+ Index Pages(2) + ...

The maximum number of bytes required to store the file can then be
calculated as

File size in bytes = Total file pages * Page size

2-14 201lRevi.OO

Btrieve File Management

FILE PREALLOCATION

The speed of file operations can be enhanced somewhat if a data file occupies
a contiguous area on the disk. These speed gains are most noticeable on very
large files. Btrieve allows you to preallocate up to 65,535 pages to a file when
you create a data file.

In order to preallocate contiguous disk space for a file, the device on which
you are creating the file must have the required number of bytes of
contiguous free space available. Btrieve preallocates the number of pages you
specify, whether or not the space on the disk is contiguous. If there is not
enough space on the disk to preallocate the number of pages you specify,
Btrieve returns a disk full status and does not create the file.

Use the formulas described in the previous section to determine how many
data and index pages the file requires. You should round any remainder from
this part of the calculation to the next highest whole number.

When you preallocate pages for a file, that file actually occupies that area of
the disk. No other data file can use those portions of the disk until you delete
or replace the file that has preallocated space.

As you insert records, Btrieve uses the preallocated space for data and
indexes. When all of the preallocated space for the file is in use, Btrieve
expands the file as new records are inserted.

When you issue a Btrieve Stat operation, or run the BUTIL -STAT utility,
Btrieve returns the difference between the number of pages you allocated at
the time you created the file and the number of pages that Btrieve has
currently in use. This number will always be less than the number of pages
you specify for pre allocation because Btrieve considers a certain number of
pages to be in use when a file is created, even if you have not inserted any
records.

Once a file page is in use, it remains in use for the life of the file, even if you
delete all of the records stored on that page. Thus, the number of free pages
the Stat operation returns will never increase. When you delete a record,
Btrieve maintains a list of free space in the file and re-uses the available
space when you insert new records.

2011Rev1.00 2-15

Btrieve Record Manager

Ifthe number offree pages returned by the Stat operation is zero, it does not
always mean that there is no free space in the file. The number of free pages
can be zero if one ofthe following is true:

• You did not preallocate any pages to the file.

• All of the pages that you preallocated were in use at one time or
another.

CONSERVING DISK SPACE

Btrieve offers two optional methods for reducing the space occupied by your
data files: blank truncation and data compression. The blank truncation
method applies only to files that use variable length records. You can use
data compression for any Btrieve file.

BLANK TRUNCATION

When you define a file that allows variable length records, you can specify
that Btrieve use a blank truncation method for storing the records in order to
conserve disk space. If you choose to truncate blanks, Btrieve won't store any
trailing blanks in the variable length portion of the record when it writes the
record to the file. Blank truncation has no effect on the fixed length portion of
a record. Btrieve does not remove blanks that are embedded in the data.

When you read a record that contains truncated trailing blanks, Btrieve
expands the record to its original length. The value Btrieve returns in the
data buffer length parameter includes the expanded blanks, if any. Blank
truncation adds two bytes of overhead to the record.

DATA COMPRESSION

When you create a Btrieve file, you can specify whether you want Btrieve to
compress the data records when it stores them in the file. Data compression
can result in a significant reduction of the space needed to store records that
contain many repeating characters.

2-16 201lRev1.00

(--.

(

Btrieve File Management

You should consider using Btrieve data compression when

• The records to be compressed are structured so that the benefits of
using data compression are maximized;

• Your application program does not require the extra memory used by
Btrieve for the compression buffers;

• The need for better disk utilization outweighs the possible increased
processing and disk access times required for compressed files.

When you perform record I/O on a compressed file, Btrieve uses a
compression buffer to provide a block of memory for the record compression or
expansion process. To have enough memory to compress or expand a record,
Btrieve requires enough buffer space to store twice the length of the longest
record your application inserts into the compressed file. This requirement can
have an impact on the amount of free memory left in the computer after
Btrieve loads. For example, if the longest record your application writes or
retrieves is 2,000 bytes long, Btrieve will require 4,000 extra bytes of memory
in order to compress and expand that record.

Because the final length of a compressed record cannot be determined until
the record is written to the file, Btrieve always creates a compressed file as a
variable length record file. Since the compressed images of the records are
stored as variable length records, individual records may become fragmented
across several file pages if your application performs frequent insertions,
updates, and deletions. The fragmentation can result in slower access times,
since Btrieve may need to read multiple file pages to retrieve a single record.

The data compression option is most effective when each record has the
potential for containing a large number of repeating characters. For example,
a record may contain several fields, all of which may be initialized to blanks
by your application when it inserts the record into the file. Compression will
be more efficient if these fields are grouped together in the record, rather
than being separated by fields containing other values.

To use data compression, the file must have been created with the
compression flag set. For more information about the compression flag, refer
to the discussion of the Create operation on page 6-10, or to the discussion of
BUTIL description files beginning on page 4-4.

2011Rev1.00 2-17

Btrieve Record Manager

POSITIONING

Btrieve allows you to retrieve records from a file based on either the record's
physical address within the file or a key value contained in the record.

When you insert a record into a Btrieve file, Btrieve writes the record into the
first free space available in the file, regardless of any key values contained in
the.record. This location is referred to as the "physical location," or "address,"
of the record. The record will remain in this location until your application
deletes it from the file.

When Btrieve writes the record into the file, it also updates the defined access
paths (indexes) with the appropriate key values in the record. The place in
each index where the record's key values exist is referred to as the "position"
of the record. The position of a record in an index can change as new records
are inserted and existIng records are either deleted or their key values are
updated. Thus, there is not necessarily a correspondence between the
physical address of a record and its position in an access path.

RECORD RETRIEVAL BY PHYSICAL LOCATION

Your application can use the four Step operations provided by Btrieve to
retrieve records based on their physical location in the file. For example, the
Step First operation retrieves the record that is stored in the first (lowest)
physical location in the file. The Step Next operation retrieves the record
stored in the next higher physical location, and the Step Previous operation
retrieves the record stored in the next lower physical location in the file. The
Step Last operation retrieves the record that is stored in the last (highest)
physical location in the file.

Retrieving a record by its physical location is usually faster than retrieving a
record based on a key value because Btrieve does not have to update any
positioning information for an index and because the next or previous
physical record is very likely already in Btrieve's memory cache.

2-18 201/Rev1.00

Btrieve File Management

The Step operations are useful for traversing a data file quickly if your
application does not need to retrieve the records in a specific order. Because
the Step operations use only physical location to retrieve records, they are not
useful for finding records that contain a specific value or for retrieving
records in any specific order.

Your application can establish logical position in an index after issuing Step
operations by using the following method:

• Retrieve the desired record by issuing one of the Step operations.

• Issue a Get Position operation to retrieve the 4-byte physical address of
the record.

• Issue a Get Direct operation, passing Btrieve the 4-byte position and the
key number on which you want to establish position.

After performing the above operations, your application can proceed to
retrieve records based on their key values.

(- RECORDRETRIEVALBYKEYVALUE

(-

Your application can use the Get operations to retrieve records based on their
key values for a specified access path. The appropriate Get operation can
retrieve a specific record from a file, or retrieve records in a certain order.

For example, the Get First operation retrieves the first record in an access
path. The Get Last operation retrieves the last record in an access path. Some
Get operations, such as Get Equal or Get Less Than, return a record based on
a key value your application specified in the key buffer parameter.

Get operations establish Btrieve's position in an index. Your application can
change from one index to another by using the following method:

• Retrieve a record by issuing one of the Get operations.

• Issue a Get Position operation to retrieve the 4-byte physical address of
the record.

• Issue a Get Direct operation, passing Btrieve the 4-byte physical
address and the key number to which you want to change.

2011Rev1.00 2-19

Btrieve Record Manager

THE POSITION BLOCK

Btrieve maintains positioning information associated with each open file. It
stores this positioning information in a 12B-byte block of memory which
passes between the Record Manager and your application program. This area
of memory is known as the "position block."

Specifically, the position block contains the following:

• The access path identifier (the key number)

• The access path index pointers

• Three record pointers

The three record pointers are the following:

• The previous record pointer points to the record preceding the current
record in the index.

• The current record pointer points to the most recently retrieved record.

• The next record pointer points to the record following the current record
in the index.

Btrieve updates the position block on every operation to reflect the new index
position within the file. Btrieve uses positioning information to read
sequentially through the file on a given access path.

Your application should maintain a 12B-byte position block for every Btrieve
file that is open. Your application should never write to the position block,
since this could result in a lost position error or in damage to the Btrieve file.

2-20 2011Rev1.00

(-

Btrieve File Management

INTEGRITY PROCESSING

Btrieve's normal operating mode provides several levels of automatic data
recovery. Btrieve uses the Transaction Tracking Service to protect individual
Insert, Update, and Delete operations against system failure ifthe TTS is
installed and the file is flagged as transactional. If the file is not flagged
transactional or ifTTS is not active, Btrieve guards file integrity through a
system called pre-imaging. Additionally, Btrieve protects sets of related
operations on multiple files with a process called transaction control. The
processing required for both of these features is described in the following
paragraphs.

You can disable any level of automatic recovery with the performance options
described under "Accelerated Access" on page 2-25. If a file is damaged
because of a system failure while Btrieve is running with the integrity
processing disabled, you can use the RECOVER utility to recover data.

PRE·IMAGING

The Record Manager may need to perform several physical page updates to
process a single logical request from an application. If Btrieve processing is
interrupted by a system failure, files may become inconsistent, possibly
introducing invalid access paths which could make data retrieval impossible.

NOTE:
The discussion of pre-imaging in this section applies only to files
that are n2t flagged transactional or that are stored on a file
server where TTS is n.2t active.

Btrieve guards against inconsistent file states with a process called
pre-imaging. If processing is interrupted, Btrieve automatically restores the
file to its state just prior to the incomplete request.

201/Rev1.00 2-21

Btrieve Record Manager

Btrieve creates a pre-image file the first time you update the data file or
access it during a transaction. The temporary file has the same name as the
file it is protecting, except that the filename extension is always .PRE. For
example, if you opened the ACCTID.DTA file, the temporary filename would
be ACCTID.PRE. Btrieve uses this temporary file to track changes to the
actual file during the scope of a request. Don't create file names with the
extension .PRE since they will invalidate the recovery process.

When you update a file, Btrieve stores the updates in the local cache buffers.
Before it changes a page, it writes a copy ofthat page to the pre-image
buffers.

At the end ofthe operation, Btrieve first writes the pre-image buffers to the
pre-image file on the disk. Then it writes the updates to the data file on the
disk. If either the cache buffers or the pre-image buffers fill up before the end
of the operation, Btrieve writes the information stored in the buffers to the
disk in order to free the buffer space. No matter when Btrieve writes the
information to the disk, it always writes the data in the pre-image buffers to
the disk before it updates the actual data file.

Each Btrieve file you access must have its own pre-image file. Since the name
of the pre-image file is the same as the Btrieve file (except for the extension),
do not create multiple Btrieve files with the same names but different
extensions. For example, do not use a naming scheme like INVOICE.HDR
and INVOICE.DET for your Btrieve files. Otherwise, Btrieve tries to use
INVOICE. PRE for both files and automatic recovery becomes impossible.

Once Btrieve creates a pre-image file, do not delete it unless the Btrieve file
has been successfully closed. Without the pre-image file, Btrieve cannot
recover data after an abnormal termination.

2-22

NOTE:
Pre-imaging does not eliminate the need to back up files, since
pre-imaging cannot recover from a damaged disk. Therefore, it 'is
imperative that backups be made to protect against the
catastrophic loss of a database because of a hardware failure.

201IRev1.00

Btrieve File Management

TRANSACTION TRACKING SYSTEM (TTS)

Btrieve uses TTS to protect and guarantee individual write operations to
Btrieve files. In order to use this facility, two conditions must be met:

• TTS must be active at the file server.

• The Btrieve files must be flagged as transactional.

When you install Btrieve, you must specify whether files should
automatically be flagged as transactional as they are created. If you created
the file on another system, and copied or restored it to your network disk, you
must flag it as transactional using the NetWare FLAG utility. Refer to the
NetWare Command Line Utilities manual for more details about the FLAG
utility.

If processing at the file server is interrupted during a write operation, files
that are flagged transactional may become inconsistent and could contain
invalid access paths. When the file server is rebooted, TTS restores any
inconsistent files to the state they were in just prior to the incomplete write
operation.

TRANSACTIONS

You can obtain a higher level of data integrity than the individual file
consistency provided by either TTS or pre"imaging alone if you define logical
transactions within your program. Your program may perform Btrieve
operations on up to 12 different files within a single transaction.

When you bracket a set of Btrieve operations with Begin and End
Transaction calls, Btrieve will not complete any of the operations unless it is
able to successfully complete all of them. If the system fails during an
incomplete transaction, Btrieve automatically removes ("rolls back") all ofthe
operations performed during the transaction, whether or no TTS is active.

Btrieve uses a transaction control file to keep track of the files involved in a
transaction. It creates the transaction file, \SYS\SYSTEM\BTRIEVE.TRN,
if you specify transaction processing in the BSETUP utility. See "Configuring
and Installing Btrieve" in Chapter 3 of this manual.

201lRevl.OO 2-23

Btrieve Record Manager

When you restart the file server after a system failure, Btrieve looks at the
transaction file to determine if recovery procedures are necessary. In most
cases, Btrieve performs transaction recovery the first time you open the
involved files after the failure. However, if the system fails while Btrieve is
processing an End Transaction call, it performs some recovery when you
restart the file server. In this case, all files involved in the incomplete
transaction at that file server must be online when you restart.

When you are running Btrieve applications that use transactions, follow the
specifications below:

• Always ensure that the Btrieve files accessed within transactions are
online when you start the Record Manager.

• Never delete or modify the transaction file or any files with the
extension ".PRE".

For files that are not flagged transactional, Btrieve uses the pre-image files to
implement transaction-level integrity. The pre-image files continue to grow
for the duration of the transaction (until an End Transaction or Abort
Transaction operation) , not just during a single operation. Therefore, the
pre-image files require a larger amount of disk space when you are using
transactions in your applications. The more Update, Delete, or Insert
operations your application performs during a single transaction and the
larger the page size, the larger the pre-image file will become.

TRANSACTIONS AND TIS

IfTTS is active and the files you access during a transaction are flagged
transactional, Btrieve uses the TTS facility to implement transaction level
integrity. If an error occurs during a write operation to a file within a
transaction, Btrieve signals TTS to roll back all operations since the
beginning of the transaction. At this point, the transaction is effectively
aborted, and Btrieve returns an error status to your application that reflects
the cause of the error. Issue an Abort Transaction operation (see Chapter 6)
to exit the transaction.

2-24 2011Rev1.00

(-

(

Btrieve File Management

If your application issues an Abort Transaction operation because of an
operator request or other internal reason, Btrieve removes the operations
since the beginning of the transaction from the files using the facilities
provided by TTS.

You can mix files that are flagged transactional with nontransactional files
within a logical Btrieve transaction. If an error occurs or if your application
aborts the transaction, Btrieve uses TTS to roll back the transactional files
and pre-imaging to roll back the nontransactional files.

When you mix transactional and nontransactional files, the pre-image files
for the nontransactional files will grow for the duration of the transaction,
requiring a larger amount of disk space than if you only use files that are
flagged transactional.

ACCELERATED ACCESS

Both methods of automatic data recovery, TTS and pre-imaging, require
processing time overhead. There may be circumstances in which you feel such
overhead is not warranted. Btrieve allows you to disable pre-imaging for files
that are not flagged transactional by opening them in accelerated mode. This
decreases the time required for Update, Delete, and Insert operations, and is
especially useful if you are loading a large number of records. Accelerated
mode can be advantageous in environments that guard against system
failures with an uninterruptible power supply, or in systems in which the risk
of system failure from other causes is low.

When you open a file in accelerated mode, Btrieve does not perform writes to
the operating system until its cache is full and the least-recently-used
algorithm controlling the I/O buffer cache selects a buffer for reuse. Btrieve
never writes to the pre-image file unless the pre-image buffers are entirely
filled during a single operation. In addition, Btrieve does not perform the
reset disk operations that cause the operating system to flush its cache
buffers to the disk. It does not close and reopen the file each time it physically
expands in order to flush the directory structure.

201IRev1.00 2-25

Btrieve Record Manager

If you open a file in accelerated mode, you cannot assume that any of your
updates have been written to the disk until you perform a Close operation. If
the system fails while you are accessing a file in accelerated mode, Btrieve
cannot automatically recover the file the next time you open it. In this case,
you must use the BUTIL -RECOVER utility to recover your data records to a
sequential file. The data you recover may not reflect all of the operations you
performed before the system failed.

Once a workstation successfully opens a file in accelerated mode, others can
open the file only if they also use accelerated mode. Any attempt by another
workstation to open the file in a different mode results in an incompatible
mode error status.

2-26

NOTE:
Accelerated mode has nQ effect on files that are flagged
transactional when the TTS system is active. Also, opening a file
in accelerated mode does not affect Btrieve's speed during
nonwrite operations.

2011Revl.OO

Btrieve File Management

CONCURRENCY CONTROLS
Btrieve provides three different methods to resolve conflicts that can occur
when two workstations attempt to update or delete the same records at the
same time: transaction control, passive concurrency, and record locks. You
can use these methods individually or combine them within a single program.

TRANSACTION CONTROL

Whenever your program accesses a file within a transaction, Btrieve locks the
file for that workstation until the transaction ends or aborts. Other
workstations may read the file, provided the reads are not performed within a
transaction. However, no one else can access the file within a transaction.

Btrieve normally performs wait locks. If two workstations try to access the
same file within a transaction, Btrieve will not allow the second workstation
to access the file until the first workstation completes its transaction.

However, if you specify nowait locks when you begin the transaction, Btrieve
will perform nowait locks during the transaction. If two workstations try to
access the same file within a transaction, the second workstation receives a
file busy status from Btrieve.

Since a transaction temporarily locks a file against updates, your Btrieve
application should follow these important guidelines:

• A program should never wait on keyboard input during a transaction.
No other workstations will be able to update thefile(s) accessed within
that transaction until the operator responds and the transaction is
terminated.

• To avoid deadlock, all transactions that access the same set offiles
should be started with the nowait option, or else they should access the
files in the same order. Otherwise, it is possible to get into a situation in
which each workstation is waiting for access to files that the other
workstation has already locked.

2011Rev1.00 2-27

Btrieve Record Manager

Figure 2.1 illustrates how two workstations would interact while running the
same application that reads and updates two files within a wait transaction.
The steps are numbered to indicate the order in which the operations occur.

Station 1 Station 2 Station 2
Application Btrieve Application

(1) Open File 1
(2) Open File 1

(3) Open File 2
(4) Open File 2

(5) Begin Tran
(6) Begin Tran

(7) Read File 1

(9) Delay since
(8) Read File 1

Station 1 has
locked File 1

(10) Read File 2
(11) Update File 1
(12) Update File 2
(13) End Tran

(14) Read
completes

(15) Read File 2
(16) Update File 1
(17) Update File 2
(18) End Tran

Figure 2.1
Transaction Locking

2-28 2011Revl.OO

Btrieve File Management

Figure 2.2 demonstrates how two workstations on a network can become
deadlocked. The workstations are executing two different programs that
access the same files in different orders within wait transactions.

Station 1 Station 2
Application Btrieve Application

(1) Open File 1
(2) Open File 2

(3) Open File 1

(5) Begin Tran
(4) Open File 2

(6) Begin Tran
(7) Read File 1

(8) Read File 2
(9) Read File 2

(10) Btrieve on
Station 1 delays
since Station 2
has locked File 2

(12) Btrieve on
(11) Read File 1

Station 2 delays
since Station 1
has locked File 1

Figure 2.2
Deadlock Example

PASSIVE CONCURRENCY

If your application performs single record read and update sequences that are
not logically connected, you may choose to rely on the passive method of
concurrency. Btrieve allows any workstation to read and update (or delete)
records without performing any locks or transactions.

If a record changes between the time your program reads it and the time your
program attempts to update (or delete) it, Btrieve returns a conflict status.
This status indicates that the data has been modified by another workstation
since you originally read it. In that case, your program must reread the
record to perform the update (or delete) operation.

The passive method allows you to move applications directly from the
single-user to the multi-user environment with only minor modifications. It
also allows for a high degree of concurrency in the system.

2011Rev1.00 2-29

Btrieve Record Manager

Figure 2.3 shows how two applications interact when using the passive
method of concurrency.

Figure 2.3
Passive Method

You can combine the passive method effectively with transaction level control.
When one workstation accesses a file within a transaction, other workstations
can no longer update the file or access it within their own transactions.

If such an attempt occurs, Btrieve returns a busy status or waits until the
first transaction terminates, depending on how the second workstation's
transaction began. Any number of workstations can gain access to read a file
if the reads occur outside of a transaction.

2-30 201IRev1.00

r'

(

Btrieve File Management

Figure 2.4 illustrates how an application using wait transaction control can
interact with an application using the passive method of concurrency. When
the application on Workstation 1 reads file 1 within a transaction,
Workstation 2 can still read the file outside of a transaction, but its update
waits until the transaction terminates.

Since the two workstations are accessing different records in the same file,
Workstation 2's update succeeds. Ifboth had been updating the same record,
Btrieve would have returned a conflict status to Workstation 2 on the update.

Figure 2.4
Transaction and Passive Combination

2011Revl.OO 2-31

Btrieve Record Manager

RECORD LOCKS

Whenever a program accesses a record within a file, it can specify that it
wants to lock the record. Other workstations may read the record, provided
the reads are not performed with the lock option. However, no other
workstation can lock, update, or delete the record until the workstation that
holds the lock releases it.

When you lock a record, you use the appropriate Btrieve operation code to
specify either a single record lock or a multiple record lock. A single record
lock allows a workstation to have only one record locked in a file at a time; a
multiple record lock, several.

Btrieve permits both wait and nowait locks. Wait locks do not return a status
code to the application until the lock is successful. Nowait locks immediately
return to the application with a busy status when another workstation holds
the lock for the record. When you use nowait locks, the application must
contain logic either to wait and retry the operation or to report the error to
the user when the lock is busy.

Once a workstation has successfully locked a record with a single record lock,
the lock remains in effect until one or more of the following events occur:

• The workstation updates or deletes the locked record. (The workstation
can read and update other records in the file without releasing the lock).

• The workstation locks another record in the file.

• The workstation issues an unlock operation for the file.

• The workstation closes the file.

• The workstation issues a Reset operation, closing its open files.

• The workstation accesses the file within a transaction.

2-32 201/Revl.OO

(

Btrieve File Management

Once a workstation has successfully locked one or more records with multiple
record locks, the locks remain in effect until one or more of the following
events occur:

• The workstation deletes the locked record(s).

• The workstation explicitly unlocks the record(s).

• The workstation closes the file.

• The workstation issues a Reset operation, closing its open files.

• The workstation accesses the file within a transaction.

RESTRICTING ACCESS TO A FILE

Btrieve allows you to restrict access to a file by either assigning an owner
name to the file or by opening the file in exclusive mode.

OWNER NAMES

Btrieve also allows you to restrict access to a file by specifying an owner
name. Once you assign an owner name to a file, Btrieve requires that name to
be specified for all future Open operations. This prevents any unauthorized
access or changing of a file's contents by users or application programs that
do not have access to the owner name.

You can restrict access so that users may have read-only access to the file
without specifying the owner name. By assigning this selective ownership
right to a file, users and application programs still cannot change the file's
contents unless they specify the owner name. Btrieve allows you to remove
ownership rights from a file if you know the owner name assigned to it.

When you assign an owner name, you may also request that Btrieve encrypt
the data in the disk file using the owner name as the encryption key.
Encrypting the data on the disk ensures that unauthorized users cannot
examine your data by using a debugger or a file dump utility. Since
encryption requires additional processing time, select this option only if data
security is important in your envirompent.

20ilRevi.OO 2-33

Btrieve Record Manager

EXCLUSIVE MODE

If you want to limit access to a file to a single workstation, you can specify
that Btrieve open the file in exclusive mode. When a workstation opens a file
in exclusive mode, no other workstation can open the file until the
workstation that opened the file in exclusive mode closes it.

2-34 2011Revl.OO

(.. 3 RUNNINGNETWAREBTRIEVE

This chapter contains information you will need in order to install and
configure NetWare Btrieve for your system.

SYSTEM REQUIREMENTS

NetWare Btrieve must be run under NetWare v2.lx or above. The NetWare
Transaction Tracking System is required if you want to guarantee individual
disk write operations, and to ensure file integrity and recovery in the event of
a file server failure.

IMPORTANT:
NetWare Btrieve does not run under ELS NetWare Level I or
Advanced NetWare 68 because these versions of NetWare do not
support Value-Added Processes.

Btrieve requires a network file server with enough memory to load NetWare,
BSERVER, and BROUTER. In most cases, the file server should have a
minimum of 2MB of memory in order to run both NetWare and Btrieve
efficiently.

The Btrieve Requester program (BREQUEST) requires approximately 25KB
of memory at each workstation (assuming it is loaded with the default
start-up options). The exact amount of memory required depends on the
start-up options you specify when you load the program.

If you are using an internetwork system, workstations on sibling networks
that utilize NetWare Btrieve must have access to a file server loaded with

(BSERVER and BROUTER.

2011Rev1.00 3-1

Btrieve Record Manager

THE BTRIEVE DISKETTES

NetWare Btrieve is shipped on two diskettes: aPROGRAMS diskette and a
UTILITIES diskette. You should make copies of the Btrieve diskettes, saving
the original diskettes in case the copies are damaged or lost. The original
Btrieve diskettes are write-protected so that you cannot accidentally erase or
replace their contents.

The PROGRAMS diskette contains the following files:

File

BSERVER.V AP

BROUTER.V AP

BREQUEST.EXE

BREQUEST.DLL

BTRCALLS.DLL

Description

The file that NetWare loads as a Value-Added Process
on the file server.

The Btrieve Message Routing program. This program
is used to provide interprocess communications
between BSERVER and other V AP products, such as
NetWare SQL.

The Btrieve Requester program for DOS workstations
This is the memory-resident program that you load a,
each workstation that makes Btrieve requests.
BREQUEST transfers Btrieve requests from your
application to the file server.

The Btrieve Requester program for OS/2 workstations.
This is the dynamic link library that OS/2 links to
each Btrieve application. The BREQUEST routines
transfer Btrieve requests from your application to the
file server.

The Btrieve dynamic link routine for OS/2
workstations. This program is included to remove the
need for relinking OS/2 programs specifically for
NetWare Btrieve.

The UTILITIES diskette contains the following files:

BUTIL.EXE

BSETUP.EXE

BSETUP.HLP

3-2

The Btrieve standalone utility.

The Btrieve configuration and installation utility.

The message file for the BSETUP program.

2011Revl.OO

Running NetWare Btrieve

File Description

('
BASXBTRV.EXE The memory resident BASIC interface used with

interpretative BASIC.
BASXBTRV.OBJ The object module containing the IBM Compiled

BASIC interface to Btrieve.
QBIXBTRV.OBJ The object module containing the Microsoft

QuickBASIC interface to Btrieve.

PASXBTRV.OBJ The object module containing the Pascal interface for
the IBM (or Microsoft) Pascal compiler.

TURXBTRV.PAS The source module containing the Pascal interface for
the Turbo Pascal compiler.

BEXTERN.PAS A Pascal source file containing the external
declaration for the BTRV function.

COBXBTRV.OBJ The object module containing the COBOL interface for
the Microsoft COBOL compiler, v2.

(
MSCXBTRV.C The source module for the Microsoft C interface to

Btrieve.

C2XBTRV.C The C interface source module used in OS/2 protected
mode applications.

C2FXBTRV.C The C interface source module used with OS/2 F API
applications that run in either protected or
compatibility mode.

UPPER.ALT A file containing the definition of an alternate
collating sequence that compares keys in upper and
lower case as if they were all in upper case.

B.EXE The Btrieve function executor, a testing and training
program.

README.DOC A document that describes any changes in or
enhancements to Btrieve since this manual was

(
published.

INTRFACE.DOC A document that describes the language interfaces
provided on the Btrieve diskette that are not
discussed in this manual.

2011Revl.OO 3-3

Btrieve Record Manager

CONFIGURING AND INSTALLING BTRIEVE

Before your application can access NetWare Btrieve, you must first configure
the Btrieve programs and then install them on a file server.

The BSERVERV AP and BROUTERVAP files included on the PROGRAMS
diskette are supplied with the default settings for the initialization options.
While these settings are adequate for many systems, they may not be correct
for your needs. This section discusses the Btrieve configuration options and
explains how to use the BSETUP.EXE program to configure and install
customized versions of BSERVER.V AP and BROUTERV AP on your file
server.

THE BTRIEVE CONFIGURATION OPTIONS

Btrieve must reserve memory and resources when it loads in order to operate
correctly. You can customize Btrieve for your system by specifying a set of
configuration options. These include the following:

.• The maximum number of open files

• The maximum number of file handles

• The maximum number of record locks

• The number of concurrent transactions

• The maximum size of the compression buffer

• The maximum record length

• The maximum page size

• The maximum number of concurrent sessions

• The console refresh delay count

• Automatic transaction flagging

The sections on the following pages discuss each option, the default values,
and the memory required, if any.

3-4 201lRevl.OO

(--

MAXIMUM NUMBER OF OPEN FILES

Range: 1 - 255

Default: 20

Memory required per file: 115 bytes

Running NetWare Btrieve

The "Maximum Number of Open Files" option allows you to specify the
maximum number of unique files that will be open at that file server at any
given time. Btrieve uses the value you specify to determine the size of the
internal tables it uses to track active files. Each unique Btrieve file on the file
server requires one entry.

MAXIMUM NUMBER OF FILE HANDLES

Range: 1 - < network limit>

Default: 60

Memory required per handle: 114 bytes

The "Maximum Number of File Handles" option allows you to specify the
maximum number of file handles that Btrieve will allow your system to use
simultaneously. Iftwo stations open the same file on the file server, they use
two file handles. To calculate the maximum number of handles your system
requires, multiply the number of stations by the maximum number of files
each workstation can open.

2011Reill.OO 3-5

Btrieve Record Manager

MAXIMUM NUMBER OF RECORD LOCKS

Range: 0 - < network limit>

Default: 20

Memory required per lock: 8 bytes

The "Maximum Number of Record Locks" option sets the maximum number
of records that can be locked simultaneously at that file server. Specifically, it
determines the number of entries for the lock table that Btrieve builds when
it loads. The value for this option includes both single and multiple record
locks. To calculate the value for this option, determine the maximum number
of records that each workstation can have open, and multiply that value by
the number of workstations that access Btrieve files.

NUMBER OF CONCURRENT TRANSACTIONS

Range: 0 - < maximum number of sessions>

Default: 0

Memory required per transaction: 1,046 bytes

The "Number of Concurrent Transactions" option sets the maximum number
of stations that may have concurrent active transactions at the file server. If
you specify a value of zero for this option, no workstations may issue a Begin
Transaction operation to the file server. If you specify a value greater than
zero for this option, Btrieve creates a transaction file, BTRIEVE.TRN, in the
\SYS\SYSTEM directory at the file server, and allows as many active
transactions at the file server as you specify.

3-6 2011Revl.OO

(-

Running NetWare Btrieve

MAXIMUM COMPRESSED RECORD SIZE

Range: 0 - < longest record in a compressed file>

Default: 0

Memory required per transaction: 2 * number of kilobytes specified

The "Maximum Compressed Record Size" option specifies the size (in
kilobytes) of the longest record that you will be accessing from a compressed
file. Btrieve will allocate twice the number of kilobytes you specify to its
compression buffer. Specifying a higher value than you need does not result
in improved performance, and may result in a reduction of the memory
available for other processes at the file server.

If you use compressed files, set the value for this option to the size ofthe
longest record in any of your compressed files. Specify the value in kilobytes.
Round any uneven values up to the next higher kilobyte value. For example,
ifthe longest record you will be accessing is 1,800 bytes long, specify a value
of 2 for this option.

If you do not use compressed files, set the value to O.

MAXIMUM RECORD LENGTH

Range: 4 bytes - 32KB

Default: 8,192 bytes

Memory required: (specified value + 269 bytes)

The "Maximum Record Length Allowed" option specifies the length of the
longest record that any Btrieve application can access at that file server.
Always specify the length of the record in bytes. Specifying a higher value
than you need does not result in improved performance.

2011Revl.OO 3-7

Btrieve Record Manager

MAXIMUM PAGE SIZE

Range: 512 - 4,096 bytes

Default: 4,096 bytes

Memory required: n/a

The "Maximum Page Size Allowed" option allows Btrieve to calculate the size
of the cache buffers it needs. The value you specify here should be the
maximum page size of any Btrieve file you want to access. It must be a
multiple of 512 bytes, but no greater than 4,096 bytes.

MAXIMUM NUMBER OF CONCURRENT SESSIONS

Range: 1 - < number of workstation tasks>

Default: 15

Memory required per session: 1,296 bytes

The "Maximum Number of Concurrent Sessions" option specifies the
maximum number of workstation tasks that can access BSERVER at any
given time. A session is defined as one copy of BREQUEST communicating
with the BSERVER program. Each session is allocated two packet buffers for
Btrieve requests.

Specifying a higher value than you need does not result in improved
performance.

CONSOLE REFRESH DELAY COUNT

Range: 1 - 60 seconds

Default: 3 seconds

Memory required: n/a

The "Console Refresh Delay Count" option controls the number of seconds
that B STATUS and B ACTIVE delay before refreshing the screen with new
information. The delay allows you to maintain the readability of the
information while observing the effect of database activity in a real time
mode.

3-8 2011Revl.OO

(-

(

Running NetWare Btrieve

AUTOMATIC TRANSACTION FLAGGING

Range: Yes/N 0

Default: No

Memory required: n/a

The "Automatic Transaction Flagging" option controls whether or not Btrieve
automatically flags files as transactional at the time you create them on the
system. If you answer "Yes" to this option, Btrieve flags newly created files as
transactional. If you answer "No," Btrieve does not flag the files as
transactional.

INSTALLATION OPTIONS

The BSETUP program is designed to give you the following installation .
options:

• You can install BSERVER and BROUTER directly on a file server. If .
this is the case, you must be logged in as SUPERVISOR or have
supervisor rights. If you are not logged in as SUPERVISOR, the
"Install" and "Remove" options will not be displayed on the menu.

• You can copy the BSERVER.VAP and BROUTER.VAP files to a
subdirectory or a diskette, run BSETUP to configure the copy, and then
either install the copy on the current file server or transport the file to
another file server.

201 IR ev 1.00 3-9

Btrieve Record Manager

STARTING BSETUP

To start BSETUP, complete the following steps.

1) Start the personal computer that you will use to run BSETUP.

2) Copy BSERVERV AP and BROUTER.V AP to a subdirectory or diskette,
depending on which installation option you are using.

3) Make sure that the current directory is the subdirectory to which you
copied the NetWare Btrieve programs.

4) At the DOS prompt, type the BSETUP command as follows:

BSETUP <Enter>

USING BSETUP

When BSETUP loads, a menu similar to the following will appear:

Available Options
Change File Server
Install Btrieve
Remove Btrieve
Save Configuration
Set Configuration

The following sections discuss each option and give information about using
them to configure and install Btrieve. The options are presented in the order
in which you would most likely perform them. If you need more detailed help
about the task you are currently performing, press the F1 (Help) key.

Use the Up- and Down-arrow keys to highlight menu options. If at any time
you want to exit a menu option, press <Esc>.

To exit BSETUP, press <Esc> at the "Available Options" menu, and highlight
"Yes" on the "Exit BSETUP" menu.

3-10 2011Rev1.00

(-

Running NetWare Btrieve

CHANGE FILE SERVER

The "Change File Server" option allows you to choose the file server on which
you want to configure, install, remove, or save NetWare Btrieve.

To change file servers, complete the following steps.

1) Use the Up- or Down-arrow key to highlight the "Change File Server"
option and press <Enter>.

A menu will appear, listing names of the file servers that are currently
attached to the workstation.

2) Use the Up- or Down-arrow key to highlight the name of the file server
on which you want to perform the BSETUP operation and press
<Enter>.

There will be a short wait, and then the "Available Options" menu will
reappear.

If you have supervisor rights on the file server that you select, all of the
menu options will appear. You can now configure, install, remove, or
save NetWare Btrieve at that file server.

If you do not have supervisor rights on the file server that you select,
the "Install NetWare Btrieve" and "Remove NetWare Btrieve" options
will not appear. You can only configure and save the NetWare Btrieve
configuration at a file server on which you do not have supervisor rights.

2011Rev1.00 3-11

Btrieve Record Manager

SET CONFIGURATION

The "Set Configuration" option allows you to define the Btrieve options for the
copy of Btrieve in the current directory.

IMPORTANT:
If BSERVER.VAP and BROUTER.VAP are not present in the
current directory when you attempt to set the initialization
options, BSETUP returns an error message and terminates
execution.

To set one or more ofthe initialization options, complete the following steps.

1) Highlight "Set Configuration" in the "Available Options" menu and
press <Enter>.

A screen similar to the following will appear:

Number of open files:20
Number of handles: 60

Number of locks: 20
Number of transactions: 0

Largest compressed record size: 0
Largest record size: 8192

Largest page size: 4096
Number of sessions: 15

Console refresh count: 3
Create files as transactional: Yes

The values displayed in the fields to the right of the colon are the values
that were last defined for the options. If you are configuring a new copy
of NetWare Btrieve, the default values appear in the fields.

2) Highlight the field you want to define.

3-12 2011Revl.OO

3)

4)

Running NetWare Btrieve

Type in the new value and press <Enter>.

If you press <Esc>, the previously defined option will remain in effect.

If you enter an invalid value for an option, BSETUP will warn you via
an error message. At this point, you can delete the incorrect value and
enter a valid value.

Continue to highlight fields and enter new values for all the options you
want to define.

When you have entered the needed values, press <Esc> to return to the
"Available Options" menu. You must execute the "Save Configuration" option
before the new values you have specified will be saved to the NetWare Btrieve
programs in the current directory.

SAVE CONFIGURATION

The "Save Configuration" option allows you to save the Btrieve configuration
to the copies of BSERVER.VAP and BROUTER.VAP in the current directory.
You do not have to be logged in as SUPERVISOR to save a new Btrieve
configuration.

To save the new Btrieve configuration, complete the following steps.

1) Highlight "Save Configuration" and press <Enter>.

The "Update Btrieve" prompt will appear.

2) Highlight ''Yes'' and press <Enter>.

When you save a new configuration, BSETUP adjusts the values for the
Btrieve options in the copies of BSERVER.V AP and BROUTER.V AP
stored in the current directory.

BSETUP will return to the "Available Options" menu.

If you want the new configuration to take effect on the current file server,
execute the "Install Btrieve" option on the "Available Options" menu, and
then reboot the network.

201!Revl.OO 3-13

Btrieve Record Manager

INSTALL BTRIEVE

The "Install Btrieve" option allows you to install Btrieve on the file server to
which you are currently logged in. You must be logged in as SUPERVISOR or
have supervisor rights to install Btrieve on a file server.

To install Btrieve on a file server complete the following steps.

1) Highlight the "Install Btrieve" option on the "Available Options" menu
and press <Enter>.

If NetWare Btrieve is not installed on the current file server, an entry
box will appear, prompting you to enter a password for Btrieve.

IfNetWare Btrieve is already installed on the current file server, the
"Replace Btrieve" prompt will appear, asking whether you want to
replace the currently installed programs. If this is the case, complete the
following steps.

a) To abandon the installation and return to the "Available Options"
menu, highlight "No" and press <Enter>, or press <Escape>.

b) To replace the existing configuration, highlight ''Yes'' and press
<Enter>.

If you answer ''Yes'' to the "Replace Btrieve" prompt, an entry box
will appear, prompting you to enter the Btrieve password.

3) NetWare Btrieve requires a password to identify itself to NetWare. This
prevents an unauthorized program from gaining access to NetWare
using Btrieve's object name.

3-14

To abandon the installation at this point and return to the "Available
Options" menu, press <Escape>.

To continue the installation, type a password up to eight characters long
for Btrieve and press <Enter>. If you do not want to specify a password,
but you want to continue the installation, press <Enter> at the
password prompt. The "Install BROUTER" prompt will appear.

2011Rev1.00

. _._--- -----

(

Running NetWare Btrieve

IMPORTANT:
The password prompt is the last step of the installation process at
which you can completely abandon the installation without
installing any NetWare Btrieve programs. If you proceed any
farther in the process, you must install at least the BSERVER
program.

4) The "Install BROUTER" prompt gives you the option of installing the
BROUTER program at the same time as BSERVER

To install both BSERVER and BROUTER, highlight ''Yes'' and press
<Enter>. BSETUP will

• Copy BSERVERVAP and BROUTERVAP to the SYS:SYSTEM
directory on the preferred file server;

• Define the NetWare Btrieve programs as objects to NetWare and
assign BSERVER the password you specified. (BROUTER does not
require a password.)

To install only BSERVER, highlight "No" and press <Enter>. BSETUP
will

• Copy BSERVERV AP to the SYS:SYSTEM directory on the
preferred file server;

• Define BSERVER as an object to NetWare and assign it the
password you specified.

Do not install BROUTER if you are not using another V AP that makes
Btrieve calls (such as NetWare SQL).

5) After you have installed the new NetWare Btrieve programs on the file
server, you must restart the file server in order for the new
configuration options to take effect.

201/Rev1.00 3-15

Btrieve Record Manager

REMOVE BTRIEVE

The "Remove Btrieve" option removes the Btrieve programs from the file
server to which you are currently logged in. Once you have executed this
option, the Btrieve YAPs will no longer load at that file server. You must be
logged in as SUPERVISOR or possess supervisor rights to remove Btrieve
from a file server.

To remove Btrieve from a file server, complete the following steps.

1) Highlight the "Remove Btrieve" option and press <Enter>.

The "Remove Btrieve" prompt will appear.

2) Highlight "Yes" and press <Enter>.

3-16

When you select this option, BSETUP will

• Delete BSERVER.VAP (and BROUTER.VAP, if it is installed)
from the SYS:SYSTEM directory on the preferred file server;

• Remove the Btrieve object name and password from the network.

IMPORTANT:
If NetWare SQL is defined as an object in the NetWare bindery,
BSETUP will not remove the NetWare Btrieve program files. You
must remove the NetWare SQL program files from the file server
before you can remove the NetWare Btrieve files. Refer to Chapter
3 of the NetWare SQL User's Manual for more information.

2011Revl.OO

,I

/

Running NetWare Btrieve

STOPPING THE BTRIEVE YAPS

Once BSERVER and BROUTER are activated, they remain resident in the
file server's memory the entire time the NetWare operating system is
running. You cannot remove them from the file server's memory without first
removing them from the file server using the BSETUP utility (see "Remove
Btrieve" on page 3-16) and then restarting the operating system.

When you issue a DOWN command at a file server, BSERVER performs a
reset for all active network connections that are accessing files on the file
server.

THEBREQUESTPROGRAM
NetWare Btrieve provides BREQUEST programs for both DOS and OS/2
workstations. This section describes the BREQUEST start-up options and
provides instructions for running BREQUEST in both environments.

(. BREQUEST START·UP OPTIONS

This section describes the BREQUEST start-up options and the values you
can assign to them.

[/R: mapped drives]

The /R option denotes the maximum number of mapped drives the
workstation can access. When you omit this option, BREQUEST uses a
default value of three. Each drive you specify increases the memory resident
size of BREQUEST by 20 bytes. For example, if the workstation has five
mapped drives, specify the IR option as follows:

IR:5

2011Revl.OO 3-17

Btrieve Record Manager

[ID: data message length]

The ID option specifies the length of the longest record you will be accessing
through Btrieve. BREQUEST uses the value you specify here to calculate the)
length of the data message buffer that it reserves for passing records between
BSERVER and your application. The value you enter here should be the same
as the maximum record length you configure for Btrieve through the
BSETUP program. See "Maximum Record Length" on page 3-7.

The default value for the ID option is 2,048 bytes. The maximum record
length you can specify is 32K bytes. Specifying a higher value than you need
for the ID option does not result in improved performance.

BREQUEST maintains two copies of the data message buffer. The ID option
increases the memory resident size of BREQUEST by twice the number of
bytes you specify plus 538 bytes.

Always specify the record length in bytes. For example, if the longest record
your application uses is 3,000 bytes long, specify the ID option as follows:

ID:3000

[IS: number offile servers]

The IS option specifies the number offile servers to which the workstation
will be mapped. The default value for the IS option is one. The maximum
value you can specify is eight. For example, ifthe workstation has drives
mapped to three file servers, specify the IS option as follows:

IS:3

BREQUEST FOR DOS WORKSTATIONS

You must start the BREQUEST program at a workstation before the
workstation can access network Btrieve files through the BSERVER VAP. If
you want to access local files at the workstation, you must load a copy of the
Btrieve Record Manager (either Single User or DOS 3.1 Network) before you
load BREQUEST.

3-18 2011Rev1.00

/

j

Running NetWare Btrieve

Start BREQUEST at the workstation by issuing the following command:

<Drive> BREQUEST [IR: number of mapped drives]
[/0: data message length]
[IS: number of file servers]

Replace <Drive> with the name of the drive on which BREQUEST is
stored.You can omit the drive name if BREQUEST is stored on the default
drive, or if it is located in a directory in your search path.

The BREQUEST start-up options are described beginning on page 3-17.

For example, to specify 4 mapped drives, a 2,048 byte data message length,
and 2 file servers, use the following command:

BREQUEST IR:4 10:2048 IS:2

To ensure that the start-up options are always loaded, place the BREQUEST
command in the workstation's AUTO EXEC. BAT file.

(BREQUEST FOR OS/2 WORKSTATIONS

(-

BREQUEST.DLL and BTRCALLS.DLL, the Btrieve dynamic link routines,
must be installed at a workstation before the workstation can access network
Btrieve files through the BSERVER V AP. When the first Btrieve application
is started, OS/2 loads automatically.

INSTALLING BREQUEST

To install BREQUEST for OS/2, copy the BREQUEST.DLL and the
BTRCALLS.DLL files from the diskette to either of the following:

• One of the directories specified in the LIBPATH command in the
CONFIG.SYS file

• The root directory of the OS/2 boot drive

Refer to your OS/2 manual for more information on LIB PATH and on
identifying the locations for the dynamic link libraries.

2011Rev1.00 3-19

Btrieve Record Manager

IMPORTANT:
The BREQUEST.DLL and BTRCALLS.DLL dynamic link routines
supplied with NetWare Btrieve allow access only to remote files.
An application at an OS/2 workstation cannot access local files
using these routines.

INITIALIZING BREQUEST

You can specify initialization options that are specific to each Btrieve
application running at the workstation. BREQUEST uses an OS/2
environment variable, REQP ARMS, to define the initialization options an
application needs to use. The BREQUEST initialization options are described
under "BREQUEST Start-up Options" beginning on page 3-17.

Set the BREQUEST initialization options using the following environment
command:

SET REQPARMS=[lR: number of mapped drives]
[/0: data message length]
[IS: number of file servers]

Do not include a space between the REQP ARMS variable name and the equal
sign. You can, however, insert a space between each initialization option you
specify.

For example, to specify 4 mapped drives, a 2,048 byte data message length,
and 2 file servers, use the following command:

SET REQPARMS=/R:4/D:2048/S:2

To ensure that the initialization options are always loaded, place the SET
REQPARMS command in one of the special initialization batch files used by
OS/2.

3-20 2011Revl.OO

,
/

--~------

(

Running NetWare Btrieve

STOPPENGBREQUEST

At a DOS workstation, there are two methods you can use to remove
BREQUEST from memory:

• Your application can issue a Stop operation (Btrieve operation 25).

• You can issue the BUTIL -STOP command from the workstation's
command line.

At an OS /2 workstation, the operating system removes the dynamic link
routines from memory when the last Btrieve application is terminated. You
cannot remove the dynamic link routines from memory while a Btrieve
application is active because the operating system dynamically links them
with the application when the application is loaded.

2011Rev1.00 3-21

(

4 UTILITIES

NetWare Btrieve provides you with a complete set of utilities to help you with
file creation, file maintenance, testing, and debugging. In addition, NetWare
Btrieve includes several command line utilities that allow you to monitor and
manage NetWare Btrieve activity on your network.

The three Net Ware Btrieve utilities are

• BUTIT...EXE, a program containing commands that allow you to create
and manage Btrieve data files;

• B.EXE (The Btrieve Function Executor), an interactive utility that
you can use for instructional purposes and for testing and debugging
your application program logic;

• Command Line Utilities, utilities that allow you to monitor and
manage NetWare Btrieve activity on your network.

THE BUTIL PROGRAM

The BUTIL program contains a complete set of commands for use in file
creation, maintenance, and recovery. The following sections describe how to
run BUTIL, check for BUTIL error messages, create BUTIL description files
and alternate collating sequence files. The BUTIL commands are presented
in alphabetical order under the heading "BUTIL Commands", beginning on
page 4-16.

2011Rev1.00 4-1

Btrieve Record Manager

RUNNING BUTll..

To run BUTIL, complete the following steps.

1) Start the BREQUEST program before running BUTIL. If you need help
with this procedure, see "The BREQUEST Program" beginning on page
3-17.

2) Enter the BUTIL command in the following format:

<Orive>:BUTIL -COMMAND [Parameters] [-O<Owner>]

Replace <Drive> with the name of the drive or other device that contains the
Btrieve program files. You can omit the drive if you intend to use the default
disk drive.

Replace -COMMAND with the name of the Btrieve com:m.and (COPY, LOAD,
etc.) that you want to use. You must preface the command with a dash (-).

Replace [Parameters] with the information BUTIL needs to perform the
command you choose. The parameters are described under the h~ading for
the corresponding command.

Replace <Owner> with either the owner name for the Btrieve file the
command will access or with an asterisk (*). If you use an asterisk in place of
the owner name, BUTIL will prompt you for the owner name of the file.
BUTIL requires the -O<Owner> parameter if any of the Btrieve files
specified in the command requires an owner name.

BUTIL discards leading blanks unless an asterisk (*) is the first nons pace
character of the -0 parameter.

If you specify two Btrieve files in the command, you must specify the -0
parameter twice, once for each file. If only the second file has an owner n~me,
BUTIL ignores the first owner name. You can use the asterisk option twice.

If you enter the BUTIL command with no parameters, BUTIL will list the

)

correct command format for all of the commands. You can redirect thjs output \
to a file or printer using the DOS redirection feature.)

4-2 2011Rev1.00

('

(-

Utilities

BUTIL ERROR MESSAGES

BUTIL returns error messages in two ways, depending on whether you run it
from the command line or in a batch file.

If any errors occur while you are running BUTIL from the command line, a
message will appear on the screen describing the problem. Refer to Appendix
B for information about BUTIL and Btrieve error messages.

If any errors occur while you are running BUTIL in a batch file, BUTIL will
return a DOS error level. The following table lists and describes the BUTIL
error levels.

Error Level

o
1

Description

The utility ran to completion with no errors.

The utility ran to completion, but a nonfatal
error, such as a status code 5 (Duplicate Key Value),
occurred.

2 The utility did not run to completion because a
fatal error, such as a status code 2 (I/O Error),
occurred.

You can check for the DOS error level by including a condition similar to the
following in the batch file after the BUTIL command:

IF ERRORLEVEL n ECHO message

Replace n with the number of the BUTIL error level. Replace message with a
meaningful message.

Because of the way DOS batch commands test for error levels, you should
always test for an error level 2 first. The example code from a batch file on
the next page illustrates one way to handle BUTIL error levels.

2011Revl.OO 4-3

Btrieve Record Manager

BUTIL -LOAD LOADFILE BTRFILE -OOWNRNAME
IF ERRORLEVEL 2 ECHO Fatal Error: BUTIL operation incomplete.
IF ERRORLEVEL 1 ECHO Nonfatal Error: Check for duplicates in load file.
IF ERRORLEVEL 0 ECHO Operation completed successfully.

Refer to the discussion of batch files in your operating system's reference
manual for more information about how to use the ERRORLEVEL condition.

BUTIL DESCRIPTION FILES

Several of the BUTIL commands, including CREATE, SAVE, and SINDEX,
use a description file. A description file is a sequential ASCII file that
contains certain information that Btrieve needs to perform its operations.

The next section describes the elements used in BUTIL description files. A
section containing a set of rules you should follow when you create a
description file follows the element descriptions.

DESCRIPTION FILE ELEMENTS

Description files consist of a list of elements. An element consists of a
keyword, followed by an equal sign (=), followed by a value. Each element in
the description file corresponds to a particular characteristic of a Btrieve file
or key definition. For a complete description ofthe Btrieve file and key
characteristics, see Chapter 2, "Btrieve File Management."

The following pages contain explanations of the description file elements.
Some description file elements are marked "optional", and may be omitted
from the description file ifthey are not needed for the file or key definition.

4-4 2011Revl.OO

;'

(

Utilities

The elements are presented in the order in which they must appear in the
description file. Under each element heading you will find the following
subheadings:

• Element-presents the correct format for the element keyword. The
value is presented as a variable. Variables representing numeric values
are shown by the characters nnnn. Other values are explained in the
text that accompanies each element description.

• Range-defines the range of acceptable values you can specify for the
element.

• Commands-lists the BUTIL commands that require the element in
their description files.

The subheadings are followed by a brief description of the element and how
you use it.

NOTE:

The values in the element descriptions are shown here enclosed in
quotation marks. Do not enclose the values in your description file
in quotation marks.

Record Length

Element: record=< nnnn >

Range: 4 - 4090

Commands: CREATE

The "Record Length" element defines the logical data record length for the
file. For fixed-length records, this value should correspond to the length of the
data buffer parameter that performs operations on the file. If you are using
variable length records, the record length you specify here should correspond
to the fixed length portion of the record.

The minimum data record length must be large enough to contain all the
keys defined for the file, but not less than four bytes. The record length, plus
its key overhead, plus six bytes must not exceed the file's page size.

2011Rev1.00 4-5

Btrieve Record Manager

Variable Length Records

Element: variable=< yin>

Range: nJa

Commands: CREATE

The "Variable Length Records" element specifies whether you want the file to
contain variable length records.

Specify "y" if you want the file you are creating to allow variable length
records. Otherwise, specify "n".

Blank Truncation

Element: truncation=< yin>

Range: nJa

Commands: CREATE

The "Blank Truncation" element specifies whether you want Btrieve to
perform blank truncation on variable length records. The truncation key word
is only required if you specify "y" for the variable length records element.

Specify ''y'' if you want Btrieve to use blank truncation. Otherwise, specify
"n".

Data Compression

Element: compress=< yin>

Range: nJa

Commands: CREATE

The "Data Compression" element specifies whether you want Btrieve to
perform data compression on records that are inserted into the file.

Specify ''y" if you want Btrieve to perform data compression. Otherwise,
specify "n".

4-6 2011Revl.OO

j

(

Key Count

Element: key=< nn >

Range: 1- 24

Commands: CREATE

Utilities

The "Key Count" element specifies the number of keys to be defined in the
file. If you specify a value of 0 for this element, Btrieve will create a
data-only file. Otherwise, Btrieve will create either a standard Btrieve file or
a key-only file, depending on the value you specify for the "Include Data"
element.

For values greater than 0, you must define at least 1 key but no more than 8
if the page size is 512 bytes. If the page size is 1024 bytes or more, you can
define up to 24 keys.

Page Size

Element: page=< nnnn >

Range: 512 - 4096

Commands: CREATE

The "Page Size" element specifies the physical page size in bytes for the file.
You can specify any multiple of 512, up to 4096.

Page Pre-allocation

Element: allocation=< nnnnn >

Ra~ge: 1 - 64K

Commands: CREATE

The "Page Pre-allocation" element specifies the number of pages you want to
pre-allocate to the file. If you don't want to pre-allocate any pages, don't
include this keyword in your description file.

201/Revl.OO 4-7

Btrieve Record Manager

Replace Existing File (Optional)

Element: replace =< yin>

Range: nJa

Commands: CREATE

The "Replace Existing File" element indicates that you do not want Btrieve to
create the new file if a file of the same name already exists, and to warn you
of the file's existence. Specify "n" if you do not want to create a new file over
an existing file.

If you want to replace an existing Btrieve file with a new, empty file of the
same name, either specify "replace=y", or do not include this element in the
description file.

Include Data (Optional)

Element: data=< yin>
Range: nJa

Commands: CREATE

The "Include Data" element specifies whether you want Btrieve to create a
key-only file. Specify "n" if you want Btrieve to create a key-only file.

To create a standard file, either specify "y" for the "Include Data" element, or
omit the element from the description file.

To create a data-only file, specify ''y'' for the "Include Data" element and set
the "Key Count" element to o.

Free Space Threshold

Element: fthreshold=< 10 I 20 I 30 >

Range: 10%, 20%, or 30% of the page size

Commands: CREATE

)

The "Free Space Threshold" element specifies the amount of free space you '\
want Btrieve to reserve on a file page for variable length record expansion. J

The value you specify is expressed as a percentage of the page size.

4-8 2011Revl.OO

Utilities

Do not include the "Free Space Threshold" element in the description file if
the file does not allow variable length records. If you specify "variable=y" and
you do not specify a free space threshold, Btrieve will use a default value of
5% of the page size.

NOTE:

The following elements define the key information for the file. You
must enter the key information, beginning with key position, for
each key segment you want to define.

Key Position

Element: position=< nnn >

Bange: 1 - < record length>

Commands: CREATE, INDEX, SINDEX

The "Key Position" element indicates the position of the key segment in the
record. The key position must be at least 1 and cannot be larger than the
value you specified for the record length. The keys you define may overlap.

Key Length

Element: length=< nnn >
Uange: 1 - < limit for key type>

Commands: CREATE, INDEX, SINDEX

The "Key Length" element defines the length of the key or key segment field.
The total of the key's length and starting position cannot exceed the file's
defined record length. The key length must be an even number if the key is a
binary key type.

2011Revl.00 4-9

Btrieve Record Manager

Duplicate Key Values

Element: duplicates=< yin>

Range: n/a

Commands: CREATE, INDEX, SINDEX

The "Duplicate Key Values" element specifies whether you want to allow
more than one record in the file to contain the same value for this key field.

Specify "y" if you want to allow duplicate key values for the key. Otherwise,
specify "n".

Modifiable Key Values

Element: modifiable=< yin>

Range: n/a

Commands: CREATE, INDEX, SINDEX

The "Modifiable Key Values" element specifies whether you want to allow an
application to modify the key value during an Update operation.

Specify''y'' if you want the values for this key to be modifiable. Otherwise,
specify "n" .

Key Type

Element: type=< valid key type>

Range: Any of the Btrieve key types

Commands: CREATE, INDEX, SINDEX

The "Key Type" element specifies the data type for the key. You can specify
the entire word (as in "float") or just the first two letters of the word (''£1'' for
the float type). Refer to Appendix G for more information about key types.

4-10 2011Rev1.00

/

\.

(

Utilities

Descending Sort Order (Optional)

Element: descending=y

Range: nJa
Commands: CREATE, INDEX, SINDEX

The "Descending Sort Order" element specifies whether you want Btrieve to
collate the index in descending order.

Include the "Descending Sort Order" element and specify "y" if you want
Btrieve to collate the key values in descending order. If you don't include this
element, Btrieve will collate the key values in ascending order.

Alternate Collating Sequence

Element: alternate=< yin>

Range: nJa
Commands: CREATE, INDEX, SINDEX

The "Alternate Collating Sequence" element specifies whether you want to
sort the data by a collating sequence other than the standard ASCII
sequence. This is useful if you want to use a non-English alphabet or if you
want to map lower-case characters to upper-case.

You may only specify an alternate collating sequence for string, lstring, or
zstring key types. If you want Btrieve to sort an index by an alternate
collating sequence, enter "y" in this field. Otherwise, specify "n".

Manual Key (Optional)

Element: manual=< yin>

Range:nJa

Commands: CREATE, INDEX, SIND EX

The "Manual Key" element specifies that the key (or key segment) you are
defining is manual. If you define a key segment as manual, you must define a
null value for that segment. If the key is a segmented key, and you define one
segment as manual, you must define each segment as manual.

2011Rev1.00 4-11

Btrieve Record Manager

Null Key

Element: nul1=< yin>

Range: n/a

Commands: CREATE, INDEX, SIND EX

The "Null Key" element specifies whether the key you are defining should
have a null value. If you define a null value for one segment of a segmented
key, you must define a null value for every segment of that segmented key.
The null values you define for each segment can be different.

You can include the "Null Key" element in a description file for the INDEX
command. However, INDEX disregards any null value you specify. BUTIL
allows this in order to maintain consistent formats for the CREATE, INDEX,
and SIND EX description files.

Specify "y" if you want to define a null value for this key. Otherwise, specify
"n".

Null Key Value

Element: value=<nnn>

Range: any 1-byte hexadecimal value

Commands: CREATE, INDEX, SIND EX

The "Null Key Value" element specifies in hexadecimal form the value you
want Btrieve to recognize as the null character for the key. Typical null
values are 20 for blank and 0 for binary zero. Include this element only if you
defined the key as allowing null values. If you specify "n" for the "Null Key"
element, do not include the "Null Key Value" element in the description file.

4-12 2011Revl.OO

/

"\
)

(

Utilities ----------------------.-.------.-'".-...... '" .. ~ ... - .. -...... ..

Segmented Key

Element: segment=<y I n>

Range: nJa

Commands: CREATE, INDEX, SINDEX

The "Segmented Key" element specifies whether the key you are defining has
any more segments.

Specify "y" ifthe key has another segment. Specify "n" if you are defining a
nonsegmented key or the last segment of a segmented key.

Alternate Collating Sequence Filename

I<;lement: name=<{ilename>

Hange: valid filename

Commands: CREATE, INDEX, SINDEX

The "Alternate Collating Sequence Filename" element specifies the name of
the file that contains the alternate collating sequence for the file you are
creating. You can include any number of directory levels in the filename.

If you specified "n" for the "Alternate Collating Sequence" element, do not
include this keyword in your description file.

201lRevl.OO 4-13

Btrieve Record Manager

RULES FOR DESCRIPTION Fll..ES

The following rules apply to BUTIL description files. If BUTIL returns an
error while trying to access the description file, check for problems in the
following areas.

• All elements, such as "type=f1", must be in lower-case characters.

• All elements must be spelled correctly and separated from adjoining
elements by "white space" (i.e., blank, tab, CRJLF, etc.)

• The elements must be presented in the description file in the order in
which they are presented in the previous section.

• Responses must be consistent. For example, if you specify "null=y" for
the "Null Key" element, the "Null Key Value" element and its value
must appear; otherwise it must not. If you specify "alternate=y" for the
"Alternate Collating Sequence" element in one or more key segments,
the "Alternate Collating Sequence Filename" element and the full or
relative path name of the alternate collating sequence file must be
present as the last element in the description file.

• Ensure that there are enough key descriptions to form the number of
keys given in the "Key Count" element. Enter the key information,
beginning with key position, for each key segment in the file.

• Ensure that the description file contains no text formatting characters.
(Some word processors embed formatting characters in a text file. The
description file must not contain any formatting characters.)

• BUTIL does not check for the end of the description file. If you haven't
specified an alternate collating sequence, it is possible to include too
many key descriptions without receiving an error message. You can
include comments at the end of description file after all the key
descriptions and the "Alternate Collating Sequence Filename" element.

• Note that the description files for CREATE, INDEX, and SINDEX have
slightly different formats.

4-14 201lRev1.00

)

(

(~

Utilities

ALTERNATE COLLATING SEQUENCE FILES

The first 265 bytes of an alternate collating sequence file contain the
definition of a collating sequence other than the standard ASCII sequence. If
you want to create an alternate collating sequence file, you should write an
application that generates a file in the format specified in the table below.

Offset

o

1

9

Length

1

8

256

Description

Signature byte. This byte should always
contain the hexadecimal value AC.

An 8-byte name that uniquely identifies
the alternate collating sequence to
Btrieve.

A 256-byte table containing the sort
value for every character. Store the
value for each sort character at the offset
corresponding to the character's
representation in the ASCII collating
sequence. For example, to sort the
character A as something other than
Ox41, store the new sort value at offset
Ox41 in the table.

For example, if you wanted to insert a character with a hex value of 5D
between the letters U (hex 55) and V (hex 56) in your sequence, byte 5D in
the sequence would contain the value 56 and bytes 56-5C in the sequence
would contain the values 57-5D.

The UPPER.ALT file, which you will find on your Btrieve program diskette,
contains an example of an alternate collating sequence. That particular
sequence compares upper- and lower-case characters as if they were all
upper-case. If you have multiple files with different alternate collating
sequences, each sequence should have a different name.

2011Rev1.00 4-15

Btrieve Record Manager

BUTIL COMMANDS

The following sections describe how to use each of the following BUTIL
commands:

Command

CLONE

COpy

CREATE

DROP

EXTEND

INDEX

LOAD

RECOVER

RESET

SAVE

SINDEX

STAT

STOP

VER

4-16

Function

Creates an empty Btrieve file with the same file
specifications as an existing file

Copies the contents of one Btrieve file to another
Btrieve file

Creates a Btrieve file

Drops a supplemental index

Creates a partitioned file

Creates an external index file

Loads the contents of a standard sequential file into a
Btrieve file

Recovers data from a damaged Btrieve file

Closes data files and releases resources

Saves the contents of a Btrieve file into a standard
sequential file

Creates a supplemental index

Reports statistics about file attributes and current
sizes

Terminates BREQUEST and the local Record
Manager (if loaded) and removes them from memory

Retrieves the Btrieve version and revision numbers

20l/Rev1.00

/

\
)

(

Utilities

CLONE

Command Format

BUTIL -CLONE < Existing File >< New File >[-0 < Owner >]

Description

The CLONE command creates a new, empty Btrieve file with the same file
specifications, including any supplemental indexes, as an existing file. You
can use CLONE when you want to replicate an existing file, but you don't
want to destroy the information contained in the existing file, as would
happen if you used CREATE. In addition, CLONE does not require a
description file in order to create a new file.

How To Use Clone

'fo run COPY, enter the command in the format shown above.

For <.Existing File>, substitute the name of the Btrieve file that you want to
replicate. You can specify a full path name if necessary.

For <New File>, substitute the name you want to use for the new, empty
Btrieve file. You can specify a full path name if necessary.

For <Owner>, substitute the owner name of the existing file, if one is
required. The new file will retain the existing file's owner name.

Example

The following command clones the NEWINV.OAT file from the
INVOICE.OAT file. The owner name for the INVOICE.OAT file is "Sandy."

BUTIL -CLONE INVOICE.DAT NEWINV.DAT -0 Sandy

201/Revl.OO 4-17

Btrieve Record Manager

COpy

Command Format

BUTIL -COPY < Input File >< Output File >[-0 < Owner1 >[-0 < Owner2 >]]

Description

The COPY command copies the contents of one Btrieve file to another. A
common use of COPY is to change the defined key characteristics (such as
key position, key length, or duplicate key values) for a Btrieve file.

COPY retrieves each record in the input file and inserts it into the output file
using Btrieve Get and Insert operations. COpy performs in a single step the
same function as SAVE followed by LOAD.

How To Use Copy

To run COpy, enter the command in the format shown above.

Replace <Input File> with the name of the Btrieve file from which you are
transferring the records. You can specify a full path name if necessary.

Replace <Output File> with the name of the Btrieve file into which you want
to insert the records. The file mayor may not be empty. You can specify a full
path name if necessary.

Replace <Owner1> and <Owner2> with the owner names for the Btrieve files,
if required. If the <Input File> requires an owner name, you may specify the
owner for <Owner1> or use the asterisk option described on page 4-2. If the
<Output File> requires an owner name, use both the <Owner1> and
<Owner2> options. If the input file does not require an owner name, you can
leave <Owner1> blank. Use <Owner2> to specify the owner name for the
<Output File>.

After the records have been copied from the input file to the output file,
COPY will display on the screen the total number of records copied.

4-18 2011Rev1.00

J

/

\.

/

(

(

Example

Utilities

COpy
(Continued)

The following command copies the records in the CUSTOMER.DAT file to the
ACCTRECV.DAT file. The CUSTOMER.DAT file does not require an owner
name. The ACCTRECV.DAT file has the owner name "Pam."

BUTIL -COPY CUSTOMER.DAT ACCTRECV.DAT -0 -0 Pam

2011Rev1.00 4-19

Btrieve Record Manager

CREATE

Command Format

BUT!L -CREATE < New Filename> < Description File>

Description

The CREATE command generates an empty Btrieve file using the
characteristics you specify in a description file.

How To Use Create

Before you can run CREATE, you must first generate a description file with a
text editor. Description files are described under "BUTIL Description Files,"
beginning on page 4-4.

To run CREATE, enter the command in the format shown above.

Replace <New Filename> with the name of the file you want to create. You
can specify a full path name if necessary.

NOTE:
If the name you specify for <New Filename> is the name of an
existing Btrieve file, BUTIL will create a new, empty file in place
of the existing file. Any data that was stored in the existing file
will be lost, and cannot be recovered.

For <.Description File>, substitute the name of the description file containing
the specifications for the new file. You can specify a full path name if
necessary.

4-20 2011Revl.OO

)

)

(

(-

Utilities

CREATE
(Continued)

Sample Description File For BUTIL -CREATE

The description file illustrated in Figure 3.1 creates a Btrieve file with a page
size of512 bytes and two keys. The fixed length portion of the record is 98
bytes long. The file allows variable length records but does not use blank
truncation. The file uses data compression. The free space threshold is set to
20%. Btrieve will pre-allocate 100 pages when it creates the file.

The first key (Key 0) is a segmented key with two duplicatable,
non-modifiable, string segments with an alternate collating sequence defined
in the UPPER.ALT file, and a null value of space. The second key (Key 1) is a
numeric, non-segmented key that does not allow duplicates but does permit
modification. It is sorted in descending order.

{ record=98 variable=y truncation=n
File specifications compress=y key=2 page=512

allocation=100 replace=n fthreshold=20

{ position=1 length=5 duplicates=y

Key 0, segment 1 modifiable=n type=string alternate=y
null=y value=20 segment=y

{
position=6 length=1 0 duplicates=y

Key 0, segment 2 modifiable=n type=string alternate=y
null=y value=20 segment=n

{
position=16 length=2 duplicates=n

Key 1 modifiable=y type=numeric
descending=y alternate=n null=n
segment=n

Alternate collating { name=UPPER.AL T sequence filename

Figure 3.1
Sample Description File for CREATE

201/Rev 1.00 4-21

Btrieve Record Manager

CREATE
(Continued)

Example

The following command creates a Btrieve file named ACCTS.NEW using the
description provided in the BUILD.DES description file.

BUTIL -CREATE ACCTS.NEW BUILD.DES

4-22 2011Rev1.00

,
./

Utilities

DROP

Command Format

BUTIL -DROP < Btrieve File> < Key Number> [-0 < Owner >]

Description

You can use the BUTIL -DROP command to remove a supplemental index
from a Btrieve file.

Btrieve adjusts the key number of other supplemental indexes, if necessary,
upon completion of the DROP command.

How To Use DROP

To run DROP, enter the command in the fOrlilat shown above.

Replace <Btrieve File> with the name of the Btrieve file from which you are
dropping the index. You can specify a full path name if necessary.

Replace <Key Number> with the number of the supplemental index you want
to drop.

Replace <Owner> with the owner name of the file, if there is one.

Example

'rhe following example drops key number 6, a supplemental index, from the
MAILER.ADR file. The owner name of the file is "Sales."

BUTIL -DROP MAILER.ADR 6 -0 Sales

2011Revl.OO 4-23

Btrieve Record Manager

EXTEND

Command Format

BUTIL -EXTEND < Btrieve File> < Extension File> [-0 < Owner>]

Description

When you create a Btrieve file, you can define the file only for a single
volume. EXTEND enables you extend an existing file across two logical disk
drives. This feature is useful when the data to be contained in a single file
exceeds the physical storage capacity of a single disk or the maximum volume
size the operating system supports.

How To Use EXTEND

To run EXTEND, enter the command in the format shown above.

Replace <Btrieve File> with the name of the Btrieve file you want to extend.
You can specify a full path name if necessary.

Replace <Extension File> with the name you want to use for the extension
file. Be sure to include the drive specifier for the new drive. The drive should
not be the same as the one you specified for the original file. You can specify a
full path name if necessary. Btrieve expects you to load the extension file in
the specified drive every time you access the file.

Replace <Owner> with the owner name, if there is one.

If a file extends across two disks, you must load both disks before you access
the file. Moreover, you must load the file's extension in the same drive you
specified when you first extended the file. Once a file has been extended, you
cannot reverse the operation.

Example

The following example extends the MAILER.ADR file to the MAILER2.ADR
file in the \SALES directory of drive E. The owner name of the file is "Sales."

BUTIL -EXTEND MAILER.ADR E:\SALES\MAILER2.ADR -0 Sales

4-24 201lRevi.OO

i

/

(

(

Utilities

INDEX

Command Format

BUTIL -INDEX < Btrieve File>< Index File>< Description File>[-0 < Owner>]

Description

The INDEX command builds an external index file based on a field that you
had not previously specified as a key. The records in the new file consist only
of the 4-byte address of each record in the original Btrieve file followed by the
value on which you want to sort.

After Btrieve creates an external index, you can use the external index to
retrieve the original file's data records in two ways:

• You can use the SAVE command to retrieve the file's records using the
external index file. Refer to the discussion of the SAVE command
beginning on page 4-34 for more information.

• You can develop an application that searches the file using the external
index. The application should first retrieve the 4-byte address using the
key value from the index file. Your application can then retrieve the
record from the original file using the 4-byte address in a Get Direct
operation.

How To Use INDEX

Before you can build an external index using the INDEX command, you must
create a description file to specify the new key characteristics.

To run INDEX, enter the command using the format shown above.

Replace <.Btrieve File> with the name of the existing Btrieve file for which
you want to build an external index. You can specify a full path name if
necessary.

2011Revl.OO 4-25

Btrieve Record Manager

INDEX
(Continued)

Replace <Index File> with the name of the file in which Btrieve should store
the external index. You can specify a full path name if necessary.

NOTE:

Since both the original file and the index file may have a
corresponding pre-image file, you should not use the same
filename with two different extensions.

For <Description File>, substitute the name of the file you have created
containing the new key definition. The file should contain a definition for
each segment of the new key. You can specify a fuil path name if necessary.
Refer to "BUTIL Description Files" beginning on page 4-4 for complete
information about description files.

For <Owner>, substitute the owner name, if there is one, for the Btrieve file.

Sample Description File for BUTIL -INDEX

For example, the description file in Figure 4.2 defines a new key with one
segment. The key begins at the 30th byte of the record, and is 10 bytes long.
It allows duplicates, is modifiable, is a string type, and uses no alternate
collating sequence.

position=30 length=10 duplicates=yes modifiable=yes type=string
alternate=no segment=no

Figure 4.2
Sample Description File for INDEX

After you define the key for the external file, INDEX creates the file. After
the file is created, INDEX will display on the screen the number of records
that were indexed.

4-26 2011Revl.OO

/

(-

Example

Utilities

INDEX
(Continued)

The following command creates the QUICKREFJDX external index file for
the CUSTOMER.DAT file. The CUSTOMER.DAT file does not require an
owner name. The description file containing the definition for the new key is
NEWIDX.DES.

BUTIL -INDEX CUSTOMER.DAT QUICKREF.IDX NEWIDX.DES

2011Rev1.00 4-27

Btrieve Record Manager

LOAD

Command Format

BUTIL -LOAD < Input File> < Btrieve File> [-0 < Owner >]

Description

The LOAD command allows you to insert records from a sequential file into a
Btrieve file without writing an application program specifically for that
purpose. LOAD also provides a convenient way to transfer records from a
sequential file created by another program into a Btrieve file. LOAD performs
no conversion on the data in the load file.

After Btrieve transfers the records, it displays on the screen the total number
of records loaded into the Btrieve file.

How To Use LOAD

Before you run the LOAD command, you must create a sequential file that
contains the new records. You can create the file using either a standard text
editor or an application program.

To run LOAD, enter the command using the format shown above.

Replace <Input File> with the name of the sequential file containing the
records to be loaded into a Btrieve file. You can specify a full path name if
necessary.

Replace <Btrieve File> with the name of the Btrieve file into which you want
the records inserted. You can specify a full path name if necessary.

Replace <Owner> with the owner name of the Btrieve file, if there is one.

4-28 2011Rev1.00

)

Utilities

LOAD
(Continued)

LOAD expects each record in <Input File> to be in the following format:

• The first n bytes should be the length of the record in ASCII.

For files with {LXed length records, the length specified should always
equal the record length you specified when you created the file.

For files with variable length records, the length you specify must be at
least as long as the minimum fixed length you specified when you
created the file.

• The length must be followed by a one-character separator (either a
comma or a blank).

• The separator must be followed by the data itself. The length of the
data must be the exact length specified at the beginning of the record.

• The record must be terminated with a carriage returnlline feed (OnOA
hex).

• The last record in the file should contain the end of file character
(Ctrl-Z, or lA hex). Most text editors and the SAVE command
automatically insert this character in the file.

You can create your input file using either a text editor or an application
program.

If you use a text editor to create your load file, be sure to pad each record with
blank spaces as necessary to fill the record to the length you specified at the
beginning of the record. Fields containing binary data cannot be edited with
most text editors.

If you use an application program to create your load file, be sure to append a
carriage return and line feed to each record and include an end of file record.
The sequential 110 calls provided by most high-level language processors
insert carriage return, line feed, and end offile characters automatically.

2011Revl.OO 4-29

Btrieve Record Manager

LOAD
(Continued)

Figure 4.3 illustrates the correct format for each record in the input file.
Assume that the Btrieve file does not allow variable length records, and has a
defined record length of 40 bytes.

40,The record follows the comma delimiter. <CR/LF>

[- #t l Carriage retu m/Line feed
Data

1 blank pad for proper length

Comma delimiter

Record length

Figure 4.3
Record format for input file

Example

The following example loads sequential records from the MAIL.LST file into
the MAILER.ADR file. The owner name of the MAILER.ADR file is "Sales."

BUTIL -LOAD MAIL.LST MAILER.ADR -0 Sales

4-30 2011Rev1.00

./

'\

(~

Utilities

RECOVER

Command Format

BUTIL -RECOVER < Btrieve File> < Output File> [-0 < Owner >]

Description

The RECOVER command reads records from a specified Btrieve file using the
Step operations, and creates a sequential file that is compatible with the
LOAD command. Each record ends with a carriage return and line feed
(ODOA hex). The file terminates with an end offile record (lA hex).

You can use RECOVER to retrieve data from a damaged Btrieve file. For
example, a file can be damaged if the system fails while the file is being
accessed in accelerated mode. The RECOVER command may be able to
retrieve many, if not all, ofthe records from the file. You can then use the
LOAD command to insert the records into a new, undamaged Btrieve file.

How To Use RECOVER

'1'0 run RECOVER, enter the command using the format shown above.

Replace <Output File> with the name of the file where RECOVER should
store the recovered records. You can specify a full path name if necessary.

Replace <.Btrieve File> with the name ofthe Btrieve file that you want to
recover. You can specify a full path name if necessary.

Replace <Owner> with the owner name for the Btrieve file, if there is one.

After RECOVER retrieves the records, it displays on the screen the total
nuinber of recovered records. If the logical drive containing your output file
fills up before the entire Btrieve file has been recovered, RECOVER stops,
displays the number of records already recovered, and then displays the
following message:

Disk volume is full. Enter new file name to continue or . to quit,
then press <ENTER>.

2011Rev1.00 4-31

Btrieve Record Manager

RECOVER
(Continued)

To continue the operation in another output file, complete one of the following
instructions:

• If you are recovering the Btrieve file to diskettes, remove the full diskette
and replace it with another formatted diskette.

• If you are recovering the Btrieve file to a hard disk, specify another
logical drive that has space available.

In either case, enter the name of a file that you want Btrieve to use to
continue storing records and press the Enter key. Btrieve will continue
copying records from the Btrieve file to the new output file.

If a logical drive fills up and you want to terminate the RECOVER operation,
type a period (.) and press <Enter>.

Example

The following example retrieves records from the MAILER.ADR file and loads
them into the MAIL.LST sequential file. The owner name of the
MAILER.ADR file is "Sales."

BUTIL -RECOVER MAILER.ADR MAIL.LST -0 Sales

4-32 2011Revl.OO

J

Utilities

RESET

Command Format

BUTIL -RESET [< Connection Number >]

Description

RESET performs a Btrieve Reset operation to release the resources used by
BREQUEST and the Record Manager at a workstation. It releases all locks,
aborts any pending transactions, and closes any open files for the station.

You can release the resources for a station other than your own by
substituting the connection number of the station for <Connection Number>.
If you do not know the connection number, be aware that the B ACTIVE,
WHOAMI, and USERLIST console commands return connection numbers as
part of their output.

(How To Use RESET

'ro run RESET, enter the command using the format shown above.

You can issue this command from any workstation on the network at which
BREQUEST is loaded. If you do not specify a station number, BUTIL
-RESET releases the resources for the station issuing the command.

Example

The following example releases the resources for the workstation using
connection number 12 on the network.

BUTIL -RESET 12

2011Rev1.00 4-33

Btrieve Record Manager

SAVE

Command Format

BUTIL -SAVE < Btrieve File >< Output File >< Index (V / N) >
[< Index File> I < Key Number>] [-0 < Owner >]

Description

SAVE allows you to retrieve the records from a Btrieve file and store them in
sorted order in a sequential file. It is the exact inverse of LOAD. This
command can be used in conjunction with LOAD so that the data in a Btrieve
file can easily be extracted, edited, and then stored in another Btrieve file.

SAVE generates a single record in the output file for each record in the
Btrieve file it is reading. Each record is preceded by its length and ends with
a carriage return and a line feed (ODOAH). The file terminates with an end of
file record (lAH) and is compatible with most text editors. SAVE performs no
conversion on the data in the records. Therefore, if you use a text editor to
modify an output file containing binary data, the results may be
unpredictable.

After SAVE completes its processing, it displays on the screen the total
number of records saved.

How To Use SAVE

To run SAVE, enter the command in the format shown above.

Replace <.Btrieve File> with the name of the Btrieve file containing the
records you want to save. You can specify a full path name if necessary.

Replace <Output File> with the name ofthe sequential file in which you want
Btrieve to store the records. You can specify a full path name if necessary.

4-34 2011Revl.OO

J

Utilities

SAVE
(Continued)

Use one ofthe following methods to specify the order in which you want
SAVE to store the records:

• If you want to save records by an external index, specify Y for
<lndex(Y IN» and replace <Index File> with the name of the external
index file. You can specify a full path name if necessary.

• If you want to save the records by a key other than key 0, specify "N" for
<Index(Y IN» and replace <Key Number> with the appropriate key
number.

• If you want to save the records by key 0, do not specify an index file or a
key number.

Replace <Owner> with the owner name for the Btrieve file, if there is one.

If the logical drive containing your output file fills up before the entire file
has been saved, SAVE stops, displays the number of records already saved,
and then displays the following screen:

Disk volume is full. Enter new file name to continue or . to quit,
then press <ENTER>.

To continue the operation in another output file, complete one of the following
instructions:

• If you are saving the Btrieve file to diskettes, remove the full diskette
and replace it with another formatted diskette.

• If you are saving the Btrieve file to a hard disk, specify another logical
drive that has space available.

In either case, enter the name of a file that you want Btrieve to use to
continue storing records and press the Enter key. Btrieve will continue
copying records from the Btrieve file to the new output file.

2011Revl.OO 4-35

Btrieve Record Manager

SAVE
(Continued)

If a logical drive fills up and you want to terminate the SAVE operation, type
a period (.) and press <Enter>.

Example

The following two examples illustrate how to use SAVE to retrieve records
from a file.

The first example uses the QUICKREFJDX external index file to retrieve the
records from the CUSTOMER.DAT file and store them in the CUST.SAV
sequential file.

BUTIL -SAVE CUSTOMER.OAT CUST.SAV Y QUICKREF.IOX

The next example retrieves the records from the CUSTOMER.DAT file using
key number 3 and stores them in the CUST.SAV sequential file.

BUTIL -SAVE CUSTOMER.OAT CUST.SAV N 3

4-36 2011Rev1.00

/

\.

'\
\

Utilities

SINDEX

Command Format

BUTIL-SINDEX< Btrieve File> < Description File> [-0< Owner>]

Description

SINDEX creates a supplemental index for an existing Btrieve file. The key
number of the new index will be one higher than the previous highest key
number for the file.

How To Use SINDEX

Before you can run SIND EX, you must provide a definition for the
supplemental index in a description file. Refer to "BUTIL Description Files"
beginning on page 4-4 for more information about BUTIL description files.
Use the sample description file on page 4-26 as a guide for creating the
SINDEX description file.

To run SIND EX, enter the command in the format shown above.

Replace <Btrieve File> with the name of the Btrieve file for which you are
creating the index. You can specify a full path name if necessary.

Replace <Description File> with the name of the description file containing
the description ofthe index you want to create. You can specify a full path
name for this parameter.

Replace <Owner> with the owner name of the Btrieve file, if there is one.

Example

The following example creates a supplemental index for the MAILER.ADR
file. The name of the description file is SUPPIDX.DES. The owner name of
the Btrieve file is "Sales."

BUTIL -SINDEX MAILER.ADR SUPPIDX.DES -0 Sales

2011Revl.OO 4-37

Btrieve Record Manager

STAT

Command Format

BUTIL -STAT < Filename> [-0 < Owner>]

Description

STAT reports the defined characteristics of a Btrieve file and statistics about
its contents. You can use STAT to determine all the parameters specified for
a file with CREATE. The STAT command also provides information on the
volume of keys and records in the file and the name of the extension file, if
one exists.

How To Use STAT

To run STAT, enter your command using the format shown above.

Replace <Filename> with the name of an existing Btrieve file whose statistics
you want to retrieve. You may specify any number of directory levels in the

)

filename. /

Replace <Owner> with the owner name of the Btrieve file, if there is one.

Example

The following example retrieves the file statistics for the ADDRESS.BTR file.
The file does not have an owner name.

BUTIL -STAT ADDRESS.BTR

Figure 4.4 illustrates the output from the above command.

This example shows that the file called ADDRESS.BTR was defined with a
page size of 1,536 bytes, a record length of 147 bytes, and 2 keys. The file uses
data compression, allows variable length records, and has a free space
threshold of 10%.

4-38 201lRevl.OO

(-

Utilities

STAT
(Continued)

The first key (Key 0) consists of one segment, starts in position one, is 30
characters long, allows duplicates, is not modifiable, has a string key type,
and does not have a null value defined. Key 0 is collated in descending order.

The second key (Key 1) allows duplicates, is modifiable, is manual, and has a
null value of hex 20 (blank). It consists oftwo segments.

The first segment starts in position 31, is 30 bytes long, has a string key type,
and has a null value of 20H (blank). The second segment starts in position 55,
has a length offour, has a string key type, is descending, and has a null value
of 20H (blank).

F'ourteen records have been inserted into the file. The file contains 14 unique
values for the first key and five unique values for the second. There is no
extension file.

File Stats for address.btr

Record Length = 147
Variable Records = Yes
Number of Keys = 2

Page Size = 1536
Total Records = 14

Key Position Length Duplicates

o 1 30 Yes
1 31 30 Yes
1 55 4 Yes

Compressed Records = Yes
Free Space Threshold = 10%

Unused Pages = 0

Modifiable

No
Yes
Yes

Type Null Total

String < - 14
String 20M 5
String < 20M 5

Figure 4.4
Sample BUTIL -STAT Output

20l/Revl.OO 4-39

Btrieve Record Manager

STOP

Command Format

BUTIL-STOP

Description

STOP removes BREQUEST and the Btrieve Record Manager from memory
and, when possible, returns the allocated memory to the operating system.
Once you issue the STOP command, you cannot run a Btrieve application
unless you reload BREQUEST or the Record Manager.

How To Use STOP

To run STOP, enter the command in the format shown above.

4-40 201/Rev1.00

/

(

Command Format

BUTIL-VER

Description

Utilities

VER

VER reports the version of BREQUEST that is loaded at that workstation.

How To Use VER

To run VER, enter your command in the format shown above.

201/Rev1.00 4-41

Btrieve Record Manager

BTRIEVE FUNCTION EXECUTOR

The Btrieve diskette includes a program called B that allows you to perform
individual Btrieve operations interactively. B.EXE is a Btrieve application
program that performs Btrieve operations based on the values you specify for
the different prompts. Each prompt is explained in the chart on the next
page. The B program is useful for learning how Btrieve operates, testing your
program's logic, and debugging.

To execute B, type the following command at the DOS prompt:

B<Enter>

When you execute B, a menu will appear with prompts for each of the
parameters required on a Btrieve call. A list of the Btrieve operation codes is
displayed below the prompts.

To perform any Btrieve call, initialize all of the Btrieve parameters normally
required for that operation. Refer to the discussion of the Btrieve record
operations in Chapter 6 for information about the required parameters. For
example, to perform an Open operation complete the following steps.

1) Specify an operation code of O.

2) Specify an open mode in the "Key Number" prompt (if necessary).

3) Specify the file name in the "Key Buffer" prompt.

4) Press <Fb to execute the Btrieve operation.

The B program makes the call to Btrieve and displays the resulting
status.

You can continue to perform Btrieve operations as desired. To terminate the
program, first close any open files, and then press the Escape key.

4-42 2011Revl.OO

)

'\
j

Utilities

The following list describes the B utility menu prompts.

Prompt

Function

Key Path

Position Block

Status

Data Buffer
Length

Data Buffer

2011Revl.OO

Description

Enter the operation code for the Btrieve operation you
want to perform. A list of the operation codes will be
displayed on the lower half of the screen. Appendix A
also contains a list of the Btrieve operation codes.

Specify the key number for the Btrieve operation in
the key path field. Valid entries for this field are 0-23.

Specify the file you want to access in the position
block field. B assigns the number in the position block
prompt to the file when you successfully open the file
to Btrieve.

You can have up to 10 open files. When you open
files, specify a number for the file in the position
block. Valid entries are from 0 to 9, inclusive. Begin
with 0 for the first file you open, 1 for the second file,
and so on. After you have opened a file, identify it for
subsequent operations by entering its number in the
position block field.

Btrieve returns the status from each operation in this
field. It is helpful to initialize the status to 99, or
another unlikely code, before each operation. Doing so
allows you to see the status code change when Btrieve
completes the operation.

Set the data buffer length to the correct value for the
operation you want to perform.

Enter the data for the record in this field for Insert or
Update operations. You can only enter data in ASCII
format. For Get operations, Btrieve returns the data
you requested in the data buffer. Only ASCII data is
displayed on the screen.

4-43

Btrieve Record Manager

Prompt

Key Buffer

Description

Store either the filename or a key value, depending on
the operation you are performing, in the key buffer.
As with the data buffer, only ASCII data can be
entered or displayed.

The following key sequences can be used when you are running the B
program:

Keys

<Esc>

<Home>

<End>

<Up-Arrow>

<Down-Arrow>

<Left-Arrow>

<Right-Arrow>

<Backtab>

<Tab>

<Ctrl-Home>

<Ctrl-End>

<Delete>

<Insert>

Description

Terminates the program

Executes the Btrieve call

Moves to the first prompt

Moves to the last prompt

Moves to the previous prompt

Moves to the next prompt

Moves one character left

Moves one character right

Moves to the previous prompt

Moves to the next prompt

Moves to the beginning of the field

Moves to the end of the field

Deletes a character

Toggles insert mode

You can specify only ASCII values in the data buffer and key buffer
parameters.

4-44 2011Rev1.00

(-

Utilities

CONSOLE COMMANDS

Btrieve provides console commands that allow you to determine the file
activity and the current level of utilization of the BSERVER process. You can
execute these commands at the console of any file server in which a
BSERVERV AP is loaded.

The following sections describe the NetWare Btrieve console commands. Each
description includes the following ~nformation:

• Command Format. This section presents the console command in the
format in which it should be entered at the file server where BSERVER
is loaded.

• Purpose. This section describes the uses of the command.

• How to Use (the Command). This section describes how to issue the
command, and the command's results.

2011Revl.00 4-45

Btrieve Record Manager

BACTIVE

Command Format

B ACTIVE < Screen>

Description

The B ACTIVE console command allows you to list all Btrieve files that are
currently open at a server, and to view the connection number (workstation)
that has each file open and the lock types that are held for each file.

Btrieve will display the results of the command in a tabular format on the
screen. The following information will be displayed for each file:

• The full pathname of the file

• The network connection number that has the file open

• The type of locks held for the file

You can use the connection number returned by B ACTIVE to determine
which user has the file open. You can also use this number as a parameter in
a B RESET command, a BUTIL -RESET command or a Btrieve Reset
operation to close the files and release the resources ofa particular station.

If another V AP has the file open, B ACTIVE will display a two-character code
for the connection number. For example, the two-character code for NetWare
SQL is "NS". You cannot use this two character code as input for a B RESET
command. Refer to the discussion of the B RESET command on page 4-50 for
more information.

The codes for the three lock types are as follows:

4-46

Lock

Transaction
Single record
Multiple Record

Code

T
A
M

201lRevl.OO

)

(

(:~

How to use B ACTIVE

Utilities

BACTIVE
(Continued)

To run B ACTIVE, enter the command in the format shown above at the
server where BSERVER. V AP is loaded.

Insert a blank space between B and ACTIVE. You can enter the command in
either upper- or lower-case characters.

As long as there are more active files to display, B ACTIVE will display a
message so indicating at the bottom of the screen. To see additional screens,
re-enter the B ACTIVE command, substituting a number for <Screen> that
corresponds to the screen you want to view. For example, to view the second
screen of a B ACTIVE operation type the following:

B ACTIVE 2 <Enter>

2011Revl.00 4-47

Btrieve Record Manager

BDOWN

Command Format

BDOWN

Description

The B DOWN console command releases all resources used by BSERVER,
and terminates the BSERVER process. When you issue B DOWN, Btrieve
will

• Close all Btrieve files open at the file server;

• Release all of the locks Btrieve holds at the file server;

• Abort any pending transactions at the file server;

• Halt the BSERVER process.

If you are running another V AP that uses BSERVER to access network files,
you should take the following precautions before you issue the B DOWN
command:

• Issue the B ACTIVE command to make sure that no files are open by
another V AP.

• If any other V AP has Btrieve files open at the file server, you should
issue the appropriate command for that V AP that closes its files and
halts the process.

For example, if you were running NetWare SQL, you would issue the NS
RESET and NS DOWN commands to make sure that all NetWare SQL files
were closed. Mter you issue the B DOWN command, workstations and other
V APs will not be able to access Btrieve files through BSERVER until the file
server is restarted.

How to use B DOWN

To run B DOWN, enter the command in the format shown above at the server
where BSERVER is loaded. Insert a blank space between B and DOWN. You
can enter the command in either upper- or lower-case characters.

4-48 2011Revl.OO

)

'\
/

(-

(

(... ~.
-'

Utilities

BOFF

Command Format

B OFF

Description

The B OFF console command causes the previous Btrieve command line
utility to stop refreshing the screen.

You should issue B OFF after B ACTIVE, B STATUS, or B USAGE have
displayed the information you need. If you do not issue B OFF, these
commands will continue to refresh the screen, even after you issue another
command.

How to use B OFF

To run B OFF, enter the command in the format shown above at the server
where BSERVER.VAP is loaded.

J n sert a blank space between B and OFF. You can enter the command in
either upper or lower case.

2011Revl.OO 4-49

Btrieve Record Manager

BRESET

Command Format

B RESET < connection number>

Description

The B RESET console command releases all resources used by a particular
station on the network. When you issue a B RESET console command
followed by a station's connection number, Btrieve

• Closes all open files at the station

• Releases all locks held by the station

• Aborts any pending transaction at the station

How to Use B RESET

To run B RESET, enter the command in the format shown above at the
server where BSERVER.V AP is loaded. Insert a blank space between Band
RESET. You can enter the command in either upper- or lower-case
characters.

Substitute the connection number of the station that you want to reset for
<connection number>. For example, to release all resources for station 12, you
would issue the following command at the server console:

B RESET 12 <Enter>

Use an asterisk (*) to denote all the Btrieve stations on the network, instead
of a single station. To reset all the stations on the network that have Btrieve
files open, issue the following command at the server console:

B RESET * <Enter>

The B RESET operation will not accept the two-character ASCII connection
ID, which signifies a VAP, as input. To reset any files open by a VAP, you
must use the appropriate reset command for that V AP.

4-50 201lRevl.00

(~

Utilities

BSTATUS

Command Format

B STATUS

Description

You can use B STATUS to help determine whether the level of resources
allocated for BSERVER is the most efficient level for your environment.

B STATUS returns information about network requests, packet buffers, and
the sessions in use for the file server where you issue the command. The
command also returns the number of times the console screen has been
refreshed since the command was issued.

How to Use B STATUS

To run B STATUS, enter the command in the format shown above at the
server where BSERVERVAP is loaded. You may enter the command in
either upper- or lower-case characters. Insert a blank space between each
word.

When you execute B STATUS, Btrieve will display the following screen:

Status for NetWare Btrieve Server VAP vS.xx

Current, Total requests processed: nn nn
Available, Max request buffers: nn nn

Available, Max SPX packet buffers: nn nn
Unprocessed SPX packet buffers: nn
Current, Total SPX packets received: nn nn
Current, Total SPX packets sent: nn nn
Current.Total SPX requests processed: nn nn
Current, Max, Peak SPX sessions: nn nn nn

Number of display iterations: nn

201lRev1.00 4-51

Btrieve Record Manager

BSTATUS
(Continued)

"Current" values are the values accumulated since the B STATUS command
was issued, and are displayed in the first column. ''Total'' values are the
values accumulated since BSERVER was loaded, and are displayed in the
second column. "Max" values are the maximum values for the resource that
are available in the network's current configuration, and are displayed in the
second column. "Peak" values reflect the highest utilization of the resource
since BSERVER was loaded. The following paragraphs describe the
information returned by the B STATUS command.

"Current, Total requests processed" reflects the number of network requests
processed by BSERVER from both workstations and other V APS, such as
NetWare SQL.

"Available, Max request buffers" reflects the number of processes active for
the V AP. For BSERVER, this value should always be 1.

"Available, Max SPX packet buffers" reflects the number of NetWare packet
buffers available to BSERVER, and the maximum number available at the
server.

"Unprocessed SPX packet buffers" reflects the difference between the
maximum number of NetWare packet buffers available at the server and the
number available to BSERVER.

"Current, Total SPX packets received" reflects the number of network packets
received by BSERVER from workstations.

"Current, Total SPX packets sent" reflects the number of network packets
sent to workstations by BSERVER.

"Current, Max, Peak SPX sessions" reflects the number of BSERVER sessions
in use, and the maximum number available to BSERVER.

''Number of display iterations" reflects the number of times the B STATUS

,
!

7

screen has been refreshed since the B STATUS command was issued. ./

4-52 201lRevl.OO

(-

(-,.,

~.

Utilities

BUSAGE

Command Format

B USAGE

Description

You can use B USAGE to help determine whether BSERVER is configured to
the most efficient level for your environment.

The B USAGE console command returns information about the following
Btrieve configuration options:

• Open files

• File handles

• Locks

• Transactions

How to use B USAGE

To run B USAGE, enter the command in the format shown above at the
server where BSERVER.VAP is loaded. You may enter the command in
either upper- or lower-case characters. Insert a blank space between Band
USAGE. When you execute B USAGE, Btrieve will display the following
screen:

Usage for NetWare Btrieve Server VAP vS.xx

Current, Max, Peak files:
Current, Max, Peak handles:
Current, Max, Peak locks:
Current, Max, Peak transactions:

nn nn nn
nn nn nn
nn nn nn
nn nn nn

"Current" values are the values that are currently in use, and are displayed
in the first column. "Max" values are the maximum values for the resource
that are available in the current BSERVER configuration, and are displayed
in the second column. "Peak" values reflect the highest usage of the resource
since BSERVER was loaded.

2011Revl.OO 4-53

/

c 5 APPLICATION INTERFACES

The Btrieve application interfaces give you access to Btrieve file structures
from your application program. Through these routines, your application
issues calls which identify the operation to perform, the data to pass or
receive, and the status and positioning information. This chapter describes
how to call Btrieve from programs written in any ofthe following languages:

• IBM (or Microsoft) BASIC and Compiled BASIC

• IBM (or Microsoft) Pascal

• Turbo Pascal

• Microsoft COBOL

• Microsoft C

• Lattice C

• Assembly Language

For a description of interfaces that are not described in this manual, see the
file called INTRFACE.DOC on your Btrieve program diskette.

NOTE:

Before you can call Btrieve from an application in any language,
you must load the Btrieve Requester (BREQUEST) into memory
at the workstation.

201 fRey 1.00 5-1

Btrieve Record Manager

INTERFACING BTRIEVE WITH BASIC

The interface to Btrieve is essentially the same from both compiled and
interpretive BASIC. For Compiled BASIC, you link the Btrieve interface with /
your Basic program after compiling. For interpretive BASIC, you load the
Btrieve interface as a memory resident program. The format of the Btrieve
calls is identical for both.

INTERPRETIVE BASIC

To call Btrieve from interpretive BASIC, your application must initiate
BASIC execution with the appropriate parameters and load the Btrieve
BASIC Interface correctly. If you do not accomplish these two steps correctly,
the Btrieve application will not run properly, if at all.

THE INTERPRETTVE BASIC INTERFACE

The Btrieve BASIC Interface is an assembly language subroutine, called
BASXBTRV.EXE, that the BASIC application must call in order to
communicate with the Btrieve Record Manager.

In the MS-DOS operating system, the BASIC interface is a memory-resident
program that you must load before you can run your BASIC application. Each
workstation must have its own copy of BASXBTRV loaded. Once you load the
Btrieve BASIC Interface, your application uses CALL statements to perform
Btrieve operations.

The interface routine writes a single record to the output file containing the
segment address, in decimal notation, at which it loaded. Your BASIC
program reads that file and uses the segment address stored there in a DEF
SEG statement. After your program performs the DEF SEG, it can use the
CALL statement (described later in this chapter) to communicate with the
Btrieve Record Manager.

In order to load the memory resident interface, enter the following command:

< Drive>: BASXBTRV < Filename. Extension >

5-2 2011Revl.OO

""/

Application Interfaces

Replace <Drive> with the name of the device containing the Btrieve files.

Replace <Filename. Extension> with the name of the file that will contain the
interface's segment address. You must specify the file name as

< Drive> : < Filename. Extension >

You can omit <Drive> if you intend to use the default device. Once you have
loaded the interface, it remains in memory until you restart your system.

In a network environment, it is important that the filename you specify for
BASXBTRV to initialize is either a local or a unique filename. Since the
segment address where BASXBTRV loads may vary between workstations,
each workstation must have its own segment address file to read. For
example, to load BASXBTRV and specify SEGMENT.ADR as the file for the
segment address, you would issue the following command:

BASXBTRV SEGMENT.ADR

After the BASIC interface loads into memory and writes its segment address
to a file, it displays the following message:

Btrieve Basic interface loaded at segment xxxxx

Your interpretive BASIC program should include the following statements
that read and define the segment address to use for Btrieve calls:

30 OPEN "SEGMENT.ADR" FOR INPUT AS #1

40 INPUT #1, SEG.ADDR%

50 DEF SEG = SEG.ADDR%

2011Rev1.00

'Open file containing segment address

'Get segment address of interface

'Set address for Btrieve calls

5-3

Btrieve Record Manager

Figure 4.1 illustrates the various programs that are loaded in memory when
you run a Btrieve application written in interpretive BASIC. MS-DOS loads
first, followed by the memory resident BASIC interface, BASXBTRV. Btrieve
is loaded after the interface. The remaining memory is available to your)
application program.

Beginning

of Memory >>>

DOS 3.x

BASXBTRV
(Interpretative BASIC interface)

BREQUEST

Btrieve Application

Figure 5.1
Map for Memory Resident BASIC Interface

INITIATING THE BASIC INTERPRETER

« End of
Memory

Normally, BASIC assumes a record length of 128 bytes for any file a program
opens. To access a Btrieve file with a logical record length greater than 128
bytes, you must include a file size parameter specifying the file's logical
record length in the command that executes the BASIC interpreter.
Therefore, to execute the BASIC interpreter for a Btrieve application, enter
the following command:

BASIC [/S:yyy]

In the above example, yyy is the logical record length of the largest Btrieve
file your program will access. See your BASIC reference manual for more
information on specifying this option.

5-4 2011Rev1.00

/

j

Application Interfaces

COMPILED BASIC

C· ~ To execute a compiled BASIC program that calls Btrieve, you must link the
/ appropriate Btrieve interface routines with your compiled BASIC object file.

The Btrieve diskette contains the file that you must include in your BASIC
link: BASXBTRV.OBJ. For a complete explanation of linking, refer to your
operating system manual and your BASIC reference manual.

In order to link a BASIC program for which the object is stored in the file
called BASPROG with the Btrieve BASIC interface BASXBTRV.OBJ, you
would respond to the linker prompt for object modules as follows:

Object Modules [.OBJ]:basprog+basxbtrv

NOTE:

Microsoft Quick BASIC uses the file QBIXBTRV.OBJ as the
Btrieve interface routine, and requires different procedures from
other versions of BASIC for opening files and referencing the data
buffer. Refer to the INTRFACE.DOC file on the Btrieve
PROGRAM diskette.

CALLING BTRIEVE FROM BASIC

Whether you are using compiled or interpretive BASIC, the steps for calling
Btrieve are the same. To access data in a Btrieve file, your BASIC application
must first execute a standard BAsIC OPEN statement to NUL to allocate a
BASIC field buffer, as in the following statement:

OPEN "NUL" AS #1

When BASIC processes an OPEN statement, it allocates an area called the
File Control Block (FCB). This block contains, among other things, a buffer
area which stores records from the file as they are transferred to and from the
disk. BASIC allows you to define this buffer area as a set of contiguous string
variables with the FIELD statement.

2011Revl.OO 5-5

Btrieve Record Manager

For example, if a you define a file to contain addresses, your application
might include the following FIELD statement:

FIELD #1,30 AS NAM$, 30 AS STREET$, 30 AS CITY$, 2 AS STATE$,
5 AS ZIP$

This statement indicates that the field buffer, which was previously allocated
for file #1, contains records in which the first 30 characters contain a name,
and the next 30 characters contain a street, etc.

BASIC restricts your total statement length to 255 characters. If your record
contains very many fields, you may not be able to completely describe your
data in a single BASIC statement. BASIC allows you to use as many FIELD
statements as necessary to describe the records. The variable names in all the
field statements are in effect at the same time. Each new FIELD statement
redefines the buffer from the first character position. Therefore, you have to
use a dummy field as the first entry in subsequent FIELD statements to
account for the fields which have already been defined.

For example, if the records defined by the previous FIELD statement
contained a phorie number after the zip code, you could define the phone
number field in the following statement:

FIELD #1, 97 AS DUMMY$, 7 AS PHONE$

Since Btrieve uses the buffer in the FCB for record transfers, the application
must include a FIELD statement in order to access the data returned by
Btrieve. See your BASIC reference manual for a more complete description of
the OPEN and FIELD statements. You must use an LSET command to store
values in the buffer defined by a FIELD statement.

After a standard BASIC OPEN statement opens the Btrieve file, your
application is ready to issue calls to the Btrieve Record Manager. First your
application performs a Btrieve Open operation. Mter that, Btrieve handles all
file reads, writes, and modifications through Btrieve calls. Your application

J

/

should perform a Btrieve Close operation before it terminates. -"

5-6 20lfRevl.OO

Application Interfaces

All calls to Btrieve from a BASIC program must be in the following format:

CALL BTRV (Operation, Status, FCB, Data Buffer Length, Key Buffer,
Key Number)

For interpretive BASIC, BTRV should be a numeric variable with a value of
O. In compiled BASIC, BTRV is an external name resolved by the linker.
Though all parameters are required on every call, Btrieve does not use all the
parameters to perform every operation. In some cases, Btrieve ignores their
value. For a more detailed description of relevant parameters, see Chapter 5
ofthis manual. The following sections describe each parameter.

OPERATION CODE

The operation parameter determines which Btrieve function you want to
perform. The variable you specify must be an integer type and can be anyone
of the legal Btrieve operation codes described in Chapter 6 of this manual.
(Also see Appendix A for a complete list of these codes.) Your application
must specify a valid operation code on every Btrieve call. The Btrieve Record
Manager never changes the code.

STATUS CODE

The status parameter contains a coded value that indicates whether any
errors occurred during the Btrieve operation. The Btrieve Record Manager
returns a status of 0 after a successful operation. Btrieve indicates any errors
that occur during processing by returning a non-zero value in the status
parameter.

A BASIC application must always pass an integer variable as the status
parameter on a Btrieve call. Mer a Btrieve call, the application must always
check the value of the status variable to ascertain whether the call was
successful. See Appendix B for a list of Btrieve error messages and their
possible causes.

201lRevl.OO 5-7

Btrieve Record Manager

FILE CONTROL BLOCK (FCB)

BASIC allocates an area called the File Control Block (FCB) when it
processes an OPEN statement. Btrieve uses this block to maintain its
positioning information and to transfer data records. Therefore, your
application must pass the address of the FCB to the Record Manager on every
call. Your application should use a different FCB address for each separate
Btrieve file it accesses.

To determine the address of the FCB, your BASIC application must use a
V ARPTR statement. In the following example, BASIC returns the address of
the FCB for the file opened as #1, in the integer variable FCB.ADDR%.

FCB.ADDR% = VARPTR(#1)

See your BASIC reference manual for a more complete description of the
V ARPTR statement.

DATA BUFFER LENGTH

For any operation using the data buffer, your program must pass the length
of the data buffer in an integer variable. For a file with fixed length records,
this parameter should match the record length specified when you first
created the file. When you are inserting records in or updating a file with
variable length records, this parameter should equal the record length
specified when you first created the file, plus the number of characters
included beyond the fixed length portion. When you are retrieving variable
length records, this parameter should be large enough to accommodate the
longest record in the file.

KEY BUFFER

On each Btrieve call, your BASIC program must pass a string variable
containing the key value. If the key value is an integer, your program must
convert it to a string using the MKI$ statement before calling Btrieve. If the
key consists of two or more non-contiguous segments, you must concatenate
them into a single string variable and pass the variable as the key buffer.
Depending on the operation, your program may set the variable, or the
Record Manager may return it.

5-8 2011Revl.OO

(

Application Interfaces

The Record Manager returns an error if the string variable passed as the key
buffer is shorter than the key's defined length. If your application's first call
does not require initialization of the key buffer, you should assign the string
variable the value SPACE$(x), where x represents the key's defined length.
Until your application assigns some value in BASIC to the string variable, it
has a length of O.

KEY NUMBER

You may define up to 24 different keys when you first create a Btrieve file.
When your application accesses the file, it must tell the Record Manager
which access path to follow for a particular operation. The key number
parameter is an integer variable with a value from 0 through 23, with 0 being
the first key segment defined for the file. Btrieve never alters this value.

PARAMETER LIST EXAMPLE

The BASIC code shown in Figure 4.2 below opens a Btrieve file and retrieves
the data record corresponding to the first value for key 0, the name field.

, Lines 5 through 20 apply only to interpretive BASIC. Do not include them in Compiled BASIC.
5 BTAV = 0
10 OPEN "SEGMENT.ADA" FOA INPUT AS #1
15 INPUT #1, SEG.ADDA%
20 DEF SEG = SEG.ADDA%
30 OPEN "NUL" AS #2
40 FIELD #2,30 AS NAM$, 30 AS STAEET$,

30 AS CITY$, 2 AS STATE$, 6 AS ZIP$

'Open file containing seg address
'Get segment address of interface

'Set address for Btrieve calls
'Open file from BASIC

50 OP% = 0: STATUS% = 0 'Set Open operation code and initialize status
70 FCB.ADDA% = VAAPTA(#2) : BUF.LEN% = 98 'Get address of FCB, set buffer length
80 KEY.BUF$ = "ADDRESS.BTR " 'Initialize key buffer
90 KEY.NUM% = 0 'Use key 0 access path
100 CALL BTAV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$, KEY.NUM%)
110 IF STATUS% <> 0 THEN

PRINT "Error opening file. Status = ", STATUS% : END
120 OP% = 12 'Set Get First operation code
125 KEY.BUF$ = SPACE$(30)
130 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$, KEY.NUM%)
140 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
150 PRINT "First record in file is:", NAM$, STREET$, CITY$, STATE$, ZIP$

2011Revl.OO

Figure 5.2
Btrieve Call from BASIC

5-9

Btrieve Record Manager

INTERFACING BTRIEVE WITH PASCAL

In order to access a Btrieve file, your Pascal application must define BTRV as
an integer function. When your application calls that function, it performs
various types offile accesses, depending on which parameters you specify.
The Pascal interface communicates with the Btrieve Record Manager. You
must load the Record Manager, a memory-resident assembly language
program, before you start your application.

Declare the Btrieve function as external for IBM (or Microsoft) Pascal.
Btrieve provides a small assembly language routine that you can link with
your Pascal application as an external function. For Turbo Pascal, Btrieve
provides the source code of the interface so that you can include it with your
Pascal program when you compile it.

The Btrieve program diskette contains a file that needs to be included in your
Pascal source file. For IBM Pascal, the file contains the external function
declaration for BTRV. For Turbo Pascal, the file contains the code for the
entire Btrieve interface.

Your application accomplishes all Btrieve file access by calling the function
BTRV. This is an integer function which returns the status of the operation.
If you are using IBM (or Microsoft) Pascal, use the $INCLUDE
metacommand to include the file BEXTERN.PAS. The example below shows
how the external function, BTRV, is defined:

5-10

function BTRV OP
vars paS_BLOCK
vars DATA_BUFFER
vars DATA_LEN
vars KEY_BUFFER

KEY_NUMBER

: integer;
: string;
: string;
: integer;
: string;
: integer) : integer; extern;

2011Rev1.00

/

---~-~--~~--

Application Interfaces

If you are using Turbo Pascal, use the $1 command to include the file
TURXBTRV.PAS. The Btrieve function is defined as follows:

function BTRV OP : integer;
var paS_BLOCK,
var DATA_BUFFER;
var DATA_LEN : integer;
var KEY_BUFFER;

KEY_NUMBER : integer): integer;

LINKING A PASCAL APPLICATION WITH BTRIEVE

If you are using IBM (or Microsoft) Pascal, you must include the file called
PASXBTRV.OBJ in your Pascal link. To link the Pascal object file
(PASPROG) with the IBM Pascal interface, you would respond to the linker
prompt for object modules as follows:

Object Modules [.08J]: pasprog+pasxbtrv

If you are using Turbo Pascal, include the interface source file
(TURXBTRV.PAS) with your program when you compile.

CALLING BTRIEVE FROM PASCAL

Your Pascal application should never perform any standard Pascal I/O
against a Btrieve file. Your application should perform all I/O to a Btrieve file
using the Btrieve function. The first Btrieve call your application must
perform is an Open operation. Following that, it can read, write, and modify
files through Btrieve calls. Before your application terminates, it should
perform a Btrieve Close operation.

All calls to Btrieve must be performed through the BTRV function. The result
of the function is always an integer value which corresponds to one of the
status codes listed in Appendix B. Mter a Btrieve call, your application
should always check the value of the status variable. A status of 0 indicates a
successful operation. Your application should be able to recognize and resolve
a non-zero status.

201 fRev 1.00 5-11

Btrieve Record Manager

Although you must provide all parameters on every call, Btrieve does not use
every parameter for every operation. See Chapter 6 for a more detailed
description of which parameters are relevant for each operation. The
following sections describe the parameters. J

OPERATION CODE

The operation parameter determines which type of Btrieve function you want
to perform. Your application is responsible for specifying a valid operation
code on every Btrieve call. The Record Manager never changes the operation
code. The variable you specify must be an integer type and can be anyone of
the legal Btrieve operation codes described in Chapter 6. Appendix A contains
a complete list ofthese codes.

POSITION BLOCK

Your application must allocate a separate position block for each Btrieve file
it opens. Btrieve initializes the position block when your application performs
the Open operation, anq references and updates the data in the position block
on all file operations. Therefore, your application should pass the same
position block on all subsequent Btrieve operations for the file. When your
application has more than one file open at a time, Btrieve uses the position
block to determine which file is referenced in a particular call. In addition,
your application should never change the values contained in the position
block.

An IBM Pascal application must allocate a 128-byte string for the position
block. If you are using Turbo Pascal, you should allocate the position block
parameter as a 128-byte character array.

DATA BUFFER

The data buffer contains the records that your application transfers to and
from the Btrieve file. Btrieve expects a string type for IBM Pascal. For Turbo
Pascal, you can use any data type.

5-12 2011Rev1.00

/

(

Application! nterfaces

You may want to define a record structure in Pascal to describe the data
stored in a file. To pass a record type variable in IBM Pascal, use the case
option to define a string type variant for the structure. For Turbo Pascal, you
can send the record itself.

When you calculate the length of the variant string, take into account the fact
that odd length elements in a record may require an extra byte of storage
whether or not the record is packed. This is also an important consideration
when you define the record length for the CREATE utility. See your Pascal
reference manual for more information on record types.

DATA BUFFER LENGTH

For any operation that requires a data buffer, your program must pass the
length ofthe data buffer in an integer variable. For a file with fixed length
records, this parameter should match the record length specified when you
first created the file.

When you are inserting records into or updating a file with variable length
records, this parameter should equal the record length specified when you
first created the file, plus the number of characters included beyond the fixed
length portion. When you are retrieving variable length records, this
parameter should be large enough to accommodate the longest record in the
file.

KEY BUFFER

Your application must pass a string variable for IBM Pascal, or any type
variable for Turbo Pascal, that will contain the key value on each Btrieve call.
Depending on the operation, your application may set this variable, or the
Record Manager may return it.

For IBM Pascal, if the key is an integer, you should define it as a record
structure with two variants. One variant defines the key as an integer. The
other defines it as a two character string. You must use the string variant for
Btrieve calls.

For Turbo Pascal, you can pass the key buffer itself, regardless of type.

201 fRev! .00 5-13

Btrieve Record Manager

If the key consists of two or more segments, use a record structure to define
the individual fields in the key. Then use a variant to pass the key buffer to
Btrieve.

KEY NUMBER

You may define up to 24 different keys when you create a Btrieve file.
Therefore, your application must tell the Record Manager which access path
to follow for a particular operation. The key number parameter is an integer
variable with a value from ° through 23, with 0 being the first key segment
defined for the file. The Record Manager never alters this parameter.

PARAMETER LIST EXAMPLE

The IBM (or Microsoft) Pascal code shown in Figure 5.3 below opens a Btrieve
file and retrieves the data record corresponding to the first value for key 0,
the name field.

5-14

const
B_GET_FST = 12;
B_OPEN = 0;

type
ADDRESS_REC = record

case integer of
1: (NAME

STREET
CITY
STATE
ZIP

2: (ENTIRE
end;

var
DATA_BUF
DB_LEN
FILE_NAME
KEY_BUF
POS_BLOCK
STATUS

{Get first}
{Open file}

: string(30);
: string(30);
: string(30);
: string(2);
: string(5»;
: string(98»

: ADDRESS_REC;
: integer;
: string(14);
: string(30);
: string(128);
: integer;

Figure 5.3
Btrieve Call from IBM Pascal

{Structure of address file entry}

201lRevi.OO

)

;'

Application Interfaces

begin
FILE_NAME := 'B:ADDRESS.BTR ';
STATUS := BTRV (B_OPEN, POS_BLOCK, DATA_BUF.ENTIRE, DB_LEN,

FILE_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error opening file. Status = ',STATUS); return;

end;
DB_LEN := sizeof (ADDRESS_REC);
STATUS := BTRV (B_GETJST, POS_BLOCK, DATA_BUF.ENTIRE, DB_LEN,

KEY_BUF,O);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reading file. Status = ',STATUS)
else

end.
writeln (OUTPUT, 'First record in file is:',DATA_BUF.ENTIRE);

Figure 5.3 (Continued)
Btrieve Call from IBM Pascal

Figure 5.4 illustrates the same program written for Turbo Pascal. This is the
only Turbo Pascal example in this manual. All other Pascal examples are
shown for IBM (or Microsoft) Pascal.

In Figure 5.4, the application uses character arrays instead of strings for the
fields in the data buffer and the key buffer because Turbo Pascal stores a
binary length byte in the first position of a string field when it initializes the
field. If you attempt to use such a value as a key in a Btrieve file without
defining it as lstring, the results are unpredictable. When Btrieve compares
key values for random or sequential searching, it compares them byte-by-byte
on an absolute basis. The length byte is treated as part of the value instead of
as an indicator of length, unless the key is defined as an lstring type.

Although the example in Figure 5.4 uses variant records for the position
block, data buffer, and key buffer parameters, Btrieve does not require that
you do this. This example simply illustrates one way of writing this program.

2011Rev1.00 5-15

Btrieve Record Manager

5-16

const
B_GET_FST = 12;
B_OPEN = 0;

type
ADDRESS_REC = record

{Structure of address file entry}
case integer of

1 :(NAME
STREET

end;

CITY
STATE
ZIP

2:(START

: array [1 .. 30] of char;
: array [1 .. 30] of char;
: array [1 .. 30] of char;
: array [1 .. 2] of char;
: array [1 .. 5] of char);
: integer);

FilE_NAME = record
case integer of

1 :(VAlUE
2:(START

end;
KEY _BUF = record
case integer of

end;

1 :(VAlUE
2:(START

var
DATA_BUF

FNAME
KBUF: KEY_BUF;
POS : record
case integer of

1: (START
2: (BlK

end;

: array [1..14] of char);
: integer);

: array [1 .. 30] of char);
: integer);

: ADDRESS_REC;
: integer;
: FilE_NAME;

: integer);
: array[1 .. 128] of byte);

STATUS : integer;
I : integer;

{$I TURXBTRV.PAS }

Figure 5.4
Btrieve Call from Turbo Pascal

{Get first}
{Open file}

2011Rev1.00

c

Application Interfaces

begin
FNAME.VALUE := 'ADDRESS.BTR ';
STATUS := BTRV (B_OPEN, POS.START, DATA_BUF.START, DB_LEN,

FNAME.START,O);
if STATUS <> 0 then

writeln ('Error opening file. Status = " STATUS)
else

end.

begin
DB_LEN := sizeof (ADDRESS_REC);
STATUS := BTRV (B_GETJST, POS.START, DATA_BUF.START, DB_LEN,

KBUF.START, 0);
if STATUS <> 0 then

writeln ('Error reading file. Status = " STATUS)
else

end;

writeln (,First record in file is:', DATA_BUF.NAME, DATA_BUF.STREET,
DATA_BUF.CITY, DATA_BUF.STATE, DATA_BUF.ZIP);

Fig ure 5.4 (Continued)
Btrieve Call frol11 Turbo Pascal

INTERFACING BTRIEVE WITH COBOL

In order to access a Btrieve file, your IBM or Microsoft COBOL application
must issue a CALL statement. The type offile accesses Btrieve makes when
it executes the statement depends on the parameters you specifY. Btrieve
provides a small assembly language routine, the COBOL interface, which you
must link with your COBOL application. This interface communicates with
the Record Manager, which you must load before you start your application.

LINKING A COBOL APPLICATION WITH BTRIEVE

If you are using Microsoft's v2 COBOL compiler, the Btrieve interface must
be linked with the MS-COBOL object modules to produce a new runtime
executor. Refer to "Creating and Linking Assembly Language Subroutines" in
the Microsoft COBOL User's Guide for a more complete description of the
required procedures.

2011Revl.OO 5-17

Btrieve Record Manager

The following files are available for these procedures: ASM.OBJ (a table of
subroutines that contains only the entry point BTRV), COBXBTRV.OBJ
(object code for the Btrieve COBOL interface), and MAKERUN.BAT (batch
file which does not require the assembler). To create a new runtime executor, /
RUNSUB.EXE, that includes the Btrieve interface, enter the following
command:

MAKERUN RUNSUB COBXBTRV

CALLING BTRIEVE FROM COBOL

Your application should never perform any standard COBOL I/O against a
Btrieve file. It should handle I/O through a call to Btrieve. Mer issuing an
Open operation, your program can read, write, and modify files through
Btrieve calls. Before terminating, your application should perform a Btrieve
Close operation.

Format all calls to Btrieve from a COBOL program according to the example
below:

CALL 'BTRV' USING OPERATION, B-STATUS, POSITION-BLOCK,
DATA-BUFFER,DATA-LEN, KEY-BUFFER, KEY-NUMBER.

Although you must provide all parameters for every call, Btrieve does not use
every parameter to perform every operation. In some cases, Btrieve ignores
their value. See Chapter 6 for a more detailed description of which
parameters are relevant for each operation. The following sections describe
each parameter.

OPERATION CODE

The operation parameter determines which type of Btrieve function you want
to perform. The operation may be a read, write, delete, or update. Your
application is responsible for specifying a valid operation code on every
Btrieve call. The Record Manager never changes the code. The variable you
specify must be COMP-Q type for IBM (or Microsoft) COBOL and can be any
one of the legal Btrieve operation codes described in Chapter 6. See Appendix
A for a complete list ofthese codes.

5-18 2011Rev1.00

Application Interfaces

STATUS CODE

All calls to Btrieve return a 2-byte integer status value (a COMP-O field for
IBM or Microsoft COBOL) that corresponds to one ofthe status codes listed in
Appendix B. After a Btrieve call, your application should always check the
value of the status variable. A status of 0 indicates a successful operation.
The application should recognize and resolve a non-zero status.

POSITION BLOCK

A COBOL application must allocate a 128-byte record which Btrieve uses to
store the file I/O structures and the positioning information described in
Chapter 2. Your application must allocate a separate position block for each
Btrieve file it opens. Btrieve initializes this record when your application
performs the Open operation, and references and updates the data in this
record on all file operations. Therefore, your application should pass the same
record on all subsequent Btrieve operations for the file. It should never
change the value of the position block. When an application has more than
one file open at a time, Btrieve uses the position block to determine which file
a particular call is for.

DATA BUFFER

The data buffer contains the records that your application transfers to and
from the Btrieve file. Ensure that you allocate a large enough data buffer to
accommodate the longest record in your file. If the buffer is too short, Btrieve
requests may destroy data items following the data buffer.

DATA BUFFER LENGTH

For any operation that requires a data buffer, your program must pass the
length of the data buffer as a 2-byte integer (COMP-O field for IBM or
Microsoft COBOL). For a file with fixed length records, this parameter should
match the record length specified when you first created the file.

When you are inserting records into or updating a file with variable length
records, this parameter should equal the record length specified when you

201lRev1.00 5-19

Btrieve Record Manager

first created the file, plus the number of characters included beyond the fixed
length portion. When you are retrieving variable length records, this
parameter should be large enough to accommodate the longest record in the \
file.

KEY BUFFER

On each Btrieve call, your application must pass a record variable to contain
the key value. If the key consists of two or more segments, list them in the
correct order as individual fields under an 01 level record. Then you can pass
the entire record to Btrieve as the key buffer. Depending on the operation,
your application may set this variable or the Btrieve Record Manager may
return it.

Btrieve cannot determine the key buffer length when you call it from an IBM
(or Microsoft) COBOL program. Therefore, you must ensure that the buffer is
at least as long as the key length you specified when you first created the file.
Otherwise, Btrieve requests may destroy data items following the key buffer.

KEY NUMBER

You can define up to 24 different keys when you create a Btrieve file. The
application accessing the file must tell the Record Manager which access path
to follow for a particular operation. The key number parameter is a 2-byte
integer (COMP-O for IBM or Microsoft COBOL) with a value from 0 through
23. The Btrieve Record Manager never alters this parameter.

5-20 2011Rev1.00

/

Application Interfaces

PARAMETER LIST EXAMPLE

The code for an IBM (or Microsoft) COBOL application in Figure 4.5 below
opens a Btrieve file and retrieves the data record corresponding to the first
value for key 0, the name field.

IDENTIFICATION DIVISION.
PROGRAM-ID. EX1.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-OPEN PIC 99 COMP-O VALUE o.
77 KEY-NUMBER PIC 99 COMP-O VALUE O.
77 B-STATUS PIC 99 COMP-O.
01 B-GET-FIRST PIC 99999 COMP-O VALUE 12.
01 DSP-STATUS PIC 99999.
01 DATA-BUFFER.
02 NAME
02 STREET

02 CITY
02 STATE
02ZIP

01 BUF-LEN
01 FILE-NAME
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.

PIC X(30).
PIC X(30).
PIC X(30).
PIC XX.
PIC 9(5).
PIC 99 COMP-O VALUE 97.
PIC X(14) VALUE "ADDRESS.BTR ".
PIC X(30).
PIC X(128) VALUE SPACES.

CALL 'BTRV' USING B-OPEN, B-STATUS, POSITION-BLOCK,
DATA-BUFFER,BUF-LEN, FILE-NAME, KEY-NUMBER.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error opening file. Status =. DSP-STATUS
STOP RUN.

DISPLAY (1, 1) ERASE.
CALL 'BTRV' USING B-GET-FIRST, B-STATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, KEY-BUFFER, KEY-NUMBER.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY (5, 1) "Error reading file. Status =" DSP-STATUS

ELSE
DISPLAY (5, 1) "First record in file is:" DATA-BUFFER.

STOP RUN.
FlgureS.S

Btrieve Can from IBM COBOL

2011Revl.OO 5-21

Btrieve Record Manager

INTERFACING BTRIEVE WITH C

The Btrieve diskette contains interfaces for Microsoft and Lattice C as well as \.
several other C compilers. The format for the Btrieve calls is identical for /
each. To interface with any other C compiler, refer to Appendix F, which
describes how to interface to Btrieve from assembly language.

Your Btrieve program diskette contains the source code for each ofthese
interfaces. All the C interfaces are written in C.

To access a Btrieve file, your application must call the integer function,
BTRV. Btrieve provides a small interface routine that links the Btrieve
Record Manager with your C application. You must load the Record Manager
before you start your application.

LINKING A C APPLICATION WITH BTRIEVE

Mter you have successfully compiled your C program, link it with the C
interface. The method used to link the C interface varies slightly depending
on which C compiler you are using. For a complete explanation of linking,
refer to your operating system manual and the reference manual for your
compiler.

If you are using the Microsoft C compiler, you should compile the interface in
the file MSCXBTRV.C using your compiler. If you are compiling with the
large model, you should edit the interface source file and make the changes
described in that document. Link your application as shown in the following
example:

Object Modules [.08J]: c+cprog+mscxbtrv

CALLING BTRIEVE FROM C

Your application should never perform any standard C VO against a Btrieve
file. It should handle VO through a call to Btrieve. Mter issuing an Open

"\
/

operation, your program can read, write, and modify files through Btrieve "\
calls. Before terminating, your application should perform a Btrieve Close /'
operation.

5-22 2011Revl.OO

Application Interfaces

Your application issues calls to Btrieve through the integer function, BTRV.
The result of the function is always an integer value that corresponds to one
of the status codes listed in Appendix B. After a Btrieve call, your application
should always check the value of the status variable. A status of 0 indicates a
successful operation. Your application should be able to recognize and resolve
a non-zero status.

The function, BTRV, expects parameters of the following types:

int BTRV (OP, POS_BLK, DATA_BUF, BUF _LEN, KEY_BUF, KEY_NUM)
int OP;
char POS_BLK[];
char DATA_BUF[];
int 'BUF _LEN;
char KEY_BUF[];
int KEY_NUM;

/* operation code' /
/* position block' /

1* data buffer' /
1* length of data buffer' /

/* key buffer' /
j' key number'/

Although you must provide all parameters on every call, Btrieve does not use
every parameter to perform every operation. In some cases, Btrieve ignores
their value. See Chapter 6 for a more detailed description of which
parameters are relevant for each operation. The following sections describe
each parameter.

OPERATION

The operation parameter determines which type of Btrieve function you wish
to perform. The operation may be a read, write, delete, or update. Your
application must specify a valid operation code on every Btrieve call. The
Btrieve Record Manager never changes the code. The variable you specify
must be an integer type and can be anyone of the legal Btrieve operation
codes described in Chapter 6. Also see Appendix A for a complete list of these
codes.

POSITION BLOCK

A C application allocates a 128-byte character array that Btrieve will use to
store the file I/O structures and the positioning information described in
Chapter 2. Btrieve initializes this array when your application performs the
Open operation. Btrieve references and updates the data in this array for all
file operations. Therefore, your application should pass the same array on all

201lRevl.OO 5-23

Btrieve Record Manager

subsequent Btrieve operations for the file. It should not change the value
stored in this array at any time.

When an application has more than one file open at a time, Btrieve uses the
position block to determine which file a particular call is for. Your application
must allocate a separate position block for each Btrieve file it opens.

DATA BUFFER

The data buffer parameter is the address of an array or structure-type
variable containing the records that your application transfers to and from
the Btrieve file. Ensure that you allocate a large enough data buffer to
accommodate the longest record in your file. If the buffer is too short, Btrieve
requests may destroy data items following the data buffer.

DATA BUFFER LENGTH

For any operation that requires a data buffer, your program must pass the
address of an integer variable that contains the length of the data buffer. For
a file with fixed length records, this parameter should match the record
length specified when you first created the file.

When you are inserting records into or updating a file with variable length
records, this parameter should equal the record length specified when you
first created the file, plus the number of characters included beyond the fixed
length portion. When you are retrieving variable length records, this
parameter should be large enough to accommodate the longest record in the
file.

KEY BUFFER

Your application must pass the address of a variable containing the key value
on every Btrieve call. If you defined the key as binary when you first created
the file, you should define the variable as type int, long, or unsigned. If you
originally defined the key as a string, you should define the key buffer

/

~J

variable as a structure or a character array. If the key consists of two or more '\
segments, use a structure variable that contains the segment fields in the /
correct order. Depending on the operation, your application may set this
variable or the Btrieve Record Manager may return it.

5-24 2011Revl.OO

c

Application Interfaces

Btrieve cannot determine the key buffer length when called from a C
program. Therefore, you must ensure that the buffer is at least as long as the
key length you specified when you first created the file. Otherwise, Btrieve
requests may destroy data items stored in memory following the key buffer.

KEY NUMBER

You can define up to 24 different keys when you create a Btrieve file.
Therefore, the application accessing the file must tell the Record Manager
which access path to follow for a particular operation. The key number
parameter is an integer variable with a value from ° through 23. The Btrieve
Record Manager never alters this parameter.

PARAMETER LIST EXAMPLE

The C code in Figure 4.6 opens a Btrieve file and retrieves the data record
corresponding to the first value for key 0, the name field.

#define B_OPEN 0
#define BJIRST 12

mainO{
struct ADDR_REC

{
1* Structure of address file record */

};

char NAME(30);
char STREET(30);
char CITY(30);
char STATE(2);
char ZIP(5);

struct ADDR_REC ADDR_BUF;
int DB_LEN;
char KEY_BUF(30);
char POS_BLK(128);
int STATUS;

201lRevi.OO 5-25

Btrieve Record Manager

STATUS = BTRV (B_OPEN, POS_BLK, &ADDR_BUF, &DB_LEN, "ADDRESS.BTR", 0);
if (STATUS!= 0)

{

}

printf ("Error opening file. Status = %d", STATUS);
exit (0);

DB_LEN = sizeof (ADDR_BUF);
STATUS = BTRV (BJIRST, POS_BLK, &ADDR_BUF, &DB_LEN, KEY_BUF, 0);
if (STATUS 1= 0)

printf ("Error reading file. Status = %d", STATUS);
else

};
printf ("First record in file is: %.97s", &ADDR_BUF);

Figure 5.6
Btrieve Call from C

INTERFACING WITH BTRIEVE IN ASSEMBLY
LANGUAGE

,
\

/

If you are using Assembly Language or a programming language for which no /
interface is provided on the Btrieve diskette, you can write an interface using
Assembly Language. Interfacing Btrieve with an Assembly Language routine
requires three basic steps:

• Storing the Btrieve parameters in memory in the format expected by the
Record Manager

• Verifying that the Record Manager has been loaded into memory

• Calling the Record Manager by performing an interrupt that transfers
control to Btrieve

STORING THE PARAMETERS

Previous sections in this chapter have covered only seven Btrieve parameters:
status, operation code, position block, data buffer, data buffer length, key '"
buffer, and key number. (The BASIC interface combines position block and
data buffer into the single parameter, FCB. The Pascal and C interfaces
return status as the value of a function.)

5-26 2011Revl.OO

c

Application Interfaces

Actually, the Record Manager expects ten different parameters. The language
interface routines provided by Btrieve derive three of the parameters before
transferring control to the Record Manager.To write your own Assembly
Language interface to Btrieve, you must initialize all ten parameters. The
following figure illustrates the ten Btrieve parameters and their format.

Parameter # Offset Contents

1 0 data buffer offset

data buffer segment

2 4 data buffer length

3 6 positioning information offset

positioning information segment

4 10 FCB offset

FCB segment

5 14 operation code

6 16 key buffer offset

key buffer segment

7,8 20 key length l key number

9 22 status offset

status segment

10 26 interface ID

Figure 5.7
Btrieve Parameters Structure

Before you can call Btrieve, you must initialize a data area containing all ten
parameters listed in Figure 5.1. Store the offset of this data area in the DX
register. Btrieve expects the address ofthe parameter block to be in DS:DX
when it assumes control.

2011Rev 1.00 5-27

Btrieve Record Manager

PARAMETER DESCRIPTIONS

The following sections describe each of the ten parameters expected by
Btrieve when you use an Assembly Language interface routine.

DATA BUFFER

Pass the data buffer as a double word containing the segment address and
offset of the application's data buffer. The data buffer is the area used to
transfer records between the application and the Record Manager.

DATA BUFFER LENGTH

Pass the data buffer length as a word containing the length of the data
buffer. The application passes to the interface the address ofthe integer
containing the data buffer length. The interface must copy the value of the
data buffer length to the parameter block it will pass to Btrieve. After the
Btrieve interrupt returns, the interface must copy the data buffer length
value from the parameter block back to the address specified by the
application.

POSITIONING INFORMATION

Pass the positioning information as a double word containing the segment
address and offset of a 90-byte data area that Btrieve uses for storing
positioning information about the file. This is one of the parameters derived
by the Btrieve application interfaces. In BASIC, this area comes from within
the BASIC FeB. In the other languages, part of the position block parameter
is used for this purpose. You must provide the address of a 90-byte area for
the Record Manager to use when calling Btrieve from Assembly Language.
The same data area should be passed to Btrieve on all calls for the same file.

FeB

Pass the FeB as a double word containing the segment address and offset of
a 3S-byte data area that Btrieve uses for storing a DOS FeB. This is one of
the parameters derived by the Btrieve application interfaces. In BASIC, this
area comes from within the BASIC FeB. In other languages, part of the

5-28 2011Revl.OO

i
I

/

c

Application Interfaces

position block parameter is used for this purpose. You must provide the
address of a 38-byte area for the Record Manager to use when calling Btrieve
from Assembly Language. The same FCB should be passed to Btrieve on all
calls for the same file.

OPERATION CODE

Pass the operation code as a word containing the Btrieve operation code. This
must be one of the Btrieve operation codes listed in Appendix A.

KEY BUFFER

Pass the key buffer as a double word containing the segment address and
offset of the application's key buffer.

KEY LENGTH

Pass the key length as a byte containing the length of the key buffer. This is
one of the parameters derived by the Btrieve application interfaces that you
must provide when calling Btrieve from Assembly Language.

The interfaces to Btrieve from COBOL and C cannot determine the length of
the key buffer since it is not passed with the data type by the compiler. In
these cases, Btrieve passes the maximum key length allowed. The Record
Manager will never write to the key buffer beyond the key's defined length.
The Record Manager will return an error if this parameter is shorter than the
key's defined length.

KEY NUMBER

Pass the key number as a byte containing the key number by which the file is
to be accessed.

STATUS CODE

Pass the status code as a double word containing the segment address and
offset of the status parameter. This is the address at which Btrieve will store
the status code after the operation is completed.

201lRevl.OO 5-29

Btrieve Record Manal(er

INTERFACEID

Pass the interface ID as a word initialized to 06176H. If you set the identifier
to any other value, Btrieve will not permit access to files with variable length)
records. This check allows Btrieve to determine if it is called from
applications linked with previous versions of the interface that do not
understand variable length records.

VERIFY THAT THE RECORD MANAGER IS LOADED

Once your parameters are initialized, verify that the Record Manager is
loaded before you try to call it. When the Record Manager is loaded, it stores
its entry point in interrupt vector 07BH. Be sure that the word at interrupt
vector 07BH is initialized to 033H so that the interface can determine that
the Record Manager is loaded.

CALLING THE RECORD MANAGER

After you have stored the address of the Btrieve parameters in DX and have
checked to be sure that the Record Manager is loaded, you are ready to call /
Btrieve. Perform an interrupt 07BH, and the Record Manager will process
your request. When the operation is completed, the Record Manager returns
control to your code at the instruction following the interrupt. The following
example illustrates the code that checks whether the Record Manager is
loaded and then performs the interrupt.

5-30

BTR_ERR EQU 20
BTR_ VECTOR EQU 07BH*4

PUSH DS
SUB BX,BX
MOV DS,BX
CMP WORD PTR BTR_ VECTOR[BX],033H
POP DS
JE DO_I NT
MOV STAT,BTR_ERR
JMP OUT

DO_I NT:
INT 07BH

; Clear BX
; DS => absolute 0

; Has Btrieve been initialized?

; Yes - go perform interrupt
; No - set status 20
; and return to caller

; Call the Record Manager

2011Revl.00

Application Interfaces

OS/2 INTERFACES

C-" NetWare Btrieve includes two interfaces for the C compiler for OS/2
-' (C2XBTRV.C and C2FXBTRV.C) that you can include with applications that

run at OS/2 workstations. The C2XBTRV.C interface is for use with protected
mode applications. The C2FXBTRV.C interface is for use with OS/2 FAPI
programs.

If you are using a language that can call an Assembly Language routine, you
can write an Assembly Language interface to Btrieve, using the source code
from either interface as a guide. The section below contains guidelines for
using the C interfaces and for writing your own Assembly Language
interface.

CLANGUAGE

If you are using the C compiler supplied with OS/2, you have two options:

• You can compile either the C2XBTRV.C or C2FXBTRV.C interface
separately from your program. Either include the resulting object
module when you link your programs, or install the object in a library
file that you include with your link .

• You can include the interface source contained in either C2XBTRV.C or
C2FXBTRV.C with your application's source code when you compile
your program.

201lRev1.00 5-31

Btrieve Record Manager

ASSEMBLY LANGUAGE

If you are using Assembly Language, your application must use the OS/2
dynamic link mechanism to access the Btrieve routines. Use the following
guidelines when you write an Assembly Language interface for OS/2:

• Pass all parameters on the stack.

• Use the AX register to receive the return code from Btrieve.

• Use the form selector:offset for all interface addresses.

• Access the dynamic link routine using a FAR CALL.

• Do not pop the return parameters off the stack.

• Specify the dynamic link routine name in upper case.

LINKING OS/2 APPLICATIONS

The external references to the dynamic link routines are resolved the same
way in both C and Assembly Language.

You must provide the BTRCALLS.LIB library to the linker when you link
your object files. This library contains the dynamic link definition records
that provide the correspondence between the called routine and the
BTRCALLS.DLL file. If the linker does not have access to BTRCALLS.LIB, it
reports unresolved linkages for the dynamic link entry points.

5-32

NOTE:

For Family applications, you must use the C2FXBTRV.C
interface, link your application, and then run the OS/2 BIND
utility. The BUTIL.EXE program is an example of a FAPI
application.

201lRevl.OO

)

'"',
)

Application Interfaces

INTERFACING WITH BROUTER

If you are writing a V AP that uses Btrieve files, you must include an
interface to BROUTER in your code. Follow the procedures described under
"Interfacing With Btrieve In Assembly Language," beginning on page 5-26,
with the following additions:

• Issue the NetWare "Get Interrupt Vector" function call to determine
whether BROUTER is loaded. If the vector for the 7B interrupt is zero,
BROUTER is not loaded.

• Store a unique client ID number in the AX register prior to performing
the 7B interrupt.

• Identify every workstation that accesses your V AP with a unique 2-byte
client ID number. You must provide this number to BROUTER for
concurrency and transaction processing purposes. A convenient method
for generating a client ID number is storing the workstation's
connection number in the first byte, and a unique binary value in the
second byte.

• Identify your V AP to BROUTER by using a unique 2-character, ASCII
identifier in the BX register. This identifier distinguishes your V AP
from any other YAP that accesses BROUTER. Contact the Novell
Development Products Division to obtain the identifer for your YAP.
The address of the Novell Development Products Division is:

20JIRevl.OO

Novell Development Products Division
6034 West Courtyard

Suite 220
Austin, TX 78730

5-33

Btrieve Record Manager

In general, your interface to BROUTER must complete all of the following
steps:

• Check to see if BROUTER is loaded by executing the NetWare "Get
Interrupt Vector" function call.

• Store the Btrieve parameter block in memory in the format expected by
the Record Manager.

• Store the address ofthe Btrieve parameter block in the DX register.

• Store a client ID number that is unique for each workstation in the AX
register.

• Store the unique 2-character, ASCII identifier for the V AP in the BX
register.

• Perform the 7B interrupt that transfers control from your V AP to
BROUTER.

5-34 201IRev1.00

I

/

() 6 BTRIEVE RECORD OPERATIONS

This chapter describes each of the 36 operations your application can perform
using Btrieve. For each operation, this chapter presents the following
information:

• The purpose of the operation

• A table illustrating the parameter values that Btrieve expects from and
returns to your application

• A description of what the operation does

• The prerequisites your application must satisfy before the operation will
be successful

• The procedure for initializing the parameters required by the operation

• The results of both a successful and an unsuccessful operation

• The effect the operation has on your current position in the file

The parameter table lists six Btrieve parameters, including the position block
and the data buffer. In BASIC, these two parameters are consolidated into a
single FCB parameter in the BASIC interface. On every Btrieve call, your
application must pass to Btrieve every parameter required for the language
you are using, even when Btrieve does not expect a value for or return a
value to that parameter.

The status parameter does not appear in the table since Btrieve handles it
the same way for all operations. Btrieve doesn't expect your application to
initialize the status before a call and always returns a status value to your
application.

Program examples that illustrate each operation for Pascal, COBOL, C, and
BASIC are included in Appendixes C, D, E, and F.

2011Rev1.00 6-1

Btrieve Record Manager

ABORT TRANSACTION (21)

Purpose:

Abort Transaction removes all operations performed since the beginning of an
active transaction and terminates the transaction.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Pos Block

PCB

Data Buffcr Data Buffer Key Buffer KcyNumber
Length

Your application can perform an Abort Transaction operation to terminate a
transaction that has been interrupted. Abort Transaction removes all
operations performed after the start of the previous Begin Transaction
operation, and terminates the current transaction.

Prerequisites:

Before your application issues an Abort Transaction operation, the following
prerequisites must be met:

• You must have specified a valid transaction control file (using the tr:
start-up option) when you loaded Btrieve.

• You must have issued a successful Begin Transaction operation prior to
issuing the Abort Transaction operation.

Procedure:

To perform an Abort Transaction operation, set the operation code to 21
before issuing the Btrieve call. Btrieve will ignore all other parameters on an
Abort Transaction call.

6-2 201lRevl.OO

/

Result:

Btrieve Record Operations

ABORT TRANSACTION (21)
(Continued)

If the Abort Transaction operation is successful, Btrieve will return a status
code ofO. All Insert (2), Update (3), and Delete (4) operations issued since the
beginning of the transaction will be removed from the files. ,
Ifthe Abort Transaction operation fails, Btrieve will return a non-zero status
code indicating the reason. Common non-zero status codes for this operation
include the following:

• 36 Not Configured For Transactions

• 39 No Begin Transaction

Current Positioning:

(~ An Abort Transaction operation has no effect on positioning.

201 IRev 1.00 6-3

Btrieve Record Manager

BEGIN TRANSACTION (19)

Purpose:

The Begin Transaction operation marks the beginning of a set of logically
related Btrieve operations.

Parameter Usage:

FCB

Operation POBBlock DataBuffcr Data Buffer KcyBuffcr Key Number
Length

X

Description:

)

A Begin Transaction operation defines the start of a transaction. Transactions \.
are useful when you need to perform multiple Btrieve operations to record a j

single event and your database would be inconsistent if all those operations
were not completed. A transaction can include any number of Btrieve
operations on as many as twelve different files. By enclosing a set of
operations between Begin and End Transaction operations, you can ensure
that Btrieve does not permanently record any ofthe intervening operations
unless all of those operations are successfully completed.

Prerequisites:

Before your application issues a Begin Transaction operation, the following
prerequisites must be met:

• You must have specified a valid transaction control file when you
configured BSERVER.

• Your application must have ended or aborted any previous transaction.

6-4 2011Revl.OO

Btrieve Record Operations

BEGIN TRANSACTION (19)
(Continued)

Procedure:

To perform a Begin Transaction, set the operation code to 19 before calling
Btrieve. Btrieve will ignore all other parameters on a Begin Transaction call.

Result:

If the Begin Transaction operation is successful, Btrieve will return a status
code ofO.

If the operation fails for any reason, Btrieve will return a non-zero status
code. The most common non-zero status codes for this operation are the
following:

• 36 Not Configured for Transactions

• 37 Transaction Is Active

Current Positioning:

A Begin Transaction operation has no effect on positioning.

2011Revl.OO 6-5

Btrieve Record Manager

CLEAR OWNER (30)

Purpose:

The Clear Owner operation removes the owner name associated with a
Btrieve file.

Parameter Usage:

Expected
Returned

Description:

Opemtion

X

PosBlock

X
X

PCB

Data Buffer Data Buffer Key Buffer Key Number
Length

Clear Owner removes an owner name that you have assigned to a file with
the Set Owner operation. If the data was previously encrypted, Btrieve
decrypts the data during a Clear Owner operation.

Prerequisites:

Before your application issues a Clear Owner operation, the following
prerequisites must be met:

• The Btrieve file must be open.

• An owner name must be assigned to the file.

• No transactions can be active.

6-6 201IRev1.00

"~

"\

o
Procedure:

Btrieve Record Operations

CLEAR OWNER (30)
(Continued)

To perform a Clear Owner operation, set the Btrieve parameters as follows:

• Set the operation code to 30.

• Pass the position block that identifies the file you want to clear.

Result:

After a Clear Owner operation, Btrieve no longer requires the owner name
when you attempt to open a file. If you have previously encrypted the data in
the Btrieve file when you assigned the owner, Btrieve decrypts the data
during a Clear Owner operation. The more data that Btrieve must decrypt,
the longer the Clear Owner operation takes.

(~ The most common non-zero status codes for this operation are the following:

• 3 File Not Open

• 41 Operation Not Allowed

Current Positioning:

Clear Owner has no effect on positioning.

2011Rev1.00 6-7

Btrieve Record Manager

CLOSE (1)

Purpose:

The Close operation closes a Btrieve file.

Parameter Usage:

PCB

Open.tion PosBlock DataBulTer Data BulTer KcyBuffer KcyNumber
Length

X X

Description:

When an application has finished accessing a Btrieve file, it should perform a
Close operation. This operation closes the file associated with the specified
position block and releases any lock the application has executed for the file.
After a Close operation, your application cannot access the file again until it
issues another Open operation for that file.

Prerequisites:

Before your application issues a Close operation, the following prerequisites
must be met:

• The file must be open.

• Any transactions must be ended or aborted.

Procedure:

To perform this operation, set the Btrieve parameters as follows:

• Set the operation code to 1.

• Pass a valid position block for the file you want to close.

6-8 2011Revl.OO

/

,
I

/

o
Result:

Btrieve Record Operations

CLOSE (1)
(Continued)

If the Close operation is successful, the following will occur:

• The position block for the closed file will no longer be valid. Your
application can use it for another file, or can use the data area for other
purposes.

• Any pre-image file associated with the closed data file will be deleted if
no other workstations have the Btrieve file open.

If the Close operation fails, the file will remain open. The most common
non-zero status code for this operation is status 3 (File Not Open).

Current Positioning:

(' Close removes any positioning information associated with the file.

2011Revl.OO 6-9

Btrieve Record Manager

CREATE (14)

Purpose:

The Create operation creates a Btrieve file with a specified set of
characteristics.

Parameter Usage:

Expected
Returned

Description:

Operation

X

FCB

PosBlock Data Buffer

X X
X

Data Buffer Key Buffer Key Number
Length

X X X
X

The Create operation allows you to generate a Btrieve file from within your
application program. It performs essentially the same function as the
CREATE utility described in Chapter 3. See Chapters 1 and 2 of this manual
for more information about the file and key characteristics you need to specify
when you create a file.

The following sections describe how to store the definition ofthe Btrieve file
in the data buffer. A chart on the next page illustrates the order in which the
different specifications for the file and the keys should be stored. The sections
following the chart describe how to specify the following:

• The file specifications

• The key characteristics

• The alternate collating sequence

• The data buffer length

6-10 2011Rev1.00

)

/

c
Btrieve Record Operations

CREATE (14)
(Continued)

Btrieve expects the data buffer to be formatted as shown in Table 6.1.

file
specs

key
specs
(repeated)

Description

record length

page size

of indexes

not used

file flags

reserved word

allocation

Description

key position

key length

key flags

not used

extended key type

null value

reserved

Table 6.1

Length

2

2

2

4

2

2

2

Length

2

2

2

4

1

1

4

Data buffer structure for Create operation

File Specifications. Store the file specifications in the first 16 bytes of the
data buffer. The bytes are numbered beginning with o. Store the information
for the record length, page size, and number of indexes as integers. To create
a data-only file, set the number of indexes to zero.

You must allocate the "not used" and "reserved" areas of the data buffer even
though Btrieve doesn't use them for a Create operation. Initialize the
reserved areas to 0 to maintain compatibility with future releases of Btrieve.

2011Rev1.00 6-11

Btrieve Record Manager

CREATE (14)
(Continued)

The bit setting in the file flags word specifies whether a file allows variable
length records, blank truncation, or data compression, and whether Btrieve
should preallocate disk space for the file. Use the two high bits ofthe low
order byte to specify the free space threshold for variable length pages.

Bits in the file flags word are numbered from 0 to 15, with 0 being the low
order bit. Set the bits according to the following description:

• Ifbit 0 = 1, Btrieve will allow the file to contain variable length records.

• If bit 1 = 1, Btrieve will truncate trailing blanks in variable length
records.

• Ifbit 2 = 1, Btrieve will preallocate the number of pages you specify in
the allocation word.

• If bit 3 = 1, Btrieve will compress the data in the file.

• If bit 4 = 1, Btrieve will create the file as a key-only file.

• Ifbit 6 = 1, Btrieve will maintain a10% free space threshold on the
variable length pages.

• If bit 7 = 1, Btrieve will maintain a 20% free space threshold on the
variable length pages.

• If bit 6 = 1 and bit 7 = 1, Btrieve will maintain a 30% free space
threshold on the variable length pages.

6-12 2011Revl.00

/

/

('

/

Btrieve Record Operations

CREATE (14)
(Continued)

The following table shows the binary and decimal representations of the file
flag values:

Values Binary Decimal
variable length 00000001 1
blank truncation 00000010 2
preallocation 00000100 4
data compression 00001000 8
key-only 00010000 16
10% free space 01000000 64
20% free space 10000000 128
30% free space 11000000 192

If you need to specify a combination of the file attributes, add their respective
flag values. For example, to specify a file that allows variable length records
and uses blank truncation, initialize the file flags to 3 (2 + 1). Btrieve ignores
the blank truncation and free space threshold flags if the variable length flag
is set to O.

If you set the preallocation flag bit, use the allocation word to store an integer
value that specifies the number of pages you want to preallocate to the file.

Key Characteristics. Place the key characteristics immediately after the file
specification block. Allocate a 16-byte key specification block for each key
segment in the file. The extended key type code and the null character are
each 1 byte long.

Store the information for the key position and the key length as integers.

2011Rev1.00 6-13

Btrieve Record Manager

CREATE (14)
(Continued)

Set the key flags according to the following description to specify the
attributes you want a key to have.

• If bit 0 = 1, the key allows duplicates.

• Ifbit 1 = 1, the key is modifiable.

• If bit 2 = 0 and bit 8 = 0, the key is string.

• If bit 2 = 1 and bit 8 = 0, the key is binary.

• Ifbit 3 = 1, the key has a null value.

• If bit 4 = 1, the key has another segment.

• Ifbit 5 = 1, the key is sorted by an alternate collating sequence.

• Ifbit 6 = 1, the key is sorted in descending order.

• Bit 7 is ignored for a Create operation.

• If bit 8 = 0, the key is a standard type.

• Ifbit 8 = 1, the key is an extended type.

• Ifbit 9 = 1, the key is manual.

Although Btrieve ignores bit 7 for a Create operation, you should initialize it
to 0 when you create the file. When you issue a Stat operation (15) Btrieve
will set bit 7 to 1 if the key is a supplemental index, and returns the key flags
in the data buffer.

6-14 2011Rev1.00

Btrieve Record Operations

CREATE (14)
(Continued)

The following table shows the binary, hexadecimal, and decimal values for
the key flags:

Attribute Binary Hexadecimal Decimal

duplicate 00000001 01 1
modifiable 00000010 02 2
binary 00000100 04 4
null 00001000 08 8
segmented 00010000 10 16
alt col seq 00100000 20 32
descending 01000000 40 64
supplemental 10000000 80 128
extended type 100000000 100 256
manual 10 00000000 200 512

Assign the same duplicate, modifiable, and null attributes for all segments of
the same key. If you specify the null attribute for the key, you may assign
different null characters for individual segments.

The segmented key attribute is a flag indicating that the next key block in
the data buffer refers to the next segment of the same key. In addition, you
can make each key segment either ascending or descending, and specify any
data type.

For example, to create a file with two keys, the first consisting of two
segments and the second consisting of one segment, use bit 4 of the key flags
as follows:

• In the first key block, set bit 4 of the key flags word to 1, indicating that
another segment definition for that key follows.

• In the second key block, set bit 4 of the key flags word to 0, indicating
that this key block defines the last segment ofthe first key.

• In the third key block, set bit 4 of the key flags word to 0, indicating
that the second key has only one segment.

201lRev1.00 6-15

Btrieve Record Manager

CREATE (14)
(Continued)

Specify the extended key type as a binary value in byte 10 of the key
specification block. The values for the extended key types are shown below:

Type Value

string 0
integer 1
float 2
date 3
time 4
decimal 5
money 6
logical 7
numeric 8
bfloat 9
lstring 10
zstring 11
unsigned binary 14
autoincrement 15

As with the file flags, you can specify a combination of key attributes by
adding their respective flag values. For example, if the key is an extended
type, is part of a segmented key, and is to be collated in descending order, you
would store 150H (336 decimal) in the flags word.

6-16

NOTE:

You can define the string and unsigned binary extended key types
as either standard types or extended types. This maintains
compatibility with applications that were developed under earlier
versions of Btrieve, while allowing new applications to use
extended key types exclusively.

2011Rev1.00

\.

J

j

Btrieve Record Operations

CREATE (14)
(Continued)

Alternate Collating Sequence. You may specify an alternate collating
sequence for sorting any number of key segments in the file. However, you
may specify only one alternate collating sequence for the entire file. You may
designate that some segments of a single key are to be sorted with the
standard ASCII collating sequence and that other segments are to be sorted
with the alternate sequence.

You can specify an alternate collating sequence for the lstring, zstring, and
string key types. If you do set the alternate collating sequence flag for any
key or key segment in the file, place the definition for the collating sequence
immediately after the last key specification block.

That is, the actual collating sequence itself must follow the key specification
block instead of the name of a file containing that sequence. The alternate
collating sequence definition consists of nine header bytes followed by 256
characters as described under "Alternate Collating Sequence Files" on page
4-15.

NOTE:
If you create multiple files with different alternate collating
sequences, use a different name for each sequence.

2011Revl.OO 6-17

Btrieve Record Manager

CREATE (14)
(Continued)

Data Buffer Length. The data buffer length must be long enough to include
the file sp~cifications, the key characteristics, and an alternate collating
sequence, if one is defined. Do.nm. specifY the file's record length in this
parameter.

For example, to create a file that has two keys of one segment each and an
alternate collating sequence, the data buffer for the Create operation should
be at least 313 bytes long, as shown below.

File Keyl Key2 Alt
Spec + Spec + Spec + Col

16 + 16 + 16 + 265 = 313

Key Number. You can use the key number parameter to specifY whether you
want Btrieve to warn you if a file of the same name already exists. Specify a
value for the key number as follows:

• If you do not want Btrieve to create a new file over an existing file, set
the key number parameter to -1. Ifa file of the same name already
exists, Btrieve will return a nonzero status and will not create a new
file.

• If you want Btrieve to create a new file over an existing file, or if you do
not want to check for the presence of an existing file, set the key number
parameter to a non-negative value, preferably o.

6-18 201IRev1.00

/

c
Prerequisites:

Btrieve Record Operations

CREATE (14)
(Continued)

If you are creating an empty Btrieve file over a pre-existing Btrieve file, be
sure the file is closed before executing the Create operation.

Procedure:

To perform the Create operation, set the Btrieve parameters as follows:

• Set the operation code to 14.

• Specify the file specifications, key characteristics, and any alternate
collating sequence in the data buffer. All of the values for the file
specifications and key characteristics you store in the data buffer must
be in binary format.

(- • SpecifY the length ofthe data buffer .

• Set the key number parameter to -1 if you want Btrieve to warn you
that a file of the same name already exists. Otherwise, set the key
number parameter to O.

• SpecifY the name for the file in the key buffer. Be sure to terminate the
filename with a blank or a binary zero. You may specify the device name
and path name for the file, including any number of directory levels.

2011Revl.00 6-19

Btrieve Record Manager

CREATE (14)
(Continued)

Result:

If the operation is successful, Btrieve will either warn you of the existence of
a file with the same name, or will create the new file according to your
specifications. The new file will not contain any records. The Create operation
does not open the file. Your application must perform an Open operation
before it can access the file.

If the operation is unsuccessful, Btrieve will return a non-zero status code
informing you of the reason. Common non-zero codes include the following:

• 2 File 110 Error

• 22 Data Buffer Too Short

• 24 Page Size Error

• 25 Create 110 Error

• 26 Number of Keys

• 27 Invalid Key Position

• 28 Invalid Record Length

• 29 Invalid Key Length

• 48 Invalid Alternate Sequence Definition

• 49 Key Type Error

• 59 File Already Exists

Refer to Appendix B for an explanation of these status codes.

Current Positioning:

A Create operation does not establish any positioning information.

6-20 2011Revl.00

'\

)
7

o
Btrieve Record Operations

CREATE SUPPLEMENTAL INDEX (31)

Purpose:

The Create Supplemental Index operation adds a supplemental index to an
existing Btrieve file.

Parameter Usage:

Expected
Rctum::d

Description:

Operation

X

Po. Block

X

FCB

Data Buffer Data Buffer Key Buffer Key Number
Length

X X

Use the Create Supplemental Index operation to add an index to a file at any
time after the file has been created.

Prerequisites:

Before your application issues a Create Supplemental Index operation, the
following prerequisites must be met:

• The Btrieve file must be open.

• The number of existing key segments in the file must be less than or
equal to the following formula:

24 - (# of segments to be added)

• Be certain that the key flags, the position, and the length of the new
index are appropriate for the file to which you are adding the index.

• No transactions can be active.

201lRev1.00 6-21

Btrieve Record Manager

CREATE SUPPLEMENTAL INDEX (31)
(Continued)

Procedure:

To create a supplemental index, set the Btrieve parameters as follows:

• Set the operation code to 31.

• Pass Btrieve the position block for the file to which you want to add the
index.

• Store the key specifications for the new index in the data buffer. The
data buffer consists of a 16-byte key specification block for each segment
of the supplemental index you are creating. Use the same structure as
the key specification block you use in the Create operation (14).

• Set the data buffer length parameter to the number of bytes in the data
buffer. For a new index with no alternate collating sequence, use the
following formula to determine the correct data buffer length:

16 * (# of segments)

If the new key has an alternate collating sequence, use the following
formula to determine the correct data buffer length:

16 * (# of segments) +265

Result:

Btrieve will immediately begin to add the new index to the file. The time
required for this operation depends on the total number of records to be
indexed, the size of the file, and the length of the new index.

The key number of the new index is one higher than the previous highest key
number. You can use the new index to access your data as soon as the
operation completes.

6-22 2011Rev1.00

')
/

)

C-~

Btrieve Record Operations

CREATE SUPPLEMENTAL INDEX (31)
(Continued)

If Btrieve is unable to create the supplemental index for any reason, it will
return a non-zero status indicating the reason and drop the portion of the
supplemental index which it has already built. The file pages allocated to the
supplemental index prior to the error will be placed on a list offree space for
the file and re-used when you insert records or create another supplemental
index.

Common errors include the following:

• 22 Data Buffer Too Short

• 27 Invalid Key Position

• 41 Operation Not Allowed

• 45 Inconsistent Key Flags

• 49 Key Type Error

• 56 Incomplete Index

If a power failure or system reset occurs during the creation of a
supplemental index, you can access the data in the file through the file's
other indexes. However, Btrieve will return a non-zero status if you try to
access data by the incomplete index. In this case, drop the incomplete index
with a Drop Supplemental Index operation (32) and re-issue the Create
Supplemental Index operation.

Current Positioning:

The Create Supplemental Index operation has no effect on positioning.

2011Rev1.00 6-23

Btrieve Record Manager

DELETE (4)

Purpose:

Delete removes an existing record from a Btrieve file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PosBlock

X
X

FeB

Data Buffer Data Buffer Key Buffer
Length

x
X

Key Number

X

You can remove an existing record from a file using the Delete operation.
After deletion the space in the file where the deleted record was stored is
placed on a list of free space.

Prerequisites:

Before your application issues a Delete operation, the following prerequisites
must be met:

• The data file must be open.

• You cannot issue a call to the file containing the record to be deleted
between the retrieval of the record and its deletion.

Procedure:

To perform the Delete operation, set the Btrieve parameters as follows:

• Specify an operation code of 4.

• Pass Btrieve the position block of the file from which the record is to be
deleted.

6-24 2011Rev1.00

o
Btrieve Record Operations

DELETE (4)
(Continued)

• Initialize the data buffer length parameter to the length of the record to
be deleted.

• Store the key number used to retrieve the record in the key number
parameter.

Result:

If the Delete operation is successful, Btrieve will

• Completely remove the record from the file;

• Adjust all key indexes to reflect the deletion;

• Set the data buffer length to the length of the deleted record.

If it is unable to successfully delete the record, Btrieve will return a non-zero
status code. Common error codes include the following:

• 7 Different Key Number

• 8 Invalid Positioning

Current Positioning:

After a Delete operation, Btrieve erases any existing positioning information
and establishes its position in the file as follows:

• If a duplicate exists, the next record becomes the first duplicate
following the deleted record. Otherwise, the next record becomes the
first record for the key value greater than the deleted key value.

• If a duplicate exists, the previous record becomes the previous
duplicate of the key value. Otherwise, the previous record becomes the
last data record for the previous key value.

2011Rev1.00 6-25

Btrieve Record Manager

DROP SUPPLEMENTAL INDEX (32)

Purpose:

The Drop Supplemental Index operation removes a supplemental index from
an existing Btrieve file.

Parameter Usage:

Expecb:d
Returned

Description:

Operation

X

PosIDock

X

FCB

DataBuffcr Data Buff'er KcyBulIer KcyNumber
Length

X

Use the Drop Supplemental Index operation to remove a supplemental index
from a file.

Prerequisites:

Before your application issues a Drop Supplemental Index operation, the
following prerequisites must be met:

• The file must be open.

• A supplemental index must exist in the file.

• No transactions can be active.

6-26 2011Revl.OO

\
J

'\

/

c)
Btrieve Record Operations

DROP SUPPLEMENTAL INDEX (32)
(Continued)

Procedure:

To drop a supplemental index, set the Btrieve parameters as follows:

• Set the operation code to 32.

• Pass the position block of the Btrieve file.

• Store the key number for the supplemental index you want to drop in
the key number parameter.

Result:

If the operation is successful, Btrieve will

• Place the file pages that were allocated to that index on a list offree
space for later use;

• Decrement (reduce by one) the key numbers of any other supplemental
indexes with key numbers higher than the index that was dropped.

If the operation is unsuccessful, Btrieve will return a non-zero status to your
application. Common non-zero status codes for this operation include the
following:

• 6 Invalid Key Number

• 41 Operation Not Allowed

If processing is interrupted while Btrieve is dropping an index, you can access
the data in the file through the file's other indexes. Btrieve will return a
status code 56 (Incomplete Index) if you try to access the file by the
incomplete index. In this case, re-issue the Drop Supplemental Index
operation.

('\ Current Positioning:

The Drop Supplemental Index operation has no effect on positioning.

2011Rev 1.00 6-27

Btrieve Record Manager

END TRANSACTION (20)

Purpose:

End Transaction completes a transaction and makes the appropriate changes
to affected data files.

Parameter Usage:

PCB

Operation PosIDock Data Buffer Data Buffer Key Buffer Key Number
Length

X

Description:

An End Transaction marks the completion of a set oflogically related Btrieve
operations.

Prerequisites:

Before your application issues an End Transaction operation, it must have
issued a successful Begin Transaction operation (19).

Procedure:

To perform an End Transaction operation, set the operation code to 20.
Btrieve win ignore an other parameters on an End Transaction call.

Result:

If the End Transaction operation is successful, all of the operations bracketed

\
)

/

within the transaction will be recorded in your database. Your application ~ .. "
cannot abort a transaction after an End Transaction operation.

6-28 2011Rev1.00

o

c

Btrieve Record Operations

END TRANSACTION (20)
(Continued)

If the operation is unsuccessful, Btrieve will return a non-zero status. The
most common non-zero status code is code 38 (Transaction Control File
Error), which can result ifthe transaction control file has been deleted or
cannot be written to for some reason.

Current Positioning:

An End Transaction operation does not affect positioning.

2011Revl.OO 6-29

Btrieve Record Manager

EXTEND (16)

Purpose:

Extend divides a Btrieve file over two logical disk drives.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Fo.Block

X
X

FCB

Data Buffer DataBuffcr Key Buf'fcr
Length

X

Key Number

X

The Extend operation allows your application to expand a single Btrieve file
to a second logical disk drive.

Prerequisites:

Before your application issues an Extend operation, the following
prerequisites must be met:

• The file to be extended must be open.

• Btrieve must have access to the volume to which the file will be
extended.

• No transactions can be active.

Procedure:

To perform an Extend operation, set the Btrieve parameters as follows:

• Set the operation code to 16.

• Pass the position block for the file to be extended.

6-30 2011Revl.OO

\,

)

/

~I

o
Btrieve Record Operations

EXTEND (16)
(Continued)

• Store the name of the extension file in the key buffer. Specify the device
name and the full path name for the file. Terminate the name of the
extension file with a blank or a binary zero.

• Specify a value of -1 in the key number parameter when you perform
the Extend operation if you want Btrieve to begin storing data in the
extension file immediately. Normally, Btrieve does not store data in the
extension file until the drive containing the original file is full.

Result:

If the Extend operation is successful, Btrieve will extend the file across two
logical volumes. To access an extended file, use the following guidelines:

• Immediately after the file is extended, your application must close and
reopen the file before it can access the extension.

• Both the original drive and the extension drive must be online whenever
your program accesses the extended file. Btrieve must be able to find
the extension file on the logical disk drive you specified.

• Once you have created the extended file, you cannot move it to a
different drive. When you extend a file, Btrieve writes the full path
name specified for the extension to an address in the original data file.
Therefore, every workstation must use the same drive designator to
refer to the drive containing the extended file.

If the operation is unsuccessful, Btrieve will return a non-zero status.
Common errors returned from an Extend operation include the following:

• 31 File Already Extended

• 32 Extend I/O Error

• 34 Invalid Extension Name

(~~/ Current Positioning:

An Extend operation does not affect current positioning.

2011Rev1.00 6-31

Btrieve Record Manager

GET DIRECT (23)

Purpose:

Get Direct retrieves the data record positioned at a specified physical address
in the Btrieve file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PosBlock

X
X

FCB

Data Buffer Data Buffer Key Buffer Key Number
Length

X X X
X X X

The Get Direct operation allows your application to retrieve a record using
its physical location in the file instead of using one of the defined index paths.
You can use Get Direct in the following ways:

• You can retrieve a record faster by using its physical location instead of
its key value.

• You can use the Get Position operation to retrieve the 4-byte location of
a record, save the location, and then later use Get Direct to return
directly to that location.

• You can use the 4-byte location to retrieve a record in a chain of
duplicates without rereading all the records from the beginning of the
chain.

• You can change the current access path. A Get Position operation,
followed by a Get Direct operation with a different key number,
establishes positioning for the current record in a different index tree. A
subsequent Get Next will return the next record in the file based on the
new access path.

6-32 2011Revl.OO

Btrieve Record Operations

GET DIRECT (23)
(Continued)

Prerequisites:

Before your application issues a Get Direct operation, the following
prerequisites must be met:

• The file must be open.

• Your application must have previously retrieved the 4-byte location of
the record by issuing a Get Position operation.

Procedure:

To perform a Get Direct operation, set the Btrieve parameters as follows:

• Set the operation code to 23.

• Store the 4-byte position of the requested record in the first four bytes of
the data buffer.

• Specify the total length of the data buffer so that Btrieve can determine
whether the record will fit in your buffer.

• Specify the access path for which Btrieve is to establish positioning in
the key number parameter.

Result:

If the Get Direct operation is successful, Btrieve will

• Store the requested record in the data buffer, overwriting the 4-byte
offset stored in the first four bytes;

• Store the actual length of the record in the data buffer length
parameter;

• Store the key value for the specified access path in the key buffer.

2011Revl.OO 6-33

Btrieve Record Manager

GET DIRECT (23)
(Continued)

If Btrieve cannot return the requested record, it will return a non-zero status.
Common non-zero status codes include the following:

• 22 Data Buffer Too Short

• 43 Invalid Data Record Address

Current Positioning~

After a Get Direct operation, Btrieve erases any existing positioning
information and establishes the current position according to the key number
specified.

• The next record becomes the next duplicate of the key value returned if
a duplicate exists. Otherwise it becomes the first record for the key
value greater than the one returned.

• The previous record becomes either the previous duplicate for the key
returned or the last duplicate of the key value less than the one
returned.

6-34 2011Rev1.00

'\

./

(/

Btrieve Record Operations

GET DIRECTORY (18)

Get Directory retrieves the current directory.

Parameter Usage:

Expected
Rctumcd

Description:

Operation

X

FeB

PosIDock Data Buffer Data Buffer
Length

Key Buffer KcyNumber

X
X

The Get Directory operation returns the current directory for a specified
logical drive.

Prerequisites:

Your application can issue a Get Directory operation immediately after
loading the Record Manager. The key buffer should be at least 65 characters
long.

Procedure:

To retrieve the current directory, set the Btrieve parameters as follows:

• Set the operation code to 18

• Store the logical drive number in the key number parameter before
calling Btrieve. Specify the drive as 1 for A, 2 for B, etc. To use the
default drive, specify o.

201/Rev1.00 6-35

Btrieve Record Manager

GET DIRECTORY (18)
(Continued)

Result:

Btrieve will return the current directory, terminated by a binary 0, to the key
buffer.

Current Positioning:

A Get Directory operation does not affect current positioning.

6-36 2011Rev1.00

Btrieve Record Operations

GET EQUAL (5)

Purpose:

Get Equal retrieves a record corresponding to a specified key value.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PCB

Pas mock Data Buffer

X
X X

Data Buffer Key Bum:r Key Number
Length

X X X
X

U sing the Get Equal operation, your application can retrieve a record based
on the key value specified in the key buffer.

Prerequisites:

Before your application issues a Get Equal operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

Procedure:

To perform the operation, set the Btrieve parameters as follows:

• Initialize the operation code to 5.

• Pass the position block for the file.

• Specify the desired key value in the key buffer.

2011Revl.OO 6-37

Btrieve Record Manager

GET EQUAL (5)
(Continued)

• Set the key number to the correct access path.

• Initialize the data buffer length to a value equal to the length of the
record you want to retrieve.

Result:

If the Get Equal operation is successful, Btrieve will

• Return the requested record in the data buffer.

• Return the length of the record in bytes in the data buffer length
parameter.

If the Get Equal operation is not successful, Btrieve will return a non-zero
status code indicating the reason. Common non-zero status codes include the
following:

• 3 File Not Open

• 4 Key Value Not Found

• 22 Data Buffer Too Short

Current Positioning:

After a Get Equal operation, Btrieve erases any existing positioning
information and establishes its position in the index as follows:

• If a duplicate exists, the next record becomes the first duplicate of the
key value returned. Otherwise, the next record becomes the first record
for the key value greater than the one returned.

• The previous record becomes the last duplicate of the key value less

)

,/

than the one returned. If no duplicates exist for that key value, the /~"

previous record becomes the only record for the key value less than the
one returned.

6-38 201lRevi.OO

Btrieve Record Operations

GET FIRST (12)

Purpose:

Get First retrieves the record corresponding to the first key value for a
specified access path.

Parameter Usage:

ExpcCb:d
Returned

Description:

Operation

X

POI Block

X
X

FCB

Data Buffer nata Buffer Key Buffer Key Numbcr
Length

X X
X X X

The Get First operation enables your application to retrieve the record which
corresponds to the first key value for a specified key number.

Prerequisites:

Before your application issues a Get First operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

Procedure:

To perform this operation, set the Btrieve parameters as follows:

• Initialize the operation code to 12.

• Pass the position block for the file.

• Indicate the key number for the access path.

• Specify the length of the data buffer.

2011Revl.OO 6-39

Btrieve Record Manager

GET FIRST (12)
(Continued)

Result:

If the Get First operation is successful, Btrieve will

• Return the requested record in the data buffer;

• Store the corresponding key value in the key buffer;

• Return the length of the record in the data buffer length parameter.

If the Get First operation is not successful, Btrieve will return a non-zero
status indicating the reason. Common non-zero status codes include the
following:

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

Current Positioning:

After a Get First operation, Btrieve erases any existing positioning
information and establishes its position in the index as follows:

• The previous record points beyond the beginning of the file.

• The next record becomes the next duplicate of the key value returned,
or, if no duplicates exist, the first record for the key value greater than
the one returned.

6-40 201/Revl.OO

/

\.

j

('

Btrieve Record Operations

GET GREATER (8)

Purpose:

Get Greater retrieves a record corresponding to a key value greater than the
specified key value.

Parameter Usage:

Expc:cwd
Returned

Description:

Operation

X

FCB

Pos Block nata Buffer

X
X X

Data Buffer Key Buffor KoyNumbcr
Length

X X X
X X

U sing the Get Greater operation your application can ascend the access path
specified by the key number to find the first key value greater than the one
specified in the key buffer.

Prerequisites:

Before your application issues a Get Greater operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file.

Procedure:

To perform a Get Greater operation, set the Btrieve parameters as follows:

• Set the operation code to 8.

• Pass the position block for the file.

2011Rev1.00 6-41

Btrieve Record Manager

GET GREATER (8)
(Continued)

• Store the desired key value in the key buffer parameter.

• Set the key number parameter to correspond to the correct access path.

• Specify the length of the data buffer.

Result:

If the operation is successful, Btrieve will

• Return the corresponding record in the data buffer;

• Return the length of the record in the data buffer length parameter.

If the operation is unsuccessful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

Current Positioning:

Mer a Get Greater operation, Btrieve erases any existing positioning
information and establishes its position in the index as follows:

• If a duplicate exists, the next record becomes the first duplicate of the
key value returned. Otherwise, the next record becomes the first record
for the key value greater than the one returned.

• The previous record becomes the last duplicate of the key value less
than the one returned. Otherwise, the previous record becomes the only
record for the key value less than the one returned.

6-42 2011Revl.OO

\.

/

'\

)

()

Btrieve Record Operations

GET GREATER OR EQUAL (9)

Purpose:

Get Greater Or Equal retrieves a record with a key value greater than or
equal to a specific key value.

Parameter Usage:

Expected
Returned

Description:

Operation

X

FCB

PosBlock Data Buffer

X
X X

Data Buffer Key Buffer Key Number
Length

X X X
X X

The Get Greater Or Equal operation allows your application to retrieve a
record that is either equal to or greater than a specified key value. Btrieve
first searches for a key value that is equal to the value you specify. If Btrieve
cannot find an equal key value, it ascends the access path until it finds the
record with the next higher key value.

Prerequisites:

Before your application issues a Get Greater Or Equal operation, the
following prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file.

Procedure:

To perform a Get Greater Than Or Equal operation, set the Btrieve
parameters as follows:

• Set the operation code to 9.

• Pass the position block for the file.

201 fRev1.00 6-43

Btrieve Record Manager

GET GREATER OR EQUAL (9)
(Continued)

• Store the desired key value in the key buffer parameter.

• Set the key number parameter to correspond to the correct access path.

• Specify the length ofthe data buffer.

Result:

If Btrieve finds a record in the file that satisfies the requirements of the Get
Greater Or Equal operation, it will

• Store the record in the data buffer;

• Return the length of the record in the data buffer length parameter.

If Btrieve is unable to return a record, it will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

Current Positioning:

After a Get Greater Or Equal operation, Btrieve erases any existing
positioning information and establishes the current position as follows:

• The next record becomes the first duplicate of the key value returned if
a duplicate exists. Otherwise it becomes the first record for the key
value greater than the one returned.

• The previous record becomes the last duplicate of the key value less

I

J

\

/

than the one returned, or, if no duplicates exist, the only record for the /',
key value less than the one returned.

6-44 2011Rev1.00

Btrieve Record Operations

GET KEY (+50)

Purpose:

Get Key allows you to perform a Get operation without actually retrieving a
data record. You can use Get Key to detect the presence of a value in a file. A
Get Key operation is generally faster than its corresponding Get operation.
The Get Key operation can be used with any of the following Get operations:

• GET EQUAL (5)

• GET NEXT (6)

• GET PREVIOUS (7)

• GET GREATER (8)

• GET GREATER OR EQUAL (9)

• GET LESS THAN (10)

• GET LESS THAN OR EQUAL (11)

• GET FIRST (12)

• GET LAST (13)

Parameter Usage:

The parameters are the same as those for the corresponding Get operation
except that Btrieve ignores the data buffer length and does not return a
record in the data buffer.

Prerequisites:

The prerequisites for a Get Key operation are the same as those for the
corresponding Get operation.

2011Rev1.00 6-45

Btrieve Record Manager

GET KEY (+50)
(Continued)

Procedure:

To perform a Get Key operation, set the Btrieve parameters as you would for
the corresponding Get operation. You do not need to initialize the data buffer
length.

You must add 50 to the operation code for the Get operation you want to
perform. For example, to perform a Get Key (operation code 50) with the Get
Equal operation (operation code 5), use 55 as the operation code.

If Btrieve finds the requested key, it will return the key in the key buffer and
a status of o. Otherwise, Btrieve will return a non-zero status indicating why
it cannot find the key.

Current Positioning:

A Get Key operation establishes the current positioning exactly as the
corresponding Get operation does, except that Get Next Key and Get Previous
Key do not return duplicates.

6-46 2011Rev1.00

I
/

Btrieve Record Operations

GET LAST (13)

Purpose:

Get Last retrieves the record corresponding to the last key value for a
specified access path.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PCB

PosIDock Data Buffer

X
X X

DataBuffcr Key Buffer Key Number
Length

X X
X X

U sing the Get Last operation, your application can retrieve a record which
corresponds to the last key value for a specified key number. If duplicates
exist for the last key value, the record returned is the last duplicate.

Prerequisites:

Before your application issues a Get Last operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

Procedure:

To perform this operation, set the Btrieve parameters as follows:

• Initialize the operation code to 13.

• Pass the position plock for the file.

• Specify the length oft,he data buffer.

• Specify the key number for the access path.

2011Rev1.00 6-47

Btrieve Record Manager

GET LAST (13)
(Continued)

Result:

If the operation is successful, Btrieve will

• Return the requested record in the data buffer;

• Store the corresponding key value in the key buffer;

• Return the length of the record in the data buffer length parameter.

If Btrieve is unable to return a record, it will return a non-zero status code
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

Current Positioning:

After a Get Last operation, Btrieve erases any existing positioning
information and establishes its position in the index as follows:

• The next record points beyond the end of the file.

• The previous record becomes the previous duplicate of the key value
returned, or, ifno duplicates exist, the last duplicate for the key value
less than the one returned.

6-48 201lRevl.OO

)

/

()

Btrieve Record Operations

GET LESS THAN (10)

Purpose:

Get Less Than retrieves a record corresponding to the key value which is less
than a specified key value.

Parameter Usage:

PCB

Operation Pos Block Data Buffer DataBuffor Key Bufl'cr KeyNumbcr
length

X X X X X
X X X X

Description:

Using the Get Less Than operation, your application can retrieve a record
that corresponds to the first key value which is less than a specified key
value. Btrieve descends the access path specified by the key number to find
the first key value less than the one requested. Once it locates the correct key
value, it returns the corresponding data record in the data buffer.

Prerequisites:

Before your application issues a Get Less Than operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

Procedure:

To perform a Get Less Than operation, set the Btrieve parameters as follows:

• Set the operation code to 10.

• Pass the position block for the file.

2011Revl.OO 6-49

Btrieve Record Manager

GET LESS THAN (10)
(Continued)

• Store the desired key value in the key buffer parameter.

• Set the key number parameter to the desired access path.

• Specify the length of the data buffer.

Result:

If the operation is successful, Btrieve will

• Return the record in the data buffer;

• Return the key value for the record in the key buffer;

• Return the length of the record in the data buffer length parameter.

If Btrieve is unable to return a record, it will return a non-zero status

J

indicating the reason. Common non-zero status codes include the following: \

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

Current Positioning:

After a Get Less Than operation, Btrieve erases any existing positioning
information and establishes its position in the index as follows:

• If a duplicate exists, the next record becomes the first duplicate of the
key value returned. Otherwise, the next record becomes the first record
for the key value greater than the one returned.

• If a duplicate exists, the previous record becomes the last duplicate of
the key value less than the one returned. Otherwise, the previous record
becomes the only record for the key value less than the one returned.

6-50 201IRev1.00

/

/

Btrieve Record Operations

GET LESS THAN OR EQUAL (11)

Purpose:

Get Less Than Or Equal retrieves a record with a key value that is less than
or equal to the key value specified in the key buffer.

Parameter Usage:

Expcctcd
Retum::d

Description:

Operation

X

FCB

PosBlock DataBuffcr

X
X X

Data Buffer Key Buffer Key Number
Length

X X X
X X

U sing the Get Less Than Or Equal operation, your application can retrieve a
record that is equal to or less than a specified key value. Btrieve first
searches the access path for the specified key value. Ifit does not find the
value, it descends the access path specified by the key number to find the first
key value less than the one requested. Once it locates the correct key value, it
returns the corresponding data record in the data buffer.

Prerequisites:

Before your application issues a Get Less Than Or Equal operation, the
following prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

2011Rev1.00 6-51

Btrieve Record Manager

GET LESS THAN OR EQUAL (11)
(Continued)

Procedure:

To perform a Get Less Than Or Equal Operation, set the Btrieve parameters
as follows:

• Set the operation code to 11.

• Pass the position block for the file.

• Store the desired key value in the key buffer parameter.

• Set the key number parameter to the desired access path.

• Specify the length of the data buffer.

Result:

If the operation is successful, Btrieve will

• Return the record in the data buffer;

• Return the key value for the record in the key buffer;

• Return the length of the record in the data buffer length parameter.

If Btrieve is unable to return a record, it will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 6 Invalid Key Number

• 22 Data Buffer Too Short

6-52 201IRev1.00

I
/

/

c
Current Positioning:

Btrieve Record Operations

GET LESS THAN OR EQUAL (11)
(Continued)

After a Get Less Than Or Equal operation, Btrieve erases any existing
positioning information and establishes the current position as follows:

• If a duplicate exists, the next record becomes the first duplicate of the
key value returned. Otherwise, the next record becomes the first record
for the key value greater than the one returned.

• If a duplicate exists, the previous record becomes the last duplicate of
the key value less than the one returned. Otherwise, the previous record
becomes the only record for the key value less than the one returned.

2011Rev1.00 6-53

Btrieve Record Manager

GET NEXT (6)

Purpose:

Get Next retrieves the record from a Btrieve file that follows the current
record in the key path.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Po. mock

X
X

FCB

Data Buffer Data Buffer Key Buffer KeyNlUllber
Length

X X X
X X X

Using the Get Next operation, your application can retrieve records in order
according to a specified access path. Only the Get First, Get Next, Get
Previous, and Get Last operations allow an application to retrieve records for
duplicate key values.

Prerequisites:

Before your application issues a Get Next operation, the following
prerequisites must be met:

• The file must be open.

• The file cannot be a data-only file with no indexes defined.

• Your application must have established a position in the index on the
Btrieve call immediately preceding the Get Next operation.

6-54 2011Rev1.00

:
/

./

(~

Procedure:

Btrieve Record Operations

GET NEXT (6)
(Continued)

To perform a Get Next operation, set the Btrieve parameters as follows:

• Set the operation code to 6.

• Pass the position block for the file.

• Store the key value from the previous operation in the key buffer. Pass
the key buffer exactly as Btrieve returned it on the previous call since
Btrieve may need the information previously stored there to determine
its current position in the file.

• Set the key number parameter to the access path used on the previous
call. You cannot change access paths using a Get Next operation.

• Specify the length ofthe data buffer.

Result:

If the operation is successful, Btrieve will

• Return the record in the data buffer;

• Return the key value for the record in the key buffer;

• Return the length of the record in the data buffer length parameter.

If Btrieve is unable to return a record, it will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 6 Invalid Key Number

• 7 Different Key Number

• 9 End of File

201lRevl.OO 6-55

Btrieve Record Manager

GET NEXT (6)
(Continued)

• 22 Data Buffer Too Short

• 82 Lost Position

Current Positioning:

Btrieve uses the positioning established by the previous call to perform a Get
Next operation, updating that positioning as follows:

• If a duplicate exists, the next record becomes the first duplicate of the
key value returned. Otherwise, the next record becomes the first record
for the key value greater than the one returned.

• If a duplicate exists, the previous record becomes the last duplicate of
the key value less than the one returned. Otherwise, the previous record
becomes the only record for the key value less than the one returned.

6-56 201lRevl.OO

c

Btrieve Record Operations

GET POSITION (22)

Purpose:

Get Position returns the physical position of the current record.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Po. mock

X
X

FCB

DataBufIer Data Buffer Key Buffer Key Number
Length

x
X X

Using the Get Position operation, your application can obtain the 4-byte
position of the current record within a Btrieve file. To establish the current
record, your application may perform any of the other Get operations, an
Insert operation, or an Update operation. Your application can then issue a
Get Position operation to retrieve the record's address. Once your application
knows a record's address, it can use the Get Direct operation to retrieve that
record directly by its physical location in the file.

Btrieve does not perform any disk 110 to process a Get Position request.

Prerequisites:

Before your application issues a Get Position operation, the following
prerequisites must be met:

• The file must be open.

• The Btrieve call to the file immediately prior to the Get Position call
must have retrieved a record. You cannot issue a call using the same
position block between the retrieval of the record and the Get Position
call.

2011Rev1.00 6-57

Btrieve Record Manager

GET POSITION (22)
(Continued)

Procedure:

To perform a Get Position operation, set the Btrieve parameters as follows:

• Set the operation code to 22.

• Pass the position block for the file.

• Indicate a data buffer that is long enough to store the 4-byte position.

• Set the data buffer length to at least four bytes.

Result:

If the operation is successful, Btrieve will

• Return the position ofthe record in the data buffer. The position is a
4-byte binary value (most significant word first) that indicates the
record's offset (in bytes) into the file.

• Set the data buffer length to four bytes.

If Btrieve cannot determine the current record or if it cannot return the
position, it will return a non-zero status code indicating the reason. The most
common non-zero status that Btrieve returns is a status code 8 (Invalid
Positioning).

Current Positioning:

A Get Position operation does not affect current positioning.

6-58 201lRevl.OO

J

Btrieve Record Operations

GET PREVIOUS (7)

Purpose:

Get Previous retrieves the record that precedes the current record in the key
path.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PCB

PosBlock Data Buffer

X
X X

Data Buffer Key Buffer Key Number
Length

X X X
X X

U sing the Get Previous operation, your application can retrieve records in
order according to a specified access path. Only the Get First, Get Next, Get
Previous, and Get Last operations allow an application to retrieve records for
duplicate key values.

Prerequisites:

Before your application issues a Get Previous operation, the following
prerequisites must be met:

• The file must be open.

• The Btrieve call to the file immediately prior to the Get Previous call
must have retrieved a record. You cannot issue a Btrieve call using the
same position block between the retrieval of the record and the Get
Previous call.

2011Rev1.00 6-59

Btrieve Record Manager

GET PREVIOUS (7)
(Continued)

Procedure:

To perform a Get Previous operation, set the Btrieve parameters as follows:

• Set the operation code to 7.

• Pass the position block for the file.

• Specify the correct key number.

• Specify the length of the data buffer.

• Pass the key buffer exactly as Btrieve returned it on the previous call.
Btrieve may need the information previously stored in the key buffer to
determine its current position in the file.

Result:

If the operation is successful, Btrieve will

• Update the key buffer with the key value for the new record;

• Return the previous record in the data buffer;

• Return the length of the record in the data buffer length parameter.

If the operation is not successful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 9 End of File

• 22 Data Buffer Too Short

6-60 2011Revl.00

)

" \

Current Positioning:

Btrieve Record Operations

GET PREVIOUS (7)
(Continued)

Btrieve uses the positioning established by the previous call to perform a Get
Previous operation as follows.

• The record that was the current record when the call was initiated
becomes the next record.

• If a duplicate exists, the previous record becomes the last duplicate of
the key value less than the one returned. Otherwise, the previous record
becomes the only record for the key value less than the one returned.

20lJRev1.00 6-61

Btrieve Record Manager

INSERT (2)

Purpose:

The Insert operation inserts a record into a file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Pas Block

X
X

PCB

Data Buffer Data Buffer
Length

X X

Key Buffer KeyNumbcr

X
X

Your application can use the Insert operation to insert a new record into a
file. Btrieve adjusts all the key indexes to reflect the key values for the new
record at the time the record is inserted.

Prerequisites:

Before your application issues an Insert operation, the following
prerequisites must be met:

• The file must be open.

• The record to be inserted must be the proper length, and the key values
must conform to the keys defined for the file.

Procedure:

To perform the Insert operation, set the Btrieve parameters as follows:

• Specify an operation code of 2.

• Store the new data record in the data buffer.

6-62 2011Rev1.00

o

(:

C!

Btrieve Record Operations

INSERT (2)
(Continued)

• Specify the length of the data buffer. This value must be at least as long
as the fixed-length portion of the record.

• Specify the key number for which you want Btrieve to maintain
position.

Result:

If the Insert operation is successful, Btrieve will

• Place the new record in the file;

• Update all index information to reflect the new record;

• Return the key value for the current access path.

If the Insert operation is not successful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 2 110 Error

• 3 File Not Open

• 5 Duplicates Error

• 14 Pre-Image Open :grror

• 15 Pre-Image 110 Error

• 18 Disk Full

• 21 Key Buffer Too Short

• 22 Data Buffer Too Short

201lRevl.OO 6-63

Btrieve Record Manager

INSERT (2)
(Continued)

Current Positioning:

An Insert operation erases any existing positioning information. Based on the
key number you specifY, Btrieve establishes its position in the index as
follows:

• The first data record for the key value greater than the key just inserted
becomes the next record.

• The last data record for the key value less than the key just inserted
becomes the previous record.

6-64 201IRev1.00

;

Btrieve Record Operations

LOCKS

Purpose:

Locks allow you to control access to records and files, preventing workstations
from performing conflicting operations on the database.

Parameters:

With the exception of the operation code, the parameters for a lock operation
are the same as those for the corresponding record operation.

Description:

Btrieve recognizes two distinct kinds of record locks: single locks and multiple
locks. You can specify either wait or nowait type locks for either single or
multiple record locks.

(~", You can specify a lock with any Get, Step, Open, or Begin Transaction
/ operation. Adding a lock bias to a Begin Transaction operation only specifies

whether you want a wait or nowait transaction. It does not cause Btrieve to
use record locks during the transaction.

Single Record Locks. When a workstation uses single record locks, it can
only lock one record in a file at a time. Btrieve releases a single record lock
when the workstation issues another Get operation with a lock for the same
file, updates or deletes the locked record, or issues an Unlock operation.

Multiple Record Locks. Multiple record locks allow an application to lock
multiple records in a file, and then update or delete those records as
necessary. When you use multiple record locks, Btrieve still locks only one
record for each Get operation. However, it does.llilt unlock the record when
you update a locked record or issue another Get operation with a multiple
lock. Your application can release one or all ofthe multiple record locks using
the Unlock operation.

2011Rev1.00 6-65

Btrieve Record Manager

LOCKS
(Continued)

Wait locks. If another workstation has the record locked or has a transaction
pending for the file when you issue a lock with the wait option, Btrieve will
wait until the record is available before returning control to the application.

Nowait locks. If another workstation has the record locked or has a
transaction pending for the file when you issue a lock with the nowait option,
Btrieve will immediately return a status of 84 or 85 to the application,
indicating that the record is busy.

Prerequisites:

With the exception of the operation code, the parameters required for a record
lock operation are identical to those required for the corresponding operation
with no lock.

Procedure:

To specify a record lock, your application adds a value (called a lock bias) to
any Get, Step, Open, or Begin Transaction operation code. The following
table illustrates the lock bias values:

Value

+100
+200
+300
+400

Lock Type

single record wait lock
single record nowait lock
multiple record wait lock
multiple record nowait lock

Use the lock bias values as follows:

• To specify a single record lock, add 100 (wait) or 200 (nowait) to the
operation code.

• To specify a multiple record lock, add 300 (wait) or 400 (nowait) to the
operation code.

6-66 2011Revl.OO

o

Btrieve Record Operations

LOCKS
(Continued)

For example, to issue a Get Equal with a single record wait lock, the
operation code is (100 + 5) or 105. For the same operation with a multiple
record wait lock, the operation code is (300 + 5) or 305. To issue a Get Last
with a single record nowait lock, the operation code is (13 + 200) or 213. For
the same operation with a multiple record nowait lock, the operation code is
(13 + 400), or 413.

To specify a wait transaction, set the operation code to 119 or 319. In this
case, the lock code specifies that you want Btrieve to wait if it encounters a
file or a record that is locked by another workstation. Specifying 319 for a
Begin Transaction operation is equivalent to specifying either 19 or 119. See
the description of transaction control in Chapter 2 for more information.

You may also issue a nowait Begin Transaction request with an operation
code of 219 or 419. In this case, Btrieve will return a status of 84 or 85 if your
application attempts to access a locked record or file within a transaction. See
the description oftransaction control in Chapter 2 for more information.

Opening Locked Files. If a file is locked when a workstation attempts to
open it, Btrieve normally waits until the file is available before executing the
Open operation. This is equivalent to a wait lock.

You can specify a nowait open call by passing either 200 or 400 as the
operation code for the Open operation (0 + 200 or 0 + 400). If the file you are
attempting to open is locked, Btrieve will return a status code 85 (File In Use)
to the application. You can then retry the operation until the file is available.

Releasing Multiple Record Locks. As mentioned earlier, Btrieve does not
automatically release a multiple lock as it does a single record lock. Records
that you lock with a multiple record lock remain locked until you do one of
the following:

• Explicitly release the lock by issuing a Btrieve Unlock operation (27).

• Delete the record.

• Issue a Btrieve Reset operation (28).

2011Rev1.00 6-67

Btrieve Record Manager

LOCKS
(Continued)

• Close the file.

• Access the file within a transaction.

Result:

You cannot mix single and multiple locks in the same file from one
workstation. If a single record lock (+ 1001+200) is in effect when a
workstation issues a multiple lock request (+3001+400), Btrieve will return an
incompatible lock error. The reverse situation will result in the same error. In
either case, Btrieve will not lock the record. This does not mean that a
workstation is limited to only one type of lock for a particular file. Btrieve will
only return the error if one type of lock is currently in effect when the
workstation attempts a lock of the other type.

If a workstation attempts to unlock a multiple record lock when it does not
hold one for that position, Btrieve will return a lock error status.

In addition, Btrieve will return a lock error status if your application
attempts to lock more records than you specified when you configured
BSERVER. Refer to the description of the NetWare Btrieve initialization
options in Chapter 3 for more information.

Common nonzero status codes that Btrieve returns from unsuccessful lock
operations include the following:

• 81 Lock Error

• 84 Record in Use

• 85 File in Use

• 93 Incompatible Lock Type

Positioning:

Lock operations have no effect on Btrieve's position in an index.

6-68 2011Rev1.00

'\
i

/

Btrieve Record Operations

OPEN (0)

Purpose:

The Open operation makes a file available for access.

Parameter Usage:

&peered
Returned

Description:

Operation

X

FCB

Po. Block DataBuffcr

X
X

Data Buffer Key Bu!'fcr KeyNumbcr
Length

X X X

Your application cannot access a Btrieve file unless it first performs an Open
operation. The file does not have to reside in the current directory as long as
you specifY the full path name.

Prerequisites:

Before your application issues an Open operation, the following prerequisites
must be met:

• The file to be opened must exist on an accessible drive. If the file has an
extension, both of the storage devices on which the file exists must be
accessible.

• A file handle must be available for the file.

2011Rev1.00 6-69

Btrieve Record Manager

OPEN (0)
(Continued)

Procedure:

To perform an Open operation, set the Btrieve parameters as follows:

• Specify an operation code of O.

• Place the name of the file to be opened in the key buffer parameter.
Terminate the filename with a blank or binary O. If the file is not in the
current directory, specify the device name and path name for the file,
including the directory levels.

• If the file has an owner, specify the owner name, terminated by a binary
0, in the data buffer.

• Specify the length of the owner name, including the binary 0, in the
data buffer length parameter.

• Specify one of the following mode specifications in the key number
parameter.

Mode

-1

6-70

Description

Accelerated

In accelerated mode, your application can disable
Btrieve's automatic data recovery capability in order
to increase update performance. See "Accelerated
Access" beginning on page 2-25 for a more complete
description of this option. Btrieve locks a buffer in
cache for each file opened in accelerated mode. The
number of files you can open at once in accelerated
mode depends on the memory and page size options
you specify when you load Btrieve.

201IRev1.00

!

/

o
Mode

-2

-3

-4

Other

2011Revl.00

Description

Read-Only

Btrieve Record Operations

OPEN (0)
(Continued)

This mode allows an application to open a damaged
file that Btrieve cannot automatically recover. When
Btrieve opens a file in the read-only mode, your
application can only read the file; it cannot perform
updates. If the file's indexes have been damaged, the
records can be retrieved by opening the file in
read-only mode and then using using the Step Next
operation.

Verify

Verify mode only applies to files that are located on
local DOS disks. If your application opens a local file
in verify mode, Btrieve enables the DOS Verify option
during each operation. After each write to the disk,
the operating system rereads the data to ensure that
it has been recorded correctly. Although disk
recording errors are very rare, Btrieve provides this
function in case you want to verify the proper
recording of critical data.

Exclusive

Exclusive mode gives a workstation exclusive access to
a file on a shared device. No other workstation can
open that file until the workstation that has exclusive
access to the file closes it. Exclusive mode is only valid
for files that are located on a shared device. If you
request exclusive mode for a file on a local disk,
Btrieve opens the file in normal mode.

Normal

6-71

Btrieve Record Manager

OPEN (0)
(Continued)

To access a Btrieve file from BASIC, two steps are necessary. First, your
application should issue a BASIC OPEN operation for the device NUL in
order to use the FIELD statement for the file's data buffer. (See "Calling
Btrieve From BASIC" beginning on page 5-5 for more information.) Second,
the application must perform a Btrieve Open operation. Other languages do
not require the first step.

Btrieve allows as many as 255 open files for compiled BASIC, Pascal,
COBOL, or C applications. When multiple files are open at the same time,
Btrieve uses the current position block to determine which file to access for a
particular call.

NOTE:
Although Btrieve allows an application to open up to 255 files, the
BASIC interpreter and some BASIC compilers allow a maximum
of only 15 open files. To access more than three files, BASIC
requires that you specify the lfiles parameter when you initiate
the BASIC interpreter. When you open multiple files at the same
time from BASIC, Btrieve uses the FCB to determine which file to
access for a particular call. Refer to the documentation supplied
with your BASIC interpreter or compiler for more information.

Result:

If the Open operation is successful, Btrieve will

• Assign a file handle to the file;

• Reserve the position block passed on the Open call for the newly opened
file;

• Make the file available for access.

6-72 201IRev1.00

)

()

Btrieve Record Operations

OPEN (0)
(Continued)

If the operation is unsuccessful, Btrieve will return a non-zero status code.
Common non-zero status codes for the Open operation include the following:

• 2 110 Error

• 46 Access To File Denied

• 85 File In Use

• 86 File Table Full

• 87 Handle Table Full

Current Positioning:

An Open operation does not establish any positioning information.

2011Rev 1.00 6-73

Btrieve Record Manager

RESET (28)

Purpose:

Reset releases all resources held by a workstation, such as locks left pending
by an abnormal termination of an application.

Parameter Usage:

Expcc1<:d
Returned

Description:

Operation

X

PCB

PosBlock Data Buffer Data Buffer KcyBuffi:r Key Number
Length

X X

An application can perform a Reset operation to release all Btrieve resources
held by a workstation on the network. This operation aborts any transactions
the workstation has pending, releases all locks, and closes any open files for
the workstation.

Prerequisites:

Your application can issue a Reset operation at any time after the Record
Manager is loaded.

Procedure:

To perform a Reset operation, set the Btrieve parameters as follows:

• Set the operation code to 28.

• Set the key number parameter to -1 if your application is releasing
resources for another workstation on the network.

• Store the connection number of the workstation to be reset as an integer
in the first 2 bytes of the key buffer.

6-74 201IRev1.00

()

(~\

Result:

If the Reset operation is successful, Btrieve will

• Close all open files for the specified workstation;

Btrieve Record Operations

RESET (28)
(Continued)

• Release all locks held by the specified workstation;

• Abort any active transaction at the specified workstation.

If the operation fails for any reason, Btrieve will return a non-zero status.

Current Positioning:

The Reset operation destroys all positioning information because it closes any
open files.

2011Revl.OO 6-75

Btrieve Record Manager

SET DIRECTORY (17)

Purpose:

The Set Directory operation sets the current directory to a specified value.

Parameter Usage:

Expecred
Returned

Description:

Operation

X

Po. Block

FCB

Data Bufl'er Data Buffer Key Burrer Key Number
Length

X

A Set Directory operation changes the current directory to the directory
specified in the key buffer parameter.

Prerequisites:

Before your application issues a Set Directory operation, the target drive and
directory must be accessible.

Procedure:

To set the current directory, set the Btrieve parameters as follows:

• Set the operation code to 17.

• Store the desired drive and directory path, terminated by a binary 0, in
the key buffer. If you omit the drive name, Btrieve uses the default
drive. If you do not specify the complete path for the directory, Btrieve
appends the directory path specified in the key buffer to the current
directory.

6-76 2011Rev1.00

/

o

(~,
/

Result:

Btrieve Record Operations

SET DIRECTORY (17)
(Continued)

If the Set Directory operation is successful, Btrieve will make the directory
specified in the key buffer the current directory.

If the operation is not successful, Btrieve will leave the current directory
unchanged and return a non-zero status.

Current Positioning:

Set Directory has no effect on positioning.

2011Rev1.00 6-77

Btrieve Record Manager

SET OWNER (29)

Purpose:

Set Owner assigns an owner name to a file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PosBlock

X
X

FeB

Data Buffer Data Buffer
Length

X X

Key Buffer Key Number

X X

The Set Owner operation assigns an owner name to a file so that users who
do not know the name cannot access the file. If an owner name has been set
for a file, users or applications must specifY the owner name each time they
attempt to open the file. You can specify that an owner name be required for
any access or just for update privileges.

When you assign an owner name to a file, you can also direct Btrieve to
encrypt the file's data on the disk. If you specifY data encryption, Btrieve will
encrypt all the data during the Set Owner operation. The longer the file, the
longer Set Owner takes to complete.

Prerequisites:

Before issuing a Set Owner operation, the following prerequisites must be
met:

• The file must be open.

• No transactions can be active.

• An owner name can't already be assigned to the file.

6-78 2011Revl.OO

.J

o
Procedure:

Btrieve Record Operations

SET OWNER (29)
(Continued)

To perform a Set Owner operation, set the Btrieve parameters as follows:

• Set the operation code to 29.

• Pass the position block that identifies the file you want to protect.

• Store the owner name in both the data buffer and the key buffer and
pass the data buffer length. Btrieve requires the name to be in both
buffers to avoid the possibility of accidentally specifying an incorrect
value. The owner name can be up to eight characters long and must end
with a binary o.

• Set the key number parameter to an integer that specifies the type of
access restrictions you want to define for the file and whether data
should be encrypted. Table 6.2 lists the values you can specify for the
key number.

Value

o

1

2

3

2011Rev1.00

Description

Requires an owner name for any access mode
(no data encryption)

Permits read-only access without an owner name
(no data encryption)

Requires an owner name for any access mode
(with data encryption)

Permits read-only access without an owner name
(with data encryption)

Table 6.2
Owner name and data encryption codes

6-79

Btrieve Record Manager

SET OWNER (29)
(Continued)

Result:

If the Set Owner operation is successful, Btrieve will

• Not allow access to the file unless an owner name is specified;

• Encrypt the data in the file, if encryption is specified.

Once your application sets an owner name, it remains in effect until your
application issues a Clear Owner operation.

If the Set Owner operation is unsuccessful, Btrieve will return a non-zero
status. Common non-zero status codes include the following:

• 41 Operation Not Allowed

• 50 Owner Already Set

• 51 Invalid Owner Name

Current Positioning:

Set Owner has no effect on positioning.

6-80 2011Revl.00

'\

J

()

Btrieve Record Operations

STAT (15)

Purpose:

Stat retrieves the characteristics for a specified file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

PCB

PosWock Data Buffer

X X
X

Data Buffer KcyBuffer KcyNwnbcr
Length

X X
X X

Using the Stat operation, your application can determine the characteristics
specified for a file when it was first created. In addition, the Stat operation
returns the number of records in the file, the number of unique key values
stored for each index in the file, the number of unused pages in the file, and
any supplemental indexes defined for the file.

Btrieve returns the file characteristics in the data buffer in the same binary
format as it does for a Create operation. For 4-byte variables (number of keys
and records), Btrieve returns the low part of the number in the first 2 bytes
followed by the high part of the number in the last 2 bytes. The reserved
areas are allocated even though Btrieve ignores them on a Stat operation.

201lRev1.00 6-81

Btrieve Record Manager

STAT (15)
(Continued)

The file flags appear as shown below:

• Ifbit 0 = 1, the file allows variable length records.

• Ifbit 1 = 1, Btrieve truncates trailing blanks in variable length records.

• If bit 2 = 1, Btrieve preallocated pages for the file.

• If bit 3 = 1, Btrieve compresses the data in the file.

• If bit 4 = 1, Btrieve created the file as a key-only file.

• If bit 6 = 1, Btrieve maintains a10% free space threshold.

• Ifbit 7 = 1, Btrieve maintains a 20% free space threshold.

• If bit 6 = 1 and bit 7 = 1, Btrieve maintains a 30% free space threshold.

The key specifications appear immediately after the file specifications and are
repeated for each key segment in the file. Btrieve sets the key flags as follows:

If bit 0 = 1, the key allows duplicates.

If bit 1 = 1, the key is modifiable.

If bit 2 = 0 and bit 8 = 0, the key is string type.

If bit 2 = 1 and bit 8 = 0, the key is binary type.

Ifbit 3 = 1, the key has a null value.

If bit 4 = 1, the key has another segment.

If bit 5 = 1, the key is sorted by an alternate collating sequence.

If bit 6 = 1, the key is sorted in descending order.

If bit 7 = 1, the key is a supplemental index.

If bit 8 = 1, the key is an extended type.

If bit 9 = 1, the key is manual.

See the Create operation in this chapter for a table illustrating the decimal
values for these flags.

6-82 2011Revl.OO

/

o

Btrieve Record Operations

STAT (15)
(Continued)

If you specify an alternate collating sequence for any of the keys or key
segments in the file, Btrieve will return the definition ofthat sequence
immediately after the last key specification block. Btrieve will return the data
buffer in the format shown in Table 6.3.

2011Rev1.00

file
specs

key
specs
(repeated)

Description Length

record length 2

page size 2

#' of indexes 2

of records 4

file flags 2

reserved word 2

Wiused pages 2

Description Length

key position 2

key length 2

key flags 2

of keys 4

extended key type 1

null value 1

reserved 4

Table 6.3
Data Buffer for Stat Operation

6-83

Btrieve Record Manager

STAT (15)
(Continued)

Prerequisites:

Before performing a Stat operation, your application must first open the
Btrieve file.

Procedure:

To perform a Stat operation, set the Btrieve parameters as follows:

• Set the operation code to 15.

• Pass the position block for the file.

• Indicate a data buffer (to hold the file and key statistics), and an
alternate collating sequence, if one is defined.

• Specify the length ofthe data buffer.

• Indicate a key buffer that is at least 64 characters long.

Result:

If the Stat operation is successful, Btrieve will

• Return the file and key characteristics to the data buffer;

• Store the name of the file's extension, terminated by a binary zero, in
the key buffer if you have previously extended the file. Otherwise,
Btrieve will initialize the first byte of the key buffer to zero.

If the operation is not successful, Btrieve will return a non-zero status.
Common non-zero status codes include the following:

• 3 File Not Open

• 22 Data Buffer Too Short

Current Positioning:

The Stat operation does not affect positioning.

6-84 2011Rev1.00

/

o

('~:

Btrieve Record Operations

STEP FIRST (33)

Purpose:

Step First retrieves the record in the first physical location in the file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Pos Block

X
X

FCB

Data Buffer Data Buffer Key Buffer Key Number
Length

X
X X

Step First allows your application to retrieve the record in the first physical
location in the file. Btrieve does not use an index path to retrieve the record.

Prerequisites:

Before your application can perform a Step First operation, the file must be
open.

Procedure:

To perform a Step First operation, set the Btrieve parameters as follows:

• Specify an operation code of 33.

• Pass the position block for the file.

• Indicate a data buffer in which to store the returned record.

• Set the data buffer length parameter to the length of the data buffer.

201lRevi.OO 6-85

Btrieve Record Manager

STEP FIRST (33)
(Continued)

Result:

If the operation is successful, Btrieve will

• Return the first physical record in the file to your application's data
buffer;

• Set the data buffer length parameter to the number of bytes it returned
in the data buffer.

If the operation is not successful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 9 End of File

• 22 Data Buffer Too Short

Current Positioning:

The Step First operation establishes no positioning in an index.

6-86 201IRev1.00

\
I

o
Btrieve Record Operations

STEP LAST (34)

Purpose:

Step Last retrieves the record in the last physical location in the file.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Po. Block

X
X

FCB

Data Buffer Data Buffer Key Buffer Key Number
Length

X
X X

Step Last allows your application to retrieve the last physical record in the
file. Btrieve does not use an index path to retrieve a record for a Step Last
operation.

Prerequisites:

Before your application can perform a Step Last operation, the file must be
open.

Procedure:

To perform a Step Last operation, set the Btrieve parameters as follows:

• Specify an operation code of 34.

• Pass the position block for the file.

• Indicate a data buffer in which to store the returned record.

(~ _. • Set the data buffer length parameter to the length ofthe data buffer.

201lRevl.OO 6-87

Btrieve Record Manager

STEP LAST (34)
(Continued)

Result:

If the operation is successful, Btrieve will

• Return the last physical record in the file to your application's data
buffer;

• Set the data buffer length parameter to the number of bytes it returned
in the data buffer.

If the operation is unsuccessful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 9 End of File

• 22 Data Buffer Too Short

Current Positioning:

The Step Last operation establishes no positioning in an index.

6-88 2011Rev1.00

o
Btrieve Record Operations

STEP NEXT (24)

Purpose:

Step Next retrieves a record from the location physically following the current
record.

Parameter Usage:

FCB

Operation Pas mock Data Buffer DataBuffcr Key Buffer KcyNwnber
Length

X X X
X X X

Description:

Step Next allows your application to retrieve records in the order in which
they are physically stored. Btrieve does not use an index path to retrieve a
record for a Step Next operation. A Step Next operation issued immediately
after an Open operation returns the first record in the file. A Step Next
operation issued immediately after any Get or Step operation returns the
record physically following the record retrieved by the previous operation.

Your application cannot predict the order in which records will be returned by
a Step Next operation.

Prerequisites:

Before your application can perform a Step Next operation, the file must be
open.

Procedure:

To perform a Step Next operation, set the Btrieve parameters as follows:

• Specify an operation code of 24.

• Pass the position block for the file.

201/Revl.OO 6-89

Btrieve Record Manager

STEP NEXT (24)
(Continued)

• Indicate a data buffer in which to store the returned record.

• Specify the length of the data buffer.

Result:

If the operation is successful, Btrieve will

• Return the last physical record in the file to your application's data
buffer;

• Set the data buffer length parameter to the number of bytes it returned
in the data buffer.

If the operation is unsuccessful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 9 End of File

• 22 Data Buffer Too Short

Current Positioning:

The Step Next operation establishes no positioning in an index.

6-90 201/Revl.00

j

" \
/

// -~,

()

Btrieve Record Operations

STEP PREVIOUS (36)

Purpose:

Step Previous retrieves a record in the location physically preceding the
current record.

Parameter Usage:

FCB

Operation posmock. Data Buffer Data Buffer Key Buffer Key Number
Length

X X X
X X X

Description:

Step Previous allows your application to retrieve records in the order in which
they are physically stored. Btrieve does not use an index path to retrieve a
record for a Step Previous operation. A Step Previous operation immediately
after any Get or Step operation returns the record physically preceding the
record retrieved by the previous operation.

Prerequisites:

Before your application can perform a Step Previous operation, the following
prerequisites must be met:

• The file must be open.

• The previous operation must have been a successful Get or Step
operation.

2011Rev1.00 6-91

Btrieve Record Manager

STEP PREVIOUS (35)
(Continued)

Procedure:

To perform a Step Previous operation, set the Btrieve parameters as follows:

• Specify an operation code of 35.

• Pass the position block for the file.

• Indicate a data buffer in which to store the returned record.

• Specify the length of the data buffer.

Result:

If the operation is successful, Btrieve will

• Return the last physical record in the file to your application's data
buffer;

• Set the data buffer length parameter to the number of bytes it returned
in the data buffer.

If the operation is unsuccessful, Btrieve will return a non-zero status
indicating the reason. Common non-zero status codes include the following:

• 3 File Not Open

• 9 End of File

• 22 Data Buffer Too Short

Current Positioning:

The Step Previous operation establishes no positioning in an index.

6-92 2011Rev1.00

/

" \

o
Btrieve Record Operations

STOP (25)

Purpose:

The Stop operation terminates the BREQUEST program and removes it from
a workstation's memory.

Parameter Usage:

Expcct<:d
Returned

Description:

Operation

X

PosBlock

FeB

Data Buffer Data Buffer Key Buffer Key Number
Length

Stop removes the Btrieve requestor program (BREQUEST) from a
workstation's memory. A Btrieve application at that workstation cannot
perform any other Btrieve operations until you restart BREQUEST.

The Stop operation removes memory only from the workstation where the
Btrieve call is issued. You cannot stop BREQUEST at another workstation.

Prerequisites:

BREQUEST must be loaded before your application can issue a Stop
operation.

Procedure:

To perform a Stop operation, your application specifies an operation code of
25.

20ilRevi.OO 6-93

Btrieve Record Manager

STOP (25)
(Continued)

Result:

If the Stop operation is successful, Btrieve will

• Remove BREQUEST from memory at the workstation;

• Close all files previously open for the workstation;

• Abort any active transactions;

• Release all locks held by the workstation.

If the Stop operation is unsuccessful, Btrieve will return a non-zero status.
The most common non-zero status code is 20 (BREQUEST Not Loaded).

Current Positioning:

The Stop operation does not establish any position.

6-94 2011Revl.OO

\

/

(j

Btrieve Record Operations

UNLOCK (27)

Purpose:

The Unlock operation unlocks one or more records that were previously
locked.

Parameter Usage:

Expected
Rctumod

Description:

Operation

X

PosIDock

X

FCB

DataBulfer DataBulfer Key Buffer KcyNwnbcr
Length

X X X

Unlock explicitly releases one or more locked records for the file associated
with the specified position block.

Prerequisites:

Before your application can issue an Unlock operation at a workstation, the
workstation must hold at least one record lock.

Procedure:

To unlock a single record lock, set the Btrieve parameters as follows:

• Set the operation code to 27.

• Pass the position block for the file that contains the locked record.

• Set the key number to a non-negative value.

2011Rev 1.00 6-95

Btrieve Record Manager

UNLOCK (27)
(Continued)

To unlock one multiple type record lock, first retrieve the 4-byte position of
the record you want to unlock by issuing a Get Position operation (22) for that
record. Then issue the Unlock operation, setting the Btrieve parameters as
follows:

• Set the operation code to 27.

• Pass Btrieve the position block for the file that contains the locked
record.

• Store (in the data buffer) the 4-byte position that Btrieve returns.

• Set the data buffer length to 4.

• Initialize the key number parameter to -l.

To unlock all of the multiple record locks on a file, you should set the Btrieve
parameters as follows:

• Set the operation code to 27.

• Pass Btrieve the position block for the file which contains the multiple
locks.

• Initialize the key number parameter to -2.

Result:

If the Unlock operation is successful, Btrieve will release all of the locks
specified by the operation.

If the Unlock operation is not successful, Btrieve will return a non-zero
status. The most common non-zero status code is code 81 (Lock Error).

Current Positioning:

An Unlock operation has no effect on positioning.

6-96 201IRev1.00

()

Btrieve Record Operations

UPDATE (3)

Purpose:

The Update operation updates an existing record in a Btrieve file.

Parameter Usage:

Expected
Rctumcd

Description:

Operation

X

FeB

poamock Data BufIer

X X
X

DataBufIer Key Buffer KcyNumbcr
Length

X X
X

The Update operation changes the information in an existing record.

Prerequisites:

Before your application can perform an Update operation, the following
prerequisites must be met:

• The file must be open.

• The Btrieve call to the file immediately prior to the Update call must
have retrieved the record to be updated. You cannot issue a call using
the same position block between the time your application retrieves the
record and the time it updates the record.

Procedure:

To perform an Update operation, set the Btrieve parameters as follows:

• Set the operation code to 3.

• Pass the position block for the file containing the record.

• Store the updated data record in the data buffer.

2011Revl.OO 6-97

Btrieve Record Manager

UPDATE (3)
(Continued)

• Set the data buffer length to the length of the updated record.

• Store the key number used for retrieving the record in the key number
parameter.

Result:

If the Update operation is successful, Btrieve will

• Update the record stored in the file with the new value in the data
buffer;

• Adjust the key indexes to reflect any change in the key values;

• Update the key buffer parameter, if necessary.

Ifthe Update operation is not successful, Btrieve will return a non-zero
status code. Common non-zero status codes include the following:

• 5 Duplicate Key Error

• 7 Different Key Number

• 8 Invalid Positioning

• 10 Modifiable Key Error

• 14 Pre-Image Open Error

• 15 Pre-Image I/O Error

• 22 Data Buffer Too Short

• 80 Conflict Error

6-98 2011Revl.OO

/

()
Current Positioning:

Btrieve Record Operations

UPDATE (3)
(Continued)

An Update operation changes positioning information only when a key value
changes. In this case, Btrieve establishes its position in the index, based on
the key number you specify, as follows:

• The first record with a key value greater than the updated key becomes
the next record.

• The first record with a key value less than the updated key becomes the
previous record.

2011Rev1.00 6-99

Btrieve Record Manager

VERSION (26)

Purpose:

The Version operation returns the current Btrieve version and revision
numbers.

Parameter Usage:

Expected
Returned

Description:

Operation

X

Pos mock
FCB

Data Buffer Data Buffer Key Buffer KcyNumber
Length

X
X X

This operation returns the current Btrieve version and revision numbers.

Prerequisites:

The Btrieve Record Manager must be loaded before you can issue a Version
operation.

Procedure:

To perform a Version operation, set the Btrieve parameters as follows:

• Specify an operation code of 26.

• Indicate a data buffer at least 5 bytes long.

• Set the data buffer length to 5.

6-100 201IRev1.00

J

/

Result:

Btrieve Record Operations

VERSION (26)
(Continued)

If the Version operation is successful, Btrieve will return the data to the data
buffer in the following format:

Size Description

2 Integer containing version number
2 Integer containing revision number
1 Character containing "N" for NetWare Btrieve

If the Version operation is not successful, Btrieve will return a non-zero
status.

Current Positioning:

("~~/' The Version operation does not affect current positioning.

("

201lRev1.00 6-101

(j APPENDIX A:
BTRIEVE OPERATION CODES

201lRevl.OO

Code
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Operation
Open
Close
Insert
Update
Delete
Get Equal
Get Next
Get Previbus
Get Greater
Get Greater or Equal
Get Less Than
Get Less Than or Equal
Get First
Get Last
Create
Stat
Extend
Set Directory
Get Directory
Begin Transaction
End Transaction
Abort Transaction
Get Position
Get Direct
Step Direct
Stop
Version
Unlock
Reset
Set Owner
Clear Owner

A-l

Btrieve Record Manager

A-2

Code
31
32
33
34
35

Operation
Create Supplemental Index
Drop Supplemental Index
Step First
Step Last
Step Previous

201IRev1.00

/

/

(

APPENDIXB:
STATUS CODES AND MESSAGES

BTRIEVE STATUS CODES

The Btrieve Record Manager returns a status value after each operation an
application performs. A value of 0 indicates that the operation was successful.
The possible nonzero status codes that the Record Manager returns are
described below.

01 INVALID OPERATION

The operation parameter specified in the Btrieve call is invalid.

02 110 ERROR

An error occurred during disk read/write. This status may indicate that the
file has been damaged and must be recreated, or that the filename specified
on the open call was not created by Btrieve. This status may also occur if the
application writes on the position block allocated for the file.

03 FILE NOT OPEN

An application must perform a successful Open operation before Btrieve can
process any other operations. This status may also occur if the application
writes on the position block allocated for the file or passes an invalid position
block.

04 KEY VALUE NOT FOUND

Btrieve did not find the requested key value in the specified access path.

05 DUPLICATE KEY VALUE

An attempt was made to add a record with a key field containing a duplicate
key value to an index that does not allow duplicate values.

2011Rev1.00 B-1

Btrieve Record Manager

06 INVALID KEY NUMBER

The value stored in the key number parameter is nQt valid for the file being
accessed. The key number must correspond to one of the keys defined when
the file was created, or to a supplemental index.

07 DIFFERENT KEY NUMBER

The key number parameter changed before a Get Next, Get Previous, Update,
or Delete operation. The operation requested requires the same key number
parameter as the previous operation because the Record Manager uses
positioning information relative to the previous key number.

If you need to change key numbers between consecutive Get Next or get
Previous operations, first use the Get Direct operation to re-establish
positioning by the new access path.

Q8 INVALID POSITIONING

An attempt was made to update or delete a record without first performing a
Get or Step operation to establish current position. This status may also occur
if the application writes on the position block allocated for the file.

09 END OF FILE

An attempt was made to read past the end offile. When following an access
path in ascending order (using Get Next operations) Btrieve returns the last
record in the access path for the previous request. When following an access
path in descending order (using Get Previous operations) Btrieve returns the
first record in the access path for the previous request.

10 MODIFIABLE KEY VALUE ERROR

An attempt was made to modify a key field which is defined as nonmodifiable.

11 INVALID FILE NAME

The file name specified does not conform to file naming conventions.

B-2 201lRevl.OO

'\

/

Status Codes and Messages

12 FILE NOT FOUND

The file name requested does not exist. Check the key buffer parameter to
make sure the file name is terminated with a blank or a binary zero and that
it is being passed correctly to Btrieve.

13 EXTENDED FILE ERROR

Btrieve cannot find the extension file for a partitioned file which you have
attempted to open. Extension files must be loaded on the disk drive specified
when the extension was created with EXTEND. Both the primary file and its
extension must be loaded to access a partitioned file.

14 PRE-IMAGE OPEN ERROR

The pre-image file could not be created/opened. There are three possible
causes for this error.

• The Record Manager cannot create a new pre-image file to protect
future operations because your disk directory is full. Btrieve must be
able to create a pre-image file in order to operate.

• The Record Manager may be trying to open the pre-image file to restore
file integrity. Ifthe pre-image file has been erased or damaged, the
Record Manager cannot restore the file's integrity. In this case, either
use RECOVER to retrieve the damaged file's data records in a
sequential file, or replace the file with its most recent backup.

• The Record Manager cannot assign a handle to the pre-image file
because the Record Manager was not started by a user with access
rights to the pre-image file.

201 fRev 1.00 E-3

Btrieve Record Manager

15 PRE·IMAGE I/O ERROR

This status indicates an I/O error during the pre-imaging function. Either the
disk is full or the pre-image file has been damaged. /

• If the disk is full, erase any unnecessary files or use EXTEND to gain
additional disk space.

• If the pre-image file has been damaged, the integrity of the Btrieve file
cannot be ensured. Either use RECOVER to retrieve the damaged file's
data records in a sequential file, or replace the Btrieve file with its most
recent backup.

16 EXPANSION ERROR

The directory structure could not be flushed for the expanded file partition.
Either the Record Manager cannot close the file or a new page was added to
the file and the Record Manager cannot close and reopen the file to update
the directory structure. Check for a damaged disk. This status may also occur
if the application writes on the position block allocated for the file.

17 CLOSE ERROR

The directory structure could not be flushed for the Btrieve file. Either the
Record Manager cannot close the file or a new page was added to the file and
the Record Manager cannot close and reopen the file to update the directory
structure. Check for a damaged disk. This status may also occur if the
application writes on the position block allocated for the file.

18 DISKFULL

The disk is full and will not allow the file to be expanded to accommodate the
insertion. Either erase any unnecessary files or use EXTEND to gain
additional disk space.

19 UNRECOVERABLE ERROR

An unrecoverable error has occurred. File integrity cannot be guaranteed.
Either use RECOVER to retrieve the damaged file's data records in a
sequential file, or replace the Btrieve file with its most recent backup.

B-4 2011Rev1.00

C:

Status Codes and Messages

20 RECORD MANAGER INACTIVE

A request has been made before BREQUEST or the Record Manager has been
started.

21 KEY BUFFER TOO SHORT

The key buffer parameter is not long enough to accommodate the key field for
the access path requested. Verify that the length of the key buffer equals the
defined length of the key specified by the key number parameter.

22 DATA BUFFER LENGTH

The data buffer parameter is not long enough to accommodate the length of
the data record defined when the file was created. Verify that the length of
the data buffer is as least as long as the file's defined record length.

• For Get or Step operations, if the data buffer is too short to contain the
fixed length portion of the record, Btrieve will not return any data to the
data buffer. Ifthe record is a variable length record, and the data buffer
is too short to contain the entire variable length portion of the record,
Btrieve will return as much data as it can and a status 22, indicating
that it could not return the entire record.

• For the Insert operation, Btrieve will not insert the record if the data
buffer is shorter than the fixed length portion of the record.

• For the Update operation, if the data buffer is too short to contain the
fixed length portion of any record, Btrieve will not update the record.

• For the Create, Stat, and Create Supplemental Index operations, a
status 22 indicates that the data buffer is not long enough to contain all
the file and key specifications, and the alternate collating sequence
definition, if needed.

23 POSITION BLOCK LENGTH

(~ The position block parameter is not 128 bytes long.

2011Rev1.00 B-5

Btrieve Record Manager

24 PAGE SIZE ERROR

The page size must be a multiple of 512 bytes but must be no larger than
4096 bytes. During a CREATE operation, page size is the first file
specification Btrieve checks, and a status of 24 may indicate an invalid data
buffer.

25 CREATE YO ERROR

The filename specified could not be created. Possible causes are a full disk
directory, a full disk, or a write-protected disk. If you are creating a file over
an existing file, Btrieve can return a status code 25 because the existing file is
open or is flagged transactional.

26 NUMBER OF KEYS

For standard Btrieve files with a page size of 512 bytes, the number of key
segments for all key fields specified must be between 1 and 8. For larger page
sizes, the number of key segments for all key fields must be between 1 and
24. You must define at least one key without the null attribute. "

27 INVALID KEY POSITION

The key field position specified must not exceed the defined record length for
the file. Either the key position is greater than the record length or the key
position plus the key length exceeds the record length. For key-only files, the
key must begin in the first byte of the record (position 1).

28 INVALID RECORD LENGTH

The record length specified (plus overhead for duplicates) is greater than the
page size minus 6, or is less than 4 bytes long.

B-6 2011Revl.OO

/

(~)

Status Codes and Messages

29 INVALID KEY LENGTH

The key length specified must be greater than 0 and cannot exceed 255. The
length of a binary key must be even. Btrieve requires that each key page in
the file be large enough to hold at least eight keys.

If the file's page size is too small to accommodate eight occurrences of the
specified key length (plus overhead), either increase the file's page size or
decrease the key length.

30 NOTABTRIEVEFILE

The file name specified is not a valid Btrieve data file. Either the file was not
created by Btrieve or it was created by an earlier version ofBtrieve. Use the
program CONVERT4.EXE on the Btrieve Diskette to convert extended files
created by Btrieve v3.x to the current format.

Another possibility is that the first page of the file, which contains the File
Control Record, is damaged.

(~-", 31 FILE ALREADY EXTENDED

(

The file name specified is already extended. A file can be extended only once.

32 EXTEND I/O ERROR

The file cannot be extended. Possible causes are that the disk directory is full,
the disk is full, or the disk is write-protected.

34 INVALID EXTENSION NAME

The filename specified for the extended partition is not valid.

35 DIRECTORY ERROR

An error occurred while switching between the current directory and the
directory which contains the Btrieve file. Either the current directory or the
Btrieve file directory is invalid.

201 IRev 1.00 B-7

Btrieve Record Manager

36 TRANSACTION ERROR

A Begin Transaction operation cannot be performed because no transactions
were specified when BSERVERV AP was initialized.

37 TRANSACTION IS ACTIVE

A Begin Transaction was issued while another transaction was active at that
station. Transactions cannot be nested.

38 TRANSACTION CONTROL FILE I/O ERROR

An error occurred when the Record Manager tried to write to the transaction
control file. Possible causes are that the disk is full, the disk is
write-protected, or the transaction control file (which is created when the
Record Manager is loaded) has been deleted.

39 END/ABORT TRANSACTION ERROR

An End or Abort Transaction operation was issued without a corresponding
Begin Transaction operation.

40 TRANSACTION MAX FILES

An attempt was made to update more than the maximum number of files
allowed within a transaction. The maximum number of different files that
may be updated during a logical transaction is 12.

41 OPERATION NOT ALLOWED

Some operations are not allowed under certain operating conditions. For
example, Btrieve will return this status if you attempt to perform a Step,
Update, or Delete operation on a key-only file, or a Get operation on a
data-only file.

Also, certain operations are prohibited during transactions because they have
too great an effect on the pre-image file or on Btrieve's performance. These
operations include Close, Set or Clear Owner, Extend, Create Supplemental
Index, and Drop Supplemental Index. In addition, during a transaction you
can only open files in Read-only mode.

B-8 2011Rev1.00

/

(~'!

Status Codes and Messages

42 INCOMPLETE ACCELERATED ACCESS

An attempt was made to open a file that was previously accessed in
accelerated mode and never successfully closed. The file's integrity cannot be
ensured. Either use RECOVER to build a new file or write your own recovery
program that opens the file in recover mode and uses Step Direct to retrieve
the data records.

43 INVALID RECORD ADDRESS

The record address specified on a Get Direct is invalid. Either the address is
outside of the file's bounds, it is not on a record boundary within a data page,
or it is not on a data page. The 4-byte address you specify on Get Direct
should be one that was obtained by a Get Position operation.

44 NULL KEY PATH

An attempt has been made to use Get Direct to establish an access path for a
key whose value is null in the corresponding record. Btrieve cannot establish
positioning based on a null key value.

45 INCONSISTENT KEY FLAGS

The key flags specification on a Create operation is inconsistent. If a key has
multiple segments, the duplicate, modifiable, and null attributes should be
the same for each segment in the key.

46 ACCESS TO FILE DENIED

Your application opened a file in read-only mode and attempted to perform an
Update, Delete, or Insert on that file. Inconsistent files that are opened in
recover mode can be read but not updated. You should build a new file using
either the RECOVER utility or the Step Direct operation.

Another possible cause is that the owner name required for updates was not
specified correctly when your application opened the file.

2011Revl.OO B-9

Btrieve Record Manager

47 MAXIMUM OPEN FILES

When a file is opened in accelerated mode, the Record Manager reserves one
of its cache buffers for the file. The number offiles opened in accelerated
mode cannot exceed the number of buffers available in Btrieve's cache.
Btrieve always reserves five empty buffers for index manipulation.
Reconfigure the Record Manager with a smaller page size parameter to
allocate more buffers.

48 INVALID ALTERNATE SEQUENCE DEFINITION

Btrieve returns this status if the first byte of an alternate collating sequence
definition, the identification byte, does not contain the hexadecimal value AC.

49 KEY TYPE ERROR

You attempted to create a file or a supplemental index with an invalid
extended key type, or you attempted to assign an alternate collating sequence
to a binary key or key segment. You can only assign an alternate collating
sequence to a string, lstrip.g, or zstring type key.

Btrieve will also return this status if you defined a supplemental index
requiring an alternate collating sequence, and no alternate collating sequence
definition exists either in the file or in the key definition passed in the data
buffer.

50 OWNER ALREADY SET

An attempt has been made to perform a set owner operation on a file that
already has an owner. Use the clear owner operation to remove the previous
owner before setting a new one.

51 INVALID OWNER

There are two possible causes for this status code.

• If your application receives tl1is status code after a Set Owner operation,
the owner names specified in the key buffer and data buffer do not
match.

B-10 2011Revl.OO

/

/

c/

Status Codes and Messages

• If your application receives this status code after an Open operation, the
file you are opening has had an owner name assigned to it. Your
application must specify the correct owner name in the data buffer.

52 ERROR WRITING CACHE

While trying to make a cache buffer available, Btrieve attempted to write
data to a disk from a file that was previously opened in accelerated mode. The
operating system returned an 110 error during the write.

53 INVALID INTERFACE

An application attempted to access a file containing variable length records
with a language interface from Btrieve v3.15 or earlier. To access files with
variable length records, you must use a v4.xx interface.

54 VARIABLE PAGE ERROR

During a Step Direct operation Btrieve could not read all or part of the
variable length portion of a record. In this case, Btrieve returns as much data
as possible to your application. This error usually indicates file damage to one
or more pages in the file.

55 AUTOINCREMENT ERROR

The application attempted to specify either the segmented or duplicates
attribute for an autoincrement type key. An autoincrement key cannot be
part of another key, and cannot allow duplicates.

56 INCOMPLETE INDEX

A supplemental index is damaged. This can occur if a Create Supplemental
Index operation or a Drop Supplemental Index operation is interrupted and
does not run to completion. Perform a Drop Supplemental Index operation to
completely remove the index from the file.

2011Rev1.00 B-ll

Btrieve Record Manager

58 COMPRESSION BUFFER TOO SHORT

The application attempted to read or write a record that is longer than the
value you specified for the size ofthe compression buffer. Reconfigure
BSERVER, specifying a higher value for the "Maximum Compressed Record
Size" 0ption, and restart the network.

59 FILE ALREADY EXISTS

Btrieve will return this status for a Create operation if you specified -1 in the
key number parameter and the name of an existing file in the key buffer
parameter.

80 CONFLICT

The Update or Delete operation cannot be performed because the record has
been changed by another station since this station read it. Reread the record
to perform the operation.

81 LOCK ERROR

This error can result from anyone of three conditions:

• The Btrieve lock table is full. Specify a larger value for the locks
parameter of BSERVER.

• The lock function call to the operating system failed.

• You attempted to unlock one record that was locked with a multiple
record lock, and the record position stored in the data buffer did not
correspond with any record that was locked in that file.

82 LOST POSITION

When performing a Get Next or Get Previous on a key with duplicates, an
attempt has been made to retrieve a record that has been deleted or whose
key value has been modified by another station. Re-establish positioning
using a Get Equal or a Get Direct operation.

B-12 2011Revl.OO

/

'\

/'

Status Codes and Messages

83 READ OUTSIDE TRANSACTION

An attempt has been made to delete or update a record within a transaction
but the record was not read within the transaction. If you are going to update
or delete a record within a transaction, you must read the record within the
transaction to ensure you have first obtained exclusive access to the data.

84 RECORD IN USE

The application attempted to lock a record that is currently locked by another
handle, or the application attempted to access a file within a transaction
while another station held active record locks in that file.

85 FILE IN USE

The application attempted to open a file, lock a record, or access a record
while another handle holds the transaction lock on the file or has the file
open in accelerated mode.

86 FILE TABLE FULL

BSERVER's file table is full. Specify a larger number for the files parameter
for BSERVER.

87 HANDLE TABLE FULL

BSERVER's handle table is full. Specify a larger number for the handles
parameter for BSERVER. Another possibility is that NetWare cannot assign
a handle to the file.

88 INCOMPATIBLE MODE ERROR

The application attempted to open a file in an incompatible mode. If the first
handle to access a file opens it in accelerated mode, all others must open it in
accelerated mode. The opposite is true for opens made in non-accelerated
mode.

201 IRev 1.00 B-13

Btrieve Record Manager

90 REDmECTED DEVICE TABLE FULL

Either the redirection table or the server routing table is full. This error can
occur if you attach to additional servers or map to more drives after you have
loaded BREQUEST. Reload BREQUEST, specifying a larger number for the
IR or IS option.

This error can also occur if you are attached to 8 servers, and then unattach a
particular server and attach to a different server. Once a workstation has
attached to a server, BREQUEST will not remove its name from the server
table.

91 SERVER ERROR

BREQUEST cannot establish a session with the server. Either BSERVER has
not been started for the device controlling the requested file, or the server is
not active. Verify that BSERVER is active on the server to which the device
has been redirected, and that the server is active.

92 TRANSACTION TABLE FULL

The number of active transactions you specified when you loaded BSERVER
has been exceeded. Specify a larger number for the transactions parameter
for BSERVER.

93 INCOMPATIBLE LOCK TYPE

The application attempted to mix single record locks (+1001+200) and
multiple record locks (+3001+400) in the same file at the same time. All locks
of one type must be released before a lock of the other type can be executed.

94 PERMISSION ERROR

A user attempted to open or create a file in a directory where he or she does
not have those rights. Btrieve does not override the network privileges
assigned to users.

B-14 201 fRev1.00

/

Status Codes and Messages

95 SESSION NO LONGER VALID

A previously established session is no longer active due to an error either at
the workstation or the file server, or on the network. Verify that the file
server is still attached and then reload BREQUEST at the workstation.

96 COMMUNICATIONS ENVmONMENT ERROR

The SPX connection table is full. Reload SPX, specifying a higher value for
the connection table. Refer to the NetWare Supervisor Reference manual for
more information.

97 DATA MESSAGE TOO SMALL

The application attempted to read or write a record which is longer than the
value you specified with the record length parameter of BSERVER or the
data message option of BREQUEST. Determine the correct maximum record
length required by your application and reload the appropriate program,
specifying a larger value.

• For an Update, Insert, or Create operation, the application will receive
this error status if the data buffer length it specifies for the record
exceeds the length specified for either the ID option of BREQUEST or
record length parameter of BSERVER.

• For a Get, Step, or Stat operation, the application can receive this error
status if the value specified for the data message parameter is shorter
than the length of the data Btrieve returns, regardless of the data buffer
length specified in the program.

98 INTERNAL TRANSACTION ERROR

An error has occurred during an operation within a transaction. All Insert,
Update, and Delete operations since the last Begin Transaction operation
have been rolled back. You should issue an Abort Transaction operation (21)
to complete the rollback and exit the transaction.

201 /Rev 1.00 B-15

Btrieve Record Manager

BREQUEST STATUS CODES (OS/2)

BREQUEST.DLL can return the following run-time status codes at an OS/2
workstation.

2001 INSUFFICIENT MEMORY

BREQUEST cannot allocate enough memory for the parameters specified
with the REQPARMS environment variable. Either reduce the size of the /D:
option, or reduce the size of other memory resident routines loaded prior to
BREQUEST.

2002 PARAMETER INVALID OR OUT OF RANGE

One of the parameters specified with the REQPARMS environment variable
is either invalid (such as IP: instead of /D:) or the value specified for a
parameter is out of range. Check the SET REQPARMS statement to make
sure that it is correct.

2003 NO LOCAL ACCESS ALLOWED

The application attempted to access a file stored on a local drive. The version
of BTRCALLS.DLL installed at the workstation does not allow access to local
files.

B-16 2011Revl.OO

/

c

Status Codes and Messages

BREQUEST ERROR MESSAGES (DOS)

BREQUEST.EXE can return the following error messages when it loads at a
DOS workstation.

BSERVER NOT LOADED

The BSERVER program must be active at the server before BREQUEST can
access files at that machine.

TOO MANY FILE SERVERS ATTACHED

The maximum number of file servers to which a workstation can attach is
eight.

INCORRECT NETWARE VERSION

The NetWare shell for Advanced NetWare v2.lx or above must be installed at
the workstation.

INCORRECT PARAMETER

An illegal parameter was specified. Refer to the section on starting
BREQUEST for a list of valid parameters.

INSUFFICIENT MEMORY

BREQUEST cannot allocate enough memory for the parameters specified.
Make sure that the workstation has enough memory to load all the programs
it requires.

MUST HAVE DOS 2.00 OR GREATER

BREQUEST requires that DOS v2.00 or above be loaded at a DOS
workstation.

PROGRAM ALREADY LOADED

BREQUEST is already loaded into memory.

2011Rev1.00 B-17

Btrieve Record Manager

REDIRECTION LIST NOT LARGE ENOUGH

BREQUEST cannot store all the redirected devices in its redirection list.
Increase the value for the IR parameter.

SERVER ROUTING LIST IS NOT LARGE ENOUGH

The workstation is attached to more servers than were specified with the /S
start-up option. Reload BREQUEST, specifying a higher number for the /S
option.

SPX IS NOT LOADED

The NetWare SPX communications software must be loaded before an
application can access BREQUEST.

B-18 2011Rev1.00

'\

)

/

Status Codes and Messages

BSERVER AND BROUTER ERROR MESSAGES

If either BSERVER or BROUTER encounters an error during initialization, it
will display a message on the screen and will not load. You may receive the
following messages when the V APs load at the file server.

INSUFFICIENT MEMORY FOR PARAMETERS SPECIFIED

BSERVER cannot allocate the minimum number of buffers required. Reduce
the size of the page size option.

Another possibility is that your server does not have enough available
memory to load BSERVER at the requested size. You may need to add more
memory to your server.

UNABLE TO ACCESS FILE FOR TRANSACTION RECOVERY

One possibility is that Btrieve cannot open one of the files involved in an
incomplete transaction. VerifY that all files involved in the transaction are
online and restart the network.

Another cause for this message is that an I/O error occurred when Btrieve
attempted to read or write one of the files. In order to recover an incomplete
transaction, Btrieve must read and write the header record in each ofthe files
involved in the transaction. The file may have been damaged. Check for
media failure and replace all Btrieve files in the transaction with their most
recent backup.

UNABLE TO ALLOCATE BROUTER BUFFER MEMORY

BROUTER cannot allocate the amount of memory specified for the data
message length option. Use BSETUP to reconfigure and reinstall the Btrieve
V APs, specifYing a smaller value for the data message length.

2011Revl.OO B-19

Btrieve Record Manager

BUTIL ERROR MESSAGES

The BUTIL.EXE utility returns text messages if it encounters errors. The
error messages are printed to STDOUT. You can use the DOS redirection
symbol (>) to redirect them to a different device.

Most of the Butil error messages are self-explanatory. The messages listed
here are those that may require additional explanation.

ERROR ACCESSING ALTERNATE SEQUENCE FILE

Butil received an error while it was reading the alternate collating sequence
file you named with the "name=" keyword. This usually indicates an
unexpected end-of-file.

ERROR ACCESSING DESCRIPTION FILE.
EXPECTED KEYWORD keyword IN KEY DESCRIPTOR n

The description file contains a keyword or a description Butil does not
recognize, or a definition in your description file is inconsistent. All keywords
in the file must be spelled correctly, must be in lower case, and must appear
in the correct order. Refer to the section "Rules for Description Files" in
Chapter 4 for more information.

ERROR ACCESSING SEQUENTIAL FILE

Butil encountered an unexpected end-of-file on a read operation, or an error
occurred while reading from or writing to the sequential file.

IMPROPER COMMAND LINE

You entered an improper switch parameter (i.e., -P instead of -0) or the
command has too many parameters.

INVALID KEY TYPE

You specified an invalid key type in the description file.

B-20 2011Rev1.00

,
/

/

Status Codes and Messages

INVALID LOAD FILE FORMAT. END OF RECORD MARKER NOT
FOUND

Butil encountered an invalid record terminator in the sequential load file.
Butil expects a carriage return/line feed at the end of each record in a load
file. This error usually occurs because the length specified at the beginning of
the sequential record is incorrect.

SIZE FOR keytype TYPE IS INVALID

Certain key types have restrictions on their length. You specified an invalid
length for a key definition in the description file.

UNABLE TO CREATE/OPEN SEQUENTIAL FILE

Btrieve could not open the sequential file you specified for a LOAD operation.
Receiving this error during a SAVE or RECOVER operation indicates that
Btrieve could not create the sequential file you specified.

UNABLE TO OPEN ALTERNATE SEQUENCE FILE

Butil could not open the file you specified for the alternate collating sequence
on a CREATE operation. Make sure the file name you specified is correct.

UNABLE TO OPEN DESCRIPTION FILE

Butil could not locate a file with the name you specified for the description
file. If your description file is not in the current directory, you must specify a
pathname.

2011Revl.OO B-21

APPENDIXC:
PASCAL EXAMPLES

The following examples illustrate how to call Btrieve from a Pascal
application. A different example is presented for each Btrieve operation.

PASCAL ABORT TRANSACTION

In the following example, an application must insert a record into an order
header file and insert two records into an order detail file to record the sale of
a box of diskettes and a ribbon to one customer. If an error occurs on any of
the operations, the transaction is aborted so that the database remains
consistent.

type
ORDER_HDR = record

case integer of
1: (HDR_ORD_NUM

HDR_CUST
HDR_DATE

2: (ENTIRE
end;

ORDER_DET = record
case integer of

1: (DET_ORD_NUM
DET_PART
DET_QUAN

2: (ENTIRE
end;

var
DET_BUF
DET_KEY
DET_LEN
DET_POS
DUMY_BUF
DUMY_LEN
HDR_BUF
HDR_KEY
HDR_LEN
HDR_POS
STATUS

201 fRev 1.00

: ORDER_DET;
: string(2);
: integer;
: string(128);
: string(128);
: integer;
: ORDER_HDR;
: string(2);
: integer;
: string(128);
: integer;

integer;
integer;
string(6));
string(10));

integer;
integer;
integer);
string(6));

C-1

Btrieve Record Manager

begin
{ Begin the transaction.
STATUS:= BTRV (B_BEGIN, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);

if STATUS <> 0 then
begin

writeln (OUTPUT, 'Error beginning transaction.Status = " STATUS):
return;

end;
{ Insert the header record.
with HDR_BUF do

begin
HDR_ORD_NUM := 236;
HDR_CUST := 201;
HDR_DATE := '061583';

end;
HDR_LEN := sizeof (HDR_BUF);

{Order #236}
{Customer #201 }

{Date of sale}

STATUS:= BTRV (B_INSERT, HDR_POS, HDR_BUF.ENTIRE, HDR_LEN, HDR_KEY, 0);
if STATUS <> 0 then
begin

writeln (OUTPUT, 'Error inserting header record.Status =', STATUS);
STATUS:= BTRV (B_ABORT, DUMY_BUF, DUMY_BUF,DUMY_LEN, DUMY_BUF, 0);
return;

end;
{ Insert two detail records.
with DET_BUF do

begin
DET_ORD_NUM := 236;
DET_PART:= 1002;
DET_QUAN:= 1;

end;
DET_LEN := sizeof (DET_BUF);

}
{Insert the first detail record}

{Order #236}
{Diskettes are part #1 002}

{Purchased 1 box};

STATUS:= BTRV (B_INSERT, DET_POS, DET_BUF.ENTIRE, DET_LEN, DET_KEY, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error inserting detail record.Status = " STATUS);
STATUS:= BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);
return;

end;
with DET_BUF do

begin
DET_PART := 1024;
DET_QUAN:= 1;

end;

C-2

{Insert the second detail record}

{Ribbon is part #1 024}
{Purchased 1 ribbon};

2011Rev1.00

\

)

(-""

-- /

STATUS:= BTRV(B_INSERT, DET_POS, DET_BUF.ENTIRE, DET_LEN, DET_KEY, 0);
if STATUS <> 0 then
begin

writeln (OUTPUT, 'Error inserting detail record.Status = " STATUS);
STATUS:= BTRV(B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);
return;

end;
{ End the transaction.
STATUS:= BTRV (B_END, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);

if STATUS <> 0 then
begin

writeln (OUTPUT, 'Error ending transaction. Status =', STATUS);
return;

end;

PASCAL BEGIN TRANSACTION

See Abort Transaction and End Transaction.

PASCAL CLOSE

The following example illustrates the code required to close a Btrieve file from
Pascal.

var
BUF _LEN : integer;
DATA_BUF: string(SO);
KEY_BUF : string(30);
POS_BLOCK : string(12S);
STATUS : integer;

begin
STATUS := BTRV (B_CLOSE, POS_BLOCK, DATA_BUF, BUF _LEN, KEY _BUF, 0);
if STATUS <> 0 then writeln (OUTPUT, 'Btrieve status = " STATUS);
end.

2011Rev 1.00 C-3

Btrieve Record Manager

PASCAL CREATE

In the following example, an application creates a Btrieve file with two keys.
Key 0 is an integer key, 2-bytes long. Key 1 allows duplicates, is modifiable,
and consists of two segments. The first segment is a 2-byte string, to be sorted
in descending order, and the second is a zero terminated 30-byte string. The
records have a fixed length of 80.

const
B_CREATE = 14;
DUPLICATES =1;
MODIFIABLE = 2;
SEGMENTED = 16;
DESCENDING = 64;
EXTTYPE = 256;
BINTEGER = 1;
BSTRING =0;
BZSTRING = 11;

type
byte_type = 0 .. 255;
KEY_SPEC = record

KEY_paS
KEY_LEN
KEY_FLAGS
NOT_USED
KEY_RSV

end;
FILE_SPEC = record

case integer of
1: (REC_LEN

PAGE_SIZE
NDX_CNT
NOT_USED
VARIABLE
RESERVED
PRE_ALLOC
KEY_BUF

2: (SPEC_BUF
end;

var

integer;
integer;
integer;
string(4);
array [1 .. 61 of byte_type;

: integer;
: integer;
: integer;
: string(4);
: integer;
: string(2);
: integer;
: array [0 .. 21 of KEY_SPEC);
: integer);

BUF_LEN
FILE_BUF
FILE_NAME
POS_BLK
STATUS

: integer;

C-4

: FILE_SPEC;
: string 17;
: string(128);
: integer;

{ IBM Pascal word aligns}

2011Rev1.00

/
~,

Pascal Examples

begin
with FILE_BUF do

begin
REC_LEN := 80;
PAGE_SIZE := 1024;
VARIABLE := 0;
NDX_CNT:", 2;
PRE_ALLOC :'" 0;
KEY _BUF[O).KEY _POS :'" 1;
KEY_BUF[O).KEY_LEN :'" 2;
KEY_BUF[O).KEY_FLAGS:", EXTTYPE;
KEY_BUF[0).KEY_RSV[1) :'" BINTEGER;
KEY_BUF[1).KEY_POS:= 3;
KEY_BUF[1).KEY_LEN :'" 2;
KEY_BUF[1).KEY_FLAGS :'"

DUPLICATES + MODIFIABLE + SEGMENTED + EXTTYPE + DESCENDING;
KEY_BUF[1).KEY_RSV[1):= BSTRING;
KEY _BUF[2).KEY _POS := 5;
KEY_BUF[2).KEY_LEN := 30;
KEY_BUF[2).KEY_FLAGS:= DUPLICATES + MODIFIABLE + EXTIYPE;
KEY_BUF[2).KEY_RSV[1):= BZSTRING;

end;
FILE_NAME := '\DATA\CREATE.TST ';
BUF _LEN :'" sizeof (FILE_BUF);
STATUS:= BTRV (B_CREATE, POS_BLK, FILE_BUF.sPEC_BUF, BUF_LEN, FILE_NAME, 0);
if STATUS <> 0

then
writeln (OUTPUT, 'Error creating file. Status = ',STATUS)

else
writeln (OUTPUT, 'File created successfully.');

2011Revl.OO C-5

Btrieve Record Manager

PASCALCREATESUPPLEMENTALINDEX
In the following example, an application adds an index to a Btrieve file. The
first segment of the key is a lO-byte string. It allows duplicates and is)
modifiable. The second segment is a 2-byte integer.

const
B_CREIDX = 31;
DUPLICATES = 1;
MODIFIABLE = 2;
SEGMENTED = 16;
EXTIYPE = 256;
BINTEGER = 1 ;
BSTRING =0;

type
0 .. 255;
record

: integer;
: integer;
: integer;
: string(4);

byte_type
KEY_SPEC =

KEY_POS
KEY_LEN
KEY_FLAGS
NOT_USED
KEY_RSV : array [1 .. 61 of byte_type; { IBM Pascal word aligns }

end;
ALL_KEY _SPEC = record

case integer of
1: (KEY_BUF : array [0 .. 11 of KEY_SPEC);
2: (SPEC_BUF : string (32));

end;
var

BUF_LEN
AKEY_BUF
FILE_NAME
POS_BLK
DUMY
STATUS

begin
BUF _LEN := 0;

: integer;
: ALL_KEY_SPEC;
: string (17);
: string (12S);
: string (SO);
: integer;

FILE_NAME := '\DATA\CREATE.TST ';
STATUS := BTRV (B_OPEN, POS_BLK, DUMY, BUF _LEN, FILE_NAME, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Error opening file. Status =', STATUS);

C-6 2011Revl.OO

/

Pascal Examples

with AKEY_BUF do
begin

end

KEY_BUF[O).KEY_POS:= 40;
KEY_BUF[O).KEY_lEN := 10;
KEY_BUF[O).KEY_FLAGS:= DUPLICATES + MODIFIABLE + SEGMENTED + EXTTYPE;
KEY_BUF[O).KEY_TYPE := BSTRING;
KEY_BUF(1).KEY_POS := 50;
KEY_BUF(1).KEY_lEN := 2;
KEY_BUF(1).KEY_FLAGS:= DUPLICATES + MODIFIABLE + EXTIYPE;
KEY_BUF(1).KEY_TYPE:= BINTEGER;

BUF _lEN := sizeof (AKEY _BUF);
STATUS := BTRV (B_CREIDX, POS_BlK, AKEY_BUF.SPEC_BUF, BUF _lEN, DUMY, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Error adding supplemental index to file.Status = " STATUS)
else

writeln (OUTPUT,'Supplemental index added successfully.');

PASCAL DELETE

In the following example, a Pascal application for an airline company uses the
Delete operation to reflect the fact that a passenger has cancelled a flight
reservation.

type
RESERVATION = record

case integer of
1 : (FLIGHT_NO

PASSENGER
AMOUNT_PAID
ISSUE_DATE

2: (ENTIRE
end;

var

string(3);
string(15);
string(6);
string(6));
string(32));

BUF_lEN
DATA_BUF
KEY_BUF
POS_BlOCK
STATUS

integer;
RESERVATION;
string(15);
string(128);
integer;

2011Rev 1.00 C-7

Btrieve Record Manager

begin
BUF _LEN := sizeof (DATA_BUF);
KEY_BUF:= 'Martin, Dave H.';
STATUS:= BTRV (B_GET_EQ, POS_BLOCK, DATA_BUF.ENTIRE, BUF_LEN, KEY_BUF, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Btrieve status =', STATUS);
retum;

end;
STATUS := BTRV (B_DELETE, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, KEY_BUF, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Btrieve status =', STATUS);

After the Delete operation, Btrieve's current position in the file is as follows:

326 Crawley, Joe J. 179.85 061582

711 Howell, Susan 259.40 052382 .. Previous record

326 Peters, John H. 445.80 061782 .. Next record

840 White, Rosemary 397.00 060282

...
Access Path

C-8 2011Revl.OO

./

Pascal Examples

PASCAL DROP SUPPLEMENTAL INDEX

(--. -, In the following example, an application drops a supplemental index in a
j Btrieve file because the file no longer needs to be accessed by that index. The

index number is 3.

const
B_DROP =32;
INV_KNUM=6;

var
BUF_lEN
POS_BlK
STATUS
DUMYDB

begin
BUF _lEN := 1 ;

integer;
string(128);
integer;
string(l);

STATUS := BTRV (B_DROP, POS_BlK, DUMYDB, BUF _lEN, DUMYDB, 3);
if STATUS = INV_KNUM then

writeln (OUTPUT, 'Key number to drop is not a supplemental index.')
else if STATUS <> 0 then

writeln (OUTPUT, 'Error dropping supplemental index.Status =', STATUS);

2011Revl.OO C-9

Btrieve Record Manager
-------....;..,-----------------~--.. ----

PASCAL END TRANSACTION

The following application uses transaction control to ensure that one account
in a ledger file is not debited unless another is also credited.

type
LEDGER_KEY = record

case integer of
1 : (KEY_VAL : integer);
2: (KEY_STR: string(2»;

end;
LEDGER_REC = record

case integer of
1: (ACCT_ID

DESC
BALANCE

2: (ENTIRE

integer;
string(40);
real);
string(46»;

end;
var

BUF_LEN
DATA_BUF
DUMY_BUF
DUMY_LEN
KEY_BUF
POS_BLK
STATUS

begin

integer;
LEDGER_REC;
string(128);
integer;
LEDGER_KEY;
string(128);
integer;

{ Begin the transaction.
STATUS:= BTRV (B_BEGIN, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);

if STATUS <> 0 then
begin

writeln (OUTPUT, 'Error beginning transaction.Status = ',STATUS);return;
end;

{ Retrieve and update the cash account record.
KEY_BUF.KEY_VAL:= 101;

}
{Cash is account #101}

BUF _LEN:= sizeof (DATA_BUF);
STATUS := BTRV (B_GET_EQ, POS_BLK, DATA_BUF.ENTIRE, BUF _LEN,

KEY_BUF.KEY_STR,O);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error retrieving record. Status = ',STATUS);
STATUS := BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_LEN, DUMY_BUF, 0);
return;

end;

C-lO 201lRevl.OO

\

/

()

(/.

Pascal Examples

DATA_BUF.BALANCE := DATA_BUF.BALANCE - 250;
STATUS := BTRV (B_UPDATE, POS_BlK, DATA_BUF.ENTIRE, BUF _lEN,

KEY_BUF.KEY_STR,O);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error updating record. Status =', STATUS);
STATUS:= BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_lEN, DUMY_BUF, 0);
return;

end;
{ Retrieve and update the office expense account record
KEY_BUF.KEY_VAl:= 511; {Office expense is account#511}
STATUS:= BTRV (B_GET_EQ, POS_BlK, DATA_BUF.ENTIRE, BUF_lEN,

KEY_BUF.KEY_STR,O);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error retrieving record. Status = ',STATUS);
STATUS:= BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_lEN, DUMY_BUF, 0);
return;

end;
DATA_BUF.BALANCE := DATA_BUF.BALANCE + 250;
STATUS := BTRV (B_UPDATE, POS_BlK, DATA_BUF.ENTIRE, BUF _lEN,

KEY_BUF.KEY_STR,O);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error updating record. Status = " STATUS);
STATUS := BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, DUMY_lEN, DUMY_BUF, 0);
return;

end;
{ End the transaction.
STATUS:= BTRV (B_END, DUMY_BUF, DUMY_BUF, DUMY_lEN, DUMY_BUF,O);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error ending transaction.Status =', STATUS);
return;

end.

2011Revl.OO C-ll

Btrieve Record Manager

PASCAL EXTEND

The following example illustrates how an application might use the Extend
operation to expand a Btrieve file in order to gain more disk space.

type
ADDRESS_REC = record

case integer of
{Structure of address file entry}

1: (NAME
STREET
CITY
STATE
ZIP

string(30);
string(30);
string(30);
string(2);
string(5));
string(98));

var

2: (ENTIRE
end;

BUF _LEN
DATA_BUF
EXT_NAME
FILE_NAME
KEY_BUF
POS_BLOCK
STATUS

begin

integer;
ADDRESS_REC;
string(14);
string(14);
string(30);
string(128);
integer;

BUF _LEN := sizeof (DATA_BUF);
FILE_NAME := 'ADDRESS.BTR ';
STATUS := BTRV (B_OPEN, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, FILE_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error opening file. Status = ',STATUS);
return;

end;
EXT_NAME := 'B:\ADDRESS.EXT ';
STATUS:= BTRV (B_EXTEND, POS_BLOCK, DATA_BUF.ENTIRE, BUF_LEN, EXT_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error extending file. Status = ',STATUS);
return;

end;
STATUS := BTRV (B_CLOSE, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, KEY_BUF, 0);

STATUS := BTRV (B_OPEN, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, FILE_NAME, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reopening the file. Status =', STATUS)
else

writeln (OUTPUT, 'File reopened successfully.');

C-12 2011Rev1.00

/

/'

()

Pascal Examples

PASCAL GET DIRECT

The following example illustrates how an application can use the Get Direct
operation to sort the records in a Btrieve file by an external index. (See the
description of Get Position for an example of how to build the external index
file.)

type
ADDR_REC = record

case integer of

type

1: (NAME
STREET
CITY
STATE
ZIP

2: (REC_POS
3: (ENTIRE

end;

INDX_REC = record
case integer of

1: (INDX_POS
INDX_STATE

2: (ENTIRE
end;

string(20);
string(20);
string(10);
string(2);
string(S»;
string(4»;
string(S7»;

string(4);
string(2»;
string(6»;

var
FILE_DATA
FILE_LEN
FILE_POS
INDX_DATA
INDX_LEN
INDX_POS
NAME_KEY
STATE_KEY
STATUS

ADDR_REC;
integer;
string(128);
INDX_REC;
integer;
string(128);
string(20);
string(2);
integer;

201/Revl.OO C-13

Btrieve Record Manager

begin
FILE_LEN:= sizeof (FILE_DATA);
INDX_LEN:= sizeof (INDX_DATA);
STATUS := BTRV (B_GET_LOW, INDX_POS, INDX_DATA.ENTIRE, INDX_LEN, STATE_KEY, 0);
while STATUS <> EOF _ERR do {Read until end of file}

begin
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error reading file. Status = " STATUS);
return;

end;
FILE_DATA.REC_POS := INDX_DATA.lNDX_POS;
STATUS := BTRV (B_GET_DIRECT, FILE_POS, FILE_DATA.ENTIRE, FILE_LEN,

NAME_KEY, 0);
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error reading record. Status =', STATUS);
return;

end;
with FILE_DATA do

end;

C-14

writeln (OUTPUT, NAME, STREET, CITY, STATE,ZIP);
STATUS := BTRV (B_GET_NEXT, INDX_POS, INDX_DATA.ENTIRE,

INDX_LEN, STATE_KEY, 0);

2011Rev1.00

J

()

Pascal Examples

PASCAL GET DIRECTORY

The following example illustrates how an application can use the Get and Set
Directory operations to retrieve the current directory at the beginning of the
program, and to restore it before terminating.

var
DIR_PATH
DUMY_BUF
DUMY_LEN
STATUS

begin

string(64);
string(128);
integer;
integer;

STATUS:= BTRV (B_GET_DIR, DUMY_BUF, DUMY_BUF, DUMY_LEN, DIR_PATH, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error getting current dir. Status =', STATUS);
return;

end;
STATUS:= BTRV (B_SET_DIR, DUMY_BUF, DUMY_BUF, DUMY_LEN, DIR_PATH, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error restoring current dir. Status =', STATUS);
return;

end;

PASCAL GET EQUAL

In the following example, part number is a key in an inventory file. The
application program retrieves the record containing inventory information for
a particular part number with a single Get Equal operation, in order to
determine whether or not to reorder that part number.

type
INVENTORY = record

case integer of
1: (PART_NUM

PART_DESC
QUAN_ON_HAND
REORDER_POINT:
REORDER_QUAN :

2: (ENTIRE
end;

2011Rev1.00

string(5);
string(10);
string(3);
string(3);
string(3));
string(28));

C-15

Btrieve Record Manager

var
DATA_BUF:
DATA_lEN:
KEY_BUF
POS_BlK
STATUS

begin

INVENTORY;
integer;
string(5);
string(128);
integer;

DATA_lEN:= sizeof (DATA_BUF);
KEY_BUF := '03426'; {Part number to find}
STATUS := BTRV (B_GET_EQ, POS_BlK, DATA_BUF.ENTIRE, DATA_lEN, KEY_BUF, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error reading file. Status = ',STATUS);
return;

end;
with DATA_BUF do

if QUAN_ON_HAND < REORDER_POINT then
writeln (OUTPUT, 'Time to order ',REORDER_QUAN:units of', PART_DESC);

The table below shows Btrieve's current position in the file after the Get
Equal operation,

03419 Pliers 003 010 015 .. Previous record

03426 Hammer 010 003 005 .. Current record

03430 Saw 005 002 003 .. Next record

03560 Wrench 008 005 005

Access Path

C-16 2011Revl.OO

i
/

"
. ./

Pascal Examples

PASCAL GET FIRST

The following example illustrates how an application might use the Get First
operation to find the youngest employee in the company. Age is key number 2
in the employee file.

type
EMP _REC = record

case integer of
1: (NAME

AGE
HIRE_DATE

2:(ENTIRE
end;

var

string(20);
string(2);
string(6»;
string(28»;

DATA_BUF
DATA_LEN
KEY_BUF
POS_BLOCK
STATUS

EMP_REC;
integer;
string(2);
string(128);
integer;

begin
DATA_LEN:= sizeof (DATA_BUF);
STATUS := BTRV (B_GET_FIRST, POS_BLOCK, DATA_BUF.ENTIRE, DATA_LEN, KEY_BUF, 2);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reading file. Status =', STATUS)
else

writeln (OUTPUT, 'Youngest employee is " DATA_BUF.NAME);

After the Get First operation, Btrieve's current position in the file is as
follows:

Brook, Wendy W.

Ross, John L.

Blanid, Suzanne M.

Brandes, William J.

2011Rev1.00

18

20

25

40

071582

121081

050281

031576

.. Previous Record

.. Current Record

.. Next Record

+L.. ___ -- Access Path

C-17

Btrieve Record Manager

PASCAL GET GREATER

The following example indicates how a Pascal application for an insurance
company might use the Get Greater operation to determine which
policyholders have more than 3 traffic violations. The number of traffic
violations is key 2 in the policy file.

type
POLICY = record

case integer of
1: (POLlCY_NUM:

NAME
EFFECT_DATE:
VIOLATIONS

2: (ENTIRE
end;

var
DATA_BUF
DATA_LEN
KEY_BUF
POS_BLOCK
STATUS

begin

POLICY;
integer;
string(2);
string(128);
integer;

string(10);
string(20);
string(6);
string(2));
string(38));

DATA_LEN:= sizeof (DATA_BUF);
KEY_BUF := '03'; {Start search above 3}
STATUS := BTRV (B_GET_GT, POS_BLOCK, DATA_BUF.ENTIRE, DATA_LEN, KEY_BUF, 2);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error reading file. Status = ',STATUS);
return;

end;
while STATUS <> EOF _ERR do

begin
{Read until end of file}

writeln (OUTPUT, DATA_BUF.NAME, 'has', DATA_BUF.VIOLATIONS:traffic violations');

'\

)

/

STATUS := BTRV (B_GET_NEXT, POS_BLOCK, DATA_BUF.ENTIRE, (""
DATA_LEN, KEY_BUF,2);

if (STATUS <> 0) and (STATUS <> EOF _ERR) then
writeln (OUTPUT, 'Error reading file. Status =', STATUS);

end;

C·18 201IRev1.00

(

Pascal Examples

PASCAL GET GREATER OR EQUAL

If the date of a sale is a key in an invoice file, an application might use the
Get Greater Or Equal operation to retrieve the invoice record for the first sale
made in May, 1982.

type
INVOICE = record

case integer of
1: (INV_NUM

DATE_OF _SALE
CUST_NUM
TOTAL_PRICE

var

2: (ALL
end;

DATA_BUF
DATA_LEN
KEY_BUF
POS_BLOCK
STATUS

begin

INVOICE;
integer;
string(6);
string(128);
integer;

DATA_LEN:= sizeof (DATA_BUF);

string(S);
string(6);
string(S);
string (8));
string(26));

KEY _BUF := '050182'; {Start search at May 1, 1982}
STATUS:= BTRV (B_GET_GE, POS_BLOCK, DATA_BUF.ALL, DATA_LEN, KEY_BUF, 1);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reading file. Status =', STATUS)
else

writeln (OUTPUT, 'First sale in May was to', DATA_BUF.CUST_NUM,'for',
DATA_BUF.TOTAL_PRICE);

After the Get Greater Or Equal Operation, Btrieve's current position in the
file is as follows:

03110 041582

03111 042882

03112 042882

03113 050282

03114 050282

03115 051682

2011Rev 1.00

11315 00184.00

34800 00096.00

51428 00124.56

62541 00036.45

14367 00098.72

15699 00575.99

.. Previous record

.. Current record

.. Next record

Access Path

C-19

Btrieve Record Manager

PASCAL GET LAST

The following example illustrates how an application might use the Get Last
operation to determine which employee had the highest commission last
month.

type
EMP _REC = record

var

case integer of
1: (EMP_NUM

EMP_NAME
EMP_DEPT
EMP_TOT_COM
EMP _CUR_COM

2: (ENTIRE
end;

BUF_LEN
DATA_BUF
KEY _BUF
POS __ BLOCK
STATUS

integer;
EMP_REC;
string(6);
string(128);
int~ger;

begin
BUF _LEN:= sizeof (DATA_BUF);

string(6);
string(20);
string(2);
string(6);
string(6» ;
string(40»;

STATUS:= BTRV (B_GET_LAST, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, KEY_BUF, 1);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reading file. Status =', STATUS)
else

writeln (OUTPUT, 'Employee with highest commissions last month was', DATA_BUF.EMP _NAME);

After the Get Last operation, Btrieve's current positioning in the file is as
follows:

704904 Brook, WendyW.

831469 RO$$, John L.

876577 Blanid, Kathleen M.

528630 Brandes, Maureen R.

C-20

Al

A5

A3

A5

110.95

240.80

562.75

935.45

Access Path

.. Previous Record

.. Current Record

.. Next Record

2011Revl.OO

\

/

/'

(~/\

Pascal Examples

PASCAL GET LESS THAN

The following Pascal example indicates how an application may use Get Less
Than, followed by Get Previous, to find the names of all customers whose
magazine subscriptions have less than three issues left before they run out.
The number of issues remaining is key 2 in the subscription file.

type
SUBSCRIPTION = record

case integer of

var

1: (CUST_NAME
DATE_SUBSCRIBED
DATE_PAID
ISSUES_PURCH
ISSUES_REMAIN

2: (ENTIRE
end;

BUF_LEN
DATA_BUF
KEY_BUF
POS_BLOCK
STATUS

integer;
SUBSCRIPTION;
string(3);
string(128);
integer;

begin
BUF _LEN := sizeof (DATA_BUF);

: string(20);
: string(6);
: string(6);
: string(3);
: string(3));
: string(40));

KEY_BUF := '003'; {Start search below 3}
STATUS := BTRV (B_GET_LT, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, KEY_BUF, 2);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error reading file. Status = ',STATUS);
return;

end;
while STATUS <> EOF _ERR do

begin
{Read until start of file}

writeln (OUTPUT, 'Send reorder form to', DATA_BUF.CUST_NAME);
STATUS := BTRV (B_GET_PREV, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN,

KEY_BUF,2);

end;

if (STATUS <> 0) and (STATUS <> EOF _ERR) then
begin

writeln (OUTPUT, 'Error reading file. Status =', STATUS);
return;

end;

2011Revl.OO C-21

Btrieve Record Manager

PASCAL GET LESS THAN OR EQUAL

In the following example, an application uses the Get Less Than Or Equal "-
operation to retrieve the first house that falls within a prospective customer's ./
price limit of $110,000.

type
HOME = record

case integer of
1: (PRICE

ADDRESS
SQUARE_FEET
YEAR_BUILT

var

2: (ALL
end;

DATA_BUF
DAT~LEN
POS_BLOCK
PRICE_KEY
STATUS

begin

HOME;
integer;
string(128);
string(7);
integer;

DATA_LEN := sizeof (DATA.J3UF);

string(7);
string(20);
string(6);
string(4));
string(38));

PRICE_KEY := '0110000·; {Start search at 110,000}
STATUS:= BTRV (B_GET_LE, POS_BLOCK, DATA_BUF.ALL, DATA_LEN, PRICE_KEY, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Error reading file. Status =', STATUS)
else

writeln (OUTPUT, 'The home at', DATA_BUF.ADDRESS,'selis for', DATA_BUF.PRICE);

After the Get Less Than or Equal operation, Btrieve's current position is as
follows:

0050000 330N.31st

0055000 11132 Maple Ave.

0070000 624 Church Street

0105000 3517 N. Lakes Avenue

0220000 4500 Oceanfront Ave.

Access Path ~

C-22

002200 1960

002000 1965

002300 1968

002500 1975

003000 1980

.. Previous Record

.. Current Record

.. Next Record

2011Revl.OO

Pascal Examples

PASCAL GET NEXT

In the following example, an application uses a Get Next operation to
generate a set of mailing labels sorted according to zip code. The zip code
(ZIP) is key 1 in the file.

type
ADDRESS_REC = record

var

case integer of
1: (NAME

STREET
CITY
STATE
ZIP

2: (ENTIRE
end;

string(20);
string(20);
string(10);
string(2);
string(5));
string(58));

DATA_BUF
DATA_LEN
POS_BLOCK
PRINTER
STATUS
ZIP_KEY

ADDRESS_REC;
integer;
string(128);
text;
integer;
string(5);

begin
ASSIGN (PRINTER,'LPT1'); {Initialize output variable for printer}
REWRITE (PRINTER);
DATA_LEN:= sizeof (DATA_BUF);
STATUS := BTRV (B_GET_FIRST, POS_BLOCK, DATA_BUF.ENTIRE, DATA_LEN, ZIP_KEY, 1);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error reading address file. Status =', STATUS);
return;

end;
with DATA_BUF do

while STATUS <> EOF _ERR do {Read until end of file}
begin

page (PRINTER); {Start new label}
writeln (PRINTER, NAME); {Print name}
writeln (PRINTER, STREET); {Print street}
writeln (PRINTER, CITY,', ',STATE,' ',ZIP); {Print city and state}
STATUS:=BTRV (B_GET_NEXT, POS_BLOCK, DATA_BUF.ENTIRE,

DATA_LEN, ZIP_KEY, 1);
if (STATUS <> 0) and (STATUS <> EOF _ERR) then

begin
writeln (OUTPUT,'Error reading address file.Status =', STATUS);
return;

end;
end;

2011Revl.OO C-23

Btrieve Record Manager

PASCAL GET POSITION

The following example illustrates how Get Position can be used to construct
an external index for an existing Btrieve file. Once an external index is /
created, the application can read the external index file from lowest to
highest and use Get Direct to sort the records in a Btrieve file by some field
that was not originally defined as a key field.

type
ADDR_REC = record

case integer of

type

1: (NAME
STREET
CITY
STATE
ZIP

2: (REC_POS:
3: (ENTIRE

end;

INDX_REC = record
case integer of

1: (INDX_POS
INDX_STATE

2: (ENTIRE
end;

string(20);
string(20);
string(10);
string(2);
string(S»;
string(4»;
string(S7»;

string(4);
string(2»;
string(6»;

var
FILE_DATA
FILE_LEN
FILE_POS
INDX_DATA
INDX_LEN
INDX_POS
NAME_KEY
STATE_KEY
STATUS

ADDR_REC;
integer;
string(128);
INDX_REC;
integer;
string(128);
string(20);
string(2);
integer;

C-24 201IRev1.00

'\

/

Pascal Examples

begin
FILE_LEN:=sizeof (FILE_DATA);
INDX_LEN:=sizeof (INDX_DATA);
STATUS := BTRV (B_GET_FIRST, FILE_POS, FILE_DATA.ENTIRE, FILE_LEN, NAME_KEY, 0);
while STATUS <> EOF _ERR do {Read until end of file}

begin
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error reading file. Status = " STATUS);
return;

end;
INDX_DATAINDX_STATE := FILE_DATA.STATE;
STATUS := BTRV (B_GET_POS, FILE_POS, FILE_DATAENTIRE, FILE_LEN,

NAME_KEY, 0);
INDX_DATA.INDX_POS := FILE_DATAREC_POS;
STATUS:= BTRV (B_INSERT, INDX_POS, INDX_DATAENTIRE, INDX_LEN,

STATE_KEY, 0);
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error inserting record.Status = " STATUS);
return;

end;
STATUS := BTRV (B_GET_NEXT, FILE_POS, FILE_DATA.ENTIRE, FILE_LEN,

NAME_KEY, 0);
end;

2011Rev1.00 C-25

Btrieve Record Manager

PASCAL GET PREVIOUS

The following example illustrates how an application can use Get Previous to
list corporations and their total sales dollars for the year, beginning with the)
corporation having the highest sales and continuing in descending order of
sales dollars. Total sales is key number 1 in the company file.

type
COMPANY _REC = record

case integer of
1: (NAME

TOTAL_SALES:
2: (ALL

string(30);
string(10»;
string(40»;

end;

var
DATA_BUF
DATA_LEN
POS_BLOCK
SALES_KEY
STATUS

begin

COMPANY_REC;
integer;
string(128);
string(10);
integer;

DATA_LEN:= sizeof (DATA_BUF); /
STATUS := BTRV (B_GET_LAST, POS_BLOCK, DATA_BUF.ALL, DATA_LEN, SALES_KEY, 1);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error reading file. Status = ',STATUS);
return;

end;
while STATUS <> EOF _ERR do {Read until end of file}

begin
writeln (OUTPUT, DATA_BUF.NAME, DATA_BUF.TOTAL_SALES);
STATUS := BTRV (B_GET_PREV, POS_BLOCK, DATA_BUF.ALL, DATA_LEN,

SALES_KEY, 1);
if (STATUS <> 0) and (STATUS <> EOF _ERR) then

begin

end;

C-26

writeln (OUTPUT, 'Error reading file. Status =', STATUS);
return;

end;

20ilRevi.OO

(j

(

PASCAL INSERT

The following example shows how an application might use the Insert
operation to add a new employee to the employee file.

type
EMP _REC = record

case integer of
1: (NAME

HIRE_DATE
ANNUAL_SAL

2: (ENTIRE
end;

var
DATA_BUF
DATA_LEN
KEY_BUF
POS_BLOCK
STATUS

begin
with DATA_BUF do

begin

EMP_REC;
integer;
string(2O);
string(128);
integer;

NAME := 'Jones, Mary E. ';
HIRE_DATE:= '120882';
ANNUAL_SAL := '020000';

end;
DATA_LEN:= sizeof(DATA_BUF);

string(20);
string(6);
string(6));
string(32));

{Initialize data record}

STATUS := BTRV (B_INSERT, POS_BLOCK, DATA_BUF.ENTIRE, DATA_LEN, KEY_BUF, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Btrieve status =', STATUS);

After an Insert operation, Btrieve's current position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L

Access Path ----"'+

2011Rev1.00

150781

010581

120882

100182

030000

055000

020000

040000

.. Previous record

.. Current record

.. Next record

C-27

Btrieve Record Manager

PASCALOPEN

The following example illustrates the code required to open a Btrieve file from
Pascal.

var
BUF_LEN
DATA_BUF
FILE_NAME
POS_BLOCK
STATUS

begin

integer;
string(92);
string(20);
string(128);
integer;

FILE_NAME := 'C:\DATA\EMPLOYE.BTR ';
STATUS := BTRV (B_OPEN, POS_BLOCK, DATA_BUF, BUF _LEN, FILE_NAME, 0);
if STATUS <> 0 then

writeln (OUTPUT, 'Btrieve status =', STATUS);
end;

C-28 2011Revl.OO

/

()

(

Pascal Examples

PASCAL SET DIRECTORY

In the following example, an application sets the current directory before
performing an Open operation.

type
ADDRESS_REC = record

case integer of
1: (NAME

STREET
CITY
STATE
ZIP

string(30);
string(30);
string(30);
string(2);
string(5));
string(98)); 2: (ENTIRE

end;
var

BUF_LEN
DATA_BUF
DIR_PATH
FILE_NAME
KEY_BUF
POS_BLOCK
STATUS

begin

integer;
ADDRESS_REC;
string(6);
string(14);
string(30);
string(128);
integer;

BUF _LEN := sizeof(DATA_BUF);
DIR_PATH := '\DATA ';
DIR_PATH[6] := chr(O);

{Structure of address file entry}

STATUS := BTRV (B_SET_DIR, POS_BLOCK, DATA_BUF.ENTIRE, BUF _LEN, DIR_PATH, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Unable to set current directory.Status = " STATUS);
return;

end;
FILE_NAME := 'ADDRESS.BTR ';
STATUS:= BTRV (B_OPEN, POS_BLOCK, DATA_BUF.ENTIRE, BUF_LEN, FILE_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error opening file. Status =', STATUS);
return;

end;

2011Rev1.00 C-29

Btrieve Record Manager

PASCALSTAT

In the following example, an application uses the Stat and Create operations
to empty a Btrieve file.

type
byte_type 0 .. 255;
KEY_SPEC = record

KEY_POS
KEY_LEN
KEY_FLAGS
NOT_USED
KEY_RSV

end;
FILE_SPEC = record

case integer of
1: (REC_LEN

integer;
integer;
integer;
string(4);
array [1..6] of byte_type;

PAGE_SIZE
NDX_CNT
NOT_USED
VARIABLE
RESERVED
PRE_ALLOC
KEY_BUF

integer;
integer;
integer;
string(4);
integer;
string(2);
integer;
array [0 .. 2] of KEY_SPEC);
integer); 2: (SPEC_BUF

end;

var
DATA_BUF
DATA_BUF_LEN
FILE_BUF
FILE_BUF _LEN
FILE_NAME
KEY_BUF
POS_BLK
STATUS

begin

string(44);
integer;
FILE_SPEC;
integer;
string(14);
string(64);
string(128);
integer;

DATA_BUF _LEN := sizeof(DATA_BUF);
FILE_BUF _LEN := sizeof(FILE_BUF);
FILE_NAME := 'LEDGER.BTR ';

{ IBM Pascal word aligns}

STATUS := BTRV (B_OPEN, POS_BLK, DATA_BUF, DATA_BUF _LEN, FILE_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error opening file. Status = "STATUS);
return;

end;

C-30 2011Rev1.00

/

Pascal Examples

(J
STATUS := BTRV (B_STAT, POS_BlK, FllE_BUF.SPEC_BUF, FllE_BUF _lEN, KEY_BUF, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error retrieving file stats. Status = " STATUS);
return;

end;
STATUS := BTRV (B_ClOSE, POS_BlK, DATA_BUF, DATA_BUF _lEN, FilE_NAME, 0);
if STATUS <> 0 then

begin
writeln (OUTPUT, 'Error closing file. Status = ',STATUS);
return;

end;
FllE_BUF _lEN := sizeof(FllE_BUF);
STATUS := BTRV (B_CREATE, POS_BlK, FllE_BUF.SPEC_BUF, FllE_BUF _lEN,

FllE_NAME,O);
if STATUS <> 0 then

writeln (OUTPUT, 'Error recreating file. Status =', STATUS)
else

writeln (OUTPUT, 'File emptied successfully.');

(~/' PASCAL STEP FIRST
See Step Next.

PASCAL STEP LAST
See Step Previous.

2011Rev1.00 C-31

Btrieve Record Manager

PASCAL STEP NEXT

The following example illustrates how an application might use the Step First
and Step Next operations to recover a file whose indexes have been damaged
by a system failure.

type
EMP _REC = record

case integer of
1: (NUM

NAME
ADDR

3: (ENTIRE
end;

var
BUF_LEN
OLD_BUF
OLD_KEY
OLD_p~S

NEW_BUF:
NEW_KEY:
NEW_POS:
STATUS

begin

integer;
EMP_REC;
string(6);
string(128);
EMP_REC;
string(6);
string(128);
integer;

string(6);
string(30);
string(50));
string(86));

BUF _LEN:= sizeof(OLD_BUF);
STATUS := BTRV (B_STEP _FST, OLD_POS, OLD_BUF.ENTIRE, BUF _LEN, OLD_KEY, 0);
while STATUS <> EOF _ERR do {Read until end of file}

begin
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error reading file. Status =', STATUS);
return;

end;
NEW_BUF.NUM := OLD_BUF.NUM;
NEW_BUF.NAME := OLD_BUF.NAME;
NEW_BUF.ADDR := OLD_BUF.ADDR;
STATUS := BTRV (B_INSERT, NEW_POS, NEW_BUF.ENTIRE, BUF _LEN,

NEW_KEY, 0);
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error inserting record.Status =', STATUS);
return;

end;
STATUS := BTRV (B_STEP _NXT, OLD_p~S, OLD_BUF.ENTIRE, BUF _LEN,

OLD_KEY, 0);
end;

C-32 201/Revl.OO

I

/

j

Pascal Examples

PASCAL STEP PREVIOUS

(""\ The following example illustrates how an application might use the Step Last
-j and Step Previous operations to recover a file whose indexes have been

damaged by a system failure.

type
EMP _REC = record

case integer of
1: (NUM

NAME
ADDR

3: (ENTIRE
end;

var
BUF_LEN
OLD_BUF
OLD_KEY
OLD_POS
NEW_BUF:
NEW_KEY:
NEW_POS:
STATUS

begin

integer;
EMP_REC;
string(6);
string(128);
EMP_REC;
string(6);
string(128);
integer;

string(6);
string(30);
string(50));
string(86));

BUF _LEN:= sizeof(OLD_BUF);
STATUS := BTRV (B_STEP _LST, OLD_POS, OLD_BUF.ENTIRE, BUF _LEN, OLD_KEY, 0);
while STATUS <> EOF _ERR do {Read until end of file}

begin
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error reading file. Status =', STATUS);
return;

end;
NEW_BUF.NUM := OLD_BUF.NUM;
NEW_BUF.NAME := OLD_BUF.NAME;
NEW_BUF.ADDR := OLD_BUF.ADDR;
STATUS := BTRV (B_INSERT, NEW_POS, NEW_BUF.ENTIRE, BUF _LEN,

NEW_KEY, 0);
if (STATUS <> 0) then

begin
writeln (OUTPUT, 'Error inserting record.Status =', STATUS);
return;

end;
STATUS := BTRV (B_STEP _PREV, OLD_POS, OLD_BUF.ENTIRE, BUF _LEN,

OLD_KEY, 0);
end;

2011Rev1.00 C-33

Btrieve Record Manager

PASCAL UPDATE

The following example shows how an application might use the Update
operation to reflect the fact that an employee just received a raise.

type
EMP _REC = record

case integer of
1: {NAME

HIRE_DATE
ANNUAL_SAL

2: (All
end;

var
DATA_BUF
DATA_lEN
NAME_KEY
POS_BlK
STATUS

begin

EMP_REC;
integer;
string{20);
string{128);
integer;

string{20);
string{6);
string{6»;
string{32»;

DATA_lEN := sizeof{DATA_BUF);
NAME_KEY := 'Jones, Mary E. ';
STATUS:= BTRV (B_GET_EQ, POS_BlK, DATA_BUF.All, DATA_lEN, NAME_KEY, 0);
if STATUS <> 0 then

begin
writeln ('Btrieve status =', STATUS);
return;

end;
DATA_BUF.ANNUAl_SAl := '025000';
STATUS := BTRV (B_UPDATE, POS_BlK, DATA_BUF.All, DATA_lEN, NAME_KEY, 0);
if STATUS <> 0 then

writeln ('Btrieve status =', STATUS);

After the Update operation, Btrieve's position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

+
Access Path

C-34

150781

010581

120882

100182

030000

055000

025000

040000

... Previous record

... Current record

... Next record

2011Revl.OO

i
;/

APPENDIXD:
COBOL EXAMPLES

The following examples illustrate how to call Btrieve from a COBOL
application. A different example is presented for each Btrieve operation.

COBOL ABORT TRANSACTION

In the following example, an application must insert a record into an order
header file and insert two records into an order detail file to record the sale of
a box of diskettes and a ribbon to one customer. If an error occurs on any of
the operations, the transaction is aborted so that the database remains
consistent.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-ABORT PIC 99 COMP-O VALUE 21.
77 B-BEGIN PIC 99 COMP-O VALUE 19.
77 B-END PIC 99 COMP-O VALUE 20.
77 B-INSERT PIC 99 COMP-O VALUE 2.
77 B-OPEN PIC 99 COMP-O VALUE O.
77 KEY-NUM PIC 99 COMP-O VALUE O.
01 B-STATUS PIC 99 COMP-O.
01 DSP-STATUS PIC 99999.
01 HDR-BUFFER.

02 HDR-ORD-NUM PIC 99 COMP-O.
02 HDR-CUST PIC 99 COMP-O.
02 HDR-DATE PIC X(S).

01 DET-BUFFER.
02 DET -ORD-NUM PIC 99 COMP-O.
02 DET -PART PIC 99 COMP-O.
02 DET -OUAN PIC 99 COMP-O.

01 DET -KEY PIC 99 COMP-O.
01 DET-LEN PIC 99 COMP-O VALUE S.
01 DET-POS-BLK PIC X(128).
01 DUMY-BUF PIC X(128).
01 DUMY-LEN PIC 99 COMP-O VALUE 128.
01 HDR-KEY PIC 99 COMP-O.
01 HDR-LEN PIC 99 COMP-O VALUE 10.
01 HDR-POS-BLK PIC X(128).

2011Revl.OO D-l

Btrieve Record Manager

D-2

PROCEDURE DIVISION.
BEGIN.
• Start the transaction.

CALL 'BTRV' USING B-BEGIN, B-STATUS, DUMY-BUF, DUMY-BUF,
DUMY-LEN, DUMY-BUF, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY (5,1) "Error beginning tran. Status =" DSP-STATUS
STOP RUN.

• Insert the header record.

MOVE 236 TO HDR-ORD-NuM.
MOVE 201 TO HDR-CUST.
MOVE "061583" TO HDR-DATE.
CALL 'BTRV' USING B-INSERT, B-STATUS, HDR-POS-BLK,

HDR-BUFFER, HDR-LEN,HDR-KEY, KEY-NUM.
IF B-STATUS NOT = ci

MOVE B-STATUS TO DSP-STATUS
DISPLAY (5,1) "Error inserting headerrecord. Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF, DUMY-LEN, DUMY-BUF, KEY-NUM.
STOP RUN.

• Insert two detail records.

MOVE 236 TO DET-ORD-NUM.
MOVE 1002 TO DET-PART.
MOVE 1 TO DET -OUAN.
CALL 'BTRV' USING B-INSERT, B-STATUS, DET~POS-BLK,

DET-BUFFER, DET-LEN, DET-KEY, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error inserting detail record.Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF, DUMY-LEN, DUMY-BUF, KEY-NUM.

STOP RUN.
MOVE 1024 TO DET-PART.
MOVE 1 TO DET -OUAN.

CALL 'BTRV' USING B-INSERT, B-STATUS, DET-POS-BLK,
DET-BUFFER,DET-LEN,DET-KEY, KEY-NUM.

201lRevl.OO

/

(-'.

COBOL Examples

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error inserting detail record.Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF, DUMY-LEN, DUMY-BUF, KEY-NUM.
STOP RUN.

* End the transaction.

CALL 'BTRV' USING B-END, B-STATUS, DUMY-BUF, DUMY-BUF,
DUMY-LEN, DUMY-BUF, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error ending tran. Status =" DSP-STATUS
STOP RUN.

COBOL BEGIN TRANSACTION

See Abort Transaction and End Transaction.

COBOL CLOSE

The following example illustrates the code required to close a Btrieve file from
COBOL.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-CLOSE PIC 99 COMP-O VALUE 1.
77 NAME-KEY PIC 99 COMP-O VALUE o.
77 B-STATUS PIC 99 COMP-O.
01 BUF-LEN PIC 99 COMP-O VALUE so.
01 DATA-BUFFER PIC X(SO).
01 DSP-STATUS PIC 99999.
01 KEY-BUFFER PIC X(30).
01 POSITION-BLOCK PIC X(12S).
PROCEDURE DIVISION.

BEGIN.
CALL 'BTRV' USING B-CLOSE, B-STATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, KEY-BUFFER, NAME-KEY.
IF B-STATUS NOT = 0

2011Rev1.00

MOVE B-STATUS TO DSP-STATUS
DISPLA Y "Btrieve Status = " DSP-ST ATUS.
STOP RUN.

D-3

Btrieve Record Manager

COBOL CREATE

In the following example, an application creates a Btrieve file with two keys.
Key 0 is an integer key, 2 bytes long. Key 1 allows duplicates, is modifiable,
and consists of two segments. The first segment is a 2-byte string, to be
sorted in descending order, and the second is a zero terminated 30-byte
string. The records have a fixed length of 80 bytes.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 DUPLICATES PIC 9 COMP-O VALUE 1.
77 MODIFIABLE PIC 9 COMP-O VALUE 2.
77 SEGMENTED PIC 99 COMP-O VALUE 16.
77 DESC PIC 99 COMP-O VALUE 64.
77 EXTIYPE PIC 999 COMP-O VALUE 256.
77 B-INTEGER PIC 9 COMP-O VALUE 1.
77 B-STRING PIC 9 COMP-O VALUE O.
77 B-ZSTRING PIC 99 COMP-O VALUE 11.
77 B-CREATE PIC 99 COMP-O VALUE 14.
77 KEY-NUMBER PIC 99 COMP-O VALUE O.
77 B-STATUS PIC 99 COMP-O VALUE O.
01 BUF-LEN PIC 99 COMP-O VALUE 64.
01 DSP-STATUS PIC 99999.

01 DATA-BUFFER.
02 RECORD-LENGTH PIC 99 COMP-O VALUE SO.
02 PAGE-SIZE PIC 9(4) COMP-O VALUE 1024.
02 NUMBER-OF-INDEXES PIC 99 COMP-O VALUE 2.
02 NOT-USED-1 PIC X(4).
02 VAR-REC-LEN PIC 99 COMP-O VALUE O.
02 NOT-USE D-1 A PICX(2).
02 PRE-ALLOC PIC 99 COMP-O VALUE O.
02 KEY SPECS OCCURS 3 TIMES.

05 KEY-POSITION PIC 99 COMP-O.
05 KEY-LENGTH PIC 99 COMP-O.
05 KEY-FLAG PIC 99 COMP-O.
05 NOT-USED-2 PIC X(4).
05 KEY-TYPE PIC 9 COMP-O VALUE O.
05 FILLER PIC X(5).

01 FILE-NAME PIC X(17) VALUE "\data\create.tst n.

01 POSITION-BLOCK PIC X(12S) VALUE SPACES.

D-4 201IRev1.00

)

'\

.J

'/ . . ,
I \

(

COBOL Examples

PROCEDURE DIVISION.
BEGIN.

MOVE 64 TO BUF-LEN.
MOVE 1 TO KEY-POSITION(1).
MOVE 2 TO KEY-LENGTH(1).
MOVE EXTTYPE TO KEY-FLAG(1).
MOVE B-INTEGER TO KEY-TYPE(1).
MOVE 3 TO KEY-POSITION(2).
MOVE 2 TO KEY-LENGTH(2).
ADD DUPLICATES MODIFIABLE SEGMENTED EXTTYPE DESC GIVING

KEY-FLAG(2).
MOVE B-STRING TO KEY-TYPE(2).
MOVE 5 TO KEY-POSITION(3).
MOVE 30 TO KEY-LENGTH(3).
ADD DUPLICATES MODIFIABLE EXTIYPE GIVING KEY-FLAG(3).
MOVE B-ZSTRING TO KEY-TYPE(3).
CALL 'BTRV' USING B-CREATE, B-STATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, FILE-NAME, KEY-NUMBER.
IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error creating file. Status =" DSP-STATUS.

2011Rev1.00 D-5

Btrieve Record Manager

COBOLCREATESUPPLEMENTALINDEX
In the following example, an application adds an index to a Btrieve file. The
first segment of the key is a lO-byte string. It allows duplicates and is
modifiable. The second segment is a 2-byte integer.

D-6

DATA DIVISION.
WORKING-8TORAGE SECTION.
77 DUPLICATES PIC9 COMP-OVALUE1.
77 MODIFIABLE PIC 9 COMP-O VALUE 2.
77 SEGMENTED PIC 99 COMP-O VALUE 16.
77 EXTIYPE PIC 999 COMP-O VALUE 256.
77 B-INTEGER PIC 9 COMP-O VALUE 1.
77 B-8TRING PIC 9 COMP-O VALUE O.
77 B-OPEN PIC 99 COMP-O VALUE o.
77 B-CLOSE PIC 99 COMP-O VALUE 1.
77 B-CREIDX PIC 99 COMP-O VALUE 31.
77 KEY-NUMBER PIC 99 COMP-O VALUE o.
77 B-8TATUS PIC 99 COMP-O VALUE o.
01 BUF-LEN PIC 99 COMP-O VALUE 64.
01 DSP-8TATUS PIC 99999.
01 DATA-BUFFER.

02 KEY-8PECS OCCURS 2 TIMES.
05 KEY-POSITION
05 KEY-LENGTH
05 KEY-FLAG
05 NOT-USE 0-2
05 KEY-TYPE
05 FILLER PIC X(5).

PIC 99 COMP-O.
PIC 99 COMP-O.
PIC 99 COMP-O.
PICX(4).
PIC 9 COMP-O VALUE o.

01 FILE-NAME PIC X(17) VALUE"\data\create.tst ".
01 POSITION-BLOCK PIC X(128) VALUE SPACES.

PROCEDURE DIVISION.
BEGIN.

MOVE 32 TO BUF-LEN.
CALL 'BTRV' USING B-OPEN, B-8TATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, FILE-NAME, KEY-NUMBER.
IF B-8TATUS NOT = 0

MOVE B-8TATUS TO DSP-8TATUS
DISPLAY "Error opening file. Status = "DSP-8T ATUS
STOP RUN.

MOVE 32 TO BUF-LEN.
MOVE 40 TO KEY-POSITION(1).
MOVE 10 TO KEY-LENGTH(1).
ADD DUPLICATES MODIFIABLE SEGMENTED EXTIYPE GIVING

KEY-FLAG(1).
MOVE B-8TRING TO KEY-TYPE(1).

2011Rev1.00

/

/

(

COBOL Examples

MOVE 50 TO KEY-POSITION(2).
MOVE 2 to KEY-LENGTH(2).
ADD DUPLICATES MODIFIABLE EXTIYPE GIVING KEY-FLAG(2).
MOVE B-INTEGER TO KEY-TYPE(2).
CALL 'BTRV' USING B-CREIDX, B-STATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, FILE-NAME, KEY-NUMBER.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error creating supplemental index. Status =" DSP-STATUS
STOP RUN.

COBOL DELETE
In the following example, a COBOL application for an airline company uses
the Delete operation to reflect the fact that a passenger has cancelled a flight
reservation.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-DELETE
77 B-GET -EQUAL
17 NAME-KEY
77 B-STATUS
01 DISPLAY-STATUS
01 BUF-LEN
01 RESERVATION-RECORD.

02 FLiGHT-NUMBER
02 PASSENGER
02 AMOUNT-PAID
02 ISSUE-DATE

01 KEY~UFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PIC 99 COMP-O VALUE 4.
PIC 99 COMP-O VALUE 5.
PIC 99 COMP-O VALUE O.
PIC 99 COMP-O.
PIC 99999.
PIC 99 COMP-O VALUE 30.

PIC X(3).
PIC X(15).
PIC X(6).
PIC X(6).
PIC X(15).
PIC X(128).

MOVE "Martin, Dave H." TO KEY~UFFER.
CALL 'BTRV' USING B-GET-EQUAL, B-STATUS, POSITION-BLOCK,

RESERVATION-RECORD, BUF-LEN, KEY-BUFFER, NAME-KEY.
IF B-STATUS NOT = 0

MOVE 8-STATUS TO DISPLAY-STATUS
DISPLAY "Btrieve Status =" DISPLAY-STATUS
STOP RUN.

CALL 'BTRV'USING B-DELETE, B-STATUS, POSITION-BLOCK,
RESERVATION-RECORD, BUF-LEN, KEY-BUFFER, NAME-KEY.

IF B-STATUS NOT = 0

2011Rev1.00

MOVE B-STATUS TO DISPLAY-STATUS
DISPLAY "Btrieve Status =. DISPLAY-STATUS.
STOP RUN.

D-7

Btrieve Record Manager

After the Delete operation, Btrieve's current position in the file is as follows:

326 Crawley, Joe J. 179.85 061582

711 Howell, Susan 259.40 052382 .. Previous record

326 Peters, John H. 445.80 061782 .. Next record

840 White, Rosemary 397.00 060282

Access Path ____ -.:1+

COBOLDROPSUPPLEMENTALINDEX
In the following example, an application drops a supplemental index in a
Btrieve file because the file no longer needs to be accessed by that index. The
index number is 3.

D-8

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-DROP PIC 99 COMP-O VALUE 32.
77 B-STATUS PIC 99 COMP-O VALUE o.
77 INV-KNUM PIC 99 COMP-O VALUE 6.
01 BUF-LEN PIC 99 COMP-O VALUE 64.
01 POSITION-BLOCK PIC X(128) VALUE SPACES.
01 DSP-STATUS PIC 99999.
01 KEY-NUMBER PIC 99 COMP-O VALUE 3.
01 DUMY-BUF PIC X(2) VALUE SPACES.

PROCEDURE DIVISION.
BEGIN.

MOVE 1 TO BUF-LEN.
CALL 'BTRV' USING B-DROP, B-STATUS, POSITION-BLOCK,

DUMY-BUF, BUF-LEN, DUMY-BUF, KEY-NUMBER.
IF B-STATUS = INV-KNUM

DISPLAY "Key Number to drop is not a supplemental index"
ELSE
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error creating supplemental index. Status =" DSP-STATUS
STOP RUN.

IF B-STATUS NOT = 0
IF B-STATUS = INV-KNUM

DISPLAY "Key Number to drop is not a supplemental index"
ELSE
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error creating supplemental index. Status =' DSP-STATUS
STOP RUN

201/Revl.OO

'\

J

(

COBOL Examples

COBOL END TRANSACTION

The following application uses transaction control to ensure that one account
in a ledger file is not debited unless another is also credited.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-ABORT
77 B-BEGIN
77 B-END
77 B-GET-EQ
77 B-OPEN
77 B-UPDATE
77 KEY-NUM
01 B-STATUS
01 DSP-STATUS
01 BUF-LEN
01 LEDGER-REC.

02 ACCT-ID
02 DESC
02 BALANCE

01 KEY-BUF
01 POS-BLK
01 DUMY-BUF
01 DUMY-LEN

PROCEDURE DIVISION.
BEGIN.

• Start the transaction.

PIC 99 COMP-{) VALUE 21.
PIC 99 COMP-{) VALUE 19.
PIC 99 COMP-{) VALUE 20.
PIC 99 COMP-{) VALUE 5.
PIC 99 COMP-{) VALUE o.
PIC 99 COMP-{) VALUE 3.
PIC 99 COMP-{) VALUE o.
PIC 99 COMP-O.
PIC 99999.
PIC 99 COMP-O VALUE 47.

PIC 9(5) COMP-O.
PIC X(40).
PIC 9(8) COMP-3.
PIC 9(5) COMP-O.
PIC X(128).
PIC X(128).
PIC 99 COMP-O VALUE 128.

CALL 'BTRV' USING B-BEGIN, B-STATUS, DUMY-BUF, DUMY-BUF,
DUMY-LEN, DUMY-BUF, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error beginning tran. Status = "DSP-STATUS
STOP RUN.

• Retrieve and update the cash account record.

MOVE 101 TO KEY-BUF.
CALL 'BTRV' USING B-GET-EQ, B-STATUS, POS-BLK, LEDGER-REC,

BUF-LEN, KEY-BUF,KEY-NUM.

2011Rev1.00 D-9

Btrieve Record Manager

D-IO

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error retrieving cash record.

Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF,DUMY-LEN,DUMY-BUF,KEY-NUM
STOP RUN.

SUBTRACT 250 FROM BALANCE.
CALL 'BTRV' USING B-UPDATE, B-STATUS, POS-BLK, LEDGER-REC,

BUF-LEN, KEY-BUF, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error updating cash record. Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF, DUMY-LEN, DUMY-BUF, KEY-NUM.
STOP RUN.

• Retrieve and update the office expense account record.

MOVE 511 TO KEY-BUF.
CALL 'BTRV' USING B-GET-EQ, B-STATUS, POS-BLK, LEDGER-REC,

BUF-LEN,KEY-BUF,KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error retrieving expense record. Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF,

DUMY-BUF, DUMY-LEN, DUMY-BUF, KEY-NUM.
STOP RUN.

ADD 250 TO BALANCE.
CALL 'BTAV' USING B-UPDATE, B-STATUS, POS-BLK, LEDGER-REC,

BUF-LEN,KEY-BUF,KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error updating expense record. Status =" DSP-STATUS
CALL 'BTRV' USING B-ABORT, B-STATUS, DUMY-BUF, DUMY-BUF,

DUMY-LEN, DUMY-BUF; KEY-NUM
STOP RUN .

• End the transaction.
CALL 'BTRV' USING B-END, B-STATUS, DUMY-BUF, DUMY-BUF,

DUMY-LEN,DUMY-BUF, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error ending tran. Status = "DSP-STATUS

STOP RUN. .

201lRevl.OO

)

(

COBOL Excunp/es

COBOL EXTEND

The following example illustrates how an application might use the Extend
operation to expand a Btrieve file in order to gain more disk space.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-C LOS E PIC 99 COMP--O VALUE 1.
77 B-EXTEND PIC 99 COMP--O VALUE 16.
77 B-OPEN PIC 99 COMP--O VALUE O.
77 NAME-KEY PIC 99 COMP--O VALUE O.
01 B-STATUS PIC 99 COMP--O.
01 DSP-STATUS PIC 99999.
01 BUF-LEN PIC 99 COMP--O VALUE 97.
01 DATA-BUFFER.

02 NAME
02 STREET
02 CITY
02 STATE
02 ZIP

01 FILE-NAME
01 EXT-NAME
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PIC X(30).
PIC X(30).
PIC X(30).
PIC XX.
PIC 9(5).
PIC X(14) VALUE "ADDRESS.BTR "
PIC X(15) VALUE "B:\ADDRESS.EXT ".
PIC X(30).
PIC X(128) VALUE SPACES.

CALL 'BTRV' USING B-OPEN, B-STATUS, POSITION-BLOCK,
DATA-BUFFER, BUF-LEN, FILE-NAME, NAME-KEY.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLA Y "Error opening file. Status = " DSP-STATUS
STOP RUN.
CALL 'BTRV' USING B-EXTEND, B-STATUS, POSITION-BLOCK,

DATA-BUFFER, BUF-LEN, EXT-NAME, NAME-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error extending file. Status = "DSP-STATUS

STOP RUN.
CALL 'BTRV' USING B-CLOSE, B-STATUS, POSITION-BLOCK,

DATA-BUFFER,BUF-LEN, KEY-BUFFER, NAME-KEY.
CALL 'BTRV' USING B-OPEN, B-STATUS, POSITION-BLOCK,

DATA-BUFFER,BUF-LEN, FILE-NAME, NAME-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error reopening file. Status = "DSP-STATUS

ELSE DISPLAY "File extended successfully.".

2011Revl.OO D-ll

Btrieve Record Manager

COBOL GET DIRECT

The following example illustrates how an application can use the Get Direct
operation to sort the records in a Btrieve file by an external index. (See the J
description of Get Position for an example of how to build the external index
file.)

D-12

DATA DIVISION.
WORKING-5TORAGE SECTION.
77 B-GET-DIRECT PIC 99 COMP--O VALUE 23.
77 B-GET-LOW PIC 99 COMP--O VALUE 12.
77 B-GET-NEXT PIC 99 COMP--O VALUE 6.
77 KEY-NUM PIC 99 COMP--O VALUE o.
77 B-STATUS PIC 99 COMP--O.

88 B-EOF VALUE 9.
01 DSP-5TAT PIC 99999.
01 ADDR-REC.

02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(10).
02 STATE PIC X(2).
02 ZIP PIC X(5). "

01 POS-SUF REDEFINES ADDR-REC.
02 REC-POS PIC X(4). /
01 FILE-LEN PIC 99 COMP--O VALUE 57.
01 INDX-REC.

02 I NX-POS PIC X(4).
02 I NX-5TATE PIC X(2).

01 INDX-LEN PIC 99 COMP--O VALUE 6.
01 NAME-KEY PIC X(20).
01 STATE-KEY PIC X(2).
01 FILE-POS-SLK PIC X(128) .
. 01 INDX-POS-SLK PIC X(128).

2011Revl.OO

('"

COBOL Examples

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-GET-LOW, B-STATUS, INDX-POS-BLK,
INDX-REC, INDX-LEN, STATE-KEY, KEY-NUM.

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status = " DSP-STAT
STOP RUN.

MOVE INX-POS TO REC-POS.
CALL 'BTRV' USING B-GET-DIRECT, B-STATUS, FILE-POS-BLK,

ADDR-REC,FILE-LEN, NAME-KEY, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading record. Status =" DSP-STAT
STOP RUN.

DISPLAY NAME, STREET, CITY, STATE, ZIP.
CALL 'BTRV' USING B-GET-NEXT, B-STATUS, IN DX-POS-BLK,

INDX-REC, INDX-LEN, STATE-KEY, KEY-NUM.
GO TO GET-NEXT.

2011Revl.OO D-13

Btrieve Record Manager

COBOL GET DIRECTORY

The following example illustrates how an application can use the Get and Set
Directory operations to retrieve the current directory at the beginning of the
program, and to restore it before terminating.

D-14

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-DIR PIC 99 COMP-O VALUE 18.
77 B-SET-DIR PIC 99 COMP-O VALUE 17.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STATUS PIC 99999.
01 DIR-PATH PIC X(64).
01 DUMY-BUF PIC X(128).
01 DUMY-LEN PIC 99 COMP-O VALUE 128.
01 KEY-NUM PIC 99 COMP-O VALUE O.

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-GET-DIR, B-STATUS, DUMY-BUF, DUMY-BUF,
DUMY-LEN,DIR-PATH, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error getting dir. Status = " DSP-STATUS
STOP RUN.

CALL 'BTRV' USING B-SET-DIR, B-STATUS, DUMY-BUF, DUMY-BUF,
DUMY-LEN,DIR-PATH, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLA Y "Error setting dir. Status = " DSP-STATUS
STOP RUN.

201IRev1.00

)

./

(]

COBOL Examples

COBOL GET EQUAL

In the following example, part number is a key in an inventory file. The
application program retrieves the record containing inventory information for
a particular part number with a single Get Equal operation, in order to
determine whether or not to reorder that part number.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-EQUAL PIC 99 COMP-{) VALUE 5.
77 PART-KEY PIC 99 COMP-{) VALUE O.
77 B-STATUS PIC 99 COMP-{).
01 DSP-STAT PIC 99999.
01 INVENTORY-RECORD.

02 PART-NUM PIC X(5).
02 PART-DESC PIC X(10).
02 QUAN-ON-HAND PIC X(3).
02 REORDER-POINT PIC X(3).
02 REORDER-OUAN PIC X(3).

01 DATA-LEN PIC 99 COMP-{) VALUE 24.
01 KEY-BUFFER PIC X(5).
01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

MOVE "03426" TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-EQUAL, B-STATUS, POSITION-BLOCK,

INVENTORY-RECORD,DATA-LEN,KEY-BUFFER,PART-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

IF QUAN-ON-HAND < REORDER-POINT
DISPLAY "Time to order" REORDER-OUAN " units of " PART -DESC.

The table below shows Btrieve's current position in the file after the Get
Equal operation.

03419 Pliers 003 010 015 .. Previous record

03426 Hammer 010 003 005 .. Current record

03430 Saw 005 002 003 .. Next record

03560 Wrench 008 005 005

Access Path-J

2011Rev1.00 D-15

Btrieve Record Manager

COBOL GET FIRST

The following example illustrates how an application might use the Get First
operation to find the youngest employee in the company. Age is key number 2
in the employee file.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET -FIRST PIC 99 COMP-O VALUE 12.
77 AGE-KEY PIC 99 COMP-O VALUE 2.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 EMP-REC.

02 NAME
02 AGE
02 HIRE-DATE

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PIC X(20).
PICX(2).
PICX(6).
PIC 99 COMP-O VALUE 28.
PICX(2).
PIC X(128).

CALL 'BTRV' USING B-GET-FIRST, B-STATUS, POSITION-BLOCK,
EMP-REC,DATA-LEN, KEY-BUFFER, AGE-KEY.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

DISPLAY "Youngest employee is " NAME.

After the Get First operation, Btrieve's current position in the file is as
follows:

Brook, Wendy W.

Ross,JohnL

Blanid, Suzanne M.

Brandes, William J.

D-16

18 071582

20 121081

25 050281

40 031576

+
Access Path

.. Previous Record

.. Current Record

.. Next Record

2011Rev1.00

/

()

COBOL Examples

COBOL GET GREATER

The following example indicates how a COBOL application for an insurance
company might use the Get Greater operation to determine which policy
holders have more than three traffic violations. The number of traffic
violations is key 2 in the policy file.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-NEXT PIC 99 COMP-O VALUE 6.
77 B-GET-GT PIC 99 COMP-O VALUE 8.
77 VIOLATION~KEY PIC 99 COMP-O VALUE 2.
77 B-STATUS PIC 99 COMP-O.

88 B-EOF VALUE 9.
01 DSP-STAT PIC 99999.
01 POLICY-RECORD.

02 POLICY-NUMBER PIC X(10).
02 NAME PIC X(20).
02 EFFECT-DATE PIC X(6).
02 VIOLATIONS PIC X(2).

01 DATA-LEN PIC 99 COMP-O VALUE 38.
01 KEY-BUFFER PIC X(2).
01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

MOVE "03" TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-GT, B-STATUS, POSITION-BLOCK,

POLICY-RECORD,DATA-LEN, KEY-BUFFER, VIOLATION-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status = n DSP-STAT
STOP RUN.

GET-NEXT.
IF B-EOF GO TO XIT.
DISPLAY NAME" has" VIOLATIONS" traffic violations".
CALL 'BTRV' USING B-GET-NEXT, B-STATUS, POSITION-BLOCK,

POLICY-RECORD, DATA-LEN, KEY-BUFFER, VIOLATION-KEY.

IF B-STATUS NOT = 0 AND NOT B-EOF
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

GO TO GET-NEXT.

2011Rev1.00 D-17

Btrieve Record Manager

COBOL GET GREATER OR EQUAL

If the date of a sale is a key in an invoice file, an application might use the
Get Greater Or Equal operation to retrieve the invoice record for the first sale)
made in May, 1982.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-GE PIC 99 COMP-O VALUE 9.
77 DATE-KEY PIC 99 COMP-O VALUE 1.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 INVOICE-REC.

02 INV-NUMBER
02 DATE-SALE
02 CUST-NUM
02 TOTAL-PRICE

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PICX(5).
PIC X(6).
PIC X(5).
PICX(8).
PIC 99 COMP-O VALUE 24.
PIC X(6).
PIC X(128).

MOVE "050182" TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-GE, B-STATUS, POSITION-BLOCK,

INVOICE-REC, DATA-LEN, KEY-BUFFER, DATE-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status = " DSP-STAT
STOP RUN.

DISPLAY "First sale in May was to" CUST-NUM" for "TOTAL-PRICE.

After the Get Greater Or Equal Operation, Btrieve's current position in the
file is as follows:

03110 041582

03111 042882

03112 042882

03113 050282

03114 050282

03115 051682

+
Access Path

D-18

11315

34800

51428

62541

14367

15699

00184.00

00096.00

00124.56

00036.45

00098.72

00575.99

.. Previous record

.. Current record

.. Next record

201/Revl.OO

/

COBOL Examples

COBOL GET LAST

The following example illustrates how an application might use the Get Last
operation to determine which employee had the highest commissions last
month.

DATA DIV!SION.
WORKING-STORAGE SECTION.
77 B-GET-HIGH PIC 99 COMP-O VALUE 13.
77 COMM-KEY PIC 99 COMP-O VALUE 1.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 EMP-REC.

02 EMP-NUM PIC X(6).
02 EMP-NAME PIC X(20).
02 EMP-DEPT PIC X(2).
02 EMP-TOT-COM PIC X(6).
02 EMP-CUR-COM PIC X(6).

01 BUF-LEN PIC 99 COMP-O VALUE 40.
01 KEY-BUFFER PIC X(6).
01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-GET-LAST, B-STATUS, POSITION-BLOCK,
EMP-REC,BUF-LEN, KEY-BUFFER, COMM-KEY.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

DISPLAY "Employee with highest commissions last month was" EMP-NAME.

Mter the Get Last operation, Btrieve's current positioning in the file is as
follows:

704904 Brook, WendyW.

831469 Ross, John L.

876577 Blanid, Kathleen M.

528630 Brandes,MaureenR.

2011Rev1.00

Al

A5

A3

A5

110.95

240.80

562.75

935.45

.. Previous Record

.. Current Record

... .. Next Record

Access Path

D-19

Btrieve Record Manager

COBOL GET LESS THAN

The following COBOL example indicates how an application may use Get
Less Than, followed by Get Previous, to find the names of all customers
whose magazine subscriptions have less than three issues left before they run
out. The number of issues remaining is key 2 in the subscription file.

D-20

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-LT PIC 99 COMP--O VALUE 10.
77 B-GET-PREV PIC 99 COMP--O VALUE 7.
77 ISS-REM-KEY PIC 99 COMP--O VALUE 2.
77 B-STATUS PIC 99 COMP--O.

88 B-EOF VALUE 9.
01 DSP-STAT PIC 99999.
01 SUBSCRIPTION-REC.

02 CUST-NAME PIC X(20).
02 DATE-SUB PIC X(6).
02 DATE-PAID PIC X(6).
02 ISSUES-PURCH PIC X(3).
02 ISSUES-REM PIC X(3).

01 BUF-LEN PIC 99 COMP--O VALUE 38.
01 KEY-BUFFER PIC X(3).
01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

MOVE "003" TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-LT. B-STATUS. POSITION-BLOCK.

SUBSCRIPTION-REC. BUF-LEN. KEY-BUFFER. ISS-REM-KEY.
IF B-STATUS NOT = 0 AND NOT B-EOF

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
DISPLAY ·Send reorder form to • CUST -NAME.
CALL 'BTRV' USING B-GET-PREV. B-STATUS. POSITION-BLOCK.

SUBSCRIPTION-REC. BUF-LEN. KEY-BUFFER. ISS-REM-KEY.
IF B-STATUS NOT = 0 AND NOT B-EOF

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =. DSP-STAT
STOP RUN.

GO TO GET-NEXT.

2011Rev1.00

COBOL Examples

COBOL GET LESS THAN OR EQUAL

(- " In the following example, an application uses the Get Less Than Or Equal
.. / operation to retrieve the first house that falls within a prospective customer's

price limit of $110,000.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-LE PIC 99 COMP-O VALUE 11.
77 PRICE-KEY PIC 99 COMP-O VALUE O.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 HOME-REC.

02 PRICE
02 ADDRESS
02 SQUARE-FEET
02 YEAR-BUILT

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PIC X(7).
PIC X(20).
PICX(6).
PICX(4).
PIC 99 COMP-O VALUE 37.
PIC X(7).
PIC X(128).

MOVE "0110000" TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-LE, B-STATUS, POSITION-BLOCK,

HOME-REC, DATA-LEN, KEY-BUFFER, PRICE-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status = " DSP-STAT
STOP RUN.

DISPLAY "The home at" ADDRESS" sells for" PRICE.

Mter the Get Less Than Or Equal operation, Btrieve's current position is as
follows:

0050000 330 N. 31st

0055000 11132 Maple Ave.

0070000 624 Church Street

0105000 3517 N. Lakes Avenue

0220000 4500 Oceanfront Ave.

+
Access Path

2011Rev1.00

002200 1960

002000 1965

002300 1968

002500 1975

003000 1980

.. Previous Record

.. Current Record

.. Next Record

D-21

Btrieve Record Manager

COBOL GET NEXT

In the following example, an application uses the Get Next operation to
generate a set of mailing labels sorted according to zip code. The zip code
(ZIP) is key 1 in the file.

D-22

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-NEXT PIC 99 COMP-O VALUE 6.
77 B-GET-FIRST PIC 99 COMP-O VALUE 12.
77 ZIP-KEY PIC 99 COMP-O VALUE 1.
77 B-STATUS PIC 99 COMP-O.

88 B-EOF VALUE 9.
01 DSP-STAT PIC 99999.
01 ADDRESS-REC.

02 NAME
02 STREET
02 CITY
02 STATE
02 ZIP

PIC X(20).
PIC X(20).
PIC X(10).
PICX(2).
PICX(5).

01 DATA-LEN PIC 99 COMP-O VALUE 57.
PICX(5). 01 KEY-BUFFER

01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-GET-FIRST, B-STATUS, POSITION-BLOCK,
ADDRESS-REC, DATA-LEN, KEY-BUFFER, ZIP-KEY.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
DISPLAY NAME.
DISPLAY STREET.
DISPLAY CITY·, "STATE·" ZIP.
CALL 'BTRV' USING B-GET-NEXT, B-STATUS, POSITION-BLOCK,

ADDRESS-REC,DATA-LEN, KEY-BUFFER, ZIP-KEY.
IF B-STATUS NOT = 0 AND NOT B-EOF

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

GO TO GET-NEXT.

2011Rev1.00

(~I

COBOL Examples

COBOL GET POSITION

The following example illustrates how Get Position can be used to construct
an external index for an existing Btrieve file. Once an external index is
created, the application can read the external index file from lowest to
highest and use Get Direct to sort the records in a Btrieve file by some field
that was not originally defined as a key field.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-INSERT PIC 99 COMP-O VALUE 2.
77 B-GET-FIRST PIC 99 COMP-O VALUE 12.
77 B-GET-NEXT PIC 99 COMP-O VALUE 6.
77 B-GET-POS PIC 99 COMP-O VALUE 22.
77 KEY-NUM PIC 99 COMP-O VALUE o.
77 B-STATUS PIC 99 COMP-O.

98 B-EOF VALUE 9.
01 DSP-STAT PIC 99999.
01 ADDR-REC.

02 NAME PIC X(20).
02 STREET PIC X(20).
02 CITY PIC X(10).
02 STATE PIC X(2).
02 ZIP PIC X(5).

01 POS-BUF REDEFINES ADDR-REC.
02 REC-POS PIC X(4).

01 FILE-LEN PIC 99 COMP-O VALUE 57.
01 INDX-REC.

02 INX-POS
02 I NX-STATE

01 INDX-LEN
01 NAME-KEY
01 STATE-KEY
01 FILE-POS-BLK
01 INDX-POS-BLK

PROCEDURE DIVISION.
BEGIN.

PICX(4).
PICX(2).
PIC 99 COMP-O VALUE 6.
PICX(20).
PICX(2).
PIC X(128).
PIC X(128).

CALL 'BTRV' USING B-GET-FIRST, B-STATUS, FILE-POS-BLK,
ADDR-REC, FILE-LEN, NAME-KEY, KEY-NUM.

201lRevl.OO D-23

Btrieve Record Manager

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY 'Error reading file. Status = .. DSP-STAT
STOP RUN.

MOVE STATE TO I NX-STATE.
CALL 'BTRV' USING B-GET-POS, B-STATUS, FILE-POS-BLK,

ADDR-REC, FILE-LEN, NAME-KEY, KEY-NUM.
MOVE REG-POS TO INX-POS.
CALL 'BTRV' USING B-INSERT, B-STATUS, INDX-POS-BLK, INDX-REC,

INDX-LEN,STATE-KEY, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error inserting record. Status = "DSP-STAT
STOP RUN.

CALL 'BTRV' USING B-GET-NEXT, B-STATUS, FILE-POS-BLK,
ADDR-REC, FILE-LEN, NAME-KEY, KEY-NUM.

GO TO GET -NEXT.

COBOL GET PREVIOUS

The following example illustrates how an application can use Get Previous to
list corporations and their total sales dollars for the year, beginning with the
corporation having the highest sales and continuing in descending order of
sales dollars. Total sales is key number 1 in the company file.

D-24

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-PREV PIC 99 COMP-OVALUE 7.
77 B-GET-LAST PIC 99 COMP-O VALUE 13.
77 SALES-KEY PIC 99 COMP-O VALUE 1.
77 B-STATUS PIC 99 COMP-O.

88 B-EOF VALUE 9.
01 DSP-STAT PIC 99999.
01 COMPANY-REC.

02 NAME
02 TOTAL-SALES

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PIC X(30).
PICX(10).
PIC 99 COMP-O VALUE 40.
PIC X(10).
PIC X(128).

2011Revl.OO

J

/

/

COBOL Examples

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-GET-LAST, B-STATUS, POSITION-BLOCK,
COMPANY-REC,DATA-LEN,KEY-BUFFER,SALES-KEY.

IF B--STATUS NOT = 0
MOVE B-STATUS TO DSP--STAT
DISPLAY "Error reading file. Status =. DSP--STAT
STOP RUN.

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
DISPLAY NAME" • TOTAL--SALES.
CALL 'BTRV' USING B-GET-PREV, B--STATUS, POSITION-BLOCK,

COMPANY-REC,DATA-LEN,KEY-BUFFER,SALES-KEY.
IF B-STATUS NOT = 0 AND NOT B-EOF

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =. DSP--STAT
STOP RUN.

GO TO GET-NEXT.

2011Rev1.00 D-25

Btrieve Record Manager

COBOL INSERT

The following example shows how an application might use the Insert
operation to add a new employee to the employee file.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-INS PIC 99 COMP-O VALUE 2.
77 KEY-NUM PIC 99 COMP-O VALUE o.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 EMP-REC.

02 NAME
02 HIRE-DATE
02 ANNUAL-SAL

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PICX(20).
PIC X(6).
PICX(6).
PIC 99 COMP-O VALUE 32.
PICX(20).
PIC X(128).

MOVE "Jones, Mary E." TO NAME.
MOVE "120882" TO HIRE-DATE.
MOVE "020000" TO ANNUAL-SAL.
CALL 'BTRV' USING B-INS, B-STATUS, POSITION-BLOCK, EMP-REC,

DATA-LEN;KEY-BUFFER, KEY-NUM.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error inserting record. Status = "DSP-STAT
STOP RUN.

After an Insert operation, Btrieve's current position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

+
Access Path

D-26

150781 030000

010581 055000

120882 020000

100182 040000

+ Previous record

+ Current record

+ Next record

2011Revl.OO

(

COBOL Examples

COBOL OPEN

The following example illustrates the code required to open a Btrieve file from
COBOL.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-OPEN PIC 99 COMP-O VALUE O.
77 KEY-NUM PIC 99 COMP-O VALUE O.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 EMP-REC.

02 EMP-NUM PIC X(6).
02 EMP-NAME PIC X(20).
02 EMP-DEPT PIC X(2).
02 EMP-TOT-COM PIC X(6).
02 EMP-CUR-COM PIC X(6).

01 BUF-LEN PIC 99 COMP-O VALUE 40.
01 FILE-NAME PIC X(21) VALUE"C:\DATA\EMPLOYEE.BTR ".
01 POSITION-BLOCK PIC X(128).

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-OPEN, B-STATUS, POSITION-BLOCK, EMP-REC,
BUF-LEN, FILE-NAME, KEY-NUM.

IF B-STATUS NOT = 0

201lRevl.OO

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error on open. Status = " DSP-STAT
STOP RUN.

D-27

Btrieve Record Manager

COBOL SET DIRECTORY

In the following example, an application sets the current directory before
performing an Open operation.

D-28

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-SET-DIR PIC 99 COMP--() VALUE 17.
77 B-OPEN PIC 99 COMP--() VALUE o.
77 B-STATUS PIC 99 COMP--().
01 DSP-STATUS PIC 99999.
01 ADDR-REC.

02 NAME
02 STREET
02 CITY
02 STATE
02 ZIP

01 BUF-lEN
01 DIR-PATH
01 DIR-TERM
01 FllE-NAME
01 KEY-BUF
01 POS-BlK
01 KEY-NUM

PROCEDURE DIVISION.
BEGIN.

PICX(30).
PICX(30).
PIC X(30).
PIC X(2).
PIC X(5).
PIC 99 COMP--() VALUE 97.
PIC X(5) VALUE ''\DATA''.
PIC 9 COMP--() VALUE o.
PIC X(14) VALUE "ADDRESS.BTR "
PICX(30).
PIC X(128).
PIC 99 COMP--() VALUE o.

CAll 'BTRV' USING B-SET-DIR, B-STATUS, POS-BlK, ADDR-REC,
BUF-lEN,DIR-PATH, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error setting dir. Status =" DSP-STATUS
STOP RUN.

CAll 'BTRV' USING B-OPEN, B-STATUS, POS-BlK, ADDR-REC,
BUF-lEN, FilE-NAME, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error opening file. Status =" DSP-STATUS
STOP RUN.

2011Revl.OO

I

/'

-" \

COBOL Examples

COBOL STAT

In the following example, an application uses the Stat and Create operations
to empty a Btrieve file.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-CREATE
77 B-OPEN
77 B-CLOSE
77 B-STAT
77 KEY-NUMBER
77 B-STATUS
01 DSP-STATUS
01 DATA-BUFFER.

PIC 99 COMP--O VALUE 14.
PIC 99 COMP--O VALUE o.
PIC 99 COMP--O VALUE 1.
PIC 99 COMP--O VALUE 15.
PIC 99 COMP--O VALUE o.
PIC 99 COMP--O VALUE o.
PIC 99999.

02 RECORD-LENGTH PIC 99 COMP--O VALUE so.
02 PAGE-SIZE PIC 9(4) COMP--O VALUE 1024.
02 NUMBER-OF-INDEXES PIC 99 COMP--O VALUE 2.
02 REC-TOT PIC X(4).
02 VAR-REC-LEN PIC 99 COMP--O VALUE o.
02 NOT-USED-1A PIC X(2).
02 PRE-ALLOC PIC 99 COMP--O VALUE o.
02 KEY SPECS OCCURS 3 TIMES.

05 KEY-POSITION PIC 99 COMP--O.
05 KEY-LENGTH PIC 99 COMP--O.
05 KEY-FLAG PIC 99 COMP--O.
05 NOT -USED-2 PIC X(4).
05 KEY-TYPE PIC 9 COMP--O VALUE O.
05 FILLER PIC X(5).

01 DATA-BUF-LEN PIC 99 COMP--O VALUE 64.
01 FILE-NAME PIC X(17) VALUE"'data\create.tst".
01 POSITION-BLOCK PIC X(12S) VALUE SPACES.
01 KEY-BUF PIC X(64).

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-OPEN, B-STATUS, POSITION-BLOCK,
DATA-BUFFER, DATA-BUF-LEN, FILE-NAME, KEY-NUMBER.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STATUS
DISPLAY "Error opening file. Status = " DSP-STATUS
STOP RUN.

MOVE 64 TO DATA-BUF-LEN.
CALL 'BTRV' USING B-STAT, B-STATUS, POSITION-BLOCK,

DATA-BUFFER,DATA-BUF-LEN, KEY-BUF,KEY-NUMBER.

2011Revl.OO D-29

Btrieve Record Manager

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-5TATUS
DISPLAY "Unable to retrieve stats. Status = " DSP-5TATUS
STOP RUN.

CALL 'BTRV' USING B-CLOSE, B-STATUS, POSITION-BLOCK,
DATA-BUFFER,DATA-BUF-LEN,KEY-BUF,KEY-NUMBER.

IF B-5TATUS NOT = 0
MOVE B-STATUS TO DSP-5TATUS
DISPLAY "Unable to close file. Status = " DSP-5TATUS
STOP RUN.

MOVE 64 TO DATA-BUF-LEN.
CALL 'BTRV' USING B-C REATE , B-STATUS, POSITION-BLOCK,

DATA-BUFFER,DATA-BUF-LEN, KEY-BUF, KEY-NUMBER.
IF B-5TATUS NOT = 0

MOVE B-STATUS TO DSP-5TATUS
DISPLAY "Unable to recreate file. Status = " DSP-5TATUS
STOP RUN.

COBOL STEP FIRST

See Step Next.

COBOL STEP LAST

See Step Previous.

D-30 2011Revl.OO

(

COBOL Examples

COBOL STEP NEXT

The following example illustrates how an application might use the Step First
and Step Next operations to recover a file whose indexes have been damaged
by a system failure.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-INSERT
77 B-STEP-NEXT
77 B-STEP-FST
77 KEY-NUM
77 B-STATUS
88 B-EOF
01 DSP-STAT
01 OlD-REC.

02 OlD-NUM
02 OLD-NAME
02 OlD-ADDR

01 NEW-REC.
02 NEW-NUM
02 NEW-NAME
02 NEW-ADDR

01 BUF-lEN
01 OLD-KEY
01 NEW-KEY
01 OlD-POS-BlK
01 NEW-POS-BlK

PROCEDURE DIVISION.
BEGIN.

PIC 99 COMP-O VALUE 2.
PIC 99 COMP-O VALUE 24.
PIC 99 COMP-O VALUE 33.
PIC 99 COMP-O VALUE o.
PIC 99 COMP-O.
VALUE 9.
PIC 99999.

PICX(S).
PIC X(30).
PIC X(SO).

PICX(S).
PIC X(30).
PIC X(50).
PIC 99 COMP-O VALUE 8S.
PIC X(S).
PIC X(S).
PIC X(128).
PIC X(128).

CAll 'BTRV' USING B-STEP-FST, B-STATUS, OlD-POS-BlK,
OlD-REC,BUF-lEN, OLD-KEY, KEY-NUM.

GET-NEXT.
IF B-EOF GO TO XIT.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

MOVE OLD-NUM TO NEW-NUM.
MOVE OLD-NAME TO NEW-NAME.
MOVE OlD-ADDR TO NEW-ADDR.
CAll 'BTRV' USING B-INSERT, B-STATUS, NEW-POS-BlK, NEW-REC,

BUF-LEN,NEW-KEY, KEY-NUM.

2011Rev1.00 D-31

Btrieve Record Manager

XIT.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading record. Status =" DSP-STAT
STOP RUN.

CAll 'BTRV' USING B-STEP-NEXT, B-STATUS, OlD-POS-BlK.
OlD-REC.BUF-lEN, OLD-KEY. KEY-NUM.

GO TO GET-NEXT.

COBOL STEP PREVIOUS

The following example illustrates how an application might use the Step Last
and Step Previous operations to recover a file whose indexes have been
damaged by a system failure.

D-32

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-INSERT
77 B-STEP-PREV
77 B-STEP-lST
77 KEY-NUM
77 B-STATUS
88 B-EOF
01 DSP-STAT
01 OlD-REC.

02 OlD-NUM
02 OLD-NAME
02 OlD-ADDR

01 NEW-REC.
02 NEW-NUM
02 NEW-NAME
02 NEW-ADDR

01 BUF-lEN
01 OLD-KEY
01 NEW-KEY
01 OlD-POS-BlK
01 NEW-POS-BlK

PIC 99 COMP-O VALUE 2.
PIC 99 COMP-O VALUE 35.
PIC 99 COMP-O VALUE 34.
PIC 99 COMP-O VALUE O.
PIC 99 COMP-O.
VALUE 9.
PIC 99999.

PICX(S).
PIC X(30).
PIC X(50).

PICX(S).
PIC X(30).
PIC X(50).
PIC 99 COMP-O VALUE 8S.
PICX(S).
PIC X(S).
PIC X(128).
PIC X(128).

2011Rev1.00

\

(

~ .. /

(

COBOL Examples

PROCEDURE DIVISION.
BEGIN.

CALL 'BTRV' USING B-STEP-LST, B-STATUS, OLD-POS--BLK,
OLD-REC,BUF-LEN, OLD-KEY, KEY-NUM.

GET-NEXT.

XIT.

IF B-EOF GO TO XIT.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

MOVE OLD-NUM TO NEW-NUM.
MOVE OLD-NAME TO NEW-NAME.
MOVE OLD-ADDR TO NEW-ADDR.
CALL 'BTRV' USING B-INSERT, B-STATUS, NEW-POS-BLK, NEW-REC,

BUF-LEN, NEW-KEY, KEY-NUM.

IF B-STATUS NOT = 0
MOVE B-STATUS TO DSP-STAT
DISPLAY "Error writing record. Status =" DSP-STAT
STOP RUN.

CALL 'BTRV' USING B-STEP-PREV, B-STATUS, OLD-POS--BLK,
OLD-REC,BUF-LEN, OLD-KEY, KEY-NUM.

GO TO GET-NEXT.

201lRevl.OO D-33

Btrieve Record Manager

COBOL UPDATE
The following example shows how an application might use the Update
operation to reflect the fact that an employee just received a raise.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 B-GET-EO PIC 99 COMP-O VALUE 5.
77 B-UPDATE PIC 99 COMP-O VALUE 3.
77 NAME-KEY PIC 99 COMP-O VALUE O.
77 B-STATUS PIC 99 COMP-O.
01 DSP-STAT PIC 99999.
01 EMP-REC.

02 NAME
02 HIRE-DATE
02 ANNUAL-SAL

01 DATA-LEN
01 KEY-BUFFER
01 POSITION-BLOCK

PROCEDURE DIVISION.
BEGIN.

PICX(20).
PIC X(6).
PIC X(6).
PIC 99 COMP-O VALUE 32.
PIC X(20).
PIC X(128).

MOVE "Jones, Mary E." TO KEY-BUFFER.
CALL 'BTRV' USING B-GET-EO, B-STATUS, POSITION-BLOCK,

EMP-REC,DATA-LEN,KEY~BUFFER,NAME-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS TO DSP-STAT
DISPLAY "Error reading file. Status =" DSP-STAT
STOP RUN.

MOVE "025000" TO ANNUAL-SAL.
CALL 'BTRV' USING B-UPDATE, B-STATUS, POSITION-BLOCK,

EMP-REC,DATA-LEN,KEY-BUFFER,NAME-KEY.
IF B-STATUS NOT = 0

MOVE B-STATUS to DSP-STAT
DISPLAY "Error updating file. Status =" DSP-STAT
STOP RUN.

Mter the Update operation, Btrieve's position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L. ..
Access Path

D-34

150781

010581

120882

100182

030000

055000

025000

040000

.. Previous record

.. Current record

.. Next record

201lRevl.OO

(/

The following examples illustrate how to call Btrieve from a C application. A
different example is presented for each Btrieve operation.

C ABORT TRANSACTION

In the following example, an application must insert a record into an order
header file and insert two records into an order detail file to record the sale of
a box of diskettes and a ribbon to one customer. If an error occurs on any of
the operations, the transaction is aborted so that the database remains
consistent.

#define B_ABORT 21
#define B_BEGIN 19
#define B_END 20
#define B_INSERT 2
#define B_OPEN 0
struct ORDER_HDR

(
int HDR_ORD_NUM;
int HDR_CUST;
char HDR_DATE[6];

};
struct ORDER_DET

(

};

int DET_ORD_NUM;
int DET_PART;
int DET_QUAN;

struct ORDER_DET DET_BUF;
int DET_KEY;
int DET_LEN;
char DET_POS[128];
char DUMY_BUF[128];
int DUMY_LEN;
struct ORDER_HDR HDR_BUF;
int HDR_KEY;
int HDR_LEN;

201lRev1.00 E-1

Btrieve Record Manager

char
int

main ()
{

HDR_POS[12S);
STAT;

r Start the transaction. *'
STAT = BTRV (B_BEGIN, DUMY_BUF, DUMY_BUF, & DUMY_LEN, DUMY_BUF, 0);
if (STAT!= 0)

{

};

printf ("Error beginning transaction. STAT = %d",STA T);
exit (0);

r Insert the header record. *'
HDR_BUF.HDR_ORD_NUM = 236; rOrder #236*'
HDR_BUF.HDR_CUST = 201; rCustomer #201*'
HDR_BUF.HDR_DATE[O) = '0' rDate o! sale*'
HDR_BUF.HDR_DATE[l) = '6';
HDR_BUF.HDR_DATE[2) = '1';
HDR_BUF.HDR_DATE[3) = '5';
HDR_BUF.HDR_DATE[4) = 'S';
HDR_BUF.HDR_DATE[5) = '3';
HDR_LEN = sizeo! (HDR_BUF);
STAT = BTRV (B_INSERT, HDR_POS, &HDR_BUF, &HDR_LEN, &HDR_KEY, 0); / ~,
if (STAT 1= 0) \

{ ~

};

printf ("Error inserting header record. STAT = %d",STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DUMY_BUF, 0);
exit (0);

r Insert two detail records. *'
DET_BUF.DET_ORD_NUM = 236; rOrder #236*'
DET_BUF.DET_PART = 1002; I*Diskettes are part #1002*'
DET_BUF.DET_QUAN = 1; rPurchased 1 box"'
DET_LEN = sizeo! (DET_BUF);
STAT = BTRV (B_INSERT, DET_POS, &DET_BUF, &DET_LEN, &DET_KEY, 0);
if (STAT != 0)

{
printf ("Error inserting detail record. STAT = %d",STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DUMY_BUF, 0);
exit (0);

};

E-2 2011Revl.OO

(/

CExampies

DET_BUF.DET_PART = 1024; I*Ribbon is part #1024"'
DET_BUF.DET_QUAN = 1; I*Purchased 1 ribbon"'
STAT = BTRV (B_INSERT, DET_POS, &DET_BUF, &DET_lEN, &DET_KEY, 0);
if (STAT!= 0)

{

};

printf ("Error inserting detail record. STAT = %d",STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_lEN, DUMY_BUF, 0);
exit (0);

1* End the transaction. "'
STAT = BTRV (B_END, DUMY_BUF, DUMY_BUF, &DUMY_lEN,DUMY_BUF, 0);
if (STAT!= 0)

{

};

printf ("Error ending transaction. STAT = %d",STAT);
exit (0);

C BEGIN TRANSACTION

See Abort Transaction and End Transaction.

(~/ C CLOSE

(\

The following example illustrates the code required to close a Btrieve file from
C.

#define B_ClOSE 1

main 0
{

int BUF _lEN;
char DATA_BUF[80];
char KEY_BUF[30];
char POS_BlK[128];
int STATUS;

STATUS = BTRV (B_ClOSE, POS_BlK, DATA_BUF, &BUF _lEN, KEY _BUF, 0);
if (STATUS != 0) printf ("Error closing file. Status = %d", STATUS);

2011Revl.OO E-3

Btrieve Record Manager

CCREATE

In the following example, an application creates a Btrieve file with two keys. ('\
Key 0 is an integer key, 2 bytes long. Key 1 allows duplicates, is modifiable, \ _)
and consists of two segments. The first segment is a 2-byte string, to be sorted
in descending order, and the second is a zero terminated 30-byte string. The
records have a fixed length of 80.

#define B_CREATE 14
#define DUP 1
#define MOD 2
#define BIN 4
#define SEG 16
#define DESC 64
#define EXT_TYPE 256
#define B_1 NT_TYPE 1
#define B_STR_TYPE 0
#define B_ZSTR_ TYPE 11

struct KEY_SPEC
(

int KEY_POS;
int KEY_LEN;
int KEY_FLAG;
char NOT_USE1[4];
char KEY_TYPE;
char RESERVE1 [5];

);

struct FIL_SPEC
(

int REC_LEN;
int PAGE_SIZ;
int NDX_CNT;
char NOT_USE2[4];
int FllE]LAG;
char RESERVE2[2];
int PRE_ALLOC;
struct KEY_SPEC KEY_BUF[3];

);

E-4 2011Revl.OO

(-,'

CExampies

int BUF _LEN;
struct FIL_SPEC FILE_BUF;
char FIL_NAME[17] = ,,\\DATA\\CREATE.TST";
char POS_BLK[128];
int STAT;

main 0
{
FILE_BUF.REC_LEN = 80;
FILE_BUF.PAGE_SIZ = 1024;
FI LE_BUF .FILE_FLAG=O;
FILE_BUF.NDX_CNT = 2; r# of indexes in the file-'
FILE_BUF.KEY _BUF[O].KEY_POS = 1; I*Key 0 position-'
FILE_BUF.KEY_BUF[O].KEY_LEN = 2; I*Key 0 length-'
FILE_BUF.KEY_BUF[O].KEY_FLAG = EXT_TYPE; I*Key 0 is extended type-'
FILE_BUF.KEY_BUF[O].KEY_TYPE = B_INT_TYPE; 1* signed binary (integer)-'
FILE_BUF.KEY_BUF[1].KEY_POS = 3; I*Key 1, segment 1 position"
FILE_BUF.KEY_BUF[1].KEY_LEN = 2; I*Key 1, segment 1 length-'
FILE_BUF.KEY_BUF[1].KEY]LAG = DUP I MOD I SEG I EXT_TYPE I DESC;
FILE_BUF.KEY_BUF[1].KEY_TYPE = B_STR_TYPE;
FILE_BUF.KEY_BUF[2].KEY_POS = 5; I*Key 1, segment 2 position-'
FILE_BUF.KEY_BUF[2].KEY_LEN = 30; I*Key 1, segment 2 length-'
FILE_BUF.KEY_BUF[2].KEY]LAG = DUP I MOD I EXT_TYPE;
FILE_BUF.KEY_BUF[1].KEY_TYPE = B_ZSTR_TYPE;
BUF _LEN = sizeof (FILE_BUF);
STAT = BTRV (B_CREATE, POS_BLK, &FILE_BUF, &BUF _LEN, FIL_NAME, 0);
if (STAT != 0)

printf ("Error creating file. Status = %d",STAT);
else

printf ("File created successfully.");

2011Revl.OO E-5

Btrieve Record Manager

CCREATESUPPLEMENTALINDEX
In the following example, an application adds an index to a Btrieve file. The
first segment of the key is a lO-byte string. It allows duplicates and is
modifiable. The second segment is a 2-byte integer.

#define B_OPEN 0
#define B_STAT 15
#define B_ClOSE 1
#define B_INDEX 31
#define DUP 1
#define MOD 2
#define SEG 16
#define EXT_TYPE 256
#define B_STR_TYPE 0
#define B_1 NT_TYPE 1

struct KEY_SPEC
(

int KEY_POS;
int KEY_lEN;
int KEY_FLAG;
char NOT_USE1[4);
char KEY_TYPE;
char RESERVE1 [5);

);

int KEY_BUF _lEN;
struct KEY_SPEC KEY_BUF[2];
char Fll_NAME[17] = ,,\\DATA\\CREATE.TST";
char POS_BlK[12S];
char DMY[SO];
int STAT;

main 0
{
KEY _BUF _lEN = sizeof (KEY _BUF);
STAT = BTRV (B_OPEN, POS_BlK, KEY_BUF, &KEY_BUF _lEN, Fll_NAME, 0);
if (STAT != 0)

{
printf ("Error opening file. STAT = o/ad", STAT);
exit (0);

);
KEY_BUF[O].KEY_POS = 40;
KEY_BUF[O].KEY_lEN = 10;
KEY_BUF[O].KEY_FLAG = DUP I MOD I EXT_TYPE I SEG;

E-6

1* position *'
1* length *'

1* extended type *'

201lRevl.OO

('\

~j

(.. "
'-.. /

C Examples

KEY_BUF[O).KEY_TYPE = B_STR_TYPE;
KEY_BUF(1).KEY_POS = 50;
KEY_BUF(1).KEY_lEN = 2;
KEY_BUF(1).KEY_FLAG = DUP I MOD I EXT_TYPE;
KEY_BUF(1).KEY_TYPE = B_INT_TYPE;
KEY_BUF _lEN = sizeof (KEY_BUF);

r type string *'
r position *'
r length *'

r extended type *'
r type integer *'

STAT = BTRV (B_INDEX, POS_BlK, KEY_BUF, &KEY_BUF_lEN, DMY, 0);
if (STAT 1= 0)

{

);

printf ("Error creating supplemental index in file. STAT = %d" , STAT);
exit (0);

STAT = BTRV (B_ClOSE, POS_BlK, KEY_BUF, &KEY_BUF _lEN, DMY, 0);
if (STAT!= 0)

{

);

printf ("Error closing file. STAT = %d", STAT);
exit (0);

printf ("Supplemental Index added successfully");
)

2011Revl.OO E-7

Btrieve Record Manager

CDELETE
In the following example, a C application for an airline company uses the
Delete operation to reflect the fact that a passenger has cancelled a flight
reservation.

#define B_DEL 4
#define B_GETEO 5

struct RESERV
{

char FLlGHT[3];
char PASSENGR[15];
char AMT_PAID[6];
char ISS_DATE[6];

};
int
struct RESERV
char

BUF_lEN;
RESV_BUF;
KEY_BUFU = "Martin, Dave H.";
POS_BlK[128]; char

int

main 0
{

STATUS;

BUF _LEN = sizeof (RESV _BUF);
STATUS = BTRV (B_GETEO, POS_BlK, &RESV_BUF, &BUF _lEN, KEY_BUF, 0);
if (STATUS != 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

STATUS = BTRV (B_DEl, POS_BlK, &RESV_BUF, &BUF_lEN, KEY_BUF, 0);
if (STATUS 1= 0)

{

};

printf ("Error deleting record. Status = %d", STATUS);
exit (0);

After the Delete operation, Btrieve's current position in the file is as follows:

326 Crawley, Joe J. 179.85 061582

711 Howell, Susan 259.40 052382 .. Previous record

326 Peters, John H. 445.80 061782 .. Next record

840 White, Rosemary 397.00 060282

.,.
Access Path

E-8 2011Revl.OO

('\

\)

('
_7

CExampies

C DROP SUPPLEMENTAL INDEX

In the following example, an application drops a supplemental index in a
Btrieve file because the file no longer needs to be accessed by that index. The
key to be dropped is a segmented key. The first segment is a lO-byte string at
position 40; the second a 2-byte integer at position 50. The code fragment
checks the key specs to make sure it is deleting the proper index.

#define B_OPEN 0
#define B_STAT 15
#define B_DROP 32
#define SEG 16
#define SUPP 128
#define EXT_TYPE 256

struct KEY_SPEC
{

};

};

int
struct
char
char
int
int
int
char

int KEY_POS;
int KEY_LEN;
int KEY_FLAG;
long KEY_TOT;
char KEY_TYPE;
char RESERVE1[5];

int REC_LEN;
int PAGE_SIZ;
int NDX_CNT;
long REC_TOT;
int FILE_FLAG;
char RESERVE2[2];
int UNUSED_P;
struct KEY_SPEC KEY_BUF[10];

FIL_BUF _LEN;
FIL_SPEC FIL_BUF;
KEY_BUF[64];
POS_BLK[128];
STAT;
KEY_NUM;
KEY_ENTRY;
DMY;

2011Revl.OO E-9

Btrieve Record Manager

main ()
{
FIL_BUF _LEN = sizeof (FIL_BUF);
STAT = BTRV (B_STAT, POS_BLK, &FIL_BUF, &FIL_BUF _LEN, KEY_BUF, 0);
if (STAT 1= 0)

{

};

printf ("Error retrieving stats. STAT = %d", STAT);
exit(O);

r find the key number that matches the specs for the index we want to delete *'
for (KEY_ENTRY = 0, KEY_NUM = 0;

KEY_NUM = < FIL_BUF.NDX_CNT; KEY_NUM++, KEY_ENTRY++)
{

if ((FIL_BUF.KEY_BUF[KEY_ENTRYj.KEY_FLAG & SUPP)
&& (FIL_BUF.KEY_BUF[KEY_ENTRYj.KEY_POS == 40)
&& (FIL_BUF.KEY_BUF[KEY_ENTRY).KEY_LEN == 10)
&& (FIL_BUF.KEY_BUF[KEY_ENTRY+1)KEY_POS == 50)
&& (FIL_BUF.KEY_BUF[KEY_ENTRY+1)KEY_LEN == 2»

break;
while (FIL_BUF.KEY_FUB[KEY_ENTRYj.KEY_FLAG & SEG) KEY_ENTRY++;

}
if (KEY_NUM >= FIL_BUF.NDX_CNT)

{
printf ("No supplemental index has matching specifications. STAT = %d", STAT);
exit (0);

}
FIL_BUF _LEN = 1;
STAT = BTRV (B_DROP, POS_BLK, &DMY, &FIL_BUF _LEN, KEY _BUF, KEY _NUM);
if (STAT 1= 0)

{

};

printf ("Error dropping index. STAT = %d", STAT);
exit (0);

printf ("Supplemental Index dropped successfully");
};

E-lO 201IRev1.00

c

C Examples

C END TRANSACTION

The following application uses transaction control to ensure that one account
in a ledger file is not debited unless another is also credited.

#define B_ABORT 21
#define B_BEGIN 19
#define B_END 20
#define B_GET_EQ 5
#define B_OPEN 0
#define B_UPDATE 3
struct LEDGER_REC

{
int ACCT_ID;
char DESC[40];
long BALANCE;

};
int BUF _LEN;
struct LEDGER_REC DATA_BUF;
char DUMY_BUF[128];
int DUMY_LEN;
int KEY_BUF;
char POS_BLK[128];
int STAT;
main ()
{
r Begin the transaction. *'
STAT = BTRV (B_BEGIN, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DUMY_BUF, 0);
if (STAT!= 0)

{

};

print! ("Error beginning transaction. STAT = %d",STAT);
exit (0);

r Retrieve and update the cash account record. *'
KEY_BUF = 101; rCash is account#101*'
BUF _LEN = sizeof (DATA_BUF);
STAT = BTRV (B_GET_EQ, POS_BLK, &DATA_BUF, &BUF _LEN, &KEY_BUF, 0);
if (STAT != 0)

{
print! ("Error retrieving record. STAT = ", STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DUMY_BUF, 0);
exit (0);

};
DATA_BUF.BALANCE = DATA_BUF.BALANCE - 250;
STAT = BTRV (B_UPDATE, POS_BLK, &DATA_BUF, &BUF _LEN, &KEY_BUF, 0);

2011Revl.OO E-11

Btrieve Record Manager

if (STAT!= 0)
{

printf ("Error updating record. STAT = %d", STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_lEN, DUMY_BUF, 0);
exit (0);

};

,. Retrieve and update the office expense account record. */
,. Office expense is account #511 * /
KEY_BUF = 511;
STAT = BTRV (B_GET_EQ, POS_BlK, &DATA_BUF, &BUF _lEN, &KEY_BUF, 0);
if(STAT != 0)

{
printf ("Error retrieving record. STAT = %d", STAT);
STAT = BTRV (B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_lEN, DUMY_BUF, 0);
exit (0);

};
DATA_BUF.BALANCE = DATA_BUF.BALANCE + 250;
STAT = BTRV(B_UPDATE, POS_BlK, &DATA_BUF, &BUF _lEN, &KEY_BUF, 0);
if (STAT 1= 0)

{
printf ("Error updating record. STAT = ", STAT);
STAT = BTRV(B_ABORT, DUMY_BUF, DUMY_BUF, &DUMY_lEN, DUMY_BUF, 0);
exit (0);

};

,. End the transaction. */ ,. ~

STAT = BTRV (B_END, DUMY_BUF, DUMY_BUF, &DUMY_lEN, DUMY_BUF, 0);
if (STAT!= 0)

{

};

E-12

printf ("Error ending transaction. STAT = %d",STAT);
exit (0);

2011Rev1.00

(

C£xamples

CEXTEND

The following example illustrates how an application might use the Extend
operation to expand a Btrieve file in order to gain more disk space.

#define B_ClOSE 1
#define B_EXTEND 16
#define B_OP!:N 0

struct ADDR_REC
{

char NAME[30];
char STREET[30];
char CITY[30];
char STATE[2];
char ZIP[S];

};
int BUF _lEN;
struc;t ADDR_REC DATA_BUF;
char EXT_NAME[1S] = "B:ADDRESS.EXT ";
char Fll_NAME[15] = "ADDRESS.BTR ";
char KEY_BUF[30];
char POS_BlK[128];
int STAT;

main 0
BUF _lEN = sizeof (DATA_BUF);

/*Structure of address file entry>,

STAT = BTRV (B_OPEN, POS_BlK, &DATA_BUF, &BUF _lEN, Fll_NAME, 0);
if (STAT!= 0)

{

};

printf ("Error opening file. STAT = %d", STAT);
exit (0);

STAT = BTRV (B_EXTEND, POS_BlK, &DATA_BUF, &BUF _LEN, EXT_NAME, 0);
if (STAT != 0)

{

};

printf ("Error extending file. STAT = %d", STAT);
exit (0);

STAT = BTRV (B_ClOSE, POS_BlK, &DATA_BUF, &BUF _lEN, KEY _BUF. 0);
STAT = BTRV (B_OPEN, POS_BlK, &DATA_BUF, &BUF _lEN. Fll_NAME, 0);
if (STAT != 0) printf ("Error reopening the file. STAT = %d", STAT);
else printf ("File reopened successfully.");

201lRevl.OO £-13

Btrieve Record Manager

CGETDIRECT

The following example illustrates how an application can use the Get Direct ,1''',

operation to sort the records in a Btrieve file by an external index. (See the \ j
description of Get Position for an example of how to build the external index
file.)

#define B_GETDRC 23
#define B_GETLW 12
#define B_GETNX 6
#define B_GETPOS 22
#define EOF _ERR 9
struct ADDRESS

(
char NAME[20];
char STREET[20);
char CITY[10);
char STATE[2);
char ZIP[5];

};
union ADDR_REC

{
struct ADDRESS ADDR;
long REC_POS;
FILE_BUF;

struct INDEX
(

long I NX_POS;
char I NX_ST[2);

};
int FILE_LEN;
char FIL_POS[128);
struct INDEX INDX_BUF;
int INDX_LEN;
char INX_POS[128);
char NAME_KEY[20);
char ST _KEY[2);
int STATUS;

main 0
{
FILE_LEN = sizeof (FILE_BUF);
INDX_LEN = sizeof (INDX_BUF);
STATUS = BTRV (B_GETLW, INX_POS, &INDX_BUF, &INDX_LEN, ST_KEY, 0);

E-14 2011Rev1.00

(/

('

C Examples

while (STATUS != EOF _ERR)
{

if (STATUS!= 0)
{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

FILE_BUF.REC_POS = INDX_BUF.INX_POS;
STATUS = BTRV (B_GETDRC, FIL_POS, &FILE_BUF, &FILE_LEN, NAME_KEY, 0);
if (STATUS!= 0)

{

}

printf ("Error on get direct. Status = %d", STATUS);
exit (0);

printf ("%.57s\n", FILE_BUF.ADDR.NAME);
STATUS = BTRV (B_GETNX, INX_POS, &INDX_BUF, &INDX_LEN, ST_KEY, 0);

C GET DIRECTORY
The following example illustrates how an application can use the Get and Set
Directory operations to retrieve the current directory at the beginning of the
program, and to restore it before terminating.

#define B_GET_DIR 18
#define B_SET_DIR 17

char DIR_PATH[64];
char DUMY_BUF[128];
int DUMY_LEN;
int STAT;

main 0
{
STAT = BTRV (B_GET_DIR, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DIR_PATH, 0);
if (STAT!= 0)

{

};

printf ("Error getting current dir. STAT = %d",STAT);
exit (0);

STAT = BTRV (B_SET_DIR, DUMY_BUF, DUMY_BUF, &DUMY_LEN, DIR_PATH, 0);
if (STAT!= 0)

{

};

printf ("Error restoring current dir. STAT = %d",STAT);
exit(O);

2011Rev1.00 E-15

Btrieve Record Manager

CGETEQUAL

In the following example, part number is a key in an inventory file. The
application program r~trieves the record containing inventory information for
a particular part number with a single Get Equal operation, in order to
determine whether or not to reorder that part number.

#define B_GETEQ 5

struct INVENT
{

char PART_NUM[5];
char PART_DSC[10];
char QUAN_OH[3];
char REORD_PT[3];
char REORD_QU[3];

};

int DATA_lEN;
int I;
struct INVENT INV_BUF;
char KEY _BUFD = "03426";
char POS_BlK[12B];
char STR1[4];
char STR2[4];
int STATUS;

main 0
{
DATA_lEN = sizeof (INV_BUF);
STATUS = BTRV (B_GETEQ, POS_BlK, &INV_BUF, & DATA_lEN , KEY_BUF, 0);
if (STATUS 1= 0)

{

};

printf ("Error reading file. Status = %d", STATUS);
exit (0);

for (I = 0; 1 < 3; 1++)
(

r convert data to C strings *f

}

STR1[1] = INV_BUF.QUAN_OH[I];
STR2[1] = INV_BUF.REORD_PT[I);

STR1[3) = STR2(3) = '\0';
if (strcmp(STR1, STR2) < 0) printf ("Time to order %.3s units of %.1 Os",

INV_BUF.REORD_QU,INV_BUF.PART_DSC);

E-16 2011Rev1.00

(

C Examples

The table below shows Btrieve's current position in the file after the Get
Equal operation.

03419 Pliers 003 010 015 .. Previous record

03426 Hammer 010 003 005 .. Current record

03430 Saw 005 002 003 .. Next record

03560 Wrench 008 005 005

Access Path

201lRevl.OO E-17

Btrieve Record Manager

CGETFIRST

The following example illustrates how an application might use the Get First .. "
operation to find the youngest employee in the company. Age is key number 2
in the employee file.

#define B_GETFIRST 12

struct EMP _REC
{

char NAME[20);
char AGE(2);
char HIRE_DAT[G);

};
int DATA_LEN;
struct EMP _REC EMP _BUF;
char KEY_BUF[2);
char POS_BLK[128);
int STATUS;

main 0
{
DATA_LEN = sizeof (EMP _BUF);
STATUS = BTRV (B_GETFIRST, POS_BlK, &EMP _BUF, &DATA_LEN, KEY_BUF, 2);
if (STATUS 1= 0)

printf ("Error reading file. Status = %d", STATUS);
else

printf ("Youngest employee is %.20s", EMP _BUF.NAME);

After the Get First operation, Btrieve's current position in the file is as
follows:

Brook, WendyW.

Ross, John L.

Blanid, Suzanne M.

Brandes, William J.

E-18

18 071582

20 121081

25 050281

40 031576

Access Path

.. Previous Record

.. Current Record

.. Next Record

201IRev1.00

c:

C Examples

C GET GREATER

The following example indicates how a C application for an insurance
company might use the Get Greater operation to determine which
policyholders have more than three traffic violations. The number of traffic
violations is key 2 in the policy file.

#define B_GETGT 8
#define B_GETNX 6
#define EOF _ERR 9

struct POLICY
{

};

int
struct
char
char
int

main 0
{

char POL_NUM[10];
char NAME[20];
char EFF _DATE[6];
char VIOLAT[2];

DATA_LEN;
POLICY POL_BUF;

KEY_BUFll = "03";
POS_BLK[128];
STATUS;

DATA_LEN = sizeof (POL_BUF);
STATUS = BTRV (B_GETGT, POS_BLK, &POL_BUF, & DATA_LEN , KEY_BUF,2);
while (STATUS!= EOF_ERR)

{
if (STATUS != 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

printf ("%.20s has %.2s traffic violations\n", POL_BUF.NAME, POL_BUF.VIOLAT);
STATUS = BTRV (B_GETNX, POS_BLK, &POL_BUF, & DATA_LEN , KEY_BUF, 2);

2011Rev1.00 E-19

Btrieve Record Manager

C GET GREATER OR EQUAL
If the date of a sale is a key in an invoice file, an application might use the
Get Greater Or Equal operation to retrieve the invoice record for the first sale
made in May, 1982.

#define B_OPEN 0
#define B_GETGE 9

struct INVOICE
{

char INV_NUM[5];
char SAlE_DTIS];
char CUST_NUM[5];
char TOT_PRC[8];

};
int DATA_lEN;
struct INVOICE INV_BUF;
char KEY_BUFll = "050182";
char POS_BlK[128];
int STATUS;

main 0
{
DATA_lEN = sizeof (INV_BUF);
STATUS = BTRV (B_GETGE, POS_BlK, &INV_BUF, &DATA_lEN, KEY_BUF, 1);
if (STATUS != 0)

printf ("Error reading file. Status = %d", STATUS);
else

printf ("First sale in May was to %.5s for %.8s", INV_BUF.CUST_NUM, INV_BUF.TOT_PRC);

After the Get Greater Or Equal Operation, Btrieve's current position in the
file is as follows:

03110 041582

03111 042882

03112 042882

03113 050282

03114 050282

03115 051682

+
Access Path

E-20

11315

34800

51428

62541

14367

15699

00184.00

00096.00

00124.56

00036.45

00098.72

00575.99

.. Previous record

.. Current record

.. Next record

2011Revl.OO

("-
-\

/
/

('\

C Examples

CGETLAST

The following example illustrates how an application might use the Get Last
operation to determine which employee had the highest commissions last
month.

#define B_GETLAST 13

struct EMP _REC
{

char EMP _NUM[6];
char EMP _NAME[20];
char EMP _DEPT[2];
char EMP _TOT[6];
char EMP _CUR[6];

};

int BUF _lEN;
struct EMP _REC EMP _BUF;
char KEY_BUF[6];
char POS_BlK[128];
int STATUS;

main 0
{
BUF _lEN = sizeof (EMP _BUF);
STATUS = BTRV (B_GETLAST. POS_BlK. &EMP _BUF. &BUF_lEN. KEY_BUF. 1);
if (STATUS != 0)

printf ("Error reading file. Status = %d". STATUS);
else

printf ("Employee with highest commissions last month was %.20s", EMP _BUF.EMP _NAME);

Mer the Get Last operation, Btrieve's current positioning in the file is as
follows:

704904 Brook. Wendy W.

831469 Ross. John L.

876577 Blanid. Kathleen M.

528630 Brandes. Maureen R.

201 IRev1.00

Al

A5

A3

A5

110.95

240.80

562.75

935.45

+
Access Path

.. Previous Record

.. Current Record

.. Next Record

E-21

Btrieve Record Manager

C GET LESS THAN
/\ The following C example indicates how an application may use Get Less (

Than, followed by Get Previous, to find the names of all customers whose \, . ./
magazine subscriptions have less than three issues left before they run out.
The number of issues remaining is key 2 in the subscription file.

#define B_GETl T 10
#define B_GETPR 7
#define EOF _ERR 9

struct SUBSCRP
{

char CUST[20];
char SUB_DATE[6];
char PD_DATE[6];
char ISS_PUR[3];
char ISS_REM[3];

};

int BUF _lEN;
struct SUBSCRP SUB_BUF;
char KEY_BUFD = "003";
char POS_BlK[128];
int STATUS;

main 0
{
BUF _LEN = sizeof (SUB_BUF);
STATUS = BTRV (B_GETlT, POS_BlK, &SUB_BUF, &BUF _lEN, KEY_BUF, 2);
while (STATUS!= EOF_ERR)

{
if (STATUS!= 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

printf ("Send reorder form to %.20s\n", SUB_BUF.CUST);
STATUS = BTRV (B_GETPR, POS_BlK, &SUB_BUF, &BUF_lEN, KEY_BUF, 2);

E-22 201lRevl.OO

(-

(

C Examples

C GET LESS THAN OR EQUAL

In the following example, an application uses the Get Less Than Or Equal
operation to retrieve the first house that falls within a prospective customer's
price limit of $110,000.

#define B_GETlE 11

struct HOME_REC
(

char PRICE[?);
char ADDRESS(20);
char SQ_FEET(6);
char YR_BUllT(4);

} ;

int BUF _lEN;
struct HOME_REC HOME_BUF;
char KEY _BUF[) = "0110000";
char POS_BlK(128);
int STATUS;

main 0
(
BUF _lEN = sizeof (HOME_BUF);
STATUS = BTRV (B_GETlE, POS_BlK, &HOME_BUF, &BUF _lEN, KEY _BUF, 0);
if (STATUS != 0)

printf ("Error reading file. Status = %d", STATUS);
else

printf ("The home at %.20s sells for %.?s", HOME_BUF.ADDRESS, HOME_BUF.PRICE);

Mter the Get Less Than or Equal operation, Btrieve's current position is as
follows:

0050000 330N.31st

0055000 11132 Maple Ave.

0070000 624 Church Street

0105000 3517 N. Lakes Avenue

0220000 4500 Oceanfront Ave.

+
Access Path

2011Revl.OO

002200 1960

002000 1965

002300 1968

002500 1975

003000 1980

.. Previous Record

.. Current Record

.. Next Record

E-23

Btrieve Record Manager

CGETNEXT

In the following example, an application uses the Get Next operation to
generate a set of mailing labels sorted according to zip code. The zip code
(ZIP) is key 1 in the file.

#define B_GETFST 12
#define B_GETNX 6
#define EOF _ERR 9

struct ADDRESS
{

char NAME(20);
char STREET(20);
char CITy(10);
char STATE(2);
char ZIP(5);

};

int DATA_lEN;
struct ADDRESS ADDR_BUF;
char KEY_BUF(5);
char POS_BlK(128);
int STATUS;

main ()
{
DATA_lEN = sizeof (ADDR_BUF);
STATUS = BTRV (B_GETFST, POS_BlK, &ADDR_BUF, &DATA_lEN, KEY_BUF, 1);
while (STATUS 1= EOF _ERR)

{

E-24

If (STATUS!= 0)
{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

printf C'%.20s\n", ADDR_BUF.NAME);
printf ("%.20s\n", ADDR_BUF.STREET);
printf ("%.10s, %.2s %.5s\n\n", ADDR_BUF.CITY, ADOR_BUF.STATE, ADDR_BUF.zIP);
STATUS = BTRV (B_GETNX, POS_BlK, &ADDR_BUF, &DATA_lEN, KEY_BUF, 1);

2011Revl.OO

C Examples

C GET POSITION

The following example illustrates how Get Position can be used to construct
an external index for an existing Btrieve file. Once an external index is
created, the application can read the external index file from lowest to
highest and use Get Direct to sort the records in a Btrieve file by some field
that was not originally defined as a key field.

#define B_INSERT 2
#define B_GETFST 12
#define B_GETNX 6
#define B_GETPOS 22
#define EOF _ERR 9

struct ADDRESS
{

char NAME[20];
char STREET[20];
char CITY[10];
char STATE[2];
char ZIP[5];

} ;

union ADDR_REC

struct ADDRESS ADDR;
long REC_POS;
FILE_BUF;

struct INDEX
{

long I NX_POS;
char I NX_ST[2];

} ;

int FILE_LEN;
char FIL_POS[128];
int I;
struct INDEX INDX_BUF;
int INDX_LEN;
char INX_POS[128];
char NAME_KEY[20];
char ST_KEY[2];
int STATUS;

2011Rev1.00 E-25

Btrieve Record Manager

main 0
{
FILE_LEN = sizeof (FILE_BUF);
INDX_LEN = sizeof (INDX_BUF);
STATUS = BTRV (B_GETFST, FIL_POS, &FILE_BUF, &FILE_LEN, NAME_KEY, 0);
while (STATUS != EOF _ERR)

{

E-26

if (STATUS != 0)
{

J

printf ("Error reading file. Status = %d", STATUS);
exit (0);

for (I = 0; 1 < 2; 1++) INDX_BUF.INX_ST[I] = FILE_BUF.ADDR.STATE[IJ;
STATUS = BTRV (B_GETPOS, FIL_POS, &FILE_BUF, &FILE_LEN, NAME_KEY, 0);
INDX_BUF.INX_POS = FILE_BUF.REC_POS;
STATUS = BTRV (B_INSERT, 1 NX_POS, &INDX_BUF, &INDX_LEN, ST_KEY, 0);
if (STATUS != 0)

{

J

print! ("Error inserting index record. Status = %d", STATUS);
exit (0);

STATUS = BTRV (B_GETNX, FIL_POS, &FILE_BUF, &FILE_LEN, NAME_KEY, 0);

2011Revl.OO

CExampies

C GET PREVIOUS

The following example illustrates how an application can use Get Previous to
list corporations and their total sales dollars for the year, beginning with the
corporation having the highest sales and continuing in descending order of
sales dollars. Total sales is key number 1 in the company file.

#define B_GETLST 13
#define B_GETPR 7
#define EOF _ERR 9

struct COMPANY
{

char NAME[30];
char TOT_SALE [1 0];

};

struct COMPANY COMP _BUF;
int DATA_LEN;
char KEY_BUF[10];
char POS_BLK[128];
int STATUS;

main 0
{
DATA_LEN = sizeof (COMP _BUF);
STATUS = BTRV (B_GETLST, POS_BLK, &COMP _BUF, &DATA_LEN, KEY_BUF, 1);
while (STATUS != EOF _ERR)

{
if (STATUS!= 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

printf ("%.30s %.10s\n", COMP _BUF.NAME, COMP _BUF.TOT_SALE);
STATUS = BTRV (B_GETPR, POS_BLK, &COMP _BUF, &DATA_LEN, KEY_BUF, 1);

201lRevl.OO E-27

Btrieve Record Manager

CINSERT
The following example shows how an application might use the Insert
operation to add a new employee to the employee file.

#define B_INS 2

struct EMP _REC
{

char NAME[20);
char HIRE_DAT[6);
char ANNL_SAL[6);

};

• int DATA_LEN;
struct EMP _REC EMP _BUF;
int I;
char KEY_BUF[20];
char NEW_HIRE[) = "120882";
char NEW_NAME[) = "Jones, Mary E.
char NEW_SAL[) = "020000";
char POS_BLK[128);
int STATUS;

main 0
{
DATA_LEN = sizeof (EMP _BUF);

". ,

for (I = 0; I < sizeof(EMP _BUF.HIRE_DAT); 1++) EMP _BUF.HIRE_DAT[I) = NEW_HIRE[I];
for (I = 0; I < sizeof(EMP _BUF.NAME); 1++) EMP _BUF.NAME[I] = NEW_NAME[I];
for (I = 0; I < sizeof(EMP _BUF.ANNL_SAL); 1++) EMP _BUF.ANNL_SAL[I] = NEW_SAL[I];
STATUS = BTRV (B_INS, POS_BLK, &EMP _BUF, & DATA_LEN , KEY_BUF, 0);
if (STATUS 1= 0) printf ("Error inserting record. Status = %d", STATUS);
}

After an Insert operation, Btrieve's current position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

+
Access Path

E-28

150781 030000

010581 055000

120882 020000

100182 040000

.. Previous record

.. Current record

.. Next record

2011Revl.OO

o

(

(

CExamples

COPEN

The following example illustrates the code required to open a Btrieve file from
C.

#define B_OPEN 0

struct EMP _REC
{

char EMP _NUM[6];
char EMP _NAME[20];
char EMP _OEPT[2];
char EMP _TOT[6];
char EMP _CUR[6];

};

int BUF _lEN;
struct EMP _REC EMP _BUF;
char POS_BlK[128];
int STATUS;

main ()
{
aUF_lEN = sizeof (EMP _BUF);
STATUS = BTRV (B_OPEN, POS_BlK, &EMP _BUF, &BUF _lEN,

"C:\\OATA\\EMPlOYEE.BTR n, 1);
if (STATUS != 0)

{
printf ("Error opening file. Status = %d", STATUS);
exit (0);

2011Rev1.00 E-29

Btrieve Record Manager

C SET DIRECTORY

In the following example, an application sets the current directory before
performing an Open operation.

#define B_OPEN 0
#define B_SET_DIR 17

struct ADDR_REC rStructure of address file entry*/
{

};

int
struct
char
char
char
char
int

main 0
{

char NAME[30];
char STREET[30];
char CITY[30];
char STATE[2];
char ZIP[5];

BUF_lEN;
ADDR_REC DATA_BUF;
DIR_PATH[6] = ',\\DATA"';
Fll_NAME[15] = "'ADDRESS.BTR ";
KEY_BUF[30];
POS_BlK[128];
STAT;

BUF _lEN = sizeof (DATA_BUF);
STAT = BTRV (B_SET_DIR, POS_BlK, &DATA_BUF, &BUF _lEN, DIR_PATH, 0);
if (STAT 1= 0)

{

};

printf ("Unable to set current directory. STAT =%d", STAn;
exit (0);

STAT = BTRV (B_OPEN, POS_BlK, &DATA_BUF, &BUF _lEN, Fll_NAME, 0);
if (STAT 1= 0)

{

};

E-30

printf ("Error opening file. STAT = %d", STAT);
exit (0);

2011Revl.00

,
\ .
'-.....""

!
~, ."

CExamples

CSTAT

In the following example, an application uses the Stat and Create operations
to empty a Btrieve file.

#define B_CREATE 14
#define B_OPEN 0
#define B_CLOSE 1
#define B_STAT 15

int KEY _POS;
int KEY_LEN;
int KEY_FLAG;
long KEY_TOT;
char KEY_TYPE;
char RESERVE1 (5);

};

int REC_LEN;
int PAGE_SIZ;
int NDX_CNT;
long REC_TOT;
char RESERVED(6);
int FILE_FLAG;
char RESERVE2(2);
int UNUSED_P;
struct KEY_SPEC KEY_BUF(2);

};

int FIL_BUF _LEN;
struct FIL_SPEC FIL_BUF;
char FIL_NAME(15) = "LEDGER.BTR";
char KEY_BUF(64);
char POS_BLK[12B];
int STAT;

2011Rev1.00 E-31

B trieve Record Manager

main 0
{ ,

FIL_BUF _LEN = sizeof (FIL_BUF);
STAT = BTRV (B_OPEN, PeS_BLK, &FIL_BUF, &FIL_BUF _LEN, FIL_NAME, 0);
if (STAT!= 0)

{

};

printf ("Error opening file. STAT = %d", STAT);
exit (0);

FIL_BUF _LEN = sizeof (FIL_BUF)i
STAT = BTRV (B_STAT, POS_BLK, &FIL_BUF, &FIL_BUF _LEN, KEY _BUF, 0);
if (STAT 1= 0)

{

};

printf ("Error retrieving smts. STAT = %d", STAT);
exit (0);

STAT = BTRV (B_CLOSE, POS_BLK, &FIL_BUF, &FIL_BUF _LEN, FIL_NAME, 0);
if (STAT != 0)

{

};

printf ("Error closing file. STAT = %d", STAT);
exit (0);

FIL_BUF _LEN = sizeof (FIL_BUF);
STAT = BTRV (B_CREATE, POS_BLK, &FIL_BUF, &FIL_BUF _LEN, FIL_NAME, 0);
if (STAT!= 0)

printf ("Error recreating file. STAT = %d", STAT);
else

priritf ("File emptied successfully");

C STEP FIRST

See Step Next.

C STEP LAST

See Step Previous.

E-32 201lRevl.OO

r:)

("

C Examples

CSTEPNEXT
The following example shows how an application uses the Step First and Step
Next operations to recover a file with damaged indexes.

#cIefine B_INSERT 2
#define B_STEPNXT 24
#cIefine B_STEPFST 33
#define EOF _ERR 9
struct EMP _REC

{

};
int
struct
char
char
struct
char
char
int
int
main 0
{

char NUM[6];
char NAME[30];
char ADDR[50];

BUF_LEN;
EMP _REC NEW_BUF;
NEW_KEY[6];
NEW_POS[128];
EMP _REC OLD_BUF;
OLD_KEY[6];
OLD_POS[128];
I;
STATUS;

BUF _LEN = sizeof (NEW_BUF);
STATUS = BTRV (B_STEPFST, OLD_POS, &OLD_BUF, &BUF _LEN, OLD_KEY, 0);
while (STATUS 1= EOF_ERR)

(
if(STATUS 1= 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

for (I = 0; I < 6; 1++) NEW_BUF.NUM[I] = OLD_BUF.NUM[I];
for (I = 0; I < 30; 1++) NEW_BUF.NAME[I] = OLD_BUF.NAME[I];
for (I = 0; I < 50; 1++) NEW_BUF.ADDR[I] = OLD_BUF.ADDR[I];
STATUS = BTRV (B_INSERT, NEW_POS, &NEW_BUF, &BUF _LEN, NEW_KEY, 0);
if (STATUS 1= 0)

{

}

printf ("Error inserting record. Status = %d", STATUS);
exit (0);

STATUS = BTRV (B_STEPNXT, OLD_POS, &OLD_BUF, &BUF _LEN, OLD_KEY, 0);

201lRevl.OO E-33

Btrieve Record Manager

C STEP PREVIOUS
This example shows how an application uses the Step Last and Step Previous (\
operations to recover a file with damaged indexes. ~

#define B_INSERT 2
#define B_STEPLST 34
#define B_STEPPREV 35
#define EOF _ERR 9
struct EMP _REC

{
char NUM[6];
char NAME[30];
char ADDR[50];

};
int BUF _LEN;
struct EMP _REC NEW_BUF;
char NEW_KEY[6];
char NEW_POS[128];
struct EMP _REC OLD_BUF;
char OLD_KEY[6];
char OLD_POS[128];
int I;
int STATUS;

main 0
{
BUF _LEN = sizeof (NEW_BUF);
STATUS = BTRV (B_STEPLST, OLD_POS, &OLD_BUF, &BUF _LEN, OLD_KEY, 0);
while (STATUS 1= EOF _ERR)

{
if (STATUS != 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

for (I = 0; I < 6; 1++) NEW_BUF.NUM[I] = OLD_BUF.NUM[I];
for (I = 0; I < 30; 1++) NEW_BUF.NAME[I] = OLD_BUF.NAME[I];
for (I = 0; I < 50; 1++) NEW_BUF.ADDR[I] = OLD_BUF.ADDR[I];
STATUS = BTRV (B_INSERT, NEW_POS, &NEW_BUF, &BUF _LEN, NEW_KEY, 0);
if (STATUS!= 0)

E-34

{

}

printf ("Error inserting record. Status = %d", STATUS);
exit (0);

STATUS = BTRV (B_STEPPREV, OLD_POS, &OLD_BUF, &BUF _LEN, OLD_KEY,O);

201lRevi.OO

CExamples

CUPDATE

The following example shows how an application might use the Update
operation to reflect the fact that an employee just received a raise.

#define B_GETEO 5
#define B_UPD 3

struct EMP _REC
{
char NAME[20];
char HIRE_DAT[6];
char ANNL_SAL[6];
};

int DATA_LEN;
struct EMP _REC EMP _BUF;
int I;
char KEY_BUFU = "Jones, Mary E. ";
char NEW_SAL[] = "025000";
char POS_BLK[128];
int STATUS;
main 0
{
DATA_LEN = sizeof (EMP _BUF);
STATUS = BTRV (B_GETEO, POS_BLK, &EMP _BUF, & DATA_LEN , KEY_BUF, 0);
if (STATUS != 0)

{

}

printf ("Error reading file. Status = %d", STATUS);
exit (0);

for (I = 0; I < sizeof(EMP _BUF.ANNL_SAL); 1++) EMP _BUF.ANNL_SAL[I] = NEW_SAL[I];
STATUS = BTRV (B_UPD, POS_BLK, &EMP _BUF, &DATA_LEN, KEY_BUF, 0);
if (STATUS != 0) printf ("Error updating record. Status = %d", STATUS);
)

After the Update operation, Btrieve's positioning in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

Access Path ___ ::s+

2011Revl.OO

150781

010581

120882

100182

030000

055000

025000

040000

.. Previous record

.. Current record

.. Next record

E-35

('-' APPENDIX F:
.) BASIC EXAMPLES

(

The following examples illustrate how to call Btrieve from a BASIC
application. A different example is presented for each Btrieve operation.

BASIC ABORT TRANSACTION

The following example shows an application which inserts a record into an
order header file and two records into an order detail file to record the sale of
a box of diskettes and a ribbon to one customer. If an error occurs on any of
the operations, Btrieve aborts the transaction so that the database remains
consistent.

60 FIELD #2,2 AS ORDER.NUM$, 2 AS CUST.NUM$, 6 AS SALE.DATE$
70 FIELD #3, 2 AS DET.ORD.NUM$, 2 AS PART.NUM$, 2 AS QUAN$
190 'Begin the transaction and insert the header record.
210 OPERATION% = 19 'Set Begin Transaction code
230 CALL BTRV (OPERATION%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%)
240 IF STATUS% <> 0 THEN

PRINT "Error beginning transaction =", STATUS% : END
250 LSET ORDER.NUM$ = MKI$(236) 'Order #236
260 LSET CUST.NUM$ = MKI$(201): LSETSALE.DATE$ = "061583"
280 OPERATION% = 2 : BUF.LEN% = 10
290 CALL BTRV (OPERATION%, STATUS%, HDR.FCB%, BUF.LEN%,HDR.KEY$,

KEY.NUMBER%)
300 IF STATUS% <> 0 THEN

PRINT "Status = ", STATUS%, "inserting header record":
OP%=21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%) : END
320 'Header record has been inserted, now insert 2 detail records
340 LSET DET.ORD.NUM$ = MKI$(236) 'Order #236
350 LSET PART.NUM$ = MKI$(1002) 'Diskettes are part number 1002
360 LSET QUAN$ = MKI$(1) 'Purchased 1 box
365 BUF.LEN% = 6 'Set data buffer length
370 CALL BTRV (OPERATION%, STATUS%, DET.FCB%, BUF.LEN%,DET.KEY$,

KEY.NUMBER%)

2011Rev1.00 F-1

Btrieve Record Manager

380 IF STATUS% <> 0 THEN
PRINT "Status", ",STATUS%,"inserting detail record":
OP%",21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%, C

DUMMY.KEY$, KEY.NUMBER%) : END .
390 LSET PART.NUM$ '" MKI$(1024) 'Ribbon is part number 1024 ~~/

400 LSET QUAN$ '" MKI$(1) 'Purchased 1 ribbon

410 CALL BTRV (OPERATION%, STATUS%, DET.FCB%, BUF.LEN%, DET.KEY$,
KEY.NUMBER%)

420 IF STATUS% <> 0 THEN
PRINT ·Status '" ",STATUS%, "inserting detail record": OP%",21 :
CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%, DUMMY.KEY$,

KEY.NUMBER%) : END
430 '
440 'All records have been inserted. End the transaction.
450 '
460 OPERATION% '" 20 'Set end transaction code
470 CALL BTRV (OPERATION%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%)
480 IF STATUS% <> 0 THEN

PRINT "Error ending transaction. Status", n, STATUS%
ELSE PRINT "Transaction completed successfully."

BASIC BEGIN TRANSACTION

See the examples for Abort Transaction and End Transaction.

BASIC CLEAR OWNER

The following example illustrates the code required to perform a Clear Owner
operation.

100 OP% ",30
110 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$, KEY.NUM%)
120 IF STATUS% <> 0 THEN PRINT "Btrieve status",", STATUS% : END

F-2 201lRevl.OO

(

(

BASIC Examples

BASIC CLOSE

The following example illustrates the code required to perform a Close
operation:

110 OP% = 1
170 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$,

KEY.SELECT%)
175 IF STATUS% <> 0 THEN PRINT "Btrieve status = ", STATUS% :END

BASIC CREATE

In the following example, an application creates a Btrieve file with two keys.
Key 0 is an integer key, 2 bytes long. Key 1 allows duplicates, is modifiable,
and consists of two segments. The first segment is a 2-byte string, to be sorted
in descending order, and the second is a zero terminated 30-byte string. The
records have a fixed length of 80.

20 DUPLICATES% = 1
30 MODIFIABLE% = 2
40 SEGMENTED% = 16
50 DESCEND% = 64
60 EXTTYPE% = 256
70 BINTEGER% = 1
80 BSTRING% = 0
90 BZSTRING% = 11
100 OPEN "NUL" AS #1
110 FIELD 1, 2 AS RECL$, 2 AS PGSZ$. 2 AS NKEY$.

4 AS NREC$, 2 AS VARL$, 2 AS RES$.
2 AS PREALLOC$, 2 AS POS1$. 2 AS LEN1$,
2 AS FLG1$. 4 AS CNT1$. 1 AS KEYT1$.
5 AS RES1$, 2 AS POS2$. 2 AS LEN2$,
2 AS FLG2$, 4 AS CNT2$. 1 AS KEYT2$.
5 AS RES2$, 2 AS POS3$. 2 AS LEN3$,
2 AS FLG3$, 4 AS CNT3$. 1 AS KEYT3$.
6 AS RES3$

120 LSET RECL$ = MKI$(80)
130 LSET PGSZ$ = MKI$(1024)
140 LSET NKEY$ = MKI$(2)
150 LSET VARL$ = MKI$(O)
160 LSET POS1$ = MKI$(1)
170 LSET LEN1$ = MKI$(2)
180 LSET FLG1$ = MKI$ (EXTTYPE%)
190 LSET KEYT1$ = MKI$ (BINTEGER%)

2011Rev1.00 F-3

Btrieve Record Manager

200 LSET POS2$ = MKI$(3)
210 LSET LEN2$ = MKI$(2)
220 LSET FLG2$ = MKI$ (DUPLIOATES% + MODIFIABLE% + SEGMENTED% + I/~~

EXTTYPE% + DESOEND%) (,
230 LSET KEYT2$ = MKI$(BSTRING%) "'-~
240 LSET POS3$ = MKI$(5)
250 LSET LEN3$ = MKI$(30)
260 LSET FLG3$ = MKI$ (DUPLIOATES% + MODIFIABLE% + EXTTYPE%)
270 l.,SET KEYT3$ = MKI$(BZSTRING%)
280 OP% = 14
290 BUF.LEN% = 64
30Q FILE.NAME$ = "\DATA\OREATE.TST •
310 FOB.ADDR% = VARPTR(#l)
320 OALL BTRV (OP%, STATUS%, FOB.ADDR%, BUF.LEN%, FILE.NAME$, KEY.NUMBER%)
330 IF STATUS% <> 0 THEN

PRINT "INVALID STATUS", STATUS%

BASIC CREATE SUPPLEMENTAL INDEX

In the following example, an application adds an index to a Btrieve file. The
first segment of the key is a lO-byte string. It allows duplicates and is
modifiable. The second segment is a 2-byte integer.

20 DUPLIOATES% = 1
30 MODIFIABLE% = 2
40 SEGMENTED% = 16
50 EXTTYPE% = 256
60 BINTEGER% = 1
70 BSTRING% = 0
80 OPEN "NUL" AS #1
90 FIELD 1, 2 AS POS1$, 2 AS LEN1$, 2 AS FLG1$,

4 AS ONT1$, 1 AS KEYT1$, 5 AS RES1$,
2 AS POS2$, 2 AS LEN2$, ? AS FLG2$,
4 AS ONT2$, 1 AS KEYT2$, 5 AS RES2$

100 OP% = 0 ' Set open code
110 BUF.LEN% = 32
120 FILE.NAME$ = "\DATA\OREATE.TST"
130 FOB.ADDR% = VARPTR(#l)
140 OALL BTRV (OP%, STATUS%, FOB.ADDR%, BUF.LEN%, FILE.NAME$, KEY.NUMBER%)
150 IF STATUS% 0 THEN

PRINT "INVALID STATUS ON OPEN =" STATUS%

160 LSET POS1$ = MKI$(40) : LSET LEN1$ = MKI$(10)
180 LSET FLG1$ = MKI$ (DUPLIOATES% + MODIFIA8LE% + SEGMENTED% + EXTTYPE%)
190 LSET KEYT1$ = MKI$ (8STRING%)

F-4 2011Revl.OO

(-

(-

(

BASIC Examples

200 LSET POS2$ = MKI$(50) : LSET LEN2$ = MKI$(2)
220 LSET FLG2$ = MKI$ (DUPLICATES% + MODIFIABLE% + EXTTYPE%)
230 LSET KEYT2$ = MKI$ (BINTEGER%)
240 DUMYK$ = SPACE$(10) , Initialize key buffer
250 BUF.LEN% = 32 'Set data buffer length
260 OP% = 31 'Set create supplemental index code
270 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, DUMYK$, KEY.NUMBER%)
280 IF STATUS% 0 THEN

PRINT "INVALID STATUS ON CREATE SUPPLEMENTAL INDEX = ",STATUS%

BASIC DELETE
The sample below shows how an application for an airline service deletes a
passenger reservation from the file.

110 OP% = 5
130 FILE.PTR% = VARPTR(#2)
140 KEY.SELECT% = 0
145 KEY.VAL$ = "Martin, Dave H."
150 FIELD #2,3 AS FLT.NO$,

15 AS PASNGR$,
6 AS AMNT.PD$,
6 AS ISSU.DATE$

'Point to position block of second open file
, Set key number

'Set key value

160 BUF.LEN% = 30 'Set data buffer length
170 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEy.vAL$, KEY.SELECT%)
175 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS% : END
190 OP% = 4 ~

350 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$, KEY.SELECT%)
360 IF STATUS% <> 0 THEN

PRINT "Btrieve status =", STATUS%: END

After the Delete operation, Btrieve's position in the file is as follows:

326 Crawley, Joe J.

711 Howell, Susan

326 Peters, John H.

840 White, Rosemary

+
Access Path

101/Revl.OO

179.85

259.40

445.80

397.00

061582

052382

061782

060282

.. Previous record

.. Next record

F-5

Btrieve Record Manager

BASIC DROP SUPPLEMENTAL INDEX

In the following example, an application drops a supplemental index in a O~\
Btrieve file because the file no longer needs to be accessed by that index. -

40 BUF.LEN% = 1
50 FCB.ADDR% = VARPTR(#1)
60 OP% =32
70 KEY.NUMBER% = 3
80 DUMYK$ = SPACE$(10)
90 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, DUMYK$, KEY.NUMBER%)
100 IF STATUS% = 6 THEN

PRINT "KEY NUMBER TO DROP IS NOT A SUPPLEMENTAL INDEX"
ELSE IF STATUS% <> 0 THEN

PRINT "INVALID STATUS ON DROP SUPPLEMENTAL INDEX =' STATUS%

BASIC END TRANSACTION
The following application uses transaction control to ensure that the
application does not debit one account in a ledger file unless it credits another
account.

50 FIELD #2, 2 AS ACCT.ID$,40 AS DESC$, 4 AS BALANCE$
130 'Begin the transaction
150 OPERATION% = 19 'Set Begin Transaction code
170 CALL BTRV (OPERATION%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%)
180 IF STATUS% <> 0 THEN

PRINT "Error beginning transaction =", STATUS%: END
190 'Retrieve and update the cash account record.
210 OPERATION% = 5: KEY.BUF$ = MKI$(101) 'Cash account is 101
230 BUF.LEN% = 46
240 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUMBER%)
250 IF STATUS% <> 0 THEN

PRINT "Status = ", STATUS%,"retrieving record":
OP%=21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%): END
260 LSET BALANCE$ = MKS$(CVS(BALANCE$) - 250) 'Remove $250 from account
270 OPERATION% = 3 'Set Update operation
280 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUMBER%)
290 IF STATUS% <> 0 THEN PRINT ·Status = " STATUS%,"updating cash account":

F-6

OP%=21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,
DUMMY.KEY$, KEY.NUMBER%) : END

2011Rev1.00

('
~ ...

(--

(

BASIC Examples

310 'Retrieve and update the office expense record. The office expense account is 511
335 OPERATION% = 5: KEY.BUF$ = MKI$ (511): BUF.LEN% = 46
360 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUMBER%)
370 IF STATUS% <> 0 THEN

PRINT "Status = ", STATUS%, "retrieving record":
OP%=21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%) : END
380 LSET BALANCE$ = MKS$(CVS(BALANCE$) + 250) 'Add $250 to office expense
390 OPERATION% = 3 'Set Update operation
400 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUMBER%)
410 IF STATUS% <> 0 THEN

PRINT "Status = ",STATUS%,"updating office expense":
OP%=21 : CALL BTRV(OP%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%) : END
415 OPERA TION% = 20 'Set End Transaction code
420 CALL BTRV (OPERATION%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DUMMY.KEY$, KEY.NUMBER%)
430 IF STATUS% <> 0 THEN

PRINT "Error ending transaction. Status= ", STATUS%
ELSE PRINT "Transaction completed successfully:

BASIC EXTEND

The following example illustrates how an application might use the Extend
operation to expand a Btrieve file to gain more disk space.

40 OPEN "NUL" AS #2 'Open file from BASIC
50 FIELD #2, 30 AS FULL.NAME$,

30 AS STREET$,
30 AS CITY$,
2ASSTATE$,
6ASZIP$

60 OPERATION% = 0 : STATUS% = 0 'Set open op code and status
70 FCB.ADDR% = VARPTR(#2) 'Get address of FCB
90 KEY.BUFFER$ = "ADDRESS.BTR " : KEY.NUM% = 0 'Set key buffer and key number
100 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUFFER$,

KEY.NUM%)
120 IF STATUS% <> 0 THEN

PRINT "Error opening file. Status = ", STATUS%: END
130 OPERATION% = 16: KEY.BUFFER$ = "B:\ADDRESS.EXT"
150 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUFFER$,

KEY.NUM%)

2011Revl.OO F-7

Btrieve Record Manager

160 IF STATUS% <> 0 THEN
PRINT "Error extending the file. Status = n, STATUS%: END

170 OPERATION% = 1 'Set close operation code (\
180 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUFFER$, 0

KEY.NUM%)
190 OPERATION% = 0: KEY.BUFFER$ = "ADDRESS.BTR"
200 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY. BUFFER$,

KEY.NUM%)
210 IF STATUS% <> 0 THEN

PRINT "Error reopening the file. Status = ", STATUS% : END

BASIC GET DIRECT

The following example illustrates how an application can use the Get Direct
operation to sort the records in a Btrieve file by an external index. (See the
description of Get Position for an example of how to build the external index
file.)

40 FIELD #1,20 AS NAM$, 20 AS STREET$, 10 AS CITY$,
2 AS STATE$, 5 AS ZIP$

50 FIELD #1, 4 AS REC.POSITION$\
60 FIELD #2, 4 AS POS.INX$, 2 AS STATE.INX$
70 KEY.NUM% = 0 'Use key 0 for both files
80 FILE.PTR% = VARPTR(#1) 'Original file's FCB
85 FILE.LEN% = 57 'Set data buffer length for File #1
90 INDX.PTR% = VARPTR(#2) 'Index file's FCB
95 INDX.LEN% = 6 'Set data buffer length for File #2
100 NAME.KEY$ = SPACE$(20): STAT.KEY$ = SPACE$(2)
120 READ.LOW% = 12 : READ.NEXT% = 6: GET.DIRECT% = 23
130 CALL BTRV (READ.LOW%, STATUS%, INDX.PTR%, INDX.LEN%, STAT.KEY$,

KEY.NUM%)
140 WHILE STATUS% <> 9 'Read until end of file
150 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
160 LSET REC.POSITION$ = POS.INX$
170 CALL BTRV (GET.DIRECT%, STATUS%, FILE.PTR%, FILE.LEN%, NAME.KEY$,

KEY.NUM%)
180 IF STATUS% <> 0 THEN

PRINT "Error retrieving record. Status = ", STATUS% : END
190 PRINT NAM$, STREET$, CITY$, STATE$, ZIP$ 1"-
210 CALL BTRV (READ.NEXT%, STATUS%, INDX.PTR%, INDX.LEN%, STAT.KEY$, \

KEY.NUM%)
220 WEND

F-8 201IRev1.00

(

(

BASIC Examples

BASIC GET DIRECTORY

The following example illustrates how an application can use the Get and Set
Directory operations to retrieve the current directory at the beginning of the
program, and to restore it before termjnating.

40 OPERATIONO/O = 18 'Set get directory operation
50 STATUSO/O = 0 'Initialize status
60 DIR.PATH$ = SPACE$(65) 'Initialize key buffer
70 CALL BTRV (OPERATION%, STATUSO/O, FCB.ADDR%, BUF.LENO/O, DIR.PATH$,

KEY.NUMBERO/O)
80 IF STATU$% <> 0 THEN

PRINT "Error getting directory. Status =., STATUSO/O : END
90 OPERA TION% = 17 'Set current directory operation
100 CALL BTRV (OPERATION%, STATUSO/O, FCB.ADDR%, BUF.LENO/O, DIR.PATH$,

KEY.NUMBERO/O)
110 IF STATUSO/O <> 0 THEN

PRINT "Error restoring current dir. Status = ", STATUS% : END

2011Revl.OO F-9

Btrieve Record Manager

BASIC GET EQUAL

The following example shows how an application retrieves a part number " C-.. \
from an inventory file using the Get Equal operation. -j

110 FIELD #2, 5 AS PART.NUM$,
10 AS PART.DESC$,
3 AS QUAN.ON.HAND$,
3 AS REORDER.POINT$,
3 AS REORDER.QUAN$

140 FCB.ADDR% = VARPTR(#2)
150 OPERATION% = 5
160 PART.NUMBER$ = "03426"
170 KEY.NUMBER% = 0
180 BUF.LEN% = 24

'Get address of FCB
'Set get equal op code

'Part number to find
'Part number is key 0

350 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,
PART.NUMBER$, KEY.NUMBER%) 'Retrieve record

360 IF STATUS% <> 0 THEN
PRINT "Error reading file. Status = ", STATUS% : END

370 IF QUAN.ON.HAND$ < REORDER.POINT$ THEN
PRINT "Time to order ", REORDER.QUAN$, ·units of n, PART.DESC$

The table below shows Btrieve's current position in the file after the Get
Equal operation.

03419 Pliers 003 010 015 .. Previous record

03426 Hammer 010 003 OOS .. Current record

03430 Saw OOS 002 003 .. Next record

03560 Wrench 008 OOS 005

+
Access Path

F-10 20llRevl.OO

(

(

BASIC Examples

BASIC GET FIRST

The following example illustrates how an application uses the Get First
operation to find the youngest employee in the company. Age is key number 2
in the employee file.

300 FIELD #1, 20 AS EMP.NAME$,
2ASAGE$,
6 AS DATE.OF.HIRE$

310 FCB.ADDR% = VARPTR(#1) 'Get address of FCB
315 BUF.LEN% = 28
320 OPERA TION% = 12 'Set Get First op code
330 KEY.NUM% = 2 'Age is key 2
340 KEY.BUF$ = SPACE$(2) 'Initialize key buffer
350 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
360 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
370 PRINT "Youngest employee is " EMP.NAME$

After the Get First operation, Btrieve's current position in the file is as
follows:

Brook, Wendy W.

Ross, John L.

Blanid, Suzanne M.

Brandes, William J.

201lRevi.OO

18 071582

20 121081

25 050281

40 031576

Access Path

+ Previous Record

+ Current Record

+ Next Record

F-ll

Btrieve Record Manager

BASIC GET GREATER

The following example of an insurance company application uses the Get (~
Greater operation to determine which policy holders have more than three ~/
traffic violations. The number of traffic violations is the second key in the
policy file.

110 FIELD #2, 10 AS POLlCY.NUM$, 20 AS NAM$, 6 AS EFFECT.DATE$,
~ AS VIOLATIONS$

140 FCB.ADDR% = VARPTR(#2) 'Get address of FCB
150 OPERATION% = 8: SUF.LEN%=38 'Set op code a'1d data buffer length
1 YO KEY.NUM% = 2 'Violations is key 2
180 KEY.BUF$ = "03" 'Start search above 3
190 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
200 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
210 OPERATION% = 6 'Set get next op code
2~0 WHILE STATUS% <> 9 'Read until end of file
230 PRINT NAM$; "has "; VIOLATIONS$; "traffic violations"
240 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
250 IF (STATUS% <> 0) AND (STATUS% <> 9) THEN

PRINT "Error reading file. Status =", STATUS% : END
260 WEND

F-12 2011Revl.OO

(

BASIC Examples

BASIC GET GREATER OR EQUAL

If the date of a sale is a key in an invoice file, an application might use the
Get Greater Or Equal operation to retrieve the invoice record for the first sale
made in May, 1982.

110 FIELD #1,5 AS INVOICE.NUM$,
6 AS DATE.OF.SALE$,
5 AS CUST.NUM$,
8 AS TOTAL.PRICE$

140 FCB.ADDR% = VARPTR(#1)
150 OPERATION% = 9
155 BUF.LEN% = 24
160 FIRST.DATE$ = "050182"
170 KEY.NUMBER% = 1

'Get address of FCB
'Set Get Greater Or Equal op code

'Set data buffer length
'Start search at May 1, 1982

'Date of sale is key 1
350 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,

FIRST.DATE$,KEY.NUMBER%) 'retrieve record
360 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
370 PRINT "First sale in May was to", CUST.NUM$, "for ",TOTAL.PRICE$

After the Get Greater Or Equal Operation, Btrieve's current position in the
file is as follows:

03110 041582

03111 042882

03112 042882

03113 050282

03114 050282

03115 051682

Access Path

2011Rev1.00

11315

34800

51428

62541

14367

15699

00184.00

00096.00

00124.56

00036.45

00098.72

00575.99

~ Previous record

~ Current record

~ Next record

F-13

Btrieve Record Manager

BASIC GET LAST

The following example illustrates how to determine which employee had the
highest commissions last month.

110 FIELD #2, 6 AS EMP.NUM$,
20 AS EMP.NAME$,
2AS DEPT$,
6 AS TOT.COM$,
6 AS CUR.COM$

140 FCB.ADDR% = VARPTR(#2) 'Get address of FCB
150 OPERATION% = 13 : BUF.LEN% = 40 'Set Get Last op code and data buffer length
160 KEY.NUM% = 1 : KEY.BUF$ = SPACE$(6) 'Set key number and key buffer length
180 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
190 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
200 PRINT "Employee with highest commissions last month was", EMP.NAME$

After the Get Last operation, Btrieve's current positioning in the file is as
follows:

704904 Brook, WendyW.

831469 Ross, John L.

876577 Blanid, Kathleen M.

528630 Brandes, Maureen R.

F-14

Al

A5

A3

A5

110.95

240.80

562.75

935.45

.. Previous Record

.. Current Record

+ .. Next Record

Access Path

2011Revl.OO

(

(~

BASIC Examples

BASIC GET LESS THAN

The following example uses the Get Less Than operation followed by a Get
Previous operation to find the names of all customers whose magazine
subscriptions have less than three issues left before they expire. The number
of issues remaining is key 2 in the subscription file.

110 FIELD #2,20 AS CUST.NAME$,
6 AS DATE.SUBSCRIBED$,
6 AS DATE.PAID$,
3 AS ISSUES.PURCHASED$,
3 AS ISSUES.REMAINING$

140 FCB.ADDR% = VARPTR{#2) 'Get address of FCB
150 OPERATION% = 10 : BUF.LEN% = 38 'Set op code and data buffer length
160 KEY.NUM% = 2 'Issues remaining is key 2
180 KEY.BUF$ = "003" 'Start search below 3
190 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
200 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
210 OPERATION% = 7
220 WHILE STATUS% <> 9

'Set Get Previous op code
'Read until start of file

230 PRINT "Send reorder form to", CUST.NAME$
240 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
250 IF (STATUS% <> 0) AND (STATUS% <> 9) THEN

PRINT "Error reading file. Status = ", STATUS% : END
260 WEND

2011Rev1.00 F-15

Btrieve Record Manager

BASIC GET LESS THAN OR EQUAL

In the following example, the application uses the Get Less Than Or Equal C
operation to retrieve the first house from a file of homes for sale, that falls .
within the prospective customer's price limit of $110,000.

110 FIELD #1,7 AS PRICE$,
20 AS ADDRESS$,
6 AS SQUARE.FEET$,
4 AS YEAR.BUIL T$

140 FCB.ADDR% = VARPTR(#1) 'Get address of FCB
150 OPERATION% = 11 'Set Get Less Than Or Equal code
160 BUF.LEN% = 37 'Set data buffer length
170 KEY.NUM% = 0 'Price is key 0
180 KEY.BUF$ = ·0110000" 'Start search at 110,000
190 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$,

KEY.NUM%)
200 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = N, STATUS% : END
210 PRINT "The home at N, ADDRESS$, • sells for", PRICE$

After the Get Less Than or Equal operation, Btrieve's current position is as
follows:

0050000 330N.31st

0055000 11132 Maple Ave.

0070000 624 Church Street

0105000 3517 N. Lakes Avenue

0220000 4500 Oceanfront Ave.

• Access Path

F-16

002200

002000

002300

002500

003000

1960

1965

1968

1975

1980

.. Previous Record

.. Current Record

.. Next Record

2011Revl.OO

(

BASIC Examples

BASIC GET NEXT

In the following example the zip code is the first key. The application uses
Get Next to generate a set of mailing labels sorted according to zip code.

110 FIELD #3, 20 AS NAM$,
20 AS STREET$,
10 AS CITY$,
2ASSTATE$,
5ASZIP$

140 FCB.ADDR% = VARPTR(#3) 'Get address of FCB
150 OPERATION% = 12: BUF.LEN%=57
160 KEY.NUM% = 1
170 KEY.VALUE$ = SPACE$(5)

'Get First to establish current position
'Zip code is key 1

'Initialize key buffer
350 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,

KEY.VAI-UE$, KEY.NUM%)
360 IF STATUS% <> 0 THEN

PRINT "Error reading address file. Status = ",STATUS% : END
370 OPERATION% = 6
380 WHILE STATUS% <> 9
390 LPRINT FORM.FEED$
400 LPRINT NAM$

'Set get next operation code
'Read until end of file

410 LPRINT STREET$
420 LPRINT CITY$, ":, STATE$, ZIP$
430 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,

KEY.VALUE$, KEY.NUM%)
440 IF (STATUS% <> 0) AND (STATUS% <> 9) THEN

PRINT "Error reading address file. Status =", STATUS% : END
450 WEND

201lRevl.OO

'Start new label
'Print name
'Print street

'Print city and state

F-17

Btrieve Record Manager

BASIC GET POSITION

The following example illustrates how an application uses Get Position to
construct an external index for an existing Btrieve file. Once an external
index exists, the application can read the external index file from lowest to
highest and use Get Direct to sort the records in a Btrieve file by some field
that was not originally defined as a key field.

40 FIELD #1, 20 AS NAM$,
20 AS STREET$,
10AS CITY$,
2ASSTATE$,
5ASZIP$

50 FIELD #1, 4 AS REC.POSITION$
60 FIELD #2, 4 AS POS.INX$,

2 AS STATE.lNX$
70 KEY.NUM% = 0
80 FILE.PTR% = VARPTR(#1) : LEN1%=57
90 INDX.PTR% = VARPTR(#2) : LEN2%=6
100 NAME.KEY$ = SPACE$(20)

'Use key 0 for both files
'Original file's FCB

'Index file's FCB

110 STAT.KEY$ = SPACE$(2)
'Key buffer for original file

'Key buffer for index file
120 READ.LOW% = 12: READ.NEXT% = 6: INSERT% = 2
125 GET.POS% = 22
130 CALL BTRV (READ.LOW"Io, STATUS%, FILE.PTR%, LEN1%, NAME.KEY$,

KEY.NUM%)
140 WHILE STATUS% <> 9 'Read until end of file
150 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = n, STATUS% : END
160 LSET STATE.INX$ = STATE$
170 CALL BTRV (GET.POS%, STATUS%, FILE.PTR%, LEN1%, NAME.KEY$,

KEY.NUM%)
180 LSET POS.lNX$ = REC.POSITION$
190 CALL BTRV (INSERT%, STATUS%,INDX.PTR%, LEN2%, STAT.KEY$,

KEY.NUM%)
200 IF STATUS% <> 0 THEN

PRINT "Error inserting record. Status = ", STATUS% : END
210 CALL BTRV (READ.NEXT%, STATUS%, FILE.PTR%, LEN1%, NAME.KEY$,

KEY.NUM%)
220 WEND

F-18 2011Revl.OO

/'
/

(

BASIC Examples

BASIC GET PREVIOUS

The following example lists corporations and their total sales dollars for the
year, beginning with the corporation having the highest sales and continuing
in descending order of sales dollars. Total sales is key number 1 in the
company file.

110 FIELD #1,30 AS COMPANY$,
10 AS TOTAL.SALES$

140 FCB.ADDR% = VARPTR(#1) 'Get address of FCB
145 BUF.LEN% = 40 'Set data buffer length
150 OPERATION% = 13 'Get last to establish current position
160 KEY.NUM% = 1 'Total sales is key 1
170 KEY.VALUE$ = SPACE$(10) 'Initialize key buffer length
350 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,

KEY.VALUE$, KEY.NUM"Io)
360 IF STATUS% <> 0 THEN

PRINT "Error reading file. Status = ", STATUS% : END
365 'Set Get Previous op code and data buf length
370 OPERATION% = 7 : BUF.LEN% = 38
380 WHILE STATUS% <> 9 'Read until end of file
420 PRINT COMPANY$, TOTAL.SALES$
430 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,

KEY.VALUE$, KEY.NUM%)
440 IF (STATUS% <> 0) AND (STATUS% <> 9) THEN

PRINT "Error reading file. Status = ", STATUS% : END
450 WEND

2011Rev1.00 F-19

Btrieve Record Manager

BASIC INSERT

The following example shows how to add a new employee to the employee file.

110 OP% = 2
130 FILE.PTR% '" VARPTR(#2)
140 KEY.SELECT% = 0
150 FIELD #2,20 AS NAM$,

6 AS DATE.OF.HIRE$,
6 AS ANNUAL.SAL$

160 LSET NAM$ = "Jones, Mary E."
180 LSET DATE.OF.HIRE$ = "120882"
185 LSET ANNUAL.SAL$ = "020000"
190 KEY.VAL$ = SPACE$(20)
200 BUF.LEN% = 32

'LSET values into fields

'Initialize key buffer
'Set data buffer length

350 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$,
KEY.SELECT%)

360 IF STATUS% <> 0 THEN
PRINT "Btrieve status =., STATUS% : END

After an Insert operation, Btrieve's current position in the file is as follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

+
Access Path

F-20

150781

010581

120882

100182

030000

055000

020000

040000

.. Previous record

.. Current record

.. Next record

201IRev1.00

("

BASIC Examples

BASIC OPEN

The following example illustrates the code required to open a Btrieve file in
an interpretative BASIC program:

.5 OPEN "SEGMENT.ADR" FOR INPUT AS #1 'lines 5, 10, and 20 are not required
10 INPUT #1, SEG.ADDR% 'for a Compiled BASIC program
20 DEF SEG",SEG.ADDR%
30 OPEN "NUL" AS #2 LEN",92
40 FIELD #2,6 AS EMP.NUM$,

30 AS EMP.NAM$,
6 AS HIRE.DATE$,
50 AS ADDR$

45 BUF.LEN% '" 92
50 OP% ",0
60 FILE.PTR% '" VARPTR(#2)
65 KEY.VAL$ '" ·C:\DATA\EMPLOYE.BTR "
70 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$, KEY.SELECT%)
80 IF STATUS% <> 0 THEN

PRINT "Btrieve status", N, STATUS% : END

(- BASIC RESET

The following example illustrates the code required to issue a Reset operation
in a BASIC program:

100 OP% ",28
110 CALL BTRV (OPERATION%, STATUS%, FILE.PTR%, BUF.LEN%,

KEY.BUFFER$, KEY.NUM%)
120 IF STATUS% <> 0 THEN

PRINT "Btrieve status", N, STATUS% : END

20IIRevl.00 F-21

Btrieve Record Manager

BASIC SET DIRECTORY

In the following example, an application sets the current directory before ("'\
performing an Open operation. 0

60 OPERATION% = 17 'Set Directory op code
70 DIR.PATH$ = "'DATA"+CHR${O)
80 CALL BTRV (OPERATION%, STATUS%, DUMMY.FCB%, DUMMY.LEN%,

DIR.PATH$, KEY.NUMBER%)
90 IF STATUS% <> 0 THEN

PRINT "Error setting current directory. Status = ", STATUS% : END
92 OPEN "NUL" AS #2
94 FIELD #2, 30 AS FULL.NAME$,

30 AS STREET$,
30 AS CITY$,
2ASSTATE$,
6 ASZIP$

100 OPERATION% = 0
110 STATUS% = 0
120 FCB.ADDR% = VARPTR{#2)
125 BUF.LEN% = 98
130 KEY.BUFFER$ = "ADDRESS.BTR"
140 KEY.NUMBER% = 0

'Open file from BASIC

'Set Open operation code
'Initialize status

'Get address of FCB

'Initialize key buffer
'Use key 0 access path

150 CALL BTRV (OPERATION%, STATUS%, FCB.ADDR%, BUF.LEN%,
KEY.BUFFER$, KEY.NUMBER%)

160 IF STATUS% <> 0 THEN
PRINT "Error opening file. Status =", STATUS% : END

BASIC SET OWNER

The following example shows how to set the owner name to "Payroll."

100 OP% = 29
110 FIELD #2,8 AS OWNER$
120 LSET OWNER$ = "Payroll" + CHR${O)
125 BUF.LEN% = 8
130 KEY.VAL$ = "Payroll" + CHR${O)
135 KEY.NUM% = 0
140 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$, KEY.NUM%)
150 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS% : END

F-22 201IRev1.00

f\
I

\~'")

(-

BASIC Examples

BASIC STAT

In the following example, an application uses the Stat and Create operations
to empty a Btrieve file.

40 FIELD 2, 2 AS RECL$, 2 AS PGSZ$, 2 AS NKEY$,
4 AS NREC$, 2 AS VARL$,
2 AS RES$, 2 AS PREALLOC$,
2 AS POS1$, 2 AS LEN1$,
2 AS FLG1$, 4 AS CNT1$,
1 AS KEYT1$, 5 AS RES1$,
2 AS POS2$, 2 AS LEN2$,
2 AS FLG2$, 4 AS CNT2$,
1 AS KEYT2$, 5 AS RES2$

50 FCB.ADDR% = VARPTR(#2)
60 BUF.LEN% = 48
70 OP% =0
80 STATUS% = 0
90 FILE.NAME$ = "LEDGER.BTR "

'Set pointer to File #2
'Set data buffer length

'Set open code

100 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, FILE.NAME$, KEY.NUMBER%)
110 OP% = 15 'Set Stat operation code
120 KEY.BUF$ = SPACE$(64)
130 BUF.LEN% = 48 'Set key buffer and data buffer length
140 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, KEY.BUF$, KEY.NUMBER%)
150 IF STATUS% <> 0 THEN

PRINT "Error retrieving file stats. Status = ", STATUS%
160 OP% = 1
170 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, FILE.NAME$, KEY.NUMBER%)
180 IF STATUS% <> 0 THEN

PRINT "Unable to close the file. Status =", STATUS%
190 OP% = 14: BUF.LEN% = 48
210 CALL BTRV (OP%, STATUS%, FCB.ADDR%, BUF.LEN%, FILE.NAME$, KEY.NUMBER%)
220 IF STATUS% <> 0 THEN

PRINT "Unable to create the file. Status =", STATUS%

BASIC STEP FIRST

See Step Next.

(~ BASIC STEP LAST

See Step Previous.

2011Revl.OO F-23

Btrieve Record Manager

BASIC STEP NEXT

In the following example, the indexes for a file have been damaged by a ~,
power failure. The application uses the Step First and Step Next operations V
to recover the file.

30 OPEN "NUL" AS #1 LEN=86
40 FIELD #1, 6 AS EMP1.NUM$,

30 AS EMP1.NAM$,
50 ASADDR1$

50 OP1% = 0
60 KEY.NUM1% =-2
60 FILE.PTR1%=VARPTR(#1): BUF.LEN1% = 86
70 KEY.VAL1$ = "C:\DATA\EMPLOYE.BTR n

'Set open operation code
'Open in recovery mode

'Point to File#1, set data but. length

80 CALL BTRV (OP1%, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
90 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS%: END
100 KEY.VAL1$ = SPACE$(6) : KEY.NUM1% = 0
110 OPEN "NUL" AS #2 LEN=86
120 FIELD #2, 6 AS EMP2.NUM$,

30 AS EMP2.NAM$,
50 AS ADDR2$

125 BUF.LEN2% = 86: OP1% = 0
140 KEY.NUM2% = 0: FILE.PTR2% = VARPTR(#2)
150 KEY.VAL2$ = "C:\DATA\EMPLOYE2.BTR"

'Set data buffer length and op code
'Set open mode and point to File #2

170 CALL BTRV (OP1%, STATUS%, FILE.PTR2%, BUF.LEN2%, KEY.VAL2$, KEY.NUM2%)
180 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ",STATUS%: END
190 KEY.VAL2$ = SPACE$(6) 'Initialize key buffer
200 OP2% = 33 : OP3% = 2 : OP4% = 24 'Set op codes
220 CALL BTRV (OP2"Io, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
230 WHILE STATUS% <> 9 'Read until end of damaged file
240 LSET EMP2.NUM$ = EMP1.NUM$ 'Format new record with old data
250 LSET EMP2.NAM$ = EMP1.NAM$: LSET ADDR2$ = ADDR1$
265 'Insert record
270 CALL BTRV (OP3%, STATUS%, FILE.PTR2%, BUF.LEN2%, KEY.VAL2$, KEY.NUM2%)
280 IF (STATUS% <> 0) THEN

PRINT "Error writing to file. Status = ", STATUS% : END
285 'Step Next to retrieve next record
290 CALL BTRV (OP4%, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
300 WEND

F-24 201IRev1.00

(-:.

(

BASIC Examples

BASIC STEP PREVIOUS

In the following example, the indexes for a file have been damaged by a
power failure. The application uses the Step Last and Step Previous
operations to recover the file.

30 OPEN "NUL" AS #1 LEN=86
40 FIELD #1,6 AS EMP1.NUM$,

30 AS EMP1.NAM$,
50 AS ADDR1$

50 OP1%=0
60 KEY.NUM1% =-2
60 FILE.PTR1%=VARPTR(#1): BUF.LEN1% = 86
70 KEY.VAL1$ = "C:\DATA\EMPLOYE.BTR"

'Set open operation code
'Open in recovery mode

'Point to File#l, set data but. length

80 CALL BTRV (OP1%, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
90 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS%: END
100 KEY.VAL1$ = SPACE$(6): KEY.NUM1% = 0
110 OPEN "NUL" AS #2 LEN=86
120 FIELD #2, 6 AS EMP2.NUM$,

30 AS EMP2.NAM$,
50 AS ADDR2$

125 BUF.LEN2% = 86
140 KEY.NUM2% = 0: FILE.PTR2"'{' = VARPTR(#2)
150 KEY.VAL2$ = "C:\DATA\EMPLOYE2.BTR ..

'Set data buffer length
'Set open mode and point to File #2

170 CALL BTRV (OP1%, STATUS%, FILE.PTR2%, BUF.LEN2%,
180 IF STATUS% <> 0 THEN

KEY.VAL2$, KEY.NUM2%)

PRINT "Btrieve status = ",STATUS%: END
190 KEY.VAL2$ = SPACE$(6) 'Initialize key buffer
200 OP2% = 34 : OP3% = 2 : OP4% = 35 'Set op codes
220 CALL BTRV (OP2"/o, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
230 WHILE STATUS% <> 9 'Read until end ot damaged file
240 LSET EMP2.NUM$ = EMP1.NUM$ 'Format new record with old data
250 LSET EMP2.NAM$ = EMP1.NAM$: LSET ADDR2$ = ADDR1 $
265 'Insert record
270 CALL BTRV (OP3%, STATUS%, FILE.PTR2%, BUF.LEN2%, KEY.VAL2$,

KEY.NUM2%)
280 IF (STATUS% <> 0) THEN

PRINT "Error writing to file. Status = ", STATUS% : END
285 'Step Previous to retrieve previous record
290 CALL BTRV (OP4%, STATUS%, FILE.PTR1%, BUF.LEN1%, KEY.VAL1$, KEY.NUM1%)
300 WEND

201/Revl.OO F-25

Btrieve Record Manager

BASIC STOP

The following example shows how to remove Btrieve from memory.

1100P%=25
170 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$,

KEY.SELECT%)
175 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS% :END

BASIC UNLOCK

The following example shows how to unlock a record.

100 OP% = 27 : KEY.NUM% = 0
140 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL%,

KEY.NUM%)
150 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS% : END

BASIC UPDATE

The example below shows how to update a personnel file for an employee who
just received a raise.

1100P%=5
130 FILE.PTR% = VARPTR(#2)
140 KEY.SELECT% = 0
145 KEY.VAL$ = "Jones, Mary E."
150 FIELD #2,20 AS NAM$,

6 AS DATE.OF.HIRE$,
6 AS ANNUAL.SAL$

160 BUF.LEN% = 32
170 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$,

KEY.SELECT%)
175 IF STATUS% <> 0 THEN

PRINT "Btrieve status = ", STATUS% : END
180 LSET ANNUAL.SAL$ = "025000"
190 OP% = 3
350 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$,

KEY.SELECT"k)
360 IF STATUS% <> 0 THEN

PRINT "Btrieve status =', STATUS% : END

F-26 201/Revl.OO

\

BASIC Examples

After the Update operation, Btrieve's current positioning in the file is as
follows:

Adams, David H.

Brown, William J.

Jones, Mary E.

Smith, Bruce L.

+
Access Path

BASIC VERSION

150781

010581

120882

100182

030000

055000

025000

040000

.. Previous record

.. Current record

.. Next record

The following example shows how an application might use the Version
operation.

90 FILE.PTR% = VARPTR (#2)
100 FIELD #2, 2 AS VER$,

2AS REV$,
1 AS NET$

110 OP% = 26: BUF.LEN% = 5
170 CALL BTRV (OP%, STATUS%, FILE.PTR%, BUF.LEN%, KEY.VAL$, KEY.NUM%)
180 IF STATUS% <> 0 THEN

PRINT "Btrieve status =", STATUS%
190 END

2011Revl.OO F-27

(-

(

APPENDIXG:
EXTENDED KEY TYPES

This appendix describes the extended key type codes and the internal storage
formats for the extended key types supported by Btrieve.

EXTENDED KEY TYPE CODES

Specify the extended key type using the codes listed in the table in Figure
G.1.

20JIRev 1.00

Type Code

string 0

integer 1
float 2
date 3
time 4
decimal 5
money 6
logical 7
numeric 8
bfloat 9
Istring 10
zstring 11

unsigned binary 14

auto increment 15

FlgureG.1
Extended Key Type Codes

G-J

Btrieve Record Manager

EXTENDED KEY TYPES

AUTOINCREMENT

An autoincrement key is an integer that can be either 2 or 4 bytes long.
Btrieve sorts autoincrement keys by their absolute value, comparing the
values stored in different records a word at a time from right to left.

Autoincrement keys allow you to specify a key for which Btrieve will
increment the key value each time you insert a record into the file.

The following restrictions apply to autoincrement keys:

• An autoincrement key cannot allow duplicate key values.

• An autoincrement key cannot be segmented, or be included as a
segment of another key.

• An autoincrement key cannot overlap another key.

The following paragraphs describe how Btrieve treats autoincrement key
values when you insert records into a file.

If you specify a value of binary 0 for the autoincrement key, Btrieve will assign
a value to the key based on the following criteria:

• If the record you are inserting is the first record to be inserted into the
file, Btrieve will assign the autoincrement key a value of 1 and will
insert the record into the file.

• If records already exist in the file, Btrieve will assign the key a value
that is one number higher than the highest existing absolute value in
the file, and will insert the record into the file.

If you specify a nonzero value for the autoincrement key, Btrieve will insert
the record into the file, and use the specified value as the key value. If a
record containing that value already exists in the file, Btrieve will return a
nonzero status and will not insert the record.

When you delete a record containing an autoincrement key, Btrieve will '.
completely remove the record from the file. Btrieve will not re-use the deleted \'"J
key value unless you specify that value when you insert another record into
the file.

G-2 2011Revl.OO

(

Extended Key Types

As mentioned previously, Btrieve always sorts autoincrement keys by their
absolute value. If you specify a negative value for an autoincrement key when
you insert a record, or if you update a record and negate the value for the
autoincrement key, Btrieve will sort the value according to its absolute value.
This allows you to use negation to flag records without altering the record's
position in the index. In addition, when you perform a Get operation and
specify a negative value in the key buffer, Btrieve will treat the negative
value as the absolute value ofthe key.

BFLOAT

A field with a bfloat type is a single or double precision real number stored in
a format that is compatible with Microsoft BASIC. A single precision real
number is stored with a 23-bit mantissa, an 8-bit exponent biased by 128, and
a sign bit. The internal layout for a 4-byte float is as follows:

3322222222221111111111

, ': ': ': ':': ': ':', '1': ': ': ': ': ': ': ': ': ': ': ': ': ': ':' :': ': ': ': ': ': "
8 bit exponent t 23 bit mantissa

sign

The representation of a double precision real number is the same as that for a
single precision real number, except that the mantissa is 55 bits instead of 23
bits. The least significant 32 bits are stored in bytes 0 through 3.

DATE

Date-type fields are 4-byte values stored internally as follows:

3322222222221111111111

year month day

Day and month are each stored in I-byte binary format. Year is a 2-byte
binary number that represents the entire year value, not an offset from some
defined year.

2011Rev1.00 G-3

Btrieve Record Manager

DECIMAL

Decimal-type fields are stored internally as packed decimal numbers, with (-~
two decimal digits per byte. This format is consistent with the COMP-3 data ~.

type in ANSI-74 standard COBOL. The internal representation for an n-byte
decimal field is as follows:

dlg~
1

byte a

dlgk
2

byte 1

1 1 1 1 1 1 1

dlgk
3

dlg~

4

byten-1

digit
2n-1

sign
byte

The sign byte is either F or C for positive numbers and D for negative
numbers. Notice that the decimal point is implied. All of the values for a
decimal key type must have the same number of decimal places in order for
Btrieve to collate the key correctly.

FLOAT

A float type is consistent with the IEEE standard for single and double
precision real numbers. The internal format for a 4-byte float consists of a
23-bit mantissa, an 8-bit exponent biased by 127, and a sign bit. An
illustration is shown below:

G-4

3322222222221111111111

sign

B bk
exponent

23 bk mantissa

2011Revl.OO

/" "

(
-~

/

(

Extended Key Types

A float-type field with 8 bytes has a 52-bit mantissa, an ll-bit exponent
biased by 1023, and a sign bit. The internal format is:

bytes 7-4:

sign 11-bit exponent 20 bits of mantissa

bytes 3-0:
3322222222221111111111

32 bits of mantissa

INTEGER

An integer type is a signed whole number and must contain an even number
of bytes. Internally, integers are stored in Intel binary integer format, with
the high-order and low-order bytes reversed within a word. Btrieve evaluates
the key from right to left, a word at a time. The sign must be stored in the
first nibble of the low order byte. This is compatible with the integer storage
format of most languages.

LOGICAL

The logical extended key type is stored as a 1- or 2-byte value. Btrieve collates
logical key types as a string. This allows the application to determine the
stored values which represent true or false.

201/Revl.OO G-5

Btrieve Record Manager

LSTRING

An lstring type in Btrieve corresponds to a Pascal string. It has the same c-\
characteristics as a regular string type except that the first byte of the stringj
contains the binary representation of the string1s length. The length stored in
byte 0 of the lstring determines the number of significant bytes. Btrieve
ignores any values beyond the specified length of the string.

MONEY

The internal representation for money types is exactly the same as that for
decimal.

NUMERIC

Numeric values are stored as ASCII strings, right justified with leading zeros.
Each digit occupies 1 byte internally. The right-most byte of the number
includes an embedded sign. The following table indicates how the right-most
digit is represented when it contains an embedded sign for positive and /' ."
negative numbers.

Number Positive Negative

2 B K
3 C L
4 D M
5 E N
6 F 0
7 G P
8 H Q
9 I R
0 { }

For positive numbers, the rightmost digit can be represented by 1 - 0 instead
of A - {. Btrieve processes positive numbers represented either way equally.

G-6 201lRevl.OO

(

Extended Key Types

STRING

A string type in Btrieve is a sequence of characters ordered from left to right.
Each character is represented in ASCII format in a single byte.

TIME

Time-type fields are 4-byte values stored internally as follows:

332 2 2 2 2 2 2 2 2 2 1 111 1 1 1 1 1 1

hour minute second

UNSIGNED BINARY

hundredths
01 second

Btrieve sorts unsigned binary keys as unsigned integers. An unsigned binary
key must contain an even number of bytes. Btrieve compares unsigned binary
keys a word at a time from right to left.

ZSTRING

A zstring type in Btrieve corresponds to a C string. It has the same
characteristics as a regular string type except that a zstring type is
terminated by a byte containing a binary O. Btrieve ignores any values
beyond the first binary 0 it encounters in the zstring.

2011Rev1.00 G-7

(~~ GLOSSARY

access path: An index based on key fields that Btrieve uses to retrieve
records. The key number determines the current access path. A file may
have up to 24 separate access paths.

alternate collating sequence: A sorting sequence other than the standard
ASCII sequence that specifies the order in which Btrieve will sort a key.

application interface: A program that allows access to Btrieve file
structures from an application program.

ASCll: An acronym for American Standard Code for Information
Interchange. ASCII is a standard 7-bit information code that defines
128 standard characters, including control characters, letters, numbers,
and symbols.

cache: The area of main memory where physical disk pages are buffered to
reduce physical disk requests.

concurrency controls: The methods provided by Btrieve to resolve possible
conflicts when two stations attempt to update or delete the same records
at the same time. Concurrency controls include passive control,
transaction control, and record locking.

database: A set of one or more consecutive records or files on a related
subject.

description files: Sequential files containing information necessary for
Btrieve's CREATE, INDEX, and SINDEX utilities.

directory: A disk structure that contains files. A directory may also contain
other subdirectories.

DOS: Either the MS DOS or the PC DOS operating system.

2011Rev1.00 Glossary-1

Btrieve Record Manager

duplicate key: An attribute associated with a key field that allows a single
key value to identify a subset of records within the file that contains
that value.

FeR: See file control record.

field: A storage area within a record for a group of characters that constitute
an item of information.

file: A collection of related records treated as a unit.

file control record: The first page in a file that contains the file's size and
other characteristics.

filename: A combination of the device, directory path, name, and extension
which uniquely identify a file.

index: An ordered set of keys associated with records and locations of the
records in a file. A file can have more than one index.

integrity control: The method used to ensure the completeness offiles.
Specifically, Btrieve uses pre-imaging to guarantee file and database
level integrity.

key: A record identifier kept in the file index identifying the position of the
record. The keys in an index are ordered according to a definite collating
sequence. A key takes its value from the area in a record corresponding
to its predefined offset and length.

key field: A field Btrieve uses to identify specific records.

key number: An identifier associated with a specific key field in a file.

memory resident: An attribute of a computer program that allows the
image ofthe program to remain in memory, even after execution is
terminated. The operating system does not load other programs in the
same memory area occupied by a memory resident program. Under
DOS, the Btrieve Record Manager is a memory resident program that
resides in memory until the system is restarted or a Stop operation is
performed.

Glossary-2 2011Revl.OO

i
/

Glossary

modifiable key: An attribute associated with a key field that allows the
value of the field to change during updates. Otherwise, key field values
are not allowed to change.

null key: A key field that allows the value of the field to be a user-defined
null character. For null keys, Btrieve does not index a record if the
record's key value matches the null value.

operation: A specific action (Delete, Create, Get Equal, etc.) that
manipulates a record in a Btrieve file.

page: A unit of disk storage containing a multiple of 512 bytes, no greater
than 4096 bytes. A page is the smallest unit of storage that Btrieve
moves between main memory and disk.

partitioned file: A logical Btrieve file composed of two separate physical
disk files. This allows Btrieve logical files to be larger than the physical
disk.

positioning: The establishment ofthe record manager's current location
within a current access path following the successful completion of an
operation.

pre-imaging: The process of storing the image of a file page before a record
on the page is updated. Btrieve uses pre-imaging to provide recovery
capabilities in case a file is damaged, or in the event of a system failure
during an operation.

primary file: The original part of a partitioned file before an EXTEND
operation was performed.

record: A set of one or more consecutive fields about a related subject, such
as an employee's payroll record.

Record Manager: The part of Btrieve that performs the transfer of logical
records between an application program and their physical disk
location.

segmented key: A key field that allows the key to have non-contiguous
parts. That is, non-contiguous sets of characters in a record can
constitute a single key.

2011Rev1.00 Glossary-3

Btrieve Record Manager

transaction: A set of logically related Btrieve operations on up to 12
different files.

utilities: Standard routines that perform "housekeeping" functions, such as C
BUTIL -COPY, -STOP, etc.

Glossary-4 2011Rev1.00

(

TRADEMARKS

Novell, Inc. has made every effort to supply trademark information about company names, products,
and services mentioned in this book. Trademarks indicated below were derived from various
sources.

Btrieve is a registered trademark of SoftCraft, Inc., a Novell Company.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Lattice is a trademark of Lattice, Inc.

Micro Focus is a trademark of Micro Focus, Ltd.

Microsoft is a registered trademark of Microsoft Corporation.

MS is a trademark of Microsoft Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

QuickBASIC is a trademark of Microsoft Corporation.

~ealia COBOL is a registered trademark of Reali a, Inc.

Turbo Pascal and Turbo C are trademarks of Borland International, Inc.

2011Revl.OO Trademarks-l

INDEX

A
Abort Transaction operation

BASIC, F-1
C language, E-1
COBOL, D-1
description, 6-2
Pascal, C-1

Accelerated access. See Accelerated open mode

Accelerated open mode
and automatic recovery, 2-26
overview, 2-25
specifying in Open operation, 6-70

Address of record. See Physical location

Advanced NetWare. See NetWare operating
system

Alternate collating sequence
fIle format for, 4-15
in Create operation, 6-17
specifying fIlename in description files, 4-13
specifying in Create operation, 6-14
specifying in description file, 4-11

Application interface
Assembly language, 5-26
C,5-22
COBOL,5-17
Compiled BASIC, 5-5
function of, 1-21
Interpretative BASIC, 5-2
Pascal,5-10

Assembly language
Application interface, 5-26
the Btrieve call, 5-30
Btrieve parameters, 5-28
Btrieve parameters structure, 5-27
storing the parameters, 5-26
verifying the Record Manager is loaded, 5-30

20llRevl.OO

Autoincrement key type, G-2

Available Options menu, illustration, 3-10

automatic transaction flagging, configuration
option, 3-9

B
BACTIVE

lock codes for, 4-46
output, 4-46
running, 4-46

BDOWN,4-48

B OFF, running, 4-49

BRESET
output, 4-50
running, 4-50

BSTATUS
output, 4-51
running, 4-51

BUSAGE
output, 4-53
running, 4-53

B-trees, 2-2

BASIC
the Btrieve call, 5-5
Btrieve parameters, 5-7
Compiled BASIC, 5-5
data buffer length parameter, 5-8
the FCB, 5-5
FIELD statement, 5-5, 6-72
File Control Block, 6-72
Interpretative BASIC, 5-2
interfacing with Btrieve, 5-2
key buffer parameter, 5-8
key number parameter, 5-9
MKI$ statement, 5-8
maximum open files, 6-72

Index-l

Btrieve Record Manager

OPEN statement, 5-6,6-72
opening NUL device, 6-72
sample Btrieve call, 5-9
V ARPI'R statement, 5-8

Begin Transaction operation
BASIC,F-2
C language, E-3
COBOL, D-3
description, 6-4
Pascal, C-3

Bfloat key type, G-3

Blank truncation
overview, 2-16
specifYing in Create operation, 6-12
specifying in description file, 4-6

BREQUEST
accessing nonshared drives, 1-11
and Btrieve for DOS 3.1 Networks, 1-11
and Btrieve Single User, 1-11
communicating with BSERVER, 1-9
data message length option (DOS), 3-18
data message length option (OS/2), 3-20
file servers option (DOS), 3-18
file servers option (Os/2), 3-20
functions of, 1-9
initializing on OS/2 workstation, 3-20
installing on OS/2 workstation, 3-19
mapped drives option (DOS), 3-17
mapped drives option (OS/2), 3-20
memory requirements, 3-1
OS/2 REQPARMS variable, 3-20
overview, 1-9
running on DOS workstations, 3-18
running on OS/2 workstations, 3-19
start-up options, 3-17
stopping, 3-21
stopping with the BUTIL -STOP command,

4-40

BREQ~ST error messages (DOS), B-17

BREQUEST status codes (OS/2), B-16

BROUTER
client ill, 5-33

Index-2

communicating with BSERVER, 1-14
error messages, B-19
for third-party V APs, 1-8
functions, 1-10
Get Interrupt Vector function, 5-33
overview, 1-10
stopping BROUTER, 3-17
writing a V AP interface to, 5-33

BSERVER
access via BREQUEST, 1-11
access via BROUTER, 1-14
commv.nicating with, 1-9
error messages, B-19
functions of, 1-9
overview, 1-9
stopping BSERVER, 3-17

BSETUP
Available Options menu, 3-10
exiting, 3-10
Install Btrieve option, 3-14
Remove Btrieve option, 3-16
running, 3-10
Save Configuration option, 3-13
Set ConfIgUration option, 3-12
starting, 3-10

Btrieve Function Executor
executing Btrieve operations, 4-42
keyboard sequences, 4-44
menu prompts, 4-43
overview, 4-42
running, 4-42

Btrieve parameters
definition, 1-5
overview, 1-16
requirements, 1-16

Btrieve Requester Program. See BREQUEST

Btrieve record operations
list of, 1-6, A-1
steps in performing, 1-5

201lRevl.OO

o

BUTIL
CLONE command, 4-17
COPY command, 4-18
CREATE command, 4-20
DOS error levels, 4-3
DROP command, 4-23
description me elements, 4-4
description files, 4-4
EXTEND command, 4-24
error messages, 4-3, B-20
general command format, 4-2
INDEX command, 4-25
LOAD command, 4-28
list of commands, 4-16
overview, 4-1
RECOVER command, 4-31
RESET command, 4-33
running, 4-2
SAVE command, 4-34
SINDEX command, 4-37
STAT command, 4-38
STOP command, 4-40
VER command, 4-41

Buffer
cache, 1-16, 2-22
data, 1-18
key, 1-20

c
C language

application interface, 5-22
Btrieve function declaration, 5-23
Btrieve parameters, 5-23
linking an application, 5-22

Cache buffers
overview, 1-16
use in pre-imaging, 2·22

CLONE command, 4·17

Clear Owner operation
BASIC, F-2
description, 6-6

201lRevl.OO

Client ID, in V AP, 1-14

Close operation
BASIC,F-3
C language, E-3
COBOL,D-3
description, 6-8
Pascal, C-3

COBOL
application interface, 5-17
Btrieve parameters, 5-18
linking an application, 5-17

COPY command, 4-18

Compiled BASIC
application interface. See BASIC
linking, 5-5

Index

Compressed record size parameter, range and
defaults, 3·7

Compression buffer, 2-17

Concurrency controls
guidelines for transactions, 2-27
overview, 2-27
passive method, 2-29
transaction control, 2-27

Concurrent transactions parameter, range and
defaults, 3-6

Configuration option, console refresh delay, 3·8

Configuration options
automatic transaction flagging, 3-9
maximum page size allowed, 3-8
number of concurrent sessions, 3-8

Configuration parameters
compressed record size, 3-7
concurrent transactions, 3-6
list of, 3-4
maximum me handles, 3-5
maximum open mes, 3-5
maximum record length, 3-7
maximum record locks, 3-6

Connection number
with B ACTIVE, 4-46
with B RESET, 4-50

Conserving disk space, 2-16

Index-3

Btrieve Record Manager

Console commands, 4-45
B ACTIVE, 4-46
BDOWN,4-48
B OFF,4-49
B RESET, 4-50
B STATUS, 4-51
B USAGE, 4-53

Console refresh delay, configuration option, 3-8

Copying data, to ASCn file, 4-34

CREATE command, 4-20

Create operation
BASIC,F-3
C language, E-4
COBOL, D-4
combining me attributes, 6-13
data buffer format, 6-11
data buffer length parameter, 6-18
description, 6-10
fIle flags word, 6-12
fIle specifications, 6-11
key characteristics, 6-13
key flags, 6-14
key number parameter, 6-18
Pascal, C-4
specifying alternate collating sequence, 6-17
specifying blank truncation, 6-12
specifying data compression, 6-12
specifying pre-allocation, 6-12
specifying the free space threshold, 6-12
specifying variable length records, 6-12
values for key flags, 6-15

Create Supplemental Index operation
BASIC, F-4
C language, E-6
COBOL, D-6
calculating data buffer length, 6-22
description, 6-21
Pascal, C-6
pre-existing key segments, 6-21

Index-4

D
fD option

DOS workstations, 3-18
OS/2 workstations, 3-20

Data buffer length parameter
Assembly language, 5-28
BASIC, 5-8
C language, 5-24
COBOL,5-19
for Create operation, 6-18
for Create Supplemental Index operation, 6-22
guidelines for initializing, 1-19
overview, 1-19
Pascal,5-13

Data buffer parameter
Assembly language, 5-28
BASIC FCB and, 1-18
C language, 5-24
COBOL,5-19
for Create operation, 1-18
in BASIC FCB, 5-8
overview, 1-18
Pascal, 5-12
uses of, 1-18

Data compression
compression buffer, 2-17
conserving disk space, 2-16
considerations, 2-17
specifying in Create operation, 6-12
specifying in description fIle, 4-6

Data encryption, Set Owner operation, 6-78

Data message length option
DOS workstations, 3-18
OS/2 workstations, 3-20

Data pages
contents, 2-2
variable length, 2-2

Data-only mes, 2-4
creating with Create operation, 6-11
specifying in description me, 4-8

Date key type, G-3

Decimal key type, G-4

2011Rev1.00

/

'''--)

(

Delete operation
BASIC, F-5
C language, E-8
COBOL, D-7
description, 6-24
Pascal, C-7

Descending keys
defmition, 2-8
specifying in Create operation, 6-14
specifying in description files, 4-11

Description file elements
alternate collating sequence, 4-11
alternate collating sequence file, 4-13
blank truncation, 4-6
data compression, 4-6
descending sort order, 4-11
duplicate key values, 4-10
free space threshold, 4-8
key count, 4-7
key length, 4-9
key position, 4-9
key type, 4-10
key-only fIles, 4-8
manual key, 4-11
modifable key values, 4-10
null key, 4-12
null key value, 4-12
page pre-allocation, 4-7
page size, 4-7
record length, 4-5
segmented key, 4-13
variable length records, 4-6

Description fIles
elements, 4-4
overview, 4-4
rules for creating, 4-14
sample for CREATE command, 4-21
sample for INDEX command, 4-26

Disk utilization, 2-12
blank truncation, 2-16
conserving space, 2-16
data compression, 2-16
determining record length, 2-12
maximizing, 2-13

20llRevi.OO

DOS ERRORLEVEL, with BUTIL, 4-3

DROP command, 4-23

Index

Drop Supplemental Index, description, 6-26

Drop Supplemental Index operation
BASIC, F-6
C language, E-9
COBOL, D-8
Pascal, C-9

Duplicate keys
definition, 2-7
and record length, 2-12
specifying in description mes, 4-10
specifying with Create operation, 6-14

Dynamic expansion, 2-3

data buffer length parameter
with blank truncation, 2-16
with variable length records, 2-5

data encryption, overview, 2-33

description me elements, replace existing fIle, 4-8

E
End Transaction operation

BASIC, F-6
C language, E-11
COBOL, D-9
description, 6-28
Pascal, C-10

EXTEND command, 4-24

Exclusive open mode
restricting me access with, 2-34
specifying in Open operation, 6-71

Extend operation
BASIC, F-7
C language, E-13
COBOL, D-11
description, 6-30
Pascal, C-12

Index-5

Btrieve Record Manager

Extended key types, 2-10
autoincrement, G-2
bfloat, G-3
date, G-3
decimal, G-4
float, G-4
in Create operation, 6-16
integer, G-5
logical, G-5
lstring, G-6
money, G-6
numeric, G-6
specifying in Create operation, 6-14
string, G-7
time, G-7
type code table, G-1
unsigned binary, G-7
zstring, G-7

External index files, creating with BUTIL
-INDEX, 4-25

F
FCB parameter, Assembly language, 5-28

File Control Record
contents, 2-2
definition, 2-2

File flags, for Stat operation, 6-82

File flags word
bit flags, 6-12
in Create operation, 6-12

File pages
data pages, 2-2
definition, 2-1
index pages, 2-2
page types, 2-1
size, 2-1

File servers option
DOS workstations, 3-18
OS/2 workstations, 3-20

File size
maximum, 1-2
number of records, 1-2

Index-6

Files
Btrieve fIle types, 2-3
calculating size, 2-14
creating with Create operation, 6-10
data-only, 2-4
dynamic expansion, 2-3
estimating size, 2-13
free space utilization, 2-3
key-only, 2-4
opening locked, 6-67
physical characteristics, 2-1
preallocation, 2-15
standard, 2-3
transactional, 2-23

Fixed length portion, location of keys in, 2-5

Flow of control, 1-11
between Btrieve and application, 1-10

Free space threshold
overview, 2-6
returned by Stat operation, 6-82
specifying in Create operation, 6-12
specifying in description fIle, 4-8

Free space utilization, 2-3

float key type, G-4

G
Get Direct operation

BASIC, F-8
C language, E-14
COBOL, D-12
description, 6-32
Pascal, C-13

Get Directory operation
BASIC, F-9
C language, E-15
COBOL,D-14
description, 6-35
Pascal, C-15

Get Equal operation
BASIC, F-10
C language, E-16
COBOL, D-15
description, 6-37
Pascal, C-15

2011Rev1.00

Get First operation
BASIC, F-ll
C language, E-18
COBOL, D-16
description, 6-39
Pascal, C-17

Get Greater operation
BASIC, F-12
C language, E-19
COBOL, D-17
description, 6-41
Pascal, C-18

Get Greater or Equal operation
BASIC, F-13
C language, E-20
COBOL, D-18
description, 6-43
Pascal, C-19

Get Key operations, description, 6-45

Get Last operation
BASIC, F-14
C language, E-21
COBOL, D-19
description, 6-47
Pascal, C-20

Get Less Than operation
BASIC, F-15
C language, E-22
COBOL, D-20
description, 6-49
Pascal, C-21

Get Less Than or Equal operation
BASIC, F-16
C language, E-23
COBOL, D-21
description, 6-51
Pascal, C-22

Get Next operation
BASIC, F-17
C language, E·24
COBOL, D-22
description, 6-54
Pascal, C-23

Get Position operation
BASIC, F-18
C language, E-25

201lRevi.OO

COBOL, D-23
description, 6-57
Pascal, C-24

Get Previous operation
BASIC, F-19
C language, E-27
COBOL, D-24
description, 6-59
Pascal, C-26

H
Header page. See File Control Record

I
INDEX command, 4-25

Index
overview, 2-11
pages, 2-2
permanent, 2-11
supplemental,2-11

Index pages
contents, 2-2
key values on, 2-2

Insert operation
BASIC, F-20
C language, E-28
COBOL,D-26
description, 6-62
Pascal, C·27

Integer key type, G-5

Integrity processing, 2-21

Index

and the Transaction Tracking System, 2·23

Interface ID parameter, Assembly language, 5·30

Interpretative BASIC
application interface, 5-2
executing the interpreter, 5-4
program load order, 5-4
running the application interface, 5-2
segment address fIle, 5-2

Index-7

Btrieve Record Manager

K
Key buffer parameter

Assembly language, 5-29
BASIC, 5-8
C language, 5-24
COBOL,5-20
determining the length of, 1-20
overview, 1-20
Pascal, 5-13

Key characteristics
Stat operation, 6-82
specifying in Create operation, 6-13

Key count, specifying in description file, 4-7

Key flags
in Create operation, 6-14
table of values for, 6-15

Key length parameter, Assembly language, 5-29

Key number parameter
Assembly language, 5-29
BASIC,5-9
C language, 5-25
COBOL,5-20
for Create operation, 6-18
overview, 1-20
Pascal,5-14
range of values, 1-20
uses of, 1-20

Key segments. See Segmented keys

Key types and sorting, 2-10
extended key types, 2-10
specifying in description file, 4-10
standard key types, 2-10

Key-only mes
overview, 2-4
specifying in Create operation, 6-12

Keys
attributes, 2-6
defmition, 2-6

Index-8

descending, 2-8
duplicate, 2-7
identifying in record, 2-6
manual,2-9
modifiable, 2-7
null,2-8
overview, 2-6
segmented, 2-7
specifying in description file, 4-9
specifying type in Create operation, 6-14

L
Language Interfaces, 0812, 5-31

Languages and compilers, list of supported, 1-1

Least-recently-used algorithm, 1-16

LOAD command, 4-28
input file format, 4-29
sample record format, 4-30

Lock bias value, specifying locks, 6-66

Locks
record,2-32
with record operations, 6-65

Logical key type, G-5

LRU algorithm, 1-16

Lstting key type, G-6

M
Manual keys

definition, 2-9
specifying in Create operation, 6-14
specifying in description me, 4-11

Mapped drives option
DOS workstations, 3-17
OS/2 workstations, 3-20

201lRevl.OO

(

()

Maximum file handles parameter, range and
defaults, 3-5

Maximum open files parameter, range and
defaults, 3-5

Maximum record locks parameter, range and
defaults, 3-6

Normal open mode, 6-71

Nowait locks, description, 6-66

Index

NSSETUP, menus, Change file server, 3-11

Null key value, specifying in description files,
4-12

Null keys
. definition, 2-8

Microsoft QuickBASIC, application interface file, specifying in Create operation, 6-14
5-5 specifying in description file, 4-12

Modifiable keys
defInition, 2-7
specifying in Create operation, 6-14
specifying in description files, 4-10

Money key type, G-6

Multiple record locks
description, 6-65
releasing, 6-67
Unlock operation, 6-96

N

NetWare Btrieve
confIgUration parameters, 3-4
confIgUring and installing, 3-4
diskettes, 3-2
installing BSERVER. See BSETUP
installing NetWare Btrieve, 3-14
removing NetWare Btrieve from a me server,

3-16
sample configurations, 1-12
saving the confIgUration, 3-13
specifying options, 3-12
system requirements, 3-1

NetWare operating system
DOWN command, 3-17
ELS NetWare Level I, 3-1
NetWare 68,3-1
version required, 3-1

2011Revl.OO

Numeric key type, G-6

o
Open operation

BASIC, F-21
BASIC considerations, 6-72
C language, E-29
COBOL, D-27
description, 6-69
Pascal, C-28
specifying Accelerated open mode, 6-70
specifying Exclusive open mode, 6-71
specifying Normal open mode, 6-71
specifying Read-Only mode, 6-71
specifying Verify open mode, 6-71

Operation code parameter
Assembly language, 5-29
under BASIC, 5-7
C language, 5-23
COBOL,5-18
general description, 1-17
Pascal, 5-12

0812
Assembly language, 5-32
C language, 5-31
language interfaces, 5-31
linking an application, 5-32
SET command, 3-20

OS/2 workstations
BREQUEST, 3-19
initializing BREQUEST, 3-20
installing BREQUEST, 3-19
REQPARMS variable, 3-20

Index-9

Btrieve Record Manager

Owner names
overview, 2-33
selective ownership rights, 2-33

p
Page size

configuration option, 3-8
determining, 2-13
specifying in description file, 4-7

Pages. See File pages

Pascal

uses of, 1-17

Positioning, 2-18

Pre-allocation
specifying in Create operation, 6-12
specifying in description fIle, 4-7

Pre-image fIles
extensions, 2-22
filenames, 2-22
in transaction processing, 2-24

Pre-imaging
description of, 2-21
pre-image buffers, 2-22
use of pre-image fIles, 2-21

application interface, 5-10 Preallocation, 2-15
Btrieve function declaration (ffiM Pascal), 5-10 and fIle statisitics, 2-15
Btrieve function declaration (Turbo Pascal),

5-11
Btrieve parameters, 5-11
linking an application, 5-11

Passive method of concurrency
combined with transaction controls, 2-30
overview, 2-29

Permanent index
definition, 2-11
duplicate values in, 2-11

Physical fIle characteristics, 2-1

Physical location, 2-18
and Step operations, 2-18

Position
definition, 2-18
establishing after Step operations, 2-19
establishing with Get operations, 2-19

Position block
contents of, 2-20
definition, 2-20
record pointers, 2-20

Position block parameter
Assembly language positioning information,

R
IR option

DOS workstations, 3-17
OS/2 workstations, 3-20

RECOVER command, 4-31

REQPARMS variable, 3-20

RESET command, 4-33

Read-Only open mode, specifYing in Open
operation, 6-71

Record length
determining,2-12
specifying in description fIle, 4-5
with duplicate keys, 2-12
without duplicate keys, 2-12

Record length parameter, range and defaults, 3-7

Record locks
lock bias values, 6-66
mixing single and multiple, 6-68
multiple, 2-32, 6-65

/ ~\

5-28
in BASIC FCB, 5-8
C language, 5-23
COBOL,5-19
overview, 1-17
Pascal, 5-12

nowait, 2-32
overview, 2-32 C
releasing multiple record locks, 2-33 . I

releasing single record locks, 2-32
single, 2-32, 6-65
wait, 2-32

Index-10 2011Rev1.00

Records
address, 2-18
components of, 2-5
deflnition, 2-5
flxed length portion, 2-5
overview, 2-5
physical location, 2-18
retrieving, 2-18
variable length, 2-5

Recovering damaged mes, 4-31

Releasing locks, 6-67

Reset operation
BASIC, F-21
description, 6-74

Restricting file access
data encryption, 2-33
exclusive open mode, 2-34
overview, 2-33
with owner names, 2-33

Retrieving records
by key value, 2-19
by physical location, 2-18
using Step operations, 2-18
using Get operations, 2-19

s
IS option, OS/2 workstations, 3-20

IS: option, DOS workstations, 3-18

SAVE command, 4-34

SET command, OS/2, 3-20

Segmented keys
defInition, 2-7
maximum number of segments, 2-8
specifying in Create operation, 6-14
specifying in description files, 4-13

Sessions
B STATUS display, 4-51
configuration option, 3-8

Set Directory operation
BASIC,F-22
C language, E-30

20}IRev}.OO

COBOL, D-28
description, 6-76
Pascal, C-29

Set Owner operation
BASIC, F-22
data encryption, 6-78
description, 6-78

SINDEX command, 4-37

Single record locks, description, 6-65

STAT command, 4-38

STOP command, 4-40

Standard Btrieve files, 2-3

Standard key types, 2-10
specifying in Create operation, 6-14

Index

Start-up options, changing me servers, 3-11

Stat operation
BASIC, F-23
C language, E-31
COBOL, D-29
data buffer format, 6-83
description, 6-81
me flags, 6-82
me specillcations, 6-81
key characteristics, 6-82
Pascal, C-30

Status code parameter
Assembly language, 5-29
BASIC,5-7
COBOL,5-19
overview, 1-17

Status codes,list of, B-1

Step First operation
BASIC,F-23
C language, E-32
COBOL, D-30
description, 6-85
Pascal, C-31

Step Last operation
BASIC,F-23
C language, E-32
COBOL, D-30
description, 6-87
Pascal, C-31

Index-}}

Btrieve Record Manager

Step Next operation
BASIC, F-24
C language, E-33
COBOL, D-31
description, 6-89
Pascal, C-32

Step operations, traversing file with, 2-19

Step Previous operation
BASIC, F-25
C language, E-34
COBOL, D-32
description, 6-91
Pascal, C-33

Stop operation
BASIC,F-26
description, 6-93

String key type, G-7

Supplemental index
defInition, 2-11
duplicate values in, 2-11

System requirements
overview, 3-1
server memory, 3-1

sample VAP to BSERVER confIguration, 1-15

T
Time key type, G-7

Transaction control. See Transaction processing

Transaction control file
guidelines for specifying, 2-24
use of, 2-24

Transaction processing
and the Transaction Tracking System, 2-24
controlling concurrency with, 2-27
effect of nowait locks, 2-27

Index-12

overview, 2-23
use of pre-image files, 2-24
transaction control file, 2-23

Transaction Tracking System
and the Abort Transaction operation, 2-25
automatic file flagging, 2-23
in Btrieve transactions, 2-24
mixing transactional and nontransactional

files, 2-25
required for, 3-1

Transaction Tracking System (TTS), used for
integrity processing, 2-23

Transaction Tracking system, requirements for
Btrieve, 2-23

Transactions
avoiding deadlock, 2-27
effect of wait locks, 2-27

u
Unlock operation

BASIC,F-26
description, 6-95
multiple record locks, 6-96
single record locks, 6-95

Unsigned binary key type, G-7

Update operation
BASIC,F-26
C language, E-35
COBOL, D-34
description, 6-97
Pascal, C-34

Utilities
Btrieve Function Executor, 4-42
BUTIL,4-1
overview, 4-1

201IRev1.00

v
V ARPTR statement, 5-8

Variable length records
blank truncation, 2-16
and data buffer length, 2-5
free space threshold, 2-6
maximum length, 2-5
minimum length, 2-5
overview, 2-5
specifying in Create operation, 6-12
specifying in description file, 4-6

VER command, 4-41

Verify open mode, specifying in Open operation,
6-71

Version operation
BASIC, F-27
description, 6-100

2011Revl.OO

Index

w
Wait locks, description, 6-66

Workstations
memory requirements, 3-1
releasing resources using B RESET, 4-50

z
zstring key type, G-7

Index-13

Cl

Novell Manuals and Novell Products
USER COMMENTS

We at Novell would like to hear from you if you have comments about our
manuals and products, or have suggestions for improving them. Please address
responses to:

Novell Development Products Division
User Comments
6034 West Courtyard Dr., Suite 220
Austin; Texas 78730

Please indicate the relevant chapters and page numbers and other pertinent
information as requested below.

Product Name: ___________ Version Number: ___ _

Manual Name and Revision (if applicable): _____________ _

Your Name:
-------------~-----------

Company Name:

Address:

City: __________ State: Zip:
Phone Number: (__) _________________________________ _

COMMENTS OR SUGGESTIONS

Novell Development ProcIueto Division 6034 W. Courtyard Dr. Ste.220 Austin, TX 78730 (512)34S-8380

