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1 Introduction

This manual provides a complete description of the instruction-set architecture of the S-1
Uniprocessor (Mark IIA), exclusive of vector operations. It is assumed that the reader has a general
knowledge of computer architecture. The manual was designed to be both a detailed introduction to
the S-1 and an architecture reference manual.

This manual does not describe the S-1 performance architecture, or any other
implementation-related aspects of the S-1 Uniprocessor, except as is necessary to make the S-1
instruction-set architecture understandable.

The remainder of this chapter discusses the notation used throughout the manual. Chapter 2
describes the structure of the S-1's memory and registers, including the status words and the concept
of address contexts. Chapter 3 defines various conceptual data types used in the discussion of the
S-1 instructions. Chapter 4 describes the formats of the S-1 instructions and how operands are
addressed. Chapter 5 describes the individual instructions in detail. Chapter 6 describes the
architecture of traps and interrupts in the S-1. The remaining chapters provide examples and
summaries. The two appendices summarize the FASM Assembler (because examples throughout
the manual uses the FASM syntax) and the S-1 Formal Notation (which is used to precisely define
the instruction set).
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1.1 Notation and Conventions

This section describes the notation used in the text of this manual. Many of the
abbreviations used in this section may not be understood untit later sections of the manual are read,
but they are presented here for the sake of completeness. Most of the examples in the manual are
stated in the syntax of the FASM assembler. That syntax is summarized in Section 10 with various
aspects of it introduced at appropriate points in the main text as well. The syntax used to formally
describe the S-1 and its instructions is summarized in Section 11.

The notation " A .. B " (borrowed from PASCAL-like programming languages) means the
range of integers from A to B inclusive, or the set of the elements of that range, depending on
context.

The term field means a series of consecutive bits within memory or a register. The bits in a
field are always numbered from left to right, starting at zero. Subfields of a field are specified by
the notation X<mm>. Here X is the name of the field, and the subfield being referenced is the bits
of X whose numbers within X are in the range mn .. . A reference to a single bit (X<m:m>) can
be abbreviated to X<m>. The selection of a named subfield is indicated as X.SUB (X is the name
of the field, SUB is the name of the subfield within X). Subfields, like like all fields, always have
their bits numbered from left to right starting from zero, and so the bits of a subfield may not have
the same bit numbers as those same bits within the superfield.

The term word is intended to mean a field of any of the four standard precisions
(quarter-word, single-word, half-word, and double-word, which are 9, 18, 36, and 72 bits wide
respectively). It is intended that iIf word is not modified then no specific precision is being described,
or rather what is being said applies to words of all four precisions. Not every field 9 bits long is a
quarter-word; the term word also implies alignment of the field to a word boundary (see Section 2.1).
Words, like all fields, may have subfields.

For example, Figure 2-4 is reproduced below as Figure 1-1. This picture of a single-word
shows the format of a page-table entry.

FLG ACCESS PGNO

8 67 12 13 35

Figure 1-1
PTE or STE

This single-word could have the name PTE (for reasons described in Section 2.3). In that case,
PTE.FLG would be the same as PTE<06>, and PTE.ACCESS the same as PTE<7:12>. The
second through fourth bits of PTE.ACCESS could be described as either PTE<8:10> or
PTE.ACCESS<1:3>.

A byte is a subfield of a single-word or double-word which is specified by a byte pointer. A
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byte may be of any length (not just eight bits, for example). The term byte bears no relation in this
manual to the amount of memory used to contain a character code. (See Sections 3.5 and 3.6.)

The notation used to describe the concatenation of fields into a larger unit is
cfield1 || field?2 | field3> (ie, fieldl, field2, and field3 are concatenated to form one unit). For
example, figure 1-1 could be described as ¢cFLG<0:6> || ACCESS<0:5> || PGNO<0:22>>. Unless
otherwise stated, this new conglomerate is treated as a single unit (eg., the concatenation of two
quarter-words is a half-word, not merely two quarter-words). This distinction becomes important
when considering alignment issues. If a field is repeated in the conglomerate then that may be
specified using the notation nxfield, where n is the number of times the field is repeated. For
example, cfield 1 || 5%0 || field2> would be the same as cfield1 | 0] 0] 0 ]| 0 1] O || field2>.

The contents of register number n is R[n]. The contents of memory location A is M[A]. The
terms OP1, OP2, S1, 82, and DEST refer to the contents of the appropriate locations. Some
instructions operate on a pair of memory locations. If X is the first object of such a pair, then
NEXT(X) is the second object of the pair. X and NEXT(X) are contiguous and have the same
precision. The address of NEXT(X) is greater than the address of X by the length of X (which is
the same as the length of NEXT(X)). As with OP1, NEXT(OPI) refers to the contents of the
appropriate location (the same applies to the other terms given above). ADDRESS(OPI) refers the
the quarter-word (virtual) address of OP1. The term JUMPDEST represents an address. The
terms SO (short operand), LO (long operand), and ILO (indirect long operand) also refer to the
contents of the appropriate locations (or to the values of immediate constants, if appropriate).

If a field X is to be interpreted as a two's-complement number, then the notation SIGNED(X)
is used. When only part of a word (or the result of a computation), X, is to be used, the terms
LOW_ORDER(X) and HIGH_ORDER(X) designate the least-significant and most-significant
portion of X, respectively, When used informally, it should be obvious from the context how much
of X is included; otherwise the precision will be stated explicitly. Unless otherwise stated, when
moving a smaller field, X, into a larger field, Y, it is the case that X is right-justified into Y. The
bits in Y that were not in X are specified by the moving operation. If ZERO_EXTEND(X) is used,
then these extra bits are zero-bits. If SIGN_EXTEND(X) is used, then these extra bits are ueqla to
the sign-bit of X. (The sign-bit of X is X<05).

Text appearing within four corner-brackets is intended as an illustrative example rather than as
part of the main discussion. Typically an example will give sample data formats or sample

instruction sequences. This text, on the other hand, is an example of an example.
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2 Memory and Registers

The S-1 architecture provides for a very large (% single-word) virtual address space.
Virtual-to-physical address transformation is handled by the hardware. Single-words are 36-bits
long but the architecture allows for the accessing of memory in any of four different precisions
(quarter-word, half-word, single-word, and double-word). Thirty-two general purpose register
words are provided which can be accessed via special register operations or as memory locations.
Separate address spaces and register-files are maintained for the user and the executive. The
following sections in Chapter 2 describe these features in detail.

Each S-1 processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions and the other is for data. The
caches are described in Section 5.15.

2.1 Memory

The S-1 architecture provides 228 single-words of virtual address space. Each single-word is
thirty-six bits long. The bits are numbered 0..35 from most significant to least significant.

Figure 2-1
Single-Word

Memory may be accessed in any of four precisions: quarter-word (nine bits numbered
0..8), half-word (eighteen bits numbered 0..17), single-word (thirty-six bits numbered
0..35), or double-word (seventy-two bits numbered 0..71). Therefore, the single-word above
could be considered to be two half-words, four quarter-words, or half of a double-word.
Instructions are designed to access and operate on words of all four precisions with equal ease.

% 17 18 35

Figure 2-2
Two Half-Words

8 88 17 18 26 27 35

Figure 2-3
Four Quarter-Words
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Quarter-words within a half-word, single-word, or double-word have increasing addresses
from left to right. Thus if a quarter-word and a single-word have the same address, then the
quarter-word is the high-order (most significant, or leftmost) quarter-word of the single-word.
Similarly, the more significant single-word in a double-word has the lower address.

Unless otherwise stated, all addresses mentioned are quarter-word addresses. Therefore, the
range of S-1 addresses is 0.. 2%0_1. Half-words must be aligned on half-word boundaries, that
is, the most-significant quarter-word of a half-word must have an even address. Similarly,
single-words must be aligned on single-word boundaries (the most-significant quarter-word must
have an address that is a multiple of four). Double-words must begin on single-word boundaries,
but they need not begin on double-word boundaries. Depending upon the implementation,
however, access to double-words beginning on double-word boundaries may be more efficient than
those not so aligned. '

References to the first 128 quarter-words of memory are interpreted as references to the
thirty-two (single-word) registers. Registers are discussed in Section 2.2.
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2.2 Registers

Registers can be used to hold information that must be accessed quickly or concisely. They
are addressable by the use of register addressing modes, or as the first 128 quarter-words of
memory. Some registers are dedicated to special-purpose applications, while others are available for
general-purpose use. The instruction set has been designed to deal efficiently with registers and
with memory locations addressed by a small offset from a register. In addition, special instructions
are provided for saving and restoring registers during interrupts, traps, and subroutine calls. The
registers and their uses are described in the following sections.

2.2.1 Register Files

There are sixteen register files (REG_FILEs) in the S$-1 architecture. Each consists of
thirty-two single-word registers. REG_FILE[O0] is reserved for use by the hardware and microcode.
The other fifteen register files may be put to any use by software.

The processor status word selects which register files are being used by the current context
and the previous context (one register file for each context). The user may access only the
thirty-two registers in the register file associated with the current context. The executive, however,
may access either context, and so which register file is used depends on which context is being
accessed. The processor status word is discussed in Section 2.5.1. Contexts are discussed in Section

2.4.

The organization of registers into register files facilitates context switching. Each of several
users may have his own register file that the executive can specify simply by changing a field in the
processor status word. Similarly, each of several trap or interrupt handlers within the executive can
have a dedicated register file and need not save the registers of the previous context.

2.2.2 General-Purpose Registers

The contents of the first single-word of the current register file is called R[0], the second R[1],
and so forth. When not otherwise modified, the term register will hereafter be used to mean one of
the thirty-two registers in the current register file. Other registers (e.g., PC or STP) will be referred
to specifically by name.

Many instruction formats can make special use of registers. Some registers have restrictions
on, or extensions of, these special uses. Registers addressed as memory have no special properties.

Registers 8 through 31 can be used as general-purpose registers in all instructions that make
special use of registers. Registers 0 through 7 have certain special-purpose uses but they can also be
used as general-purpose registers, with some restrictions. Registers 0 through 3, for example, cannot
be used in short-indexed mode (see Section 4.2.3.3). Other restrictions concerning references to
register 3 are discussed in Section 2.2.3.1 and Section 2.2.3.2. Register uses and restrictions are
summarized in Section 2.2.4.
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2.2.3 Dedicated-Function Registers

Certain general-purpose registers in the S~1 have special functions associated with them. One
register serves as a stack pointer, while others may serve as operands in three operand instructions.
These registers and their uses are described below. They are summarized in Section 2.2.4.

2.2.3.1 Program-Counter

The program-counter (PC) is a 30-bit register that points to (contains the address of) the
instruction in memory that is currently being executed. Because instructions consist of single-words
and so are aligned on single-word boundaries, the contents of the PC must always be a multiple of
four. The PC always points to the beginning of the instruction being executed (that is, it is not
advanced when the extended words of a multi-word instruction are fetched).

References to register 3 are interpreted as references to the PC in certain circumstances. PC is
used instead of R[3] whenever register 3 is specified as an index register within an address
calculation. This includes indexing in indirect address pointers (see Section 4.2.5). In all other cases,
R([3] is treated as a general-purpose register. All non-indexing references to register 3 use R[3]. It
should be emphasized that PC itself is not a general-purpose register, and does not reside in any
register file.

2.2.8.2 Stack-Pointer (SP) and Stack-Limit (SL)

The S-1 maintains a stack for saving values during traps, interrupts, and subroutine calls.
The location and extent of the stack in memory is specified by the contents of two registers: the
stack-pointer (SP) and the stack-limit (SL). SP points to the first free location on that
(upward-growing) stack and SL points to the first location past the end of the area reserved for
stack growth.

The five-bit SP_ID field in the user status word (see Section 2.5.2) specifies which
general-purpose register will be used as SP. The register immediately following SP is interpreted as
the SL register. Hence SP = R[SP_ID] and SL = R[SP_ID + 1]. The values 3 and 31 for SP_ID
are illegal; an attempt to set SP_ID to either value will cause a hard trap.

The SP_ID can be set by special instructions (see Section 5.14). The usual practice is to use
the two highest-address registers (registers 30 and 31) as the SP and SL respectively.

2.2.3.3 RTA and RTB

Registers 4 and 6 are given the special names RTA and RTB respectively. They are of
special interest in three-address instructions. When double-word quantities are involved, then RTA
is considered to be registers 4 and 5 together, and RTB is considered to be registers 6 and 7
together. Registers 5 and 7 also have the names RTA1 and RTBI respectively. See Section 4.1.2
for a description of the uses of RTA and RTB.
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2.2.4 Summary

The tables below summarize the uses of the registers that have been discussed in the previous

sections.

Register Primary Use Other Uses/Restrictions Pertinent Sections
R[0] General-Purpose  Restricted indexing 222, 4233
R[1..2]  General-Purpose  No short indexing 222, 4233

R[3] General-Purpose  Indexing uses PC instead 222, 22.3.1

R[4] General-Purpose  RTA 222,2233

R(5] General-Purpose  Low-order half of RTA DW 222, 2233

R[6] General-Purpose  RTB 222,2233

R([7] General-Purpose  Low-order half of RTB DW  2.22,2233
R[8..31] General-Purpose --- 222

Table 2-1

Registers and their Uses

Register  Primary Use Other Uses/Restrictions Pertinent Sections
PC Program-Counter  Indexing uses PC for R[3] 223.1,222
SP Stack-Pointer Cannot be R[3] or R[31] 2.2.32,222
SL Stack-Limit Always register after SP 22.32,222

RTA Third Operand Same as R[4] (or <R[4] || R[6]2)  2.2.3.8,222
RTB Third Operand Same as R[6] (or cR[6] || R[7}2) 2.2.3.3, 222

Table 2-2
Dedicated-Function Registers and their Uses
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2.8 Address Transformation

The S-1 maps 30-bit, virtual, quarter-word addresses into 34-bit, physical, quarter-word
addresses. The address transformation uses two levels of paging, specified by a segment table and
up to 1024 page tables. A page is made up of 512 single-words @i quarter-words). There are up
to 2°° physical pages in memory; hence the physical address space contains 2% quarter-words. A
virtual address space contains up to 1024 segments (specified by the segment table). Each segment
contains 512 pages (specified by one of the page tables). This gives a virtual address space of up to
2%0 quarter-words.

The location of the current segment table is specified by two 34-bit registers: the segment table
pointer (STP) and the segment table limit (STL). If the content of the STP is in the range 0.. 127
(a register address), then absolute addressing is in effect; the mapping from virtual addresses to
physical addresses is the identity mapping. Otherwise, the STP contains the physical address of the
segment table, and the STL contains the physical address of the first location beyond the end of the
segment table. STP<32:33> and STL<32:33> must equal zero, because table entries are single-words
and therefore must be aligned on single-word boundaries.

Each segment table consists of a contiguous list of segment table entries (STE) (also called page
table pointers). Each page table consists of a contiguous list of 512 page table entries (PTE). Both
segment  table entries and page table entries have the following format:
cFLG<06> || ACCESS<0:5> || PGNO<0:22>>. Either may be nul! (FLG<0>=0), indicating that the
entry specifies no page. FLG contains flag bits. ACCESS indicates the access bits and is used only
in page table entries. PGNO is the physical page number (page number x oll . page address). (See
Sections 2.3.1 and 2.3.2 for further discussion of the FLG and ACCESS fields.)

FLG ACCESS PGNO

8 67 12 13 35

Figure 2-4
PTE or STE

Each STE specifies the physical address of a page table, or is null. A null STE indicates that
the page table does not exist. STE.PGNO is used as the most-significant 23 bits of the physical
address of the page table (the least-significant 11 bits are zero). page tables fill exactly one page (of
512 single-words). Each PTE specifies the physical address of a page, or is null. A null PTE
indicates that the page does not exist. As with the STE, PTE.PGNO is used as the
most-significant 23 bits of the physical address of the page (and the least-significant 11 bits are
zero).

The segment tables and page tables are indexed by the 30-bit, virtual address (VA). The
physical address (PA) is calculated as follows. VA<0:9> is interpreted as a single-word offset from
the address contained in the STP. The physical address of the STE is STP+cVA <0:9> || 2%0>. If
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absolute addressing is not selected and the address of the STE is greater than or equal to the
contents of STL then a hard trap occurs. If the selected STE is null then a hard trap occurs.
STE.PGNO specifies the physical page number of the desired page table, that is, the desired page
table starts at physical address €STE.PGNO || 11x02. VA<10:18> is interpreted as a single-word
offset from the beginning of the page table. The physical address of the PTE is, therefore,
cSTE.PGNO || VA<10:18> || 2%0>. If the selected PTE is null then a hard trap - occurs.
PTE.PGNO specifies the physical page number of the desired page (i.e, the page starts at physical
address cPTE.PGNO || 11x02). VA<19:29> specifies the quarter-word offset from the beginning
of the page. The physical address is, finally, PA=cPTE.PGNO || VA<19:29>2.

In general, an address transformation involves two memory references, the first to the segment
table, the second to the page table. No memory reference is needed for the STP or STL since they
are hardware registers inside the processor. Two page map caches inside each processor contain (for
the most recently used pages) the complete translation from virtual page address to physical page
address. One page map is for addresses of instructions, the other for addresses of data. Whenever
a necessary translation is not resident in a page map, the necessary entry is fetched from memory
and placed in the page map. Another page map entry may be evicted in the process. The evicted
entry is not written out to memory (because it cannot have changed).

The processor hardware actually contains two sets of segment table pointer/limit registers, one
set for the executive (EXEC_STP and EXEC_STL) and the other set for the user (USER_STP and
USER_STL). A pointer/limit pair specifies an address space (i.e, a segment table/page table/page
mapping). The address space specified by EXEC_STP and EXEC_STL registers is called the
executive address space. Similarly, the USER_STP and USER_STL registers specify the user
address space. The CRNT_MODE and PREV_MODE fields of the PROC_STATUS word
determine which address space is referenced during an address calculation (see Sections 2.5.1 and
2.4). Each hardware page map entry contains a base-bit which identifies which of the two address
spaces (executive or user) the entry is associated with.
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2.3.1 Flag Bits: The FLG-field

Each STE and PTE has a 7-bit FLG field. This field is used to indicate whether the table
entry is valid and to record software flags. FLG<0> is called the VALID bit. If VALID=0 then the
STE (or PTE) is considered to be a null entry; that is, it specifies no page. If VALID=1 then the
STE (or PTE) is not null and is interpreted as a pointer to a physical page as described in Section
2.3.

The bits of FLG<1:6> are reserved for software flags . They can be used by programs (e.g.,
an operating system) to record information concerning the STE or PTE. They have no defined
function within the architecture.

2.3.2 Access Modes

Both STEs and PTEs contain an ACCESS field. STE.ACCESS is unused. PTE.ACCESS,
however, specifies any restrictions on accessing the page pointed to by the PTE. PTE.ACCESS can
distinguish pages used for instructions and those used for data. It also controls when data cache
entries are allocated and when changes to the data cache go through to physical memory. (The
cache is discussed in Section 5.15). Many different high-level access modes (e.g., “local data" and
“static code") can be specified using combinations of the ACCESS bits.

It should be noted that absolute addressing (see Section 2.3) does not utilize the access modes
in the standard way. This is because absolute addressing bypasses the segment table/page table
address transformation. The approach to access modes for absolute addressing is discussed in
Section 2.3.2.1.

INSTRUCTIONS PTE.ACCESS<0> specifies whether a word on the indicated page
may be used as an instruction. If INSTRUCTIONS=0 then a hard

trap will occur when a location from the indicated page is accessed as
an instruction. '

DATA PTE.ACCESS<1> specifies whether a word on the indicated page
may be used as data. If DATA=0 then a hard trap will occur when
a location from the indicated page is accessed as an operand of an
instruction (except as noted in the instruction descriptions, Section 5).

READ_ALLOCATE PTE.ACCESS<2> indicates the course of action after encountering a
read miss. If READ_ALLOCATE=] then any read miss will
allocate and fill a data cache entry. If READ_ALLOCATE=0 then
a read miss will not allocate a data cache entry, but will cause data to
be read directly from memory.

WRITE_ALLOCATE PTE.ACCESS<3> indicates the course of action after encountering a
write miss. If WRITE_ALLOCATE=] then any write miss will
allocate and update a data cache entry. If WRITE_ALLOCATE=0
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then a write miss will not allocate a data cache entry. All write hits
will simply update the data cache entry.

WRITE_ONLY PTE.ACCESS<4> is used to prohibit reading from a page that is
write-only. Reading of an operand from a page marked with
WRITE_ONLY=1 will cause a hard trap. (Note that
WRITE_ONLY=1 does not necessarily mean that the page in
question can be written into; that is controlled by the
WRITE_ALLOCATE and WRITE_.THROUGH bits.)

WRITE_THROUGH PTE.ACCESS<5> controls the updating of memory upon a write to
the data cache. If WRITE_.THROUGH-=1 then any write will
update memory. If the write is a data cache hit then the data cache
will be updated as well. If the write is a data cache miss, then a data
cache entry will be allocated and written if and only if
WRITE_ALLOCATE-=I.

Certain combinations of access bits are given special meanings by the hardware. The
combination WRITE_ALLOCATE=0 and WRITE_.THROUGH=0 specifies that a page is
read-only. An attempted write to a read-only page will cause a hard trap. The combination of
INSTRUCTIONS=0 and DATA=0 specifies an //O page. If an instruction other than an /O
instruction operates on an I/O page then a hard trap will occur.

Various combinations of the above six bits provide useful, high-level access modes. A page
may be specified to be for local data with the combination DATA =1, WRITE_ALLOCATE-=1, and
READ_ALLOCATE=1. A data cache miss caused by reading an operand from a local-data page
causes the missed word to be read from memory and placed in the data cache. Writes to local-data
pages do not necessarily write through to main memory. Whenever it is important that the memory
shadow of a local-data page be made identical to the cache, cache control instructions must be
executed to update memory. It is intended that the private variables of a process be identified as
local-data pages. (All other access bits are zero.)

Cached read data may be specified by DATA=1 and READ_ALLOCATE=1. A data cache
miss in a cached-read-data page causes the missed word to be read from memory and placed in the
data cache. No writes are allowed to a cached-read-data page because WRITE_ALLOCATE=0
and WRITE_THROUGH-=O0. Instructions cannot be fetched from a cached-read-data page. (Al
other access bits are zero.)

Static code is specified by INSTRUCTIONS=1, DATA=1, and READ_ALLOCATE=1. A
static-code page is similar to a cached-read-data page; however, locations on a static-code page can
be accessed as instructions. It is intended that shared routines will be identified as static-code. (Al

other access bits are zero.)

Shared data is indicated by DATA=1 and WRITE_THROUGH=1. Words from shared-data
pages are never placed in the data cache. A write to a shared-data page writes through to main
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memory without writing in the data cache (WRITE_ALLOCATE=0), and a read from a shared
page reads directly from main memory (provided that the data cache does not already contain the
word). Locations that are heavily shared by multiple processors are intended to be on shared-data
pages, eliminating the necessity to perform repeated cache sweeps when passing small amounts of
data between processors. (All other access bits are zero.)

The S-1 hardware does not check for illegal combinations of access bits. Such checking
should be performed by operating system software when setting up PTEs.

2.3.2.1 Access Modes and Absolute Addressing

When absolute addressing is selected (STP < 128) no choice is given for the access bits.
Instead, the bits INSTRUCTIONS=1, DATA=I, READ_ALLOCATE=1,
WRITE_ALLOCATE=1, WRITE_ONLY=0, and WRITE_THROUGH=0 are always used.
However, no trap will occur due to a violation of these bits while in absolute addressing mode (e.g.,
I/O can be done to a page even though it is not an I/O page). The bits are used only to indicate
the caching algorithm for absolute addressing.



§2.3.22 Memory and Registers Page 15

2.3.2.2 Summary

Bit Name Description

0 INSTRUCTIONS If = 0 then cannot access locations on this page as instructions.
1 DATA If = 0 then cannot access locations on this page as data.

2 READ_ALLOCATE If = 1 then a read miss will allocate a cache entry.

3 WRITE_ALLOCATE  If = 1 then a write miss will allocate a cache entry.

4 WRITE_ONLY If = 1 then cannot read an operand from this page.

5 WRITE_THROUGH If = I then any write will update memory.

Table 2-3
Bits of STE.ACCESS and PTE. ACCESS

Use Combination (Bits specified = 0)

Read Only WRITE_ALLOCATE, WRITE_.THROUGH
I/O Page INSTRUCTIONS, DATA

Table 2-4
Special Defined Combinations of ACCESS bits

Use Combination (Bits specified = 1)
Local Data DATA, WRITE_ALLOCATE, READ_ALLOCATE
Cached Read Data DATA, READ_ALLOCATE '
Static Code INSTRUCTIONS, DATA, READ_ALLOCATE
Shared Data DATA, WRITE_THROUGH

Table 2-5

Useful Combinations of ACCESS bits
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2.4 Address Contexts

Section 2.3 describes the existence of the two address spaces maintained in the S-1
architecture, executive and user. Instructions, however, do not refer directly to either the user or
executive address space. They refer to the current or previous address space.

When a program (either executive or user) refers to itself or its data (ie, its own address
space), it refers to the current address space. Access to the current address space is controlled by
PROC_STATUS.CRNT_MODE. (See Section 2.5.1 for a description of PROC_STATUS.) If
CRNT_MODE-=0 then the current address space is the user address space. If CRNT_MODE=1
then the current address space is the executive address space. User programs operate exclusively in
the current address space with CRNT_MODE-=0.

Executive programs may be called by other programs (both user and executive) as the result
of any one of various traps (see Section 6). In this situation the executive program is able to refer to
the address space of the program that called it. The calling program’s address space is called the
previous address  space. Access to the previous address space is controlled by
PROC_STATUS.PREV_MODE in the same way that PROC_STATUS.CRNT_MODE controls
the access to the current address space (PREV_MODE=0 gives user address space,
PREV_MODE-=1 gives executive address space). User programs cannot access the previous address

space.

Instruction operands select between the current and previous address space by means of the
P-bit in extended operands and indirect address pointers. The P-bit is discussed in Section 4.2.6.

Current (previous) context includes both the current (previous) address and the current
(previous) register file. PROC_STATUS.CRNT_FILE (PROC_STATUS.PREV_FILE) specifies
which register file should be accessed when an addressing calculation specifies the current (previous)

address space.

2.4.1 Shadow Memory

The first thirty-two single-words of an address space are called shadow memory. This term is
derived from the fact that they overlap or are shadowed by the currently selected register file
(because references to the first 128 quarter-words of an address space are normally interpreted as
references to the current register file instead). Shadow memory cannot be accessed by the user, but
is accessible to the executive (when accessing the previous address space).

The use of shadow memory is controlled by the USE_.SHADOW_PREYV bit in the processor
status word (See Section 2.5.1). When USE_SHADOW_PREV=], all references to addresses
0..127 in the previous context will cause the shadow memory of the previous context to be
accessed. When USE_SHADOW _PREV =0, the previous register file is accessed instead.

[—Assume the USE_.SHADOW _PREV bit in the processor status word is set. The following I
instruction loads the second shadow memory word from the previous context into the location
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whose (hypothetical) symbolic name is SECOND.

l MOV SECOND,c!P 4> +"!P" means access previous context |
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2.5 Status Words

Status words partially define the current state of a program’s execution. They contain
information about current and previous contexts, and about conditions such as arithmetic overflow
and trace modes. There are two types of status: processor status and user status. As a general rule,
processor status contains privileged information which the user may not modify, and user status
contains per-user information which the user program may modify at will. (The user status does
not apply just to user mode programs. Programs running in executive mode are also affected by the
user status. However, the user status is automatically changed whenever a switch from user mode to
executive mode occurs, and so the executive may be thought of as a distinct “user” so far as user

status is concerned.)
2.5.1 Processor

The processor status word (PROC_STATUS) contains information about the current state of
a process. This includes information such as the extent of the stack and the currently accessible
address space. The fields in their order of occurrence from most-significant bit to least-significant
bit are shown below.

CRNT_FILE<0:3> Current register file. This is the number of the register file that will be
accessed in all references to the current context. Note that REG_FILE[0]
is reserved for use by hardware and microcode, and so CRNT_FILE will

normally have a non-zero value.

PREV_FILE<0:3> Previous register file. This is the number of the register file that will be
accessed in all references to the previous context. (Such references may be
additionally controlled by the USE_SHADOW_PREV bit, however.)
Note that REG_FILE[0] is reserved for use by hardware and microcode,
and so PREV_FILE will normally have a non-zero value.

USE_SHADOW_PREV Use shadow memory. When set to one, this bit causes references to
memory locations 0.. 127 in the previous context to reference shadow
memory instead of registers. The user is not allowed to access the
previous context (P-bit=1 will cause a hard trap to occur), and therefore
the user cannot access shadow memory. See Section 2.4.1 for more on
shadow memory. Address spaces and the P-bit are discussed in Section
4.2.6. ‘

PRIO<0:2> Processor priority level. Interrupts with INTUPT_AT_LVL<i>=1 where
i < PRIO will cause the S-1 to be interrupted. See Section 5.16 for a
description of the interrupt architecture.

EMULATION<O0:1> Emulation mode. When equal to zero, causes the S-1 native instruction
set to be executed. When non-zero, specifies the emulation of one of

three other instruction sets.
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TRACE_ENB Trace-trap enable. Used to enable trace-traps after each instruction. See
Section 6.3 for a description of the trace feature.

TRACE_PEND Trace-trap pending. Used to indicate that a trace-trap is pending. See
Section 6.3 for a description of the trace feature.

CRNT_MODE Current mode. Specifies whether the current context is executive or user.
Zero means user, one means executive.

PREV_MODE Previous mode. Specifies whether the previous context is executive or
user. Zero means user, one means executive.

UNUSED<0:17> Reserved for future use.

Changing the processor status word causes a change in state for the currently executing
process. This change of state often involves changing the current context (see Section 2.4). In order
to make this change of context correctly, PROC_STATUS cannot be loaded in its entirity from an
arbitrary 36-bit word. If the execution of an instruction causes the loading of a new
PROC_STATUS (eg., traps, interrupts), then the new PREV_MODE must be loaded from the old
CRNT_MODE. Similarly, the new PREV_FILE must be loaded from the old CRNT_FILE. The
PREV_MODE and PREV_FILE fields of the word which is being loaded into PROC_STATUS
are ignored. This operation is called loading partial processor status. PROC_STATUS is always
loaded in this way unless specifically mentioned otherwise. The only instructions that load the entire
PROC_STATUS word are RETFS and WFS JMP (see Sections 5.9 and 5.14).

A similar process is involved when loading a new PROC_STATUS while checking for
trace~traps (see Section 6.3). In this case a change in state occurs when the TRACE_PEND bit of
PROC_STATUS is updated during the instruction-execution sequence. '

2.5.2 User

User status is contained in a single register named USER_STATUS. It contains a large
number of subfields, each of which is described below. CARRY and the error-bits FLT _OVFL,
FLT_UNFL, FLT_NAN, INT_OVFL, and INT_Z_DIV are described as being not sticky. This
means that they are either set or cleared by any instruction that can affect them. As an example, if
an  ADD instruction produces an integer overflow while trapping is disabled
(INT_OVFL_MODE-=1), the INT_OVFL bit of PROC_STATUS will be set to one. If a MULT
instruction is then executed and no integer overflow occurs during the multiplication, INT_OVFL
will be reset to zero. Each error bit is also reset when the appropriate trap is initiated, before a copy
of USER_STATUS is saved on the stack. The conditions that affect CARRY and the error-bits
for both integer and floating-point instructions are described in Section 5.2.3 and Section 5.3.2. The
fields of USER_STATUS are shown below in order of occurrence from most significant to least

significant.
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SP_ID<0:4>

CARRY

FLT_OVFL

FLT_UNFL

FLT_NAN

INT_OVFL

INT_Z_DIV

FLT_OVFL_MODE<0:1>

FLT_UNFL_MODE<0:1>
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Stack-pointer identity. Specifies the register that wili be used in all
references to the stack-pointer (SP). The stack-limit register (SL) is
considered to be the next contiguous register. SP_ID=3 or SP_ID=31 is
illegal. See Section 2.2.3.2 for details.

Carry-out of arithmetic operations. Set to zero or one by the most
recently executed integer arithmetic instruction. Note that CARRY is
not sticky. See Section 5.2.3.1.

Floating overflow. Always set by floating-point arithmetic instructions.
Set to one if the result of the most recently executed floating-point
instruction was greater than or equal to MAXNUM (ie. MOVF). This
bit is not sticky. See Section 5.3.2.1.

Floating-underflow. Always set by floating-point arithmetic
instructions.  Set to one if the result of the most recently executed
floating-point instruction was less than or equal to MINNUM+1 (ie.
MUNTF). This bit not sticky. See Section 5.3.2.1.

Floating-point result is "Not A Number" (NAN). Always set by
floating-point arithmetic instructions. Set to one whenever NAN is the
result of a floating-point operation. This bit is not sticky. See Section

5.3.2.

Integer overflow. Set to one when the result of the most recently
executed integer arithmetic instruction is greater than or equal to
MAXNUM. This bit is not sticky. See Section 5.2.3.2.

Integer-zero-divide. Set to one when a divide-by-zero has occurred in
the most recently executed integer instruction . This bit is not sticky.
See Section 5.2.3.3.

Determines the action that is taken when floating. overflow occurs.
FLT_OVFL_MODE=0 causes the instruction to soft-trap without
storing a result. FLT_OVFL_MODE=1 causes the floating point
infinity of correct sign (either OVF or MOVF) to be stored as the
result. FLT_OVFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_OVFL_MODES=3 is undefined (an attempt
to set FLT_OVFL_MODE to 3 will cause a hard trap).

Determines the action that is taken when floating underflow occurs.
FLT_UNFL_MODE=0 causes the instruction to soft-trap without
storing a result. FLT_UNFL_MODE=] causes the floating point
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FLT_NAN_MODE<0:1>

INT_ OVFL_MODE

INT_Z_DIV_MODE

RND_MODE<0:4>

UNUSED<0:7>

FLAGS<0:3>
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infinitesimal of correct sign (either UNF or MUNF) to be stored as the
result. FLT_UNFL_MODE=2 causes a floating-point number of
correct mantissa and sign, but with wrapped-around exponent to be
stored as the result. FLT_UNFL_MODE-=3 is undefined (an attempt to
set FLT_UNFL_MODE to 3 will cause a hard trap).

Determines the action that is taken when NAN is the result of a
floating-point operation. FLT_NAN_MODE=0 causes the instruction
to soft-trap without storing a result. FLT_NAN_MODE=] causes
NAN to be stored as the result. FLT_NAN_MODE=[2,3] are
undefined (an attempt to set FLT_NAN_MODE to 2 or 3 will cause a
hard trap).

Determines the action that is taken when integer-overflow occurs.
INT_OVFL_MODE=0 causes the instruction to soft-trap without
storing a result. If trapping is disabled (INT_OVFL_MODE=1), all
instructions except for SHFA to the (true) left store the low-order bits
of the result. SHFA to the (true) left stores the correct sign followed by
the low-order bits of the (true) result.

Determines the action that is taken when integer divide-by-zero occurs.
INT_Z_DIV_MODE=0 causes the instruction to to soft-trap without
storing a result. INT_Z_DIV_MODE=1 causes zero to be stored as the
result.

Rounding mode. Selects the rounding mode to be used. See Section
5.3.1 for a description of the rounding modes.

Reserved for future use.

Contains various software-definable flag bits. These bits have no
defined meaning in the architecture.
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3 Data Types

Data in the S-1 is uniformly represented as quarter-, half-, single- or double-words. For
many operations it is useful to interpret the bits in these words in various ways. Each of these ways
of viewing data constitutes a data type. Instructions may interpret their operand data as being of a
certain type. The same data may be interpreted in different ways by different instructions.

S$-1 instructions operate on the following data types: boglean, integer (signed and unsigned),
floating-point, indirect address pointer, byte (single-word and double-word), byte pointer, block, and
flag. To be fetched as the operand of an instruction, data must be on pages marked with DATA=1
(see Section 2.3.2). The data types are described below.

3.1 Boolean

The boolean data type is a bit vector in any of the four standard precisions (quarter-word,
half-word, single-word, and double-word). The bits are numbered from left to right, as shown in
the figures of Section 2.1.

For example, the following assembles as the QW bit vector 001000101

185
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3.2 Integer

The S-1 has two different formats for integers: unsigned and signed. Unsigned integers
represent only non-negative quantities while signed integers can represent both negative and
non-negative quantities in two's-complement notation. Either format may be represented in any of
the four standard precisions (quarter-word, half-word, single-word, and double-word). For
example, quarter-word, unsigned integers can represent quantities in the range 0.. 511 whereas
quarter-word, signed integers represent quantities in the range -256 .. 255 .

For ease of description the largest positive signed integer in a given precision is termed
MAXNUM. Correspondingly, the negative signed integer with the largest magnitude is termed
MINNUM. For example, in quarter-word precision MAXNUM =255 (3775) and MINNUM =-256

(4008). More generally, in any precision MAXNUM has all bits but the leftmost set to one, and

MINNUM has all bits but the leftmost set to zero. (This is a consequence of the nature of the
two's-complement representation of integers.)

The following shows signed and unsigned interpretations of various integer quarter-word I
constants.

185 isigned and unsigned interpretation is 185
673 sunsigned 673, signed -185

-105 sunsigned 673, signed -185

-1 sunsigned 777, signed -1

The bit pattern for the first example is 001000101, and for the next two is 110111011. The
leftmost bit is interpreted as the sign bit (l=negative) in the signed case. Note that in all
l precisions the signed value -1 has all bits set to one. l
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3.3 Floating-point

S-1 floating-point numbers are always (implicitly) normalized and may be represented in
three different precisions (half-word, single-word, and double-word). The floating-point
representation is made up of three fields SIGN, EXP, and MANT. These fields, along with an
implicit Aidden bit, determine the value of the floating-point number. The formats are:
<SIGN || EXP<0:5> || MANT<0:10>> for half-words, cSIGN || EXP<0:8> || MANT<0:25>> for
single-words, and cSIGN || EXP<0:10> || MANT <0:59>> for double-words.

SIGN| EXP MANT

6 1 67 17

Figure 3-1
Half-word Floating-Point Format

SIGN EXP MANT

g 1 910 35

Figure 3-2
Single-word Floating-Point Format

SIGN EXP MANT

g 1 11 12 | 71

Figure 3-3
Double-word Floating-Point Format

SIGN represents the sign of the floating-point number (0=non-negative, l=negative). EXP
specifies the exponent. For half-word precision, EXP is the exponent in excess-32 format. For
single-words, EXP is the exponent in excess-256 format, and for double-words, EXP is the
exponent in excess-1024 format. SIGN, MANT, and the hidden-bit make up the mantissa. The
hidden-bit is always the complement of SIGN, so for positive numbers the hidden-bit equals one.
The mantissa, for postive numbers, can be written as the concatenation of SIGN, the binary-point,
the hidden-bit, and MANT, that is, mantissa=cSIGN || . || hidden-bit | MANT> with "."
representing the binary-point. (This is, of course, a slight abuse of the concatenation notation, as
the binary point is not really a field.) Positive floating-point numbers have their mantissa in the
range 0.5smantissa<l. Floating-point zero is represented as integer zero (which is an exception to

the SIGN/hidden-bit correspondence, because zero has SIGN=0 and hidden-bit=0).

[ ]
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The following shows the octal representation of some non-negative floating point numbers in
various precisions.

B 10.8 in all precisions
284000 31,0 HW

004000 $29(-32) HW

377777 s (2932) -(2420) HUW
200409, ,0 ;1.8 SW

pB0400, ,0 121 (-256) SW

377777, ,-1 ; (21256) -(21228) S0
208100,,0 « 8 11.8 DU

080108, ,0 « 8 129 (-1824) DU

I 377777,,-1 » -1 ; (211024) - (21962) DW |

The full specification of a floating-point number (including both positive and negative
numbers) is as follows. Note that the one's-complement and two's-complement operations are
performed in the same number of bits as the argument to the operation.

Definition Positive Numbers Negative Numbers

mantissa cSIGN || . || hidden-bit || MANT>  2’s-comp(cSIGN || . || hidden-bit || MANT>)
exponent EXP - excess I's-comp(EXP) - excess
number mantissa % (28Xponent) - mantissa % (28Xponent)

Floating-point zero is represented as integer zero

Table 3-1
Floating-Point Representation

Negative floating-point numbers have hidden-bit=0 because SIGN=1. Negative number
mantissas are in the range 0.5<mantissasl. Note that the above definition specifies that mantissas
are always non-negative (hence the minus sign in the above table description of the value of a
negative number).

l The following shows the octal representation of some negative floating point numbers in various l
precisions.

574008 ;-1.8 HW
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774808 ;- (21-32) HW
480000 3 - (2132) HUW
577428, ,0 3-1.8 SW
777408, ,8 ;- (21-256) SW
40e0ee, ,8 ;- (21256) SW
577708,,0 « 8 1-1.8 OW
777760, ,8 « @ ;- (29-10824) OW

| 420009, ,8 « 0 ;- (211024) DW |

The floating-point format permits a simple translation between positive and negative
floating-point numbers. The floating-point representation of -x is equal to the two’s-complement of
the floating-point representation of x. (The entire word is two’s-complemented, ignoring sub-field
boundaries. The hidden bit is determined by the new SIGN bit.)

An outline for a proof that two's-complement negation works correctly on floating-point
numbers follows. If MANT = 0 then no carry from the two’s-complement operation can reach the
EXP field, since it will be absorbed by the right-most, non-zero MANT-bit. Therefore, the
EXP-field will be one's-complemented. If MANT = 0 then there are three cases. Case 1: The
floating-point number was originally negative. The mantissa was, therefore, 1.0 and the
floating-point number was -2°¥PO"e™ When this number is two's-complemented, the MANT-field
is still zero but the EXP-field is two's-complemented. The mantissa becomes 1/2 and the carry from
the fraction has increased the exponent by one. This gives (1/Qu2eXPONeNt+l o gexponent e
negative of the original number. Case 2. The floating-point number was originally zero. The
two's-complement of zero is zero. Case 3: The floating-point number was originally positive. The
mantissa was, therefore 1/2 and the floating-point number was (1/2)x2%*P°"" When this number
is two’s-complemented, the MANT-field is still zero but the EXP-field is two’s complemented. The
mantissa becomes 1.0 and the carry from the fraction has decreased the exponent by one. (It
increased the EXP but decreased the one’s-complement of the EXP). This gives ~(1.0)xgexponent-1
or =(1/2)x2°XPONENt the negative of the original number.

Besides zero, there are five floating-point numbers that have special meanings attached to
them. The positive, floating-point number with the greatest magnitude (in a given precision) has
the meaning of positive infinity. This number is designated OVF. (It should be noted that the
largest, positive, signed-integer, in a given precision, is termed MAXNUM. Correspondingly, the
negative, signed-integer with the largest magnitude is termed MINNUM. It is often convenient to
speak of a floating-point number in terms of the signed-integer with the same bit representation.
For example, OVF is the same as MAXNUM in that if MAXNUM is interpreted as a
floating-point number, it turns out to be the largest floating-point number (ie, OVF)) The
two's-complement of OVF (ie, MINNUM+1) has the meaning negative infinity. It is termed
MOVF. (The terms OVF and MOVF come from overflow and minus overflow, respectively.) The
smallest, positive, floating-point number has the meaning of positive infinitesimal and is termed
UNF; it has the same bit representation as the integer 1. The largest, negative, floating-point
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number has the meaning of negative infinitesimal and is termed MUNF. MUNF is the
two’s-complement of UNF, and so has the same bit representation as the integer -1. (The terms
UNF and MUNF come from and minus underflow, respectively). The floating-point number with
the same bit representation as MINNUM has the meaning of undefined. It is termed NAN,
meaning not a number. Floating-point instructions take these special interpretations into account.
Certain bits of USER_STATUS control the action taken when one of the exceptions associated with
these special numbers occurs (eg, overflow with OVF). See Section 2.52 for details of
USER_STATUS and see Section 5.3.2 for details of floating-point exception handling.

Name Meaning Equivalent integer representation
OVF Positive overflow MAXNUM

MOVF  Negative overflow MINNUM+1 (-MAXNUM)
UNF Positive infinitesimal +1

MUNF  Negative infinitesimal -1

NAN Indeterminate ("not a number") MINNUM

Table 3-2
Floating-Point Exception Representation

NOTE: The signed integer (Section 3.2) and floating point formats employed in the S-1 have
an important and useful property: the same algorithms can be used to compare the value of a datum
interpreted in either format. However, special floating-point symbols such as OVF and NAN are
not properly interpreted by integer instructions.
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3.4 Indirect Address Pointer

An indirect address pointer (IAP) is a single memory word that is interpreted as a pointer into
memory. Its format is shown below. IAP.P denotes the address space being referenced.
IAP.IREG and IAP.ADDR together describe the memory location to be addressed. The IAP, as
used for indirect addressing, is discussed in Section 4.2.5. The P-bit is described in Section 4.2.6.

P | IREG ADOR

g 1 56 35

Figure 3-4
Indirect Address Pointer
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3.5 Byte

A single-word byte is a bit vector with a length in the range 0..36. A double-word byte is a
bit vector with a length in the range 0..72. (A zero-length byte of course contains no
information, but it is permitted to use a byte pointer specifying such a byte) The position and
length of a byte are specified by a byte pointer, as described in Section 3.6.

3.6 Byte Pointer

A byte pointer completely specifies a byte somewhere in memory. The byte pointer consists of
two single-words. The first single-word is an indirect address pointer (IAP). The IAP specifies a
memory single-word or double-word which contains the byte. The second single-word of the byte
pointer is a byte selector. It has two half-word fields POSITION and LENGTH
(cPOSITION<0:17> || LENGTH<0:17>3). POSITION is the bit number of the first bit in the
byte. LENGTH is the number of bits in the byte.

P | IREG ADOR

POSITION LENGTH

8 1 5686 17 18 35

Figure 3-5
Byte Pointer
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3.7 Block

A block consists of a contiguous list of words. The words may be any of the four standard
precisions (quarter-word, half-word, single-word, double-word). All of the words within a block,
however, are of the same precision. Some instructions which operate on blocks implicitly treat the
elements of the block as being of some other specific type; for example, STRCMP (Section 5.13)
treats the block elements as signed integers.

3.8 Flag
The flag is a single-word data type with only two values: the bit representations which are all

bits zero and all bits one (i, integer 0 or -1 in two's-complement notation). A flag of all ones
means true, all zeros means false.
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4 Instruction Formmats and Addressing Modes
4.1 Instruction Classes

The S-1 provides a rich variety of ways in which the operands for a given operation may be
accessed. These ways are called addressing modes. All S-1 instructions can be specified with no
more than three single-words. The first word specifies the instruction selected. In general, the
second and third words are optional in that they specify extended addressing modes if needed.
Therefore, depending on the number of extended operands, S-1 instructions may consist of one, two,
or three words.

The general format  for  the  first  word of an instruction is
cOPCODE<0:11> || OD1<0:11> || OD2<0:11>>. The first twelve bits specify the opcode, the second
twelve describe how the first operand is accessed, and the last twelve bits describe how the second
operand is accessed. (Note that in jump instructions the second operand is called J, not OD2.)

The opcode indicates which instruction is being selected. It also specifies the precision of the
arguments (the data values the instruction operates on). Depending on which instruction is selected,
the opcode may also indicate more information so as to fully describe the instruction (e.g., which
direction to shift, what condition to skip on, etc.). Sections 4.1.2, 4.1.1, 4.1.3, 4.1.4, and 4.1.5 describe
the five classes to which instructions belong: two-address (XOP), three-address (TOP), skip (SOP),
jump (JOP), and hop (HOP).

ODI1 and OD2 are operand descriptors (OD). They describe the arguments upon which the
instruction operates. The full specification of an operand may require an extra instruction-word
per argument. This use of extra instruction-words is termed extended addressing. The process
whereby the value described by the OD is determined is called operand evaluation The result of the
operand evaluation of ODI is called OP1, and that for OD2 is called OP2. The various means of
describing operands (addressing modes) are discussed in Section 4.2.

The evaluation of all operands (including jump or skip destinations) logically occurs before the
execution of the instruction and before the PC is updated. The order of operand evaluation is
undefined. Operand evaluation produces no side effects.
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4.1.1 Two-Address (XOP)

XOP 001 002

%} 11 12 23 24 35

Figure 4-1
XOP

The two-address instructions are generally used to specify operations that involve one source
and one destination. Typically OP1 is used as the destination and OP2 as the source. The XOP
field is the opcode. ODI and OD?2 are the ODs that describe the arguments to the instruction. The
results of the operand evaluation of ODI1 and OD2 are OP1 and OP2, respectively. When an
X OP instruction stores two results, it stores OP2 before OP 1.

Some XOP instructions leave one or both operand descriptors unused. As a rule, an XOP
instruction with only one operand uses OD1, and OD2 must be zero.

An XOP instruction is written as the instruction mnemonic followed by ODIl and OD?2
specifications, in that order. For example, let X and Y be SWs. The following illustrates an
XOP instruction which sets X to Y (that is, the single-word register or memory location whose
symbolic name is X is made to contain the contents of Y).

MOV X,Y +1X is the destination, Y is the source

If only one operand descriptor is specified, then FASM will use it for both ODI and OD?2, or
just ODI, depending on whether or not both operands are used by the instruction.

L

INC COUNT + COUNTCOUNT+1; INC uses both 0OD's
RUS RTA +RTAUSER_STATUS; RUS uses oniy 001 ' |
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4.1.2 Three-Address (TOP)

ToP T 001 002

%) 918 11 12 23 24 35

Figure 4-2
TOP

Three-address instructions allow the specification of three arguments (generally two sources
and one destination). They specify two general memory locations (which may, of course, be registers)
and possibly one of the registers RTA or RTB. This format provides most of the power of full
three-address instructions (instructions specifying three general memory locations) but only costs two
bits in the instruction word (for T) as compared to twelve bits for a third general operand
descriptor.

The TOP field is that portion of the opcode that indicates the instruction selected, the
precision, and any other information needed to fully specify the operation. ODI! and OD2 are
general operand descriptors. OP1 and OP2 are the results of the operand evaluations of OD1 and
OD?, respectively. T specifies how OP1, OP2, RTA, and RTB are to be used as arguments to the
operation. The first argument to the operation is called S1, the second is called $2, and the third
DEST. In most (but not all) cases the instruction takes S1 and S2 as input and uses DEST as the
location for its output. When a TOP instruction stores more than one result, it stores $2 before S1,
and S1 before DEST. The following table shows how the T field selects S1, $2, and DEST.

T DEST S1 $2

00 OPI OP1 OP2
01 OPI RTA OP2
10 RTA OPI OP2
11 RTB OPI OP2

Table 4-1
Specification of S1, $2, DEST

l A TOP instructionis written as an opcode mnemonic followed by DEST, S1, and S2 in that I
order. For example, let X and Y be SWs. The following shows the various T fields.

ADD X,X,Y 3T field = B88; XeX+Y

ADD X,RTA,Y +T field = B1; X<RTA+Y
ADD RTA,X,Y 3T field = 18; RTAeX+Y
ADD RTB,X,Y +T field = 11; RTBeX+Y

In the case T=0, where by definition OP1 is used for both S1 and DEST, it is not necessary to
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write the operand twice. Thus the first example above may be written:
ADD X,Y ;T field = B8; XeX+Y

FASM automatically fills in the T field based on the operand descriptors written after the

| opcode mnemonic. |

The selection of DEST, SI, and S2 by the T field is asymmetric with respect to OD1 and
OD2. As a general rule (which has exceptions), whenever a TOP instruction is not symmetric with
respect to S1 and S2, it comes in two forms, an ordinary form and a "reverse” form. The reverse
form is just like the normal form except that the use of S1 and S2 is reversed.

I For example, one can write: !

SuB X,RTA,Y 1 XeRTA-Y
but one cannot write:
suB X,Y,RTA tillegal!

because no T-field value corresponds to that arrangement of operands. One can get the
intended effect by using the reverse form of the SUB instruction.

SUBY X,RTA,Y 3 XeY-RTA

’ because whereas SUB computes S1-52, SUBV computes $2-S1. |
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4.13 Skip (SOP)

SoP SKP 001 0Dz

8 78 11 12 23 24 35

Figure 4-3
SOP

Skip instructions are used for short range transfers of control. The format allows a forward
skip of 1..7 single-words, a stationary skip of zero single-words, or a backward skip of 1..8
single-words relative to the first word of the current instruction. (In this respect the word skip is
used more broadly than in other machine architectures, because the $-1 can skip backwards, and
forwards over more than one instruction) The SOP field specifies the opcode (including the
condition on which the skip will be taken). ODI and OD2 are general operand descriptors and the
results of their operand evaluation are OP1 and OP2 respectively.

The SKP field specifies the number of instruction single-words to skip. SKP is considered to
be a signed constant in the range -8..7. If the skip instruction results in not skipping, then
control flow is not interrupted (i.e,, the instruction following the skip instruction is executed next). If
the instruction results in skipping, then the next instruction to be executed has an address of
PC+4xSIGNED(SKP) (i.e, the address of the skip instruction offset by SKP single-words).

A skip instruction is written as an opcode mnemonic followed by the two operand descriptors
and the name of the location to be skipped to. For example, let X and Y be single-words. The
following ensures that X<Y. FASM automatically determines the PC offset in the skip
instruction. (If only the larger or smaller of X and Y were of interest, then the MAX or MIN
instructions might be used instead; this piece of code makes X the larger and Y the smaller of
the two.)

SKP.GEQ X,Y,NEXT s if X2Y then go to NEXT
EXCH X,Y s else swap X and Y
NEXT: scontinue with program

As another example, this code computes the product of all odd integers from 1 to 15.

MOV X, #1 +X counts odd integers

MOV RESULT, #1 sRESULT accumulates product
LOOP: ADD X, #2 ;step X to next odd integer

MULT RESULT, X smultiply it in

l SKP.LSS X, #15.,L00P 3 i f X<15. then go to LOOP |
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4.1.4 Jump (JOP)

JOP PR 0ol J
2 18 11 12 23 24 35
Figure 4-4
JoPp

The jump instructions allow two different ways of specifying the destination of the jump,
PC-relative and general. The choice depends on the PR bit (PR=1 for PC-relative and PR=0 for
general). The JOP field is the opcode and ODI is a general operand descriptor. The result of the
operand evaluation of ODI is termed OPl. The PC-relative bit PR selects how ] is to be
interpreted as the jump-destination (JUMPDEST). If PR=1l then ] is considered to be a signed
12-bit constant and is used as the number of single-words to offset from the PC. Therefore,
JUMPDEST=PC+4xSIGNED()); the range of a relative jump is from PC-(2048 single-words) to
PC+(2047 single-words) If PR=0, JUMPDEST is set equal to the address of the operand that is
computed by interpreting J as an OD-field. With PR=0 any address can be specified (at the
possible expense of an extra instruction-word). It should also be noted that with PR=0, J may not
specify an immediate constant or a register.

I_A_JOP instruction is written as the opcode mnemonic followed by the operand (if applicable)
and the jump destination. For example, let X be a SW. FASM determines the value of the PR
bit in the following instruction, depending on how far away the location named AWAY is from
the jump instruction.

l JMPZ.GEQ X, AWAY ;go to AWAY if X2B l
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4.1.5 Hop (HOP)

HOP DISPLACEMENT

B 11 12 35

Figure 4-5
HOP

There is only one hop instruction, JPATCH. The HOP field is the opcode. It does not have
an ODI or OD2 field. Instead, bits 12 to 35 of the instruction word as used as a 24-bit signed
displacement, which is added to the PC to form an unconditional- jump address.

o—

——

An HOP is written as the opcode mnemonic followed by the the jump destination, as for a [JOP.

JPATCH PATCH. AREA igo to PATCH.AREA
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4.2 Addressing Modes

The addressing modes of the S-1 are efficient and powerful. Many operands can be specified
using only the fields in a single instruction-word, If it is necessary to access the full 228 single-word
address space then extended addressing may be employed at the expense of an extra instruction
single-word per extended address. Indirection is also available in (and only in) extended addressing
mode.

The addressing modes were designed with both high-level and low-level languages in mind.
All of the common addressing modes used in assembly language programming are available.
Addressing modes designed explicitly to implement high-level language constructs have also been
included. An important example of this is the concept of pseudo-~registers, in which data within a
small offset of a register pointer (eg, a stack pointer) may be accessed using only a single
instruction-word.

Unless otherwise stated, all addresses are quarter-word addresses. They are 30-bit integers in
the range 0.. 2%0.1, Operand evaluation is the process of fetching the argument of an instruction.
Address calculations within operand evaluation have no side effects (and are restartable). Such
address calculations produce results which are truncated to the low-order thirty bits and do not
affect such arithmetic flags as carry or overflow. During an instruction’s execution, the PC remains
unchanged.

4.2.1 Operand Descriptor Format

An operand descriptor (OD) is a 12-bit field of an instruction-word, and describes an
argument to that instruction. The OD has three subfields: X, MODE, and F. OD.X specifies
short (0) or extended (1) addressing. As a rule, if an X bit of an operand descriptor is 1 then a
corresponding extended word follows the instruction word for use by that operand descriptor.
(Recall, however, that in a JOP instruction with PR=1, the ] (OD2) descriptor has no X bit) If
both operand descriptors have OD.X=1, then the extended word for OD2 follows the first
instruction-word, and after that is the extended word for OD1. OD.MODE and OD.F are used to
determine an addressing mode or to calculate a memory location. If an OD is unused in an
instruction then it must be identically zero. (If it is non-zero, a hard trap will occur.)

The numbering of the bits in the diagram below is relative to the start of the field.

X | MODE F

g 1 56 11

Figure 4-6
Operand Descriptor (OD)

4.2.2 Extended Addressing Formats
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If an instruction requires more than a single-word to specify an operand, additional
single-words called extended-words (EWs) are used. The possible formats of the EWs are described
in the following sections.

4.2.2.1 Long-Constant Format

Long-constants are used to specify immediate values that are too large to represent in an OD.
They require an additional instruction-word of the format shown below.

EW

Figure 4-7
Constant Extended-Word (EW)

4.2.2.2 Fixed-Based Format

In those cases when the OD cannot specify a particular memory location, extended addressing
is required. Fixed-based addressing requires an extra instruction-word (shown below).

P {v=8i B | I S _ ADCDR

Figure 4-8
Fixed-Based Extended-Word (EW)

4.2.2.83 Variable-Based Format

When indexing through two registers, or a register and a pseudo-register, variable-based
addressing must be used. Variable-based addressing uses an additional instruction-word of the

format shown below.

P fv=1] 8 | 1 S REG DIsP

B 1 2 3 4 56 1811 35

Figure 4-9
Variable-Based Extended-Word (EW)

4.2.3 Short-Operand Addressing

An operand descriptor (OD) fully describes a short operand (SO). If OD.X=0 (skort-operand
mode) then the argument to the instruction is exactly SO. If OD.X=1, then SO is used in later
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phases of the operand evaluation procedure (see Section 4.2.4). Short-operand mode gives access to
the 32 registers, short (integer) constants in the range -32..31, and memory locations indexed
through the registers and offset by no more than a short constant. The decision as to which of the
above is to be accessed depends on the contents of OD.MODE. Only the current address space
may be referenced. (See Section 2.3 for a description of the concept of address space.)

Note that OD. MODE-=2 is reserved for future use and if used will result in a hard trap.

4.2.3.1 Register-Direct

OD.MODE-=0 gives register-direct mode, that is, the result of the operand evaluation (SO) is
the contents of one of the 32 registers. The register number is specified by OD.F and must be in
the range 0.. 31 or a hard trap will occur. (SO=R[OD.F])

e

For example, here OD1 and OD2 are register direct. The instruction negates RTA.

NEG RTA iRTA«-RTA (same as NEG.S RTA,RTA)

4.2.3.2 Short-Constant

OD.MODE-=1 gives short-constant mode. In this case, SO=SIGNED(OD.F), which is a
constant in the range -32..31.

For example, here the #0 is assembled as a short constant:

MOV RTA, H8 1RTA<8

4.2.3.3 Short-Indexed

OD.MODE in the range 3..31 gives short-indexed mode, which allows easy access to small
memory areas indicated by registers. The memory locations that can be accessed in this addressing
mode are called pseudo-registers. The address calculation uses RIOD.MODE] as a base and then
offsets that base by SIGNED(OD.F) single-words (i.., range -32..31 single-words). SO is the
contents of the resulting address (SO=M[R[OD.MODEW4xSIGNED(OD.F)]). If OD.MODE=3
then PC is used instead of R[3) (see Section 2.2.3.1). Note that R[0], R[1], and R[2] cannot be used
in short-indexed mode because OD.MODE=0 selects register-direct mode, OD.MODE=1 selects
short-constant mode, and OD.MODE<=2 is reserved and therefore hard-traps.

[ ]
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An interesting special case of pseudo-registers is the top few locations on the stack. Let SP be
the stack pointer specified by SP_ID (and assume SP_ID is not 0, 1, or 2). The following
instructions access stack locations in short-indexed mode. In this way local variables can be kept
on the stack and easily accessed.

ADD -1(SP),#7 sadd 7 to top SW on stack
EXCH -2(SP),-1(SP) ssWwap top tuwo single-words of stack
SKP.EQL -5(SP),-1(5P) iskip next instruction if equal

As another example, suppose that register R contains the address of a record structure. Then
short-indexed mode can be used to access components of the record.

MOV Y,1(R) ;move sacond wWord of register to Y
l MULT RTB, (R}, 2(R) yproduct of first and third words to RTB l
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4.2.3.4 Summary

MODE  Mode Name Short-Operand(SO) ' F-field Range
0 Register-Direct ~ R[OD.F] 0..31

1 Short-Constant  SIGNED(OD.F) -32.. 31

2 Reserved (hard trap) -

3 Short-Indexed  M[PC+4%SIGNED(OD. F)] -32..31
#..31  Short-Indexed  MR[OD,MODEL4¥SIGNED(OD.F)] ~ ~32-- 3l

Table 4-2
Short-Operand Mode
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4.2.4 Extended Addressing

Unlike short-operand addressing, extended addressing allows an instruction to access the
entire 228 single-word address space. This generality requires an additional instruction-word for
each extended operand.

OD. X=1 is used to select extended addressing. OD.MODE specifies how the extended-word
(EW) will be interpreted (i.e, long-constant, fixed-based, or variable-based). The interpretation of
OD.F depends on OD.MODE, and is described in detail in the following sections. The result of
an extended address calculation is itself an address. A long-operand (LO) is the contents of memory
at that address, except in the case of long-constant mode, where LO is the result of the evaluation of
the constant (there being no intermediate addresses).

Indirection is specified by setting EW.I=1. A full discussion of indirect addressing appears in
Section 4.2.5. EW.S is used to facilitate array indexing and is described in Section 4.2.4.4. EW.P
controls access to the previous address space and is discussed in Section 4.2.6.

4.2.4.1 Long Constant

Long constants are specified by setting OD.X=1 and OD.MODE=1. The address caiculation
then uses OD.F to indicate how the EW is to be interpreted (i.e, how the EW should be extended
to a double-word or which register should be used for indexed long-constant mode). In this context
OD.F is considered to be an unsigned constant in the range 0..63.

It should be noted that having OD.F=0 is a special case and is not long-constant addressing
mode. It will be discussed further in the sections on fixed-based and variable-based addressing
(Sections 4.2.4.2, 4.2.4.3). OD.F in the range 4.. 31 results in a hard trap since these values are
reserved for future use.

4.2.4.1.1 Immediate Long-Constant

If OD.F is in the range 1..3 then the address calculation is in immediate long-constant
mode. In this mode, LO=SIGNED(EW). If LO is to have precision smaller than a single-word (i.e,
quarter-word or half-word), then the low-order bits of EW are used, and the bits not so used are
ignored. If the precision is single-word, then all of EW is used. Thus for quarter-word, half-word,
and single-word precisions, the values 1, 2, and 3 for OD/F all behave alike. If the precision is
double-word, however, then OD.F specifies how the single-word EW is extended into the
double-word format. OD.F=1 right-justifies EW into LO and sign-extends into the high-order
word. OD.F=2 also right-justifies EW into LO but zero-extends into the high-order word.
OD. F=3 left-justifies EW into LO and zeros out the low-order word.

| The various types of long constant syntax appear below: l

MOV RTB, #c186125183113> ;RTBearbitrary SW constant
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The following sequence of instructions illustrates the several cases of sign extension. The two
columns on the comment field indicate the value in RTA (DW) after the execution of each

instruction.

high order SW of RTA:s low order SW of RTA:

MOV.D.D RTA,H#c2> ; ] 2
ADD.D RTA,#cleB> ; 1 2
ADOD.D RTA,#c!Se-1> H 1 1

2 8

l ADD.D RTA, #c-1> : l

When an immediate long constant is used as a half-word or quarter-word then no check for
overflow is made. Instructions may not require NEXT(immediate operand), as it is undefined and
will result in a hard trap.

4.2.4.1.2 Indexed Long Constant

Indexed long constant mode is selected by having OD.MODE=] and OD.F in the range
32..63. In this mode, the extended word is indexed by a register, selected by OD.F;
LO=SIGNED(EW)+R[OD.F-32). Overflow is not checked during the addition of EW and the
register’s contents. This sum is truncated to 36 bits. Quarter-word and half-word precisions use the
low order bits of this result as the LO. Double-word precision uses this result, sign-extended into
the high-order word, as the LO.

I—F:r example, the following instructions illustrate various uses of indexed constants. The
comment field gives an alternative instruction with a similar effect. (The effects may not be
identical because indexing does not detect arithmetic carry or overflow. This fact may sometimes
be used to advantage.)

MOV RTA, #c2088> (RTB) +ADD RTA, #c288>,RTB
SKP.GEQ #cl1>(RTA),#c-1>(RTB),FOO0 1 SKP.GEQ #c2>(RTA),RTB,F0O

The following instruction sets RTA to (RTA+I)%(RTA-1) (which is RTA%-1) in a single

instruction. There is no alternative implementation of this operation. It is assumed that RTA
contains neither MAXNUM or MINNUM.

l MULT RTA,Hclo>(RTA),H#c-1>(RTA) l
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4.2.4.1.3 Summary

W N — O

.31
32..64

Instruction Formats and Addressing Modes

Extended-Word Interpretation

Special case of fixed- or variable-based addressing (SO=0)
EW right-justified, sign-extended into high-order single-word
EW right-justified, zero-extended into high-order single-word
EW left-justified, zeros to low-order single-word

Reserved for future use (hard trap)

Indexed constant: SIGNED(EW)+R[OD. F-32]

Table 4-3
Long-Constant Mode

Page 45
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4.2.4.2 Fixed-based Addressing

Fixed-based addressing is used to access locations that are offset by up to 2%0 quarter-words
from the value specified by SO. A fixed-based address calculation uses EW.ADDR and EW.S as

well as SO to compute the address of a LO.

Address calculation occurs in stages. SO is calculated first as described in Section 4.2.3 and
then shifted left EW.S places. (For a full discussion of EW.S see Section 4.2.4.4.) The result is
then added to the 30-bit base address EW.ADDR to produce the address of a LO, that is,

LO=M[EW.ADDR+SOx2EW:5] ¢ EW.I=1, indirect addressing is then used (see Section 4.2.5).

Fixed-based addressing is selected in two different ways. If OD.X=1, EW.V=0 and
OD.MODE = 1 or 2 then the operand is computed as described above. If OD.X=1, EW.V=0,
OD.MODE=] and OD.F=0, then the operand is computed (as described above) with zero used in
place of SO.

For example, let SP be the stack pointer, and let TABLE be the address of a table of QWs.
The following instructions illustrate fixed-base addressing.

MOV RTA,c38> salternative to MOV RTA,RTB (address in QWs)
MOV.H.H RTA,c22> ;set high order HW of RTA equal to low order HW

The following sets RTA to the QW in TABLE indexed by the top stack element.
MOV.Q.Q RTA,cTABLE>(-1(SP))

The following two instructions set RTB to the address of a table of quarter-words, and then
RTA to the second QW in the table.

MOVADR RTB, TABLE

I MOY.Q.Q@ RTA,cl>(RTB) I

4.2.4.3 Variable-based Addressing

Variable-based addressing uses EW.DISP and EW.REG to supply additional information
for the operand evaluation. EW,DISP is interpreted as a signed offset from RLEW.REG]. The
offset is in the range 9% 9%y,

Address calculation occurs in stages. The first stage involves adding R[EW.REG] to
SIGNED(EW.DISP). This produces a base value which is used in subsequent calculations. The
rest of the operand calculation proceeds as for fixed-base addressing, using this computed base
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value in place of EW.ADDR. SO is calculated (see Section 4.2.3) and then is shifted left EW.S
places. (For a full discussion of EW.S-field see Section 4.2.4.4). The resulting value is added to the
base value to produce the address of the LO. Therefore,

LO=M[RIEW.REG}+SIGNED(EW. DISP)+SOx2EW+S]

Variable-based addressing is selected in two different ways. If OD.X=1, EW.V=1 and
OD.MODE = | or 2 then the operand is computed as described above. If OD.X=1, EW, V=1,
OD.MODE=1 and OD.F=0, then the operand is computed (as described above) with zero used in
place of SO.

For example, let TABLE be the address of a table of QWs, and SP be the stack pointer. The |
following instructions illustrate various uses of variable-base addressing. The first two
instructions set RTA to the RTA-th QW in the table.

MOVADR RTB, TABLE
MOV.Q.Q RTA,c(RTB)>(RTA)

The following sets RTA to the RTA-th QW in the table, counting from the QW given by the
top SW on the stack.

l MOV.Q.Q RTA, cTABLE (RTA)>(~1(SP)) l

4.2.4.4 Indexing Into Data Structures: The S-field (EW.S)

EW.S is included in the fixed-based and the variable-based extended formats to facilitate
indexing into data structures (e.g., arrays). It is often the case that many elements of a data structure
are accessed sequentially. If one wanted to access a quarter-word structure in such a manner, one
could use OD.X=1, OD.MODE-=index register, OD.F=0, and EW.ADDR=base address of the
structure. The contents of the index register would be an offset to the address in EW.ADDR. It
(the contents of the index register) would also be the index of the element in the structure. To
access the next element in the structure the contents of the index register would be incremented by
one. It must be remembered, however, that addresses on the S-1 are quarter-word addresses. If the
elements of the structure are not of quarter-word precision then it would no longer be correct to add
one to the index register to obtain the offset for the next element of the structure. Either the offset
in the register would have to be shifted after incrementing, or an increment larger than one (1)
would be needed (eg., for single-words, four would be added). Using an additional shift instruction
is undesirable because it would decrease code density, and also because it would cause a pipeline
interlock which would slow the execution of the code. Using a larger increment would make it
difficult to use the index register’s contents as the index into the structure because the offset in the
register would be some multiple of the actual index. The solution chosen by the designers of the
S-1 is to use a field EW.S to specify how many bits to shift the SO to make memory appear to be
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the desired precision. EW.S equal to 0, I, 2, or 3 causes the "apparent memory precision” to be
quarter-, half-, single-, or double-word, respectively. If one wanted to access a single-word data
structure (using fixed-based addressing), the method outlined above would work if one set EW.S to
2. The contents of the index register would then specify both the "single-word offset" (ie, the
quarter-word offset divided by 4) to the base of the structure and the index of the element within
the structure. The address calculation would then shift this "single-word offset” left two bits,
converting it into a quarter-word offset. The resulting address would be the actual location of the
data element. To increment the index, the register contents would be incremented by one. The shift
by EW.S takes care of adjusting the precision, and since it is part of the operand calculation, no
pipeline-interlock occurs.

For example, let SP be the stack pointer and let TABLE be the address of a table of SWs. T_h_e—l
following illustrates how the shift field facilitates indexing into this table. RTA is set to the SW
element of the table one SW beyond the SW indexed by the top SW in the stack. Informally,
RTA «table(stack(SP-1)+1). The shift field EW.S is specified by the number following the
up-arrow "t

MOVADR RTB, TABLE
MOV RTA,c4(RTB)o(-1(SP))*2 : l

L

4.2.5 Indirect Addressing

Indirect addressing may be used during extended addressing by setting EW.I=1. It is used
for accessing memory through pointers that are stored as single-words in memory. With EW.I=1,
the LO that is calculated in previous addressing stages is now interpreted as an indirect address
pointer (IAP) (see Section 3.4). The fields of the IAP are then used to compute the address of the
actual operand. This operand is termed the indirect long operand (ILO).

P | IREG ADDR

g 1 56 35

Figure 4-10
Indirect Address Pointer

There are two different types of indirection which can be selected. IAP.IREG determines
which one is used. If IAP.IREG=0 then IAP.ADDR is used as the address of the ILO. Thus,
ILO=MI[IAP.ADDR]. This is termed simple indirection. If IAP.IREG=0 then indexed indirection
is used. In this case, R[IAP.IREG] is added to IAP.ADDR to produce the address of the ILO so
that ILO=M[R[IAP.IREG}+IAP.ADDR]. Note that R[0] can not be used in the above
computation, since IAP.IREG=0 specifies simple indirection.
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Like all addressing operands, the IAP operand evaluation logically occurs before the
instruction execution and before the PC is updated. Since it has no side effects, it is restartable.
The TAP calculation is done modulo 2°° and does not set carry or overflow flags. See Section 4.2.7
for more details on addressing restrictions and exceptions. The interpretation of the P-bit is
discussed in section 4.26. .

For example, assume resister P contains the address of the first word of any node in a circular,
doubly-linked list of nodes consisting of three single words: a "next link", a "last link” and a
“data pointer" which points to a SW quantity. The following illustrates use of indirection.

MOV P, (P) sadvance P to point at the "next" node
MOV P,1(P) sbackup P to point at the "last" node
MOV P,ce(P)> sadvance P to the "next" of "next" node
MOV P,ce>(P) ;this does the same thing a different way

EXCH c85(8(P}),c82(1(P)) ;swap data-pointer(last) with data-pointer (next)
l EXCH ce8>(8(P)),ce85(1 (P)) ;swap datallast) with data(next) |
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4.2.5.1 Sumwmary

JAP.IREG Mode Name ILO
0 Simple Indirection =~ M[IAP.ADDR]
1..381 Indexed Indirection  M[R[IAP.IREG}+IAP.ADDR]
Table 4-4

Indirect Address Pointer (IAP)
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4.2.6 Address Space Switching: The P-bit

Bit zero of fixed-based EWs, variable-based EWs, and IAPs is interpreted as a previous
context bit (P-bit). The P-bit specifies the address space that will be used in the computation of an
extended operand. The interpretation of the P-bit is always done as the last step of a given phase
of address calculation (e.g,, it is done just before LO is fetched, and again just before ILO is fetched
in an indirect address calculation) ~ The PREV_MODE, CRNT_MODE, PREV_FILE,
CRNT_FILE, and USE_SHADOW_PREYV fields of PROC_STATUS determine the effects of the
P-bit. (See Section 2.5.1 for a description of PROC_STATUS.)

- The purpose of the P-bit is to facilitate communication between a program and the executive.
If a (user or executive) program traps, then the P-bit allows the executive routine that handles the
trap to access the memory space of the program that trapped. CRNT_MODE (PREV_MODE)
indicates whether the current (previous) context is in user or executive mode. CRNT_MODE=0
(PREV_MODE=0) means that the current (previous) context is in user mode. CRNT_MODE=1
(PREV_MODE=1) means that the current (previous) context is in executive mode.

P=0 means that the address space being referenced is the same as that selected by
CRNT_MODE. It is used by both the executive and the user each to access its own address space.
The executive may access operands in the previous address space by using a P-bit equal to 1. If a
user (i.e., a program with CRNT_MODE=0) attempts to access the previous address space by using
a P-bit equal to 1, a hard trap will occur.

Only one change of address space is allowed in the evaluation of a single operand since this is
all that is needed to allow the executive to access the trapping program’s address space. Therefore,
if a P-bit equal to | has already been encountered in an address calculation, encountering another
one will cause a hard trap.

Since the interpretation of the P-bit is always done as the last step of the address calculation,
if an IAP is fetched from a given address space (either current or previous), then the IREG and
ADDR fields are also interpreted as being in that same address space. After all these other fields
have been evaluated, the P-bit of the IAP is then interpreted. If IAP.P=0, then the ILO is fetched
from the same address space as the IAP. If IAP.P=1 and the IAP is in the current address space,
then the ILO is fetched from the previous address space. All other cases will hard-trap.

me first instruction below uses the P-bit in the extended word to access the RTB-th
single-word in TABLE in the previous address space. The second uses an IAP to achieve the
same effect. Note that the @ symbol causes FASM to set the P-bit in the IAP constant, but
specifies indirection in the EW.

MOV RTA,c!P TABLE(RTB)>

I MOV RTA,ce [e TABLE(RTB}Io> |
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4.2.7 Addressing Restrictions and Exceptions

Without exception, instructions that require NEXT(OP) or ADDRESS(OP) where OP is
either a short-constant or a long-constant will hard-trap.

If an instruction requires two EWSs, the first is used to calculate OP2, and the second to
calculate OP1.

All instructions which move addresses (e.g, MOVADR) perform the address interpretation
procedure to the point just before the virtual-to-physical translation, and store the resulting 36-bit
number (possibly with the P-bit=1) in the destination. See Section 2.3 on virtual-to-physical
address translation.

A hard trap will occur if an instruction has a jump destination which is in the previous
context. Jjumps to registers are undefined.

Note that the PC is a 30-bit positive number (ie, is zero-filled to the left in indexing).
References to register R[3] are interpreted as references to the PC under certain conditions. PC is
used instead of R[3] whenever R[3] is specified as an index register within an address calculation.
This includes indexing off of R[3] in indirect address pointers (see Section 4.2.5). All other
references to R[3] refer to the contents of general-purpose register number 3.

For an instruction to be executable, the two words following the first word of the instruction
must be valid instruction words (i, they must exist in the address space and be on a page with
access mode INSTRUCTION=1). This applies even when those two words are not part of the
instruction and even when they cannot possibly be executed as part of any instruction. This is an
effect of pipelining.

There are two cases where crossing the memory/register boundary may cause hard traps.
Instructions that begin within two single-words of the boundary (inclusive) will cause a hard trap
when executed. Instructions that have operands or sequences of operands (eg., NEXT(operand))
that are addressed in register-direct mode (see Section 4.2.3.1) and that cross the memory/register
boundary will cause a hard trap. Operands that are accessed as the first 128 quarter-words of
memory will never cause a memory/register boundary hard trap (but may cause traps such as
alignment error, etc.).
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4.2.8 Addressing Summary

Short-Operand SO OD.MODE  OD.F
Register-direct ~ R[OD.F] 0 0..31
Short-constant SIGNED(OD.F) 1 -32..381
Short-indexed  M[PC+4xSIGNED(OD. F)] 3 -32..31
Short-indexed  MIR[OD, MODEW4%SIGNED(OD.F)] % 3! -32.. 81
OD.X =0
Table 4-5
Short-Operand Addressing Summary
Long-Constant LO OD.F EW extension to double-word
Immediate SIGNED(EW) 1 right-justified, sign-extended
Immediate SIGNED(EW) 2 right- justified, zero-extended
Immediate SIGNED(EW) 3 left- justified, low order zero

Indexed SIGNED(EW)+R[OD.F-32]  32..63

OD.X = 1, OD.MODE = 1

Table 4-6
Long-Constant Addressing Summary
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LO OD.MODE OD.F
MIEW.ADDR+SOx2EW:S] . |9 OD.F
MIEW.ADDR] 1 0

OD.X = 1,EW.V =0

Table 4-7
Fixed-Based Addressing Summary

LO OD.MODE OD.F
MIR[EW.REG}+SIGNED(EW.DISP)+50x2EW+5] . |9 OD.F
MIR[EW.REGHSIGNED(EW. DISP)] 1 0

OD.X =1,EW.V = |

Table 4-8
Variable-Based Addressing Summary

IL IAP.IREG

MIIAP.ADDR] 0
MI[R[IAP.IREG+IAP.ADDR] 1..31

EW.I = 1

Table 4-9
Indirect Addressing Summary
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4.2.9 FASM Addressing Summary

In the following tables, lower case symbols denote FASM expressions (these tables correspond
one-to-one with the previous section).

Short-Operand SO FASM
Register-direct ~ R[r) %r
Short-constant sC #5C

Short-indexed MIPC+4%sc] sc(3)
Short-indexed MIR[r)+4xsc]  sc(r)

r = register 0.. 31, sc = short constant -32.. 31

Table 4-10
FASM Short~Operand Addressing Summary

Long-Constant LO (DW FASM
Immediate SIGN_EXTEND(lc) @ lc  #c!S & Ico
Immediate Oeolc A #clco
Immediate lca0 #clc o 02
Indexed le+RI[r] scleo(r)

Ic = long constant (SW), r = register

Table 4-11
FASM Long-Constant Addressing Summary
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LO FASM

—

MIx+s0x2M]  cxo(s0)tsh
Mix] 5'&)

X = address, so = short operand, sh = shift 0..3
(in x: @ = indirect, 'P = previous context)

Table 4-12
FASM Fixed-Based Addressing Summary

LO FASM

MIR[r}+x+50%2"]  cx(r)a(s0)Tsh
MIR[r}+x] ex(r)

x = offset, r = register, so = short operand, sh = shift 0..3

(in x: @ = indirect, !P = previous context)

Table 4-13
FASM Variable-Based Addressing Summary

ILO FASM

MIx] @x
MIR[r}l+x]  ex(r)

X = address, r = register

Table 4-14
FASM Indirect Addressing Summary
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5 Instruction Descriptions

The instruction set of the S-1 contains many powerful instructions for manipulating various
data types. The instructions are designed to make the implementation of high-level languages easier
and more efficient in terms of both storage and speed. The formats for the instructions are
described in Section 4.1.

All S-1 instructions are written as an opcode name followed by zero or more modifiers. These
modifiers are separated from the opcode field and from each other by the "." character (i.e.,
opcode{.modifier}]). In the instruction descriptions that follow, all the possible values of a
modifier-field are listed within curly brackets at the position which they should occur in the
instruction. One modifier from each set in the curly brackets must be used. (An exception to this
rule is that if precision modifiers are omitted, then single-word precision is assumed.) The order of
the modifier-fields is important (eg, MOV.QS is not the same as MOV .S.Q).

Essentially all three-operand instructions that are asymmetric with respect to S1 and S2 in
their operation are provided in reverse form (i.e., where an instruction uses Sl operation S2, the
reverse instruction uses S2 operation S1). This is indicated by appending the letter "V" to the end
of the opcode name (e.g, SUB and SUBV, or SHF and SHFV). Instructions for commutative
operators such as ADD are symmetric in SI and $2, and so need no reverse forms.

Unless otherwise stated, all operands required for the execution of an instruction are
prefetched, that is, all address computations (including indirection) are done and all operands are
available before the operation specified by the instruction is performed and before results are stored.

5.1 Instruction-Execution Sequence

The execution of an instruction can be logically divided into a number of stages which make
up the instruction-execution sequence. These stages are described in order in the following
paragraphs.

The first stage is concerned with processing interrupts. (See Section 5.16 for a description of
the interrupt architecture) If an interrupt is pending at this time, the interrupt is serviced by
jumping to the interrupt handler specified in the appropriate interrupt vector. ‘Return from the
interrupt handler restarts the instruction-execution sequence, so that if further interrupts are
pending, they will also be serviced. If no interrupts are pending, control passes immediately to the
next stage.

The second stage of the instruction-execution sequence processes frace-traps trace-trap.
TRACE_PEND is sampled and reset. If a trace-trap is pending (TRACE_PEND=1), then a trap
occurs and the trace-trap handler is executed. Upon return, the trapping instruction is restarted
from the beginning. Interrupts are processed again. The TRACE_PEND flag is sampled again,
but unless the trace-trap handler changed the saved PROC_STATUS, TRACE_PEND is
necessarily zero, since was reset before the trace-trap began. If a trace-trap is not pending
(TRACE_PEND=0), control passes to the next stage.
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Before-instruction exceptions are handled in the third stage. These include exceptions such as
page-faults and illegal memory-access traps that can be detected before instruction execution has
begun. If any before-instruction exception is detected, the exception is handled, and when the
exception handler reutrns, control is passed back to the beginning of the first stage. Interrupts are
processed again. The TRACE_PEND flag is sampled again, but unless the exception handler
changed the saved PROC_STATUS, TRACE_PEND is (again) necessarily zero. Thus, repeated
before-instruction exceptions can occur without causing superfluous trace-traps.

The fourth stage of instruction execution simply saves the value of TRACE_ENB for use
after the part of instruction execution which may change PROC_STATUS. We call this saved
value TRACE_ENBq; 1.

During the fifth stage of instruction execution, the instruction body is executed, possibly
affecting the user state.

Some lengthy instructions are interruptable. Interrupts occurring within interruptable
instructions save INSTRUCTION_STATE (an otherwise inaccessible hardware register) on the
stack. The saved INSTRUCTION_STATE allows the interrupted instruction to restart at the
proper point when the interrupt handler returns. A zero value for INSTRUCTION_STATE
means that the instruction body has not begun execution, i.., that the instruction can be restarted

from the beginning.

In the sixth stage of instruction execution, TRACE_PEND is set to TRACE_PEND v
TRACE.ENBq; . Thus, if tracing was enabled when this instruction commenced (or if this
instruction itself sets TRACE_PEND), a trace-trap will occur after this instruction completes (i.e., at
the beginning of the next instruction). Hence, the trace-trap handler receives a trap after the last
instruction in a sequence of instructions to be traced, as well as before the first instruction in the
sequence. '

After-instruction exceptions such as integer overflow are handled in the seventh and last
stage of instruction execution. If the handler of an after-instruction exception restarts the
instruction (which will not normally be the case), another trace-trap may occur immediately
(depending upon the value of TRACE_PEND). A second trace-trap is appropriate in this case,
since the instruction is actually being executed twice.
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The formal description of the above instruction-execution sequence for a single S-1 processor
(S-1_Uniprocessor) is shown below.

define S-1_Uniprocessor =
do forever
program-counter « pc-nxt-instr next
Check_Interrupts next
it Trace_Trap_Pending
then Trace_Trap
else Fetch_Instruction_Word next
Decode_Opcode
fi next
Trace_Trap_Pending « Trace_Trap_Pending v Trace_Trap_Enable
reverof od;
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5.2 Integer

5.2.1 Signed Integer

Signed integer instructions operate upon the signed integer data type (see Section 3.2). The
instructions perform addition, subtraction, multiplication, integer division, remainder, and modulus
functions. Negation, absolute value, min, and max are also provided. Non-commutative operations
such as subtraction are provided in both normal and reverse forms . These reverse instructions are
indicated by a "V" as the last character of the opcode string. (eg, SUB becomes SUBV).
Instructions that allow extended-precision operations (e.g., multiplying two single-word integers and
producing a double-precision result) have an "L" as either the last or penultimate character of the
opcode.

Two different remainder functions are provided: rem and mod. The result of mod has the
same sign as the divisor of the operation (or is zero), whereas the result of rem has the same sign as
the dividend (or is zero). In both cases, however,

DIVIDEND = (DIVISOR % QUOTIENT) + REMAINDER
and
ABS(REMAINDER) < DIVISOR

For example, -5 mod 3 = 1 (QUOTIENT  ,=-2) while -5 rem 3 = -2 (QUOTIENT , =-1).

Integer division (QUO, DIV, etc) produces QUOTIENT ., not QUOTIENT .. For
example, the result of (-1)/2 is zero, not -1. The SHFART instruction can be used to produce
QUOTIENT 4 in the case that the divisor is a power of two. By contrast, the QUOZ2 series of
instructions produces QUOTIENT ., like all QUO instructions. This may all be summarized by
noting that QUO and DIV instructions always round the quotient towards zero, while SHFA.RT
rounds towards negative infinity. (See Section 5.7 for shift instructions.)

Section 5.2.3 describes the possible side effects of signed-integer instructions (CARRY,
INT_OVFL, and INT_Z_DIV).
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ADD

Instruction: ADD . {Q,H,S,D}
Class: TOP Integer add

Purpose: DEST«S1+82. The integer sum of S1 and S2 is stored in DEST.
Side Effects: CARRY, INT_OVFL

Precision: S1, 82, and DEST all have the precision specified by the modifier.
Formal Description:

define ADD. p:qhsd = TOPI(pspip) Add(Sl, s2) - sum, ¢, ov next

Int_Overflow? nextS-1
(dest & sum also Carry « ¢l

Carry is set by the following instruction. Note that 777 has the signed interpretation -1 and the
unsighed interpretation 2%-1.

ADD.Q RTA, #c333>,#c777> ;RTA=332
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ADDC

Instruction: ADDC . {Q,H,S,D}
Class: TOP Integer add with carry

Purpose: DEST«S1+52+CARRY

Side Effects: CARRY, INT_OVFL

Precision: S1, 82, and DEST all have the precision specified by the modifier.

Formal Description:

define ADDC.p:qhsd & TOP(pipipl Add_With_Carry(Si, s2, Carry) » sum, ¢, ov next

Int_Overflow? next
(dest « sum also Carry « c);

I Carry is set after the execution of the first instruction, and cleared after the second. l

ADD.Q RTA, #cbb6>,#c777> 1 RTA=665
ADDC.Q RTA,RTA,#1 1 RTA=667

The following adds two long integers at X and Y represented as a pair of DWs with the
low-order DW having the higher address. The result is stored in X and NEXT(X).

ADD.D X+18,Y+18
ADDC.D X,Y

Similarly, suppose that NUM | and NUM2 are two blocks of single-words, each of length N
(N22) and representing an N-word integer, with lower-order words having higher addresses.
These can be added and the result stored in an (N+I1)-word block NUM3 in this manner:

MOV RTB, #cN-1> +RTB counts words
ADD RTA, cNUMI>(RTB)}, cNUMZ2>(RTB} sadd low-order words
MOV cNUM3+1>(RTB),RTA sstore low-order result

LOOP: ADDC RTA,cNUM1-15(RTB), cNUM2-1>(RTB) sadd next words plus carry
MOV <NUM3>(RTB),RTA ;store next word
0JMPZ.GTR RTB,LOOP 1DJMPZ doesn’t alter carry!
CMPSF.LSS RTA, cNUM1> iproduce sign-extension of
CMPSF.LSS,RTB, cNUM2> s NUML and NUM2

l___ ADDC <NUM3>,RTA,RTB sproduce high-order result _]
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suB

Instruction: SUB . {Q,H,S,D}
Cilass: TOP Integer subtract

Purpose: DEST«S1-52

Side Effects: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have the precision specified by the modifier.
Formal Description:

define SUB. p:qhsd = TOP (p; ps p}  Subtract(S1, s2) - dif, ¢, ov next

Int_Overflow? next
(dest « dif also Carry « c);

This example subtracts 1 from -1 to obtain -2. After execution, CARRY is set, INT_OVFL is
clear, and RTA contains -2.

SUB RTA,#-1,#1 ;RTA=-2
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susv

Instruction: SUBV . {Q,H,S,D}
Class: TOP Integer subtract reverse

Purpose: DEST«52-51

Side Effects: CARRY, INT_OVFL

Precision: S1, $2, and DEST all have the precision specified by the modifier.
Formal Description:

define SUBV.piqhsd =  TOP[p;pip) Subtract(s2, S1) » dif, ¢, ov next

Int_Overflow? next
{dest « dif also Carry « c);

The long constant below is a SW minus one in signed interpretation.

SUBY RTA,H#c777777777777>,#1 1RTA=+2
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SuBC

Instruction: SUBC . {Q,H,S,D}
Class: TOP Integer subtract with carry

Purpose: DEST«S1-82-1+CARRY

Side Effects: CARRY, INT_OVFL

Precision: $1, 82, and DEST all have the precision specified by the modifier.

Formal Description:

define SUBC.p:ighsd =  TOP[pspip) Subtract_With_Carry(Sl, s2, Carry) » dif, c, ov next

Int_Ouverflow? next
(dest « dif also Carry « c);

I Let X and Y be two pairs of DWs representing a long integer with the low-order DW having I
the lower address. The following sets X to the difference of X and Y.

SUB.D X,Y

l SUBC.D X+18,Y+10 ’
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SuUBCV

Instruction: SUBCV . {Q,H,S,D}
Class: TOP Integer subtract with carry reverse

Purpose: DEST«S82-51-1+4CARRY

Side Effects: CARRY, INT_OVFL

Precision: S1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define SUBCV.p:qhsd = TOP[p;pspl Subtract_With_Carry(s2, S1, Carry) - dif, ¢, ov next

Int_Overflow? next
(dest « dif also Carry « ¢}

l The following illustrates SUBCV. I

SUB RTA, #2,#41 sRTA=+1, carry clear

| SUBCV RTA,#2,RTA iRTA=-2, carry set l
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MULT

Instruction: MULT . {Q,H,S,D}
Class: TOP Integer multiply

Purpose: DEST«LOW_ORDER(S1%S2)
Side Effects: INT_OVFL

Precision: S1, $2, and DEST all have the precision specified by the modifier.

I INT_OVFL is set by the following instruction which multiplies 333 octal by 3, giving a result
larger than can fit in nine bits: 1221 octal.

l MULT.Q RTA, #c333>,#3 ;RTA=221
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MULTL

Instruction: MULTL . {Q,H,S)
Class: TOP Integer multiply long

Purpose: DEST«S1%S2

Precision: S1 and S2 have the same precision as the modifier. DEST has a precision twice that of
the modifier.

The following instruction does not set INT_OVFL since the result fits in a halfword.

MULTL.Q RTA,#c333>,#3 ;RTA=081221
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Quo

Instruction: QUO . {Q,H,S,D}
Class: TOP Integer quotient

Purpose: DEST«S51/82. QUO rounds its result towards zero.
Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, §2, and DEST all have the precision specified by the modifier.

The following illustrates a simple quotient calculation.

QUO.Q RTA, #c3455,H3 ;RTA=114
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Quov

Instruction: QUOV . {Q,H,S,D}
Class: TOP Integer quotient reverse

Purpose: DEST«S2/S1 QUOV rounds its result towards zero.
Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, 2, and DEST all have the precision specified by the modifier.

 ——

The following illustrates a quotient calculation.

QUOV.Q RTA,#cll4o,H#c345> 1RTA=3
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QuoL

Instruction: QUOL . {Q,H,S}
Class: TOP Integer quotient long

Purpose: DEST«S1/S2. QUOL rounds its result towards zero.
Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, NEXT(S1), $2, DEST have the same precision as the modifier. S1 has a precision
twice that of the modifier.

The following illustrates taking a quotient with a long dividend.

QUOL.Q RTA,#cl2215,#3  ;RTA=333
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QUOLV

Instruction: QUOLV . {Q,H,S}
Class: TOP Integer quotient long reverse

Purpose: DEST«S2/S1. QUOLY rounds its result towards zero.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1 and DEST have the same precision as the modifier. $2 has a precision twice that of
the modifier.

The following illustrates taking a quotient with a long dividend.

QUOLY.Q RTA,#c333>,#cl221> sRTA=3
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Quoz

Instruction: QUO2 . {Q,H,S,D}
Class: TOP Integer quotient by power of 2

Purpose: DEST«$1/2%2, QUOZ2 rounds its result towards zero. The SHFA.RT instruction may be
used to divide by a power of two, rounding towards negative infinity. $2 may be
negative, in which case a multiplication by a positive power of two is performed.

Side Effects: INT_OVFL (INT_OVFL is not set during the 252 portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S1, $2, and DEST all have the precision specified by the modifier.

The following divides -3 by +2, giving a different result than SHF.RT with the same operahds.

QUO2 RTA,#-3,#1 1RTA=-1
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Quozav

Instruction: QUO2V . {Q,H,S,D}
Class: TOP Integer quotient by power of 2 reverse

Purpose: DEST«52/25!, QUO?YV rounds its result towards zero. The SHFAV.RT instruction may
be used to divide by a power of two, rounding towards negative infinity. S1 may be
negative, in which case a multiplication by a positive power of two is performed.

Side Effects: INT_OVFL (INT_OVFL is not set during the 951 portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S1, $2, and DEST all have the precision specified by the modifier.

The second instruction illustrates the use of negative shifts.

QUO2vV RTA,#1,H#-2 1RTA=-1
QUO2Y RTA,RTA,#1 +RTA=2
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Quo2zL

Instruction: QUO2L . {Q,H,S}
Class: TOP Integer quotient by power of 2 long

Purpose: DEST«S$1/252, QUO2L rounds its result towards zero. S2 may be negative, in which
case a multiplication by a positive power of two is performed.

Side Effects: INT_OVFL (INT_OVFL is not set during the 252 portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: S2 and DEST have the same precision as the modifier. S1 has a precision twice that of
the modifier.

The following divides the long operand by 16 (decimal).

QUO2L.Q RTA,#cl221>,#4 ;RTA=51
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QUO2LV

Instruction: QUO2LV . {Q,H,S)}
Class: TOP Integer quotient by power of 2 long reverse

Purpose: DEST«s2/25!, QUO2LYV rounds its result towards zero. S1 may be negative, in which
case a multiplication by a positive power of two is performed.

Side Effects: INT_OVFL (INT_OVFL is not set during the 25! portion of the operation. This
exponentiation is done with unlimited precision.)

Precision: $1 and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

[I_nthe first instruction RTA is to be interpreted as a HW destination. In the second instruction
RTA is to be interpreted as a QW destination, a QW shift argument, and a HW operand,
respectively.  Note that the second instruction leaves the contents of RTA unchanged
(independent of its interpretation).

QUO2LV.H RTA,#-11,#11  ;RTA=11888 (HW)

I QUO2LY.Q RTA,RTA,RTA ;RTA=11 (QW) l
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REM

Instruction: REM . {Q,H,S,D}
Class: TOP Integer remainder

Purpose: DEST«S1 rem S2. The result is the remainder produced by a division that rounds
towards zero (as in the QUO instruction). The result (DEST) has the same sign as the
dividend (S1), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1, 82, and DEST all have the precision specified by the modifier.

I The following illustrate the results of various combinations of signs. l
REM.Q RTA,#5,#3 ;RTA=2
REM.Q RTA, #5,#-3 ;RTA=2
REM.Q RTA,#-5,43 iRTA=-2

I REM.Q RTA,#-5,#-3 iRTA=-2 l
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REMV

Instruction: REMV . {Q,H,S,D}
Class: TOP Integer remainder reverse

Purpose: DEST«S2 rem S1. The result is the remainder produced by a division that rounds
towards zero (as in the QUOV instruction). The result (DEST) has the same sign as the
dividend (S$2), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1, $2, and DEST all have the precision specified by the modifier.

| The following illustrate the results of various combinations of signs. |
REMV.Q RTA,#3,#5 sRTA=2
REMY.Q RTA,#-3,#5 +RTA=2
REMY.Q RTA,#3,#-5 1RTA=-2

L REMY.Q RTA,#-3,H#-5 1RTA=-2 I
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REML

Instruction: REML . {Q,H,S)
Class: TOP Integer remainder long

Purpose: DEST«S1 rem $2. The result is the remainder produced by a division that rounds
towards zero (as in the QUOL instruction). The result (DEST) has the same sign as the
dividend (S1), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: $2 and DEST have the same precision as the modifier. S1 has a precision twice that of
the modifier.

The following illustrates the remainder using a long dividend.

REML.Q RTA,#c12345>, #c3080> s RTA=245
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REMLV

Instruction: REMLV . {Q,H,S}
Class: TOP Integer remainder long reverse

Purpose: DEST«S2 rem S1. The result is the remainder produced by a division that rounds
towards zero (as in the QUOLY instruction). The result (DEST) has the same sign as the
dividend (S2), or is zero. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1 and DEST have the same precision as the modifier. S2 has a precision twice that of
the modifier.

e s

The following illustrates a remainder using a long dividend.

REMLY.Q RTA, #c388>, #c12345> 1 RTA=245
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MOD

Instruction: MOD . {Q,H,S,D}
Class: TOP Integer modulus

Purpose: DEST«S1 mod $2. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (§2), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S1 in the modulus S2. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1, $2, and DEST all have the precision specified by the modifier.

I The following illustrates the result of various combinations of signs. l
MOD.G RTA,#S5,#3 sRTA=2
MOD.Q RTA,#5,#-3 sRTA=-1
MOD.Q RTA,#-5,43 1RTA=1

l MO0.Q RTA,#-5,H#-3 ;RTA=-2 I
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MODV

Instruction: MODV . {Q,H,S,D}
Class: TOP Integer modulus reverse

Purpose: DEST«S2 mod S1. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S1), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
S$2 in the modulus S1. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1, 82, and DEST all have the precision specified by the modifier.

l The following illustrates the result of various combinations of signs. l
MODV.Q RTA,#3,#5 sRTA=2
MODV.Q RTA,#-3,#5 iRTA=-1
MOOV.Q RTA,#3,H#-5 sRTA=1

l MOOV.Q RTA,#-3,#-5 1RTA=-2 |
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MODL

Instruction: MODL . {Q,H,S}
Class: TOP Integer modulus long

Purpose: DEST«S1 mod S2. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S2), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
Sl in the modulus $2. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: $2 and DEST have the same precision as the modifier. S$1 has a precision twice that of
the modifier.

The following illustrates the modulo operation using a long dividend.

MODL.Q RTA, #c123455, #c3088> s RTA=245
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MODLV

Instruction: MODLV . {Q,H,S}
Class: TOP Integer modulus long reverse

Purpose: DEST«S2 mod S1. The result is the remainder produced by a division that rounds
towards negative infinity. The result (DEST) has the same sign as the divisor (S1), or is
zero. Hence when the divisor is positive the result is the number-theoretic reduction of
$2 in the modulus S1. Note that the MOD function provided in many high-level
languages such as PASCAL actually performs the REM operation, not the MOD
operation.

Side Effects: INT_Z_DIV

Precision: S1 and DEST have the same precision as the modifier. $2 has a precision twice that of
the modifier.

s

The following illustrates the modulo operation using a long dividend.

MODLY.Q RTA, #c3005, #c12345> s RTA=245
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DIV

Instruction: DIV . {Q,H,S,D}
Class: TOP Integer divide

Purpose: DEST«S1/82; NEXT(DEST)S1 rem S2. DIV is like doing both a QUO instruction and
a REM instruction.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, $2, DEST, and NEXT(DEST) all have the same precision as the modifier.

The following produces a quotient-remainder result.

DIV.G RTA,H#c3455,43 1RTA=114081 (two QWs)
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DIVV

Instruction: DIVV . {Q,H,S,D}
Class: TOP Integer divide reverse

Purpose: DEST«S2/S1; NEXT(DEST)«S2 rem S1. DIVYV is like doing both a QUOYV instruction
and a REMYV instruction.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, 82, DEST, and NEXT(DEST) all have the same precision as the modifier.

The following produces a quotient-remainder result.

DIVV.Q RTA,#3,H#c345> ;RTA=1148081 (two QWs)
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DIVL

Instruction: DIVL . {Q,H,S)
Class: TOP Integer divide long

Purpose: DEST«S1/82; NEXT(DEST)«S1 rem $2. DIVL is like doing both a QUOL instruction
and a REML instruction.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: $2, DEST, NEXT(DEST) have the same precision as the modifier. S1 has a precision
twice that of the modifier.

The following produces a quotient-remainder for a long operand.

DIVL.Q RTA, #c123455, #c3080> ;RTA=33245 (two QWs)
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DIVLV

Instruction: DIVLV . {Q,H,S}
Class: TOP Integer divide long reverse

Purpose: DEST«S2/S1; NEXT(DEST)<S2 rem Sl. DIVLV s like doing both a QUOLYV
instruction and a REMLY instruction.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, DEST, NEXT(DEST) have the same precision as the modifier. S2 has a precision
twice that of the modifier.

The following produces a quotient-remainder for a long operand.

DIVLV.Q RTA, #c3088>, #c12345> ;RTA=33245 (two QWs)
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INC

Instruction: INC . {Q,H,S,D}
Class: XOP Integer increment

Purpose: OP1<OP2+1

Side Effects: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

Formal Description:

define INC. p:qhsd = XOPIpspl Addlop2, 1) - sum, ¢, ov next

Int_Overflow? next
(opl « sum also Carry « ¢);

I The following adds one to RTA. l

INC RTA,RTA 1 RTA«RTA+1

FASM allows this instruction to be abbreviated simply to:

l INC RTA +RTA is both source and destination |
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DEC

Instruction: DEC . {Q,H,S,D}
Class: XOP Integer decrement

Purpose: OP1<OP2-1

Side Effects: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

Formal Description:

define DEC.p:qhsd = XOP [psp1  Subtract{op2, 1) = dif, ¢, ov next

Int_Overflow? next
(opl « dif also Carry « ¢);

I The following subtracts one from RTA. l

DEC RTA 1 RTACRTA-1

This instruction subtracts one from BAR and puts the result in FOO.

I DEC FOO,BAR + FOO-BAR-1 I
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TRANS

Instruction: TRANS . {Q,H,S,D} . {Q,H,S,D}
Class: XOP Integer transfer

Purpose: OP1SIGN_EXTEND(OP2). Take the integer specified by OP2 and sign-extend it to
make it an integer of the precision of the first modifier. Store the result in OP1. More
precisely, OP2 is sign-extended if OPI is longer than OP2. It is unchanged if OP1 and
OP?2 are the same length (in which case TRANS behaves just like MOV). If OPI is
shorter than OP2, then a "sign-compressed” copy of OP2 is stored in OPI, provided the
correct numerical value of OP2 can be expressed in the precision of OPI; if it cannot,
INT_OVFL is signalled.

Side Effects: INT_OVFL

Precision: OP1 has the precision of the first modifier and OP2 has the precision of the second

modifier.

The second instruction illustrates the sign-extension of TRANS. I
MOV.H.Q RTA, #-1 ;RTA=B00777 (HW)
TRANS.H.Q RTA, #-1 sRTA=777777 (HUW) ‘ |
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NEG

Instruction: NEG . {Q,H,S,D}
Class: XOP Integer negate

Purpose: OP letwo's-complement(OP2)

Side Effects: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.

Formal Description:

define NEG. p:qhsd = XOP (p; p)  Subtract(0, op2) -» dif, ¢, ov next

Int_Overflow? next
(op2 « dif also Carry « c);

I—The following negates the value in RTA. |
NEG RTA s RTA«~RTA

This piece of code jumps to TWOPOWER if the non-negative single-word integer in HUNOZ
is an exact power of two (where zero is considered to be such a power).

NEG RTA,HUNOZ ;s RTA«-HUNOZ
ANDCT RTA,HUNOZ s RTAcone’s—complement (RTA) AHUNOZ
JMPZ.EQL RTA,TWOPOWER  ; jump if RTA now is zero

The BITCNT instruction can be used to do the same thihg if zero is not to be considered a l

l power of two.
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ABS

Instruction: ABS . {Q,H,S,D}
Class: XOP Integer absolute value

Purpose: OP l«abs(OP2)

Side Effectss: CARRY, INT_OVFL

Precision: OP1 and OP2 have the same precision as the modifier.
Formal Description:

define ABS.p:qhsd = XOP[pspl if op2 2 0
then (opl « op2 also Int_Oyfl « 0)

else Subtract (0, op2) - dif, ¢, ov next
Int_Ouverflow? next
op2 « dif
fis

The following takes the absolute value of RTB and puts it in RTA.

ABS RTA,RTB +RTA«|RTB|
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MiIN

Instruction: MIN . {Q,H,S,D}
Class: TOP Integer minimum.

Purpose: DESTemin($1,52). The smaller of the signed integers S1 and S2 is placed in DEST.
Precision: S1, $2, and DEST all have the precision specified by the modifier.

Formal Description:

define MIN. p:qhsd = TOP[p;p;p) dest & (if S1 < s2 then Sl else s2 fi);

The following sets RTA to 0 if RTA is negative.

MIN RTA,RTA,#0
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MAX

Instruction: MAX . {Q,H,S,D}

Class: TOP Integer maximum
Purpose: DEST«max(S1,82). The larger of the signed integers S1 and S2 is placed in DEST.
Precision: S1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define MAX. p:qhsd = TOP[pspsp) dest « (if S1 > s2 then Sl else s2 fi);

The following sets RTA to 100 if RTA is greater than 100.

MAX RTA,RTA, #cl100.>
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5.2.2 Unsigned Integer

Unsigned integer instructions operate upon the unsigned integer data type (see Section 3.2).
The instructions perform unsigned multiplication and unsigned integer division. Instructions that
allow extended-precision operations (e.g., multiplying two single-word integers and producing a
double-precision result) have an "L" as the last character of the opcode.

These instructions were designed to be used for arithmetic on numbers of arbitrarily great
precision (as exemplified by "bignums" in MacLISP). Note that ADD and SUB work correctly for
bignum arithmetic.

Section 5.2.3 describes the possible side effects of unsigned-integer instructions (INT_OVFL
and INT_Z_DIV).
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UMULT

Instruction: UMULT . {Q,H,5,D}
Class: TOP \ Unsigned integer multiply

Purpose: Do an unsigned multiplication of S1 and S2 and place the low-order {quarter, half, single,
double}-word of the result in DEST.

Side Effects: INT_OVFL

Precision: S1, 82, and DEST all have the precision specified by the modifier.

I The following instruction puts the low order QW of the unsigned square of 2%-1in RTA. This l
value is the low-order nine bits of 2'8-2l°+l. that is, 001. Since the full result is greater than
29-1, INT_OVFL is also set.

UMULT.Q RTA,?777,°777

The only difference between UMULT and MULT is that UMULT sets INT_OVFL whenever
MULT does, and, in addition, whenever the high order bit of one of its operands is set, and the
I (unsigned) magnitude of the other operand is greater than unity. l
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UMULTL

Instruction: UMULTL . {Q,H,S}
Class: TOP Unsigned integer multiply long

Purpose: Do an unsigned multiplication of S1 and $2 and place the resuit in DEST.

Precision: S1 and $2 have the same precision as the modifier. DEST has a precision twice that of
the modifier.

The following instruction puts the unsigned square of 2%-1 in RTA. This value is 218-21%1,
that is, 776001.

UMULTL.Q RTA,?777,2777

L _
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ubiv

Instruction: UDIV . {Q,H,S,D}
Class: TOP Unsigned integer divide

Purpose: The result of unsigned, integer division, $1/S2, is placed in DEST. The unsigned, integer
remainder, S1 rem 82, is placed in NEXT(DEST);.

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S1, 82, DEST, and NEXT(DEST) all have the same precision as the modifier.

prr———— D e |

The following sets RTA to the unsigned quotient-remainder of 2%-3 divided by twenty-two.

UDIV.Q RTA,?775,726 1RTA=827803 (tuo QWs)
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UDIVL

Instruction: UDIVL . {Q,H,8}
Class: TOP Unsigned integer divide long

Purpose: The result of unsigned, integer division, $1/82, is placed in DEST. The unsigned, integer
remainder, S1 rem $2, is placed in NEXT(DEST);

Side Effects: INT_OVFL, INT_Z_DIV

Precision: S$2, DEST, and NEXT(DEST) all have the same precision as the modifier. S1 has a
precision twice that of the modifier.

The following sets RTA to the unsigned quotient-remainder of 377377 (octal) divided by 777
(octal).

UDIVL.Q RTA,?377377,?777 iRTA=377776 (two QWs) l
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5.2.3 Instruction Side Effects

USER_STATUS records three types of side effects that can occur during the execution of an
integer instruction. (See Section 2.5.2 for a description of USER_STATUS.) They are: CARRY,
INT_OVFL (integer overflow), and INT_Z_DIV (divide-by-zero). = All of these bits in
USER_STATUS are not sticky, that is, if an instruction can set one of these bits, it must either set
or clear that bit.

52.3.1 CARRY

For each instruction shown, USER_STATUS.CARRY is set if the following formula is true
with the indicated substitutions. CARRY is cleared if the formula is false. C_IN refers to the state
of CARRY at the beginning of the instruction (used in ADDC, SUBC, and SUBCV).

CARRY = (X1<0 A X2<0) v [(X1<0 v X2<0) A (X1+X2+X3 2 0)]

In the following table, the result of the instruction equals X1+X2+X3; “~" means
one’s—complement; and “~1" is the two's-complement of 1.

Instruction X1 X2 X3

ADD sl 52 0

ADDC sl $2 C_IN

SUB sl ~52 1

SUBV ~S1 82 !

SUBC Sl ~52  C.N

SUBCV ~S1 82 C_IN

INC I oP2 0 (ie, OP2 = -1)

DEC -1 OP2 0 (ie, OP2 = 0)

NEG 0 ~OP2 | (ie, OP2 = 0)

ABS 0 ~OP2 | (ie, OP2 = 0)
Table 5-1

Conditions for setting CARRY

No other instructions change CARRY.

For example, the following instruction sets CARRY.

INC RTA,#-1 1RTA<8
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5.2.3.2 INT_OVFL

USER_STATUS.INT_OVFL is set when the result of an operation will not fit in the
destination, that is, if the destination precision is {Q,H,S,D}, then overflow occurs if the result is not
between -2{8'”'35‘7” and 2{8‘”'35'71}-1 inclusive. Instructions which set/clear INT_OVFL are:
ADD, ADDC, SUB, SUBV, SUBC, SUBCYV, INC, IJMP, IJMPZ, IJMPA, ISKP, DEC, D JMP,
DJMPZ, DJMPA, DSKP, FIX, SHFA, SHFAV, MULT, QUO, QUOV, QUO?2, QUO2V, QUOL,
QUOLYV, QUO2L, QUO2LY, DIV, DIVV, DIVL, DIVLV, NEG, ABS, TRANS, UMULT,
UDIV, and UDIVL. No other instructions change INT_OVFL. It should be noted that
INT_OVFL is not set during the exponentiation in the QUO2 class of instructions. For these
instructions, unlimited precision is available for the 2S section of the computation.

The condition for determining INT_OVFL is simplified when considering the addition and
subtraction instructions (ADDs, SUBs, INC, DEC, IJMPs, D JMPs, ISKP, and DSKP). With these
instructions, INT_OVFL is set when the carry into the high-order bit of the result is not the same
as the carry out of that bit.

When an integer overflow occurs, the action taken depends on the
USER_STATUS.INT_OVFL_MODE bit. If equal to zero, a trap occurs and no value is stored.
If equal to one, all instructions (except SHFA to the left) store the low-order bits of the result.
SHFA to the left stores the correct sign followed by the low-order bits of the result.

For example, the following instruction sets INT_OVFL.

INC RTA,#c377777,,777777> ;RTA<MINNUM; constant is MAXNUM

5233 INT_Z_DIV

USER_STATUS.INT_Z_DIV is set when a divide-by-zero occurs in an integer division.
Instructions which set/clear INT_Z_DIV aree QUO, QUOV, QUOL, QUOLYV, REM, REMYV,
REML, REMLV, MOD, MODV, MODL, MODLV, DIV, DIVV, DIVL, DIVLV, UDIV, UDIVL.
No other instructions change INT_Z_DIV.

When an integer divide-by-zero occurs, the action taken depends on the
USER_STATUS,INT_Z_DIV_.MODE bit. If INT_Z_DIV_MODE-=0 then a trap occurs and no
value is stored in the destination. If INT_Z_DIV_MODE-=] then zero is stored and no trap occurs.

5.3 Floating Point

Floating-point instructions operate on the floating-point data type (see Section 3.3). The
instructions include addition, subtraction, multiplication, division, absolute value, negation,
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minimum, maximum, and scaling by powers of two. Reverse instructions are provided for the
non-commutative operations (subtraction, division, and scaling). These reverse instructions have a
"V" added to the end of the opcode mnemonic (eg, FSC becomes FSCV). Extended-precision
operations are provided for multiplication and division (e.g, multiplying two single-word
floating-point numbers and producing a double-precision result) Multiplication (FMULTL)
produces an extended-precision product and division (FDIVL, FDIVLV) utilizes an
extended-precision dividend.

All operations producing a floating-point result normalize that result. (See Section 3.3 for a
discussion of the floating-point format. This format does not permit the representation of
unnormalized numbers.)

5.3.1 Rounding Modes

During floating-point operations, rounding of the result may be necessary. With the
exception of the FIX instruction, the rounding mode wused is specified by
- USER_STATUS.RND_MODE, as described below. The FIX instruction allows the explicit
specification of a rounding-mode or the use of RND_MODE.

Let F be the magnitude of the difference between a true floating-point result, R, and the
greatest representable floating-point number N which is less than or equal to R, expressed as a
fraction of the least-significant representable bit of R.

The bits of RND_MODE have the following functions (reversals of rounding direction
accumulate):

RND_MODE<0> 0: Round as specified by RND_MODE<1:4>.
I: Reserved.

RND_MODE<I> 0: If F=0, round as specified by RND_MODE<2:4>; otherwise deliver R

exactly.
I: If F= 1/2 then round as specified by RND_MODE<2:4>; otherwise round

to the floating-point number nearest to R.

RND_MODE<2> 0: Round toward negative infinity.
I: Round toward positive infinity.

RND_MODE<3> 0: No effect.
I: If and only if N’s mantissa’s least significant bit is a one, reverse the

rounding direction.

RND_MODE<4> 0: No effect.
I: If and only if R is negative, reverse the rounding direction.



Page 104 Instruction Descriptions § 5.3.1

Various combinations of the above bits provide a variety of rounding modes. Some of the
more common modes are:

RND_MODE (octal) Function Modifier for FIX
0 Floor FL

1 Diminished Magnitude DM

4 Ceiling CL

5 Augmented Magnitude

12 Half Rounds Toward Positive HP

14 PDP-10 FIXR Rounding

15 App. PDP-10 FLTR Rounding

Table 5-2

Useful Rounding Modes

5.3.2 Instruction Side Effects

USER_STATUS records three types of side effects that can occur during the execution of a
floating-point instruction. (See Section 2.52 for a description of USER_STATUS.) They are:
FLT_OVFL (floating overflow) FLT_UNFL (floating underflow), and FLT_NAN (floating
undefined). All of these bits in USER_STATUS are not sticky, that is, if an instruction can set one
of these bits, it must either set or clear that bit.

5.3.2.1 FLT_OVFL and FLT_UNFL

USER_STATUS.FLT_OVFL is set when a floating-point instruction produces a result with
an exponent that is too large to be represented in the EXP-field of the destination (ie, OVF or
MOVF). (See Section 3.3 for a description of the floating-point data type) In a similar way,
FLT_UNFL is set when a floating-point instuction’s result has a negative exponent whose
magnitude is too large to be represented in the destination’s EXP (ie, UNF or MUNF). Floating
underflows and overflows generally occur in two situations. The first situation is that the result of
an operation (eg, FMULT) is out of range of the EXP-field. The second situation is when the
result will fit, but the post-normalization of that result causes the exponent not to fit.

All instructions that produce floating-point results set/reset FLT_OVFL and FLT_UNFL. It
should be noted that FSC and FSCV do not set either overflow or underflow during their
exponentiation calculations. In these two instructions, the 25 part of the calculation is done with
unlimited precision.

When a floating underflow (overflow) occurs, the action taken depends on the
USER_STATUS.FLT_UNFL_MODE (USER_STATUS.FLT_OVFL_MODE) field.



§ 5.3.2.1 Instruction Descriptions Page 105

FLT UNFL_MODE<0:l> Result

0 Trap and do not store any value in the result
1 Store the infinitesimal with the correct sign (UNF or MUNF)
2 Store the floating-point number with the correct sign and
mantissa, but with a wrapped-around exponent
3 Not defined
Table 5-3

USER_STATUS_UNFL_MODE

FLT OVFL MODE<0:1> Result

0 Trap and do not store any value in the result

1 Store the infinity with the correct sign (OVF or MOVF)
2 Store the floating-point number with the correct sign and
mantissa, but with a wrapped-around exponent
3 Not defined
Table b-4

USER_STATUS_OVFL_MODE

See Section 5.3.2.3 for a discussion of how OVF, MOVF, UNF, and MUNF propagate in
floating-point instructions (when they do not trap).

' The first instruction sets FLT_OVFL, the second sets FLT_UNFL. I

FSUBY.H RTA, #8, #c480880>

l FSC.H RTA, #cB84000>, #-1 , l

5.3.2.2 FLT_NAN

USER_STATUS.FLT_NAN is set when a NAN is the result of a floating-point operation.
All instructions that require floating-point arguments and produce floating-point results set/reset
FLT_NAN.
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When an undefined floating-point number (NAN) is produced the action taken depends on
the USER_STATUS.FLT_NAN_MODE bit. If FLT_NAN_MODE=0 then a trap occurs and no
value is stored in the destination. If FLT_NAN_MODE=1] then NAN is stored and no trap occurs.

See Section 5.3.2.3 for a discussion of how NAN propagates in floating-point instructions
(when it does not trap).

5.3.2.3 Exception Propagation

When the traps are disabled (as explained in the previous sections) the exception values
(OVF, MOVF, UNF, MUNF, NAN) can propagate through floating-point instructions. The
diagrams below describe how the exceptions propagate through addition, multiplication, and
division. Floating-point subtraction behaves with respect to exception propagation as if FNEG
were applied to the second argument, and then FADD applied.

FMIN and FMAX propagate the exceptions as regular floating-point numbers (i.e,
MOVF<-X<MUNF<0<UNF<X<OVF), but the result is NAN if either argument is NAN.
FNEG(MOVF)=OVF, FNEG(OVF)=MOVF, FNEG(MUNF)=UNF, and FNEG(UNF)=-MUNF.
Similarly, FABS(MOVF)=OVF and FABS(MUNF)=UNF. FTRANS acts as an identity function
for all five exceptions. FIX of any special floating-point symbol produces an intermediate NAN
result and stores the result on the basis of FLT_NAN_MODE. The exponentiation portion of the
FSC and FSCV s effectively done in infinite precision and will not produce an exception; the
subsequent multiplication follows the rules given below.

In the following tables, X and Y are assumed to be any positive floating-point numbers,
excluding the special floating-point symbols 0, UNF, and OVF.

Addition (A+B)

A B— MOVF -Y MUNF ] UNF Y OVF NAN
I%OVF MOVF  MOVF MOVF MOVF MOVF MOVF NAN NAN
-X MOVF  -X-Y -X -X -X -X+Y OVF NAN
MUNF MOVF =Y MUNF MUNF NAN Y OVF - NAN
%} MOVF  -Y MUNF ) UNF Y OVF NAN
UNF MOVF  -Y NAN UNF UNF Y OVF NAN
X MOVF  X-Y X X X X+Y OVF NAN
OVF NAN OVF OVF OVF OVF OvVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN
Figure 5-1

Floating-point Exception Propagation (+)
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A B— MOVF -Y MUNF %] UNF Y OVF NAN
MOVF OVF OVF NAN 8 NAN MOVF MOVF NAN
-X OVF  XxY UNF 2 MUNF  -XxY  MOVF NAN
MUNF NAN UNF UNF g MUNF MUNF NAN NAN
8 8 8 8 ¢ 8 0 8 NAN
UNF NAN MUNF MUNF 0 UNF UNF NAN NAN
X MOVF  -XxY MUNF 8 UNF XxY OVF NAN
OVF MOVF  MOVF  NAN e NAN OVF OVF NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN
Figure 5-2
Floating-point Exception Propagation (%)

Division (A/B)

A B— MOVF -Y MUNF 8 UNF Y OVF NAN
MOVF NAN QvF OVF NAN MOVF MOVF NAN NAN

=X UNF X7y OVF NAN MOVF YA MUNF NAN

MUNF UNF UNF NAN NAN NAN MUNF MUNF NAN

%} (% 8 2 NAN 8 8 % NAN
UNF MUNF  MUNF NAN NAN NAN UNF UNF NAN
X MUNF  -X/Y MOVF NAN OVF X7y UNF NAN
OVF NAN MOVF MOVF NAN OVF OVF NAN NAN
NAN NAN NAN NAN NAN NAN NAN NAN NAN

Figure 5-3
Floating-point Exception Propagation (/)
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FADD

Instruction: FADD . {H,S,D}
Class: TOP Floating-point add

Purpose: The floating-point sum, S1 plus $2, is rounded according to RND_MODE and stored in
DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, S2, and DEST all have the precision specified by the modifier.

To add 1.0 to RTA either of the first two instructions could be used. Note that FASM provides I
an interpretation of floating-point constants. The third instruction doubles RTA. Alternatively,
FMULT, FSC, or FDIV might be used.

FADD RTA, #c280498, ,0>
FADD RTA,#cl.8>

I FADD RTA,RTA

+RTA<2%RTA; FSC RTA,#1 is perhaps cheaper |



§ 5323 Instruction Descriptions Page 109

FSUB

Instruction: FSUB . {H,S,D}
Class: TOP : Floating-point subtract

Purpose: The floating-point difference, S1 minus S2, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, 82, and DEST all have the precision specified by the modifier.

The following subtracts a floating point value of one from RTA.

FSUB RTA,#cl.8> iRTA<RTA-1.0
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FSUBV

Instruction: FSUBV . {H,S,D}
Class: TOP Floating-point subtract reverse

Purpose: The floating-point difference, $2 minus $1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, 2, and DEST all have the precision specified by the modifier.

The following subtracts RTA from a floating point value of one.

FSUBV RTA,#cl.8> s RTA<1.8-RTA
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FMULT

Instruction: FMULT . {H,S,D}
Class: TOP Floating-point multiply

Purpose: The floating-point product, S1 times S2, is rounded according to RND_MODE and stored
in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_.NAN

Precision: S1, $2, and DEST all have the precision specified by the modifier.

The following instruction doubles the value in RTA. Alternately, FSC, FADD, or FDIV might
be used for this purpose.

FMULT RTA,#c2.8> 1 RTA«RTA%2.08




Page 112 Instruction Descriptions § 5323

FMULTL

Instruction: FMULTL . {H,8} v
Class: TOP Floating-point multiply long

Purpose: The floating-point product, S1 times S2, is rounded according to RND_MODE and stored
in DEST. Note that the long result format will have more than twice as many MANT
bits as either operand.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN. (These can occur only if one of the
floating-point exception values occurs as an argument. If both arguments are
ordinary floating-point numbers, the result cannot overflow or underflow, because the
long result format has a larger EXP field than the operands do.)

Precision: S1 and S2 have the same precision as the modifier. DEST has precision fwice that of
the modifier.
I The following instruction will give RTA all significant bits of the square of the value in X
(unless overflow or underflow occurs).

s RTAX12

l FMULTL RTA,X,X
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FDIV

Instruction: FDIV . {H,8,D}
Class: TOP Floating-point divide

Purpose: The floating-point quotient, S1 divided by S2, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, S2, and DEST all have the precision specified by the modifier.

I The following instruction doubles the value in RTA. Alternatively, FADD, FMULT or FSC l
might be used.

FDIV RTA,#c200008,,08> ;RTA-RTA/8.5=2xRTA l
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FDIVV

Instruction: FDIVV . {H,S,D}
Class: TOP. Floating-point divide reverse

Purpose: The floating-point quotient, $2 divided by S1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1, $2, and DEST all have the precision specified by the modifier.

The following code might be used to set RTA to its reciprocal.

FDIVY RTA,RTA,#cl.2>




§ 5323 Instruction Descriptions Page 115

FDIVL

Instruction: FDIVL . {H,S)
Class: TOP Floating-point divide long

Purpose: The floating-point quotient, S1 divided by $2, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_.NAN

Precision: $§2 and DEST have the same precision as the modifier. S1 has precision twice that of
the modifier.

The following uses a long 1.0 to reciprocate RTA. Note that this is NOT the same constant as
would be used for FDIV.

FDIVL RTA, #c2001000000088 » 8>,RTA
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FDIVLV

Instruction: FDIVLV . {H,S8}
Class: TOP Floating-point divide long reverse

Purpose: The floating-point quotient, S2 divided by S1, is rounded according to RND_MODE and
stored in DEST.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: S1 and DEST have the same precision as the modifier. S2 has precision twice that of
the modifier.

The following uses a SW 1.0 to reciprocate RTA. Note that this is NOT the same constant as l
would be used for FDIV.H.

FOIVLV.H RTA,Hc208488, ,08> I
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FSC

Instruction: FSC . {H,S,D}
Class: TOP Floating-point scale

Purpose: The floating-point product, SI times 252, is rounded according to RND_MODE and
stored in DEST. Sl is a floating-point number and $2 is a signed integer.

Side Effects: FLT.OVFL, FLT_UNFL, FLT_NAN. (FLT_OVFL and FLT_UNFL are not set
during the 252 portion of the operation. This exponentiation is done with unlimited

precision.)

Precision: §1 and DEST have the same precision as the modifier. S2 is a single-word.

The following instruction may be used to double the value in RTA. Alternatively, FADD, '
FMULT, or FDIV might be used.

FSC RTA,#1 s RTACRTA%21 (1) =2%RTA |
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FSCV

Instruction: FSCV . {H,§,D}
Class: TOP Floating-point scale reverse

Purpose: The floating-point product, S2 times 25!, is rounded according to RND_MODE and
stored in DEST. S2 is a floating-point number and S1 is a signed integer.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN. (FLT_OVFL and FLT_UNFL are not set
during the 25! portion of the operation. This exponentiation is done with unlimited

precision.)

Precision: S2 and DEST have the same precision as the modifier. S1 is a single-word.

| The following two instructions set RTA to the average of X and Y. I

FAOD RTA,X,Y

l_ FSCV RTA,#-1,RTA ' '
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FIX

Instruction: FIX . {FL,CL,DM,HP,US} . {Q,H,s,D} . {H,s,D)
Class: XOP Fix floating-point number

Purpose: Convert the floating-point number specified by OP2 into an integer and store it in OP|.
Use the rounding mode specified by the first modifier.

Side Effects: INT_OVFL

Precision: OPI has the precision of the second modifier. OP2 has the precision of the third
modifier.
, The following converts a floating point value in RTA into an integer. The exact result depends
on the value and the rounding mode specified in USER_STATUS.RND_MODE.

l FIX.US RTA,RTA
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FLOAT

Instruction: FLOAT . {H,S,D}. {Q,H,S,D}
Class: XOP Float fixed-point number

Purpose: Convert the integer specified by OP2 into a floating-point number and store it in OP 1.
Side Effects: FLT_OVFL. (This can occur only in the cases of FLOAT.H.S and FLOAT.H.D.)

Precision: OP1 has the precision of the first modifier. OP2 has the precision of the second
modifier.

The following loads RTA with the floating point value 1.0.

FLOAT RTA,#1 1RTA=200408,,8 (SW)
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FTRANS

Instruction: FTRANS . {H,S,D} . (H,S,D}
Class: XOP Floating-point transfer

Purpose: Take the floating-point number specified by OP2 and make it a floating-point number of
the precision of the first modifier. Store the result in OP1.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_.NAN. If OP2 has no greater precision than OPI,
then these can occur only if OP2 is one of the floating-point exception values.

Precision: OP2 has the precision of the second modifier. OPI has the precision of the first
modifier.

ﬂ The following illustrates the precision alteration possible with FTRANS. The exact values
produced will, in general, depend on the rounding mode defined in the
USER_STATUS.RND_MODE.

] FTRANS.S.D RTA,H#c200100000000 « 8> 1RTA=200400, ,8=1.8 l
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FNEG

Instruction: FNEG . {H,S,D}
Class: XOP Floating-point negate

Purpose: Take the floating-point negation of OP2 and store it in OP1l. The primary difference
between NEG and FNEG is that FNEG properly propagates the floating-point exception
values. They also have different side effects.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

Precision: OP1 and OP2 have the same precision as the modifier.

I These examples show how floating-point exceptions are propagated by FNEG. |

FNEG.H RTA, #c000081> sRTA<MUNF, signal FLT_UNFL
FNEG.H RTA, #c480001> +RTA«OVF, signal FLT_OVFL
I FNEG.H RTA, #c400000> sRTANAN, signal FLT_NAN l
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FABS

Instruction: FABS . {H,S,D)
Class: XOP Floating-point absolute value

Purpose: Take the floating-point absolute value of OP2 and store it in OPl. The primary
difference between ABS and FABS is that FABS properly propagates the floating-point
exception values. They also have different side effects.

Precision: OP1 and OP2 have the same precision as the modifier.

Side Effects: FLT_OVFL, FLT_UNFL, FLT_NAN

I These examples show how the uses of FABS and ABS on floating-point numbers differ. I

ABS.H RTA, #c-1> sRTACUNF, no side effects
FABS.H RTA, #c-1> sRTA«UNF, signal FLT_UNFL
ABS.H RTA, #c377777> ;RTA«OVF, no side effects
FABS.H RTA,#c377777> 1RTA<OVF, signal FLT_OVFL
ABS.H RTA, #c-480008> s RTANAN, signal INT_OVFL
FABS.H RTA,#c-400088> ;RTA<NAN, signal FLT_NAN

L
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FMIN

Instruction: FMIN . {(H,S,D}
Class: TOP Floating-point minimum

Purpose: DESTemin(S1,82). The smaller of the floating-point numbers S1 and 52 is placed in
DEST. The primary difference between MIN and FMIN is that FMIN properly
propagates the floating-point exception values.

Precision: S1, 82, and DEST all have the precision specified by the modifier.

This instruction sets RTA to the smaller of X and 43.0.

FMIN RTA,X,#c43.8>
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FMAX

Instruction: FMAX . {H,S,D}
Class: TOP Floating-point maximum

Purpose: DESTemax(S1,52). The larger of the floating-point numbers S1 and S2 is placed in
DEST. The primary difference between MAX and FMAX is that FMAX properly

propagates the floating-point exception values.

Precision: $1, 2, and DEST all have the precision specified by the modifier.

I This sequence of instructions takes the humber FOO and “clips” it to be within the window l
{0.0,1.0].

FMAX RTA,F0O0,?0.8 s larger of FOO and 8.8 to RTA

l FMIN FOO,RTA,?1.8 ismaller of that and 1.8 to FOO ,
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5.4 Move

Move instructions are used to move operands and/or addresses of operands to memory
locations and/or registers. Many words may be moved by the single instructions MOVMQ_ and
MOVMS. Single registers can be saved and loaded with a single instruction using SLR or
SLRADR. Virtual or physical addresses can be loaded using MOVADR or MOVPHY. The
precisions associated with each move instruction are described in the instruction descriptions.
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MoV

Instruction: MOV . {Q,H,§,D} . {Q,H,S,D)
Class: XOP Logical move

Purpose: OP1<OP2. If OP2 has greater precision than OP], the low-order bits of OP2 are used.
If OP2 has smaller precision than OPI, it is zero-extended to the left. This is best
thought of as a "logical” or "unsigned" move operation. No condition bits (e.g., carry or
integer-overflow) are affected. Note that the TRANS instruction can be used to perform
sign-extended or truncated integer moves, and FTRANS to perform moves of
floating-point numbers.

Precision: The two modifiers specify the precisions of OP1 and OP2 respectively.
Formal Description:

define MOV. pl:qhsd. p2:1qhsd = XOP (p1;p2] opl « low(pl, zero-extend(op2, 72));

The following copies the low-order QW of RTA into the high-order QW.

MOV.Q.Q RTA,c23>
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MoviviQ

Instruction: MQVMQ . { 2. 32 ,64,128}
Class: XOP Move many quarter-words

Purpose: Moves the number of quarter-words, specified by the modifier, from the locations starting
at ADDRESS(OP2) to the locations starting at ADDRESS(OPI). If the source and
destination regions overlap, the result is undefined. If either OPl or OP2 is an
immediate constant, a hard trap will occur.

Precision: This instruction deals with quarter-words for both source and destination precisions.

The following copies the three high-order QWs from RTA into RTB.

MOVMQ.3 RTB,RTA
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Movwvis

Instruction: MOVMS . {2..32)
Class: XOP Move many single-words

Purpose: Moves the number of single-words, specified by the modifer, from the locations starting at
ADDRESS(OP?) to the locations starting at ADDRESS(OPI1). If the source and
destination regions overlap, the result is undefined. If either OPl or OP2 is an
immediate constant, a hard trap will occur.

Precision: This instruction deals with single-words for both source and destination precisions.

The following saves all the registers from RTA on in a block starting at SAVEBK.

MOVMS. 28 SAVEBK,RTA
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EXCH

Instruction: EXCH . {Q,H,S,D}
Class: XOP Exchange words

Purpose: Exchange the values OP1 and OP2. If either OP1 or OP2 is an immediate constant, a
hard trap will occur.

Precision: OP1 and OP2 each have the precision specified by the modifier.
Formal Description:

define EXCH.pighsd = XOPI[p,RW;p,RW] let temp = op2
then op2 « opl next opl « temp:

The following swaps RTA and RTB.

EXCH RTA,RTB
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SLR

Instruction: SLR.{0..31)
Class: XOP Save and load register

Purpose: OP1 is replaced by the contents of the register named by the modifier. The contents of
the register is then replaced by OP2.

Precision: All operands involved are single-words.
- Formal Description:

define SLR.n:n0tw3l = XOPIS;S) let temp = RIn]
then Rin) « op2 next opl « temp;

The first instruction moves RTA into RTB and zeros RTA. The second and third instructions
illustrate the results when one of the operands is the register specified in the instruction. The
fourth illustrates the result when the operands are the same.

SLR.4 RTB, #9 ;RTB«RTA, RTA«B
SLR.4 RTA,FO0  ;alternate NOP
SLR.4 FOO,RTA  ;alternate MOV FOO,RTA

l SLR.4 FOO,FO0  ;alternate EXCH RTA,FOO l
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SLRADR

Instruction: SLRADR.{0..31)
Class: XOP Save and load register with address

Purpose: OP1 is replaced by the contents of the register named by the modifier. The contents of
the register is then replaced by ADDRESS(OP2).

Precision: All operands involved are single-words.
Formal Description:

define SLRADR.n:n0to3l = XOPI[(S5;5,A] let temp = Rin)
then RIn) « Address(op2) next opl & temp;

The first instruction moves RTA into RTB and puts ADDRESS(FOO) in RTA. The second |
and third instructions illustrate the results when one of the operands is the register specified in
the instruction. The fourth illustrates the result when the operands are the same.

SLRADR.4 RTB,FO0O ;RTB«RTA, RTA<ADDRESS (FOO)
SLRADR.4 RTA,FOO ;alternate NOP
SLRADR.4 FOO,RTA jalternate MOV FOO,RTA; MOVADR RTA,RTA
L— SLRADR. 4 F0O,FOO ;alternate MOV FOO,RTA; MOVADR RTA,FOO _—J
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MOVADR

Instruction: MIOVADR
Class: XOP Move address

Purpose: OP1<ADDRESS(OP2). If OP2 is an immediate constant, a hard trap will occur.
Precision: OPI is a single-word.
Formal Description:

define MOVADR & XOPI[S;S,A]l opl & Address{op2)

The first instruction loads RTA with the address of the operand FOO.

MOVADR RTA,FO0 ;RTA«ADDRESS (FOO)
MOVADR RTA,RTA ;RTA«20 octal (RTA is register 4, at address &4x4=28)
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MOVPHY

Instruction: MOVPHY
Class: XOP Move physical address

Purpose: OP1«PHYSICAL_ADDRESS(OP2). If OP2 is an immediate constant, a hard trap will
occur. If ADDRESS(OP?2) is in the range 0.. 127 then the physical address of the
corresponding shadow memory location will be used. See Section 2.4.1 for a discussion of
shadow memory.

Restrictions: Illegal in user mode.

Precision: OP1 is a single-word.

Formal Description:

define MOVPHY & XOPI[S;S,PAl opl & Physical_Address(op2);

—

The following loads RTA with the physical address of FOO.

MOVPHY RTA,FO0 ;RTA«PHYSICAL_ADDRESS (FGO)
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5.5 Flag

Flag instructions produce results that are of the flag data type. The flag data type is discussed
in Section 38. The flag results are always single-words. A flag is either all zeros or all ones. All
zeros means true. All ones means false.

CMPSF compares two words according to a specified condition. It returns true if the
condition was satisfied and false if it was not. BNDSF checks if its argument is within a given
bounds and returns the appropriate flag.
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CMPSF

Instruction: CMPSF . {GTR,EQL,GEQ,LSS,NEQ,LEQ} . {(Q,H,S,D}
Class: TOP Compare and set flag

Purpose: DESTeS1 condition S2, where condition is the first modifier.

Precision: S1 and $2 have the same precision as the modifier. DEST is a single-word.

Formal Description:

define CMPSF.reliacond. piqhsd = TOPI(S;pipl dest « (if rel(S1, s2) then -1 else O fi);

Let X, Y, and Z be single-words, with Y=NEXT(X). The following code implements settin-_g—l
RTA to X if Z20 and to Y otherwise. It uses indexing rather than a conditional jump or skip.
Such use of indexing can often make more effective use of instruction pipelining than jumping
or skipping.

CMPSF.GEQ RTA,Z,#8
MOV RTA,cY>(RTA) sindexing with flag resuit

CMPSF.LSS can be used to produce an extended-sign word for a number. TRANS or
FTRANS can be used to sign-extend a number to one of the four standard precisions, but this
trick is useful in dealing with numbers of very large precision.

CMPSF,.LSS RTA,NUM, #2 ;all bits of RTA get the sign bit of NUM

The effect of CMPSF.cond can be obtained by an AND or ANDCT followed by a
CMPSF.EQL or CMPSF.NEQ,

ANDCT RTA,F0O,BAR s this behaves as would the fictional
+ instruction CMPSF.NON RTA,FGO,BAR I

| CMPSF.EQL RTA,#0 ;
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BNDSF

Instruction: BNDSF . {(B,MIN,M1,0,1} . {Q,H,S,D}
Class: TOP Bounds-check and set flag

Purpose: The first modifier determines if $2 is compared against a constant and S1, or against S|
and NEXT(S1). If the first modifier is B then if SISS2<NEXT(S1) then DEST«TRUE
else DEST<FALSE. If the first modifier is one of MIN, MI, 0, and | then if
constant<S2<S1 then DEST«TRUE else DEST<FALSE. Constant=-1 if the first modifier
is M1. Constant=0 if the first modifier is 0. Constant=1 if the first modifier is 1. If the
first modifier is MIN then constant is the negative number with the greatest magnitude
for the precision specified by the second modifier.

Precision: S1 and S2 have the same precision as the second modifier. DEST is a single-word. If
NEXT(S1), 0, 1, -1, or MIN is used it also has the same precision as the second modifier.

The following two instructions are alternate implementations for setting RTA to -1 if X contains
the ASCII representation of a digit, and to 0 otherwise. In the first instruction FASM places the
string "09" on a data page automatically.

BNDSF.B.Q RTA, ["89"],X
l ~ BNDSF.8.Q RTA,#11,#c-"8"5(X) ;X must be a register I
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5.6 Boolean

Boolean instructions operate upon the boolean data type (see Section 3.1). All boolean
instructions can operate on any of the four data precisions (QW,HW ,SW,DW). Both operands must
be of the same precision. The result of a boolean operation has the same precision as the operands.
Note that none of the condition bits (eg., carry or integer-overflow) can be set by boolean
instructions.

The three-operand boolean instructions ANDTC, ANDCT, ORTC, and ORCT are not
symmetric in their use of S1 and 52 Nevertheless, instructions named ANDTCV, ANDCTYV,
ORTCYV, and ORCTYV are not provided. This is because the reverse form of ANDTC is provided
by ANDCT, of ANDCT by ANDTC, of ORTC by ORCT, and of ORCT by ORTC.
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NOT

Instruction: NOT . {Q,H,S,D}
Class: XOP Logical (bit-wise) NOT

Purpose: OP leone’s-complement(OP2)
Precision: OP1 and OP2 have the same precision as the modifier.
Formal Description:

define NOT. p:ghsd = XOP(p;pl opl & - op2;

The following is an alternate to NEG RTA.

NOT RTA, #c-15(RTA) ;RTA«-RTA
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AND

Instruction: AND . {Q,H,S,D}
Class: TOP Logical (bit-wise) AND

Purpose: DEST«S1AS2
Precision: S1, S2, and DEST all have the precision specified by the modifier.
Formal Description:

define AND. p:qhsd = TOP (pspsp) dest « S1 A s2;

I The following instruction illustrates the effect of all possible combinations of bits in the l
operands.

l AND.Q RTA,#3,#5 ;RTA=1 I
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ANDTC

Instruction: ANDTC . {Q,H,S,D}
Class: TOP Logical (bit-wise) AND true/complement

Purpose: DEST«S 1aone’s-complement(S2). Note that the "TC" in ANDTC means
"True-Complement" and refers to the fact that S1 and one’s-complement(S2) respectively
are operands to the AND function. The reverse form of ANDTC is ANDCT, not
ANDTCV.

Precision: S1, $2, and DEST all have the precision specified by the modifier.
Formal Description:

define ANDTC.pighsd & TOP[pspsp) dest & SI A (- s2);

' The following instruction illustrates the effect of all possible combinations of bits in the l
operands.

ANDTC.Q. RTA, #3,#5 ;RTA=2

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field decremented as
an integer "in place” in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

AND RTA, WORD, MASK 1RTACUWORD with non-selected bits zeroed
DEC RTA szeroed bits propagate the borrow

AND RTA,MASK imask out non-selected bits

ANDTC WORD, MASK smask out SELECTED bits in WORD

L OR WORO,RTA imerge the two results |
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ANDCT

Instruction: ANDCT . {Q,H,S,D}
Class: TOP Logical (bit-wise) AND complement/true

Purpose: DEST«one’s-complement(S 1)aS2. Note that the "CT" in ANDCT means
"Complement-True" and refers to the fact that one’s-complement(S1) and S2 respectively
are operands to the AND function. The reverse form of ANDCT is ANDTC, not
ANDCTYV.

Precision: S1, $2, and DEST all have the precision specified by the modifier.

Formal Description:

define ANDCT.pighsd & TOP[pipspl dest € (= S1) A s2;

The following instruction illustrates the effect of all possible combinations of bits in the I
operands.

L

ANDCT.Q RTA,#3,#5 1RTA=4 I
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OR

Instruction: OR . {Q,H,S5,D}
Class: TOP ' Logical (bit-wise) OR

Purpose: DEST«S1vS2
Precision: S1, 82, and DEST all have the precision specified by the modifier.
Formal Description:

“define OR. pighsd = TOP(pip1p] dest « S1 v s2;

The following instruction illustrates the effect of all possible combinations of bits in the
operands.

OR.Q RTA,#3,#5 iRTA=7
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ORTC

Instruction: ORTC . {Q,H,S,D}
Class: TOP Logical (bit-wise) OR true/complement

Purpose: DEST«S Inone’s-complement(S2). Note that the "T'C" in ORTC means
"True-Complement" and refers to the fact that S1 and one’s-complement(S2) respectively
are operands to the OR function. The reverse form of ORTC is ORCT, not ORTCV.

Precision: S1, 82, and DEST all have the precision specified by the modifier.
Formal Description:

define ORTC.p:qhsd 8  TOP(p;pipl dest « Sl-v (- s2);

| The following instruction illustrates the effect of all possible combinations of bits in the I
operands. ‘

ORTC.Q RTA,#3,#5 +RTA=773

Suppose that MASK is a mask whose one-bits select certain (possibly non-contiguous!) bits of
WORD. These bits are to be regarded as a "field", and the contents of that field incremented as
an integer "“in place" in WORD, without affecting non-selected bits of WORD. This can be
done as follows.

ORTC RTA,WORD,MASK +RTA<WORD with non-selected bits set to one
INC RTA sone bits propagate the carry

AND RTA, MASK smask out non-selected bits

ANDTC WORD, MASK ymask out SELECTED bits in WORD

OR WORO,RTA ymerge the two results l
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ORCT

Instruction: ORCT . {Q,H,S,D}
Class: TOP Logical (bit-wise) OR complement/true

Purpose: DEST «one's-complement(S 1)nS2. Note that the "CT" in ORCT means
"Complement-True" and refers to the fact that one’s-complement(S1) and S2 respectively
are operands to the OR function. The reverse form of ORCT is ORTC, not ORCTV.

Precision: S1, $2, and DEST all have the precision specified by the modifier.
Formal Description:

define ORCT.piqghsd @  TOPI[pipipl dest & (- S1) v s2;

Jri——

The following instruction illustrates the effect of all possible combinations of bits in the
operands.

ORCT.Q RTA,#3,#5 1RTA=775
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NAND

Instruction: NAND . {Q,H,S,D}
Class: TOP Logical (bit-wise) NAND (NOT of AND)

Purpose: DEST«one’s-complement(S12S2)
Precision: S1, $2, and DEST all have the precision specified by the modifier.
Formal Description:

define NAND.pighsd ®  TOP[pipip]l dest « = (S1 A s2);

The following instruction illustrates the effect of all possible combinations of bits in the
operands.

NAND.Q RTA, #3, #5 . .RTA=776
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NOR

Instruction: NOR . {Q,H,S,D}
Class: TOP Logical (bit-wise) NOR (NOT of OR)

Purpose: DEST «one's—complement(S1vSQ2)
Precision: S1, S2, and DEST all have the precision specified by the modifier.

Formal Description:

define NOR. p:gqhsd = TOP(p;pip) dest &« = (Sl v s2);

The following instruction illustrates the effect of all possible combinations of bits in the
operands.

NOR.Q RTA, #3,#5 sRTA=770
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XOR

Instruction: XOR . {Q,H,S,D}
Class: TOP Logical (bit-wise) exclusive OR

Purpose: DEST«(S1none’s-complement(S2)) v (one’s-complement(S 1)rS2)
Precision: S1, $2, and DEST all have the precision specified by the modifier.

Formal Description:

define XOR. p:qhsd = TOPpspspl dest « S1 @ s2;

l The following instruction illustrates the effect of all possible combinations of bits in the l
operands.

XOR.Q RTA,#3,#5 ;RTA=6

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of XOR.)

XOR QUUX, ZTESCH
XOR ZTESCH, QUUX

l XOR QUUX, ZTESCH | I
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EQV

Instruction: EQV . {Q,H,S,D}
Class: TOP Logical (bit-wise) equivalence

Purpose: DEST«(S1AS2) v (one’s-complement(S 1)none’s-complement(S2))
Precision: S1, $2, and DEST all have the precision specified by the modifier.
Formal Description:

define EQV. p:qhsd = TOP(p;pspl dest « - (S1 & s2);

I The following instruction illustrates the effect of all possible combinations of bits in the l
operands.

EQV.Q RTA,#3,#5 sRTA=771

The following code exchanges the two words QUUX and ZTESCH. (A better way to do this is
with the EXCH instruction, but this example demonstrates an interesting information-preserving
property of EQV.)

EQV QUUX, ZTESCH
EQYV ZTESCH, QUUX

I EQV QUUX, ZTESCH I
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5.7 Shift and Rotate

The shift and rotate instructions provide logical and arithmetic shifting of operands. Since all
shift and rotate instructions are non-commutative, each instruction is also provided in its reverse
form (e.g., SHF and SHFV).

Note that a left shift (rotate) by N is equivalent to a right shift (rotate) by -N for all the
instructions in this section except for DSHF and DSHFV. The effect of these instructions is
described individually.
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SHF

Instruction: SHF . {LF,RT}. {(Q,H,S,D}
Class: TOP Logical shift

Purpose: DEST«S]1 logically shifted {left,right} by S2. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by §2 is identical to a right shift by -52.

Precision: 82 is a single-word. DEST and S1 have the precision specified by the second modifier.

Formal Description:

define SHF.dirilfrt.piqhsd m TOP [p;p;S] dest « shift(S1, case dir of

LF: s2;
RT: - s23
end) s

[rm———

The following shows the effect of a positive left-shift argument.

SHF.LF.Q RTA,#-1,#1 ;RTA=-2
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SHFV

Instruction: SHFV . {LF,RT}. {Q,H,S,D}
Class: TOP Logical shift reverse

Purpose: DEST«S2 logically shifted {left,right} by S1. Bits shifted in are zero bits; bits shifted out
are lost. Note that a left shift by S1 is identical to a right shift by -S1.

Precision: S1 is a single-word. DEST and $2 have the precision specified by the second modifier.

Formal Description:

define SHFV.dirtlfrt.piqhsd s TOP[p;Sipl dest « shift (s2, case dir of

LF: Sl
RT: - Sl;
end) ;

The following shows the effect of a negative left-shift argument.

SHFV.LF.Q RTA,#-1,41 1RTA=8
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DSHF
Instruction: DSHF . {LF,RT} . {Q,H,S8}
Class: TOP Logical double-width shift
Purpose: cS1 ||NEXT(S1)> is logically shifted {leftrighty by S2 positions. The

{high-orderJow-order} 9, 18, or 36 bits of the result (corresponding to Q, H, $
respectively) are then stored in DEST. Note that cS1 || NEXT(S1)> is not treated as a
"long" operand, but as two separate operands (which is why the mnemonic is DSHF and
not SHFL). This is useful for multi-word shifts of any of the three precisions allowed.
Long right shifts must start at the right end of the multi-word vector, and long left shifts
must start at the left end of the vector. Note that DSHF.RT by X is equivalent to

DSHF.LF by (3-X), (18-X), (36-X).

Precision: <S1 || NEXT(S1)> is considered to be two {QH,S}-precision words (rather than one
{H,S,D}-precision word) for alignment purposes.

| The following illustrates the result of shifting a long operand. l

DSHF.LF.Q RTA, #c123456>, #1 1RTA=247

Suppose that a 30-word block of bits MARKERS is to be logically shifted in place three bits to
the left. This can be done as follows.

MOV RTB, 49 sRTB indexes MARKERS from left to right
LOOP: DSHF.LF <MARKERS> (RTB),#3 ;produce one result word

ISKP.L.SS RTB, #29.,L00P yincrement RTB and loop if < 29,

SHF.LF MARKERS+29. ,#3 ;do the last word in single precision

The same block of bits can be logically shifted three bits to the right as follows. Note that the
operation must proceed in the other direction within the block, ie. from right to left.

MOV RTB, #29. 1RTB indexes MARKERS from right to left
LOOP: OSHF.RT cMARKERS>(RTB},#3 ;produce one result word

DSKP.GTR RTB, #8,L00P sdecrement RTB and loop if > O

SHF.RT MARKERS, #3 ;do the last word in single precision

The same block of bits can be arithmetically shifted three bits to the right by using the same
I loop but changing the last SHF.RT instruction to SHFA.RT. ' ,
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DSHFV
Instruction: DSHFV . {LF,RT} . {Q,H,S}
Class: TOP Logical double-width shift reverse
Purpose: €S2 || NEXT(S2)> is logically shifted {leftright} by 81 positions. The

{high-order,low-order} 9, 18, or 36 bits of the result (corresponding to Q, H, §
respectively) are then stored in DEST. Note that €S2 | NEXT(S2)> is not treated as a
"long" operand, but as two separate operands (which is why the mnemonic is DSHFV and
not SHFLV). This is useful for multi-word shifts of any of the three precisions allowed.
Long right shifts must start at the right end of the multi-word vector, and long left shifts
must start at the left end of the vector. Note that DSHFV.RT by X is equivalent to
DSHFV.LF by (9-X), (18-X), (36-X).

Precision: €52 || NEXT(S2)> is considered to be two {QH,S}-precision words (rather than one
{H,S,D}-precision word) for alignment purposes.

Let X be a DW. Assume RTA contains the negative of the amount by which we wish to shift X I
left. To store the shifted result in RTA the following instruction may be used.

OSHFY.RT RTA, #c44>(RTA) X I
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SHFA

Instruction: SHFA . {LF,RT} . {Q,H,S,D}
Class: TOP Shift arithmetically

Purpose: DEST«S1 arithmetically shifted {left,right} by $2. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a multiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUO2 instruction should be used instead. Note
that a left shift by S1 is equivalent to a right shift by -S1.

Side Effects: INT_OVFL will be set if any bit that is to be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with $2>0 or by shifting right
with §2<0. During untrapped integer-overflow SHFA stores the correct sigh followed

by the low-order bits of the correct result.

Precision: S2 is a single-word. DEST and S1 have the precision specified by the second modifier.

l The following two instructions illustrate the difference between SHF.RT and SHFA .RT. l

SHF.RT.Q RTA,#-1,#1 1 RTA=377

L SHFA.RT.Q RTA,#-1,#1 iRTA=777 I
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SHFAV

Instruction: SHFAV . {LF,RT} . {(Q,H,S,D}
Class: TOP . Shift arithmetically reverse

Purpose: DEST«S2 arithmetically shifted {left,right} by S1. Shifts to the (true) left introduce zero
bits; shifts to the (true) right replicate the sign bit and discard bits shifted out the low end.
This is equivalent to a muiltiplication or division by a power of two, where it is
understood that such a division rounds towards negative infinity. For division by a
power of two, rounding towards zero, the QUO2V instruction should be used instead.
Note that a left shift by S1 is equivalent to a right shift by -S1.

Side Effects: INT_OVFL will be set if any bit that is to be shifted into the sign bit does not equal
the original sign bit. This may occur when shifting left with S1>0 or by shifting right
with S1<0. During untrapped integer-overflow SHFA stores the correct sign followed
by the low-order bits of the correct result.

Precision: Sl is a single-word. DEST and $2 have the precision specified by the second modifier.

The following instruction sets INT_OVFL.

SHFAV.LF RTA,#7,H3 1 RTA=208
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ROT

Instruction: ROT . {LF,RT}. {Q,H,S,D}
Class: TOP Logical rotate

Purpose: DEST«S] rotated {leftright} by $2. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by $2 is equivalent to a

right rotation by -S2.

Precision: S2 is a single-word. DEST and S| have the precision specified by the second modifier.

Formal Description:

define ROT.dir:ifrt.psiqghsd = TOP[p;piS] Rotate(Sl, dir, s2};

The following illustrates a right rotation by a positive amount.

ROT.RT.Q RTA,#1,#1 sRTA=420
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ROTV

Instruction: ROTV . {LF,RT}. {Q,H,S,D}

Class: TOP Logical rotate reverse

Purpose: DEST«S2 rotated {left,right} by S1. Rotation introduces bits shifted out of one end into
the other end, so that no bits are lost. Note that a left rotation by SI is equivalent to a

right rotation by -S1.

Precision: S1 is a single-word. DEST and S2 have the precision specified by the second modifier.

Formal Description:

define ROTV.dir:lfrt.pighsd & TOP[p;Sip) Rotate(s2, dir, S1);

The following illustrates a left rotation by a negative amount.

ROTV.LF.Q RTA,#-1,43 1RTA=481
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5.8 Skip and Jump

Skip and jump instructions allow control to be transferred to locations other than that of the
next sequential instruction. Skip instructions are used for short-range transfers, while jumps are
used to transfer control anywhere in the 30-bit address space. In many cases, the skips or jumps
occur only if a condition that is specified by a modifier to the instruction is true. Skips or jumps
can occur on an arithmetic condition (ACOND) which can be any one of the following :

ACOND = {GTR,EQL,GEQ,LSS,NEQ,LEQ}
These correspond to the conditions >, =, 2, ¢, =, < respectively.

Skips may occur on logical conditions (LCOND) as well as arithmetic conditions for the SKP
instruction. The LCONDs are:

LCOND = {NON,ALLANY,NAL}

These correspond to the logical conditions that relate two operands (say OP1 and OP2) as shown in
the table below. Here OP2 is considered to be a mask whose one-bits select bits of OP1 to be
tested.

Modifier = Condition Meaning
NON (OP1 AOP2) =0 If no masked bits are |
ALL (one’s-complement(OP1 A OP2)) = 0 If all masked bits are 1
ANY (OP1 AOP2) = 0 If any masked bit is 1

NAL (one’s-complement(OP1 A OP2)) = 0 ~ If not all masked bits are 1

Table 5-5
LCOND modifier descriptions

By combining the ACONDs and the LCONDs, we get the arithmetic and logical conditions
(ALCONDs) shown below:

ALCOND = {GTR,EQL,GEQLSS,NEQLEQNON,ALLANY,NAL}

All skip instructions are members of the skip instruction class (SOP). See section 4.1.3 for a
discussion of this instruction class. The skip instructions are used to perform short jumps in the
range -8..7 single-words relative to the current PC (the first word of the instruction that is
currently executing). The offset of the jump is specified by the four-bit SKP field of the opcode
(OPCODE.SKP). Since OPCODE.SKP fully specifies the jump destination, both OP1 and OP2
can be used in comparison operations.
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All jump instructions are members of the jump instruction class (JOP). See section 4.1.4 for a
discussion of this instruction class. The jump instructions are used to transfer control to a general
memory location. The low twelve-bits of the instruction specify a JUMPDEST, that is, the location
to which control will be transferred if the condition specified in the jump instruction is true. OP1
specifies a general word that can be tested against the condition specified by the ACOND modifier.
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SKP

Instruction: SKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ,NON,ALL,ANY,NAL} . {Q,H,S5,D}
Class: SOP Skip on condition

Purpose: If OP1 ALCOND OP2 is true (where ALCONDe{GTR, EQL, GEQ, LSS, NEQ, LEQ,
NON, ALL, ANY, NALY}), control is transferred to the specified location that is within
-8 .. 7 single-words of the current PC. If ALCOND is false, control is transferred to
the next instruction. The number of single-words to skip is specified by OPCODE.SKP.

Precision: The precision of OP1 and OP?2 is specified by the second modifier.
Formal Description:

define SKP.rel:alcond.piqhsd & SOPp;p) it rellopl, op2) then Skip fi;

The following instructions compute the function "If RTA is Odd Then RTA«3%RTA+! Fj; l
RTA«RTA/2" repeatedly while RTA>l. Note that FASM determines the SW offset
~automatically from the JUMPDEST operand.

THREEN:
SKP.LEQ RTA, #1,DONE
SKP.NON RTA,#1,RTAEVN ;skip if RTA has an even integer

MULT RTA,#3 imultiply by three
ADD RTA,#1 1add one - result must be even,
RTAEVN: :+ 80 fall into even case

QUO2 RTA,#1 ithis is better than QUO RTA,#2
JMPA THREEN :

ENE: | _l
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ISKP

Instruction: ISKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: SOP Increment, then skip on condition

Purpose: OP1«OPl+l. CARRY is not affected. Then if OPI ACOND OP2 (where
ACONDe{GTR,EQL,GEQ,LSSNEQ,LEQ}), control is transferred to a location that is
within -8 .. 7 single-words of the current PC. If ACOND is false, control is transferred
to the next instruction. The number of single-words to skip is specified by
OPCODESKP.

Side Effects: INT_OVFL may be set by the incrementing operation.
Precision: OP1 and OP2 are both single-words.
Formal Description:

define ISKP.rel:acond & SOPIS,RW;S] Add(opl, 1) - sum, ¢, ov next
Int_Overflow? next
(if rel(sum, op2) then Skip fi also
opl & sum also
Carry « ¢);

l The following is a typical loop of the form, "For location I«M Thru N Do ..". The inner part of I
the loop must not exceed 8 SWs when assembled.

MOV 1.M
L.OOP:

I ISKP.LEG I,N,LOOP |
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DSKP

Instruction: DSKP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: SOP Decrement, then skip on condition

Purpose: OP1«OPI-1. CARRY is not affected. Then if OP1 ACOND OP2 is true (where
ACONDe¢{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to a location that is
within -8 .. 7 single-words of the current PC. If ACOND is false, control is transferred
to the next instruction. The number of single-words to skip is specified by
OPCODESKP.

Side Effects: INT_OVFL may be set by the decrementing operation.
Precision: OP1 and OP2 are both single-words.
Formal Description:

define DSKP.reltacond 8 SOPIS,RW;S] Subtract(opl, 1) - dif, ¢, ov next
Int_Overflow? next
(if rel(dif, op2) then Skip fi also
opl « dif also
Carry « ¢}

l-?}-le following instructions search an array of N SWs starting at TABLE for the largest index_l—-l
such that TABLE[I]=I. Assume that TABLE[O] contains 0 to ensure loop termination, and that
N single-words follow this entry. In the following, I must be a register. Note that since the loop
is one instruction long the SW skip offset is zero. The "-1" added to the base address TABLE
compensates for the fact that the address calculation occurs.before the decrementation operation,
but the skip condition is tested after the decrementation operation. In turn, "N+1" is used
instead of "N" in the initialization to compensate for this compensation.

MOV 1, ?2<N+1> +N is an assembly literal symbol

I 00P:  DSKP.NEQ I,cTABLE-1>(I),LOOP ' l
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JMP

Instruction: YJMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Jump on condition

Purpose: If OP1 ACOND NEXT(OPI) is true (where ACONDe¢{GTR, EQL, GEQ, LSS, NEQ,
LEQ)}), control is transferred to the location specified by JUMPDEST. If the condition is

false, control is transferred to the next instruction.
Precision: OP1 and NEXT(OP1) are both single-words.

Formal Description:

define JMP.reltalcond = JOP(p,NR] if rellopl, Next{opl)) then Jump fi;

The following loop searches down a chain of pointers for a specified tail pointer FOOPTR. Let
P be a register and HEAD the address of the first link in the chain. Note that NEXT(P) is
implicitly used by this routine to hold the comparison operand.

MOV.D.D P,#cHEAD  FOOPTR> ;initialize P and NEXT(P)
LLOOP: Mov P, (P)

l JMP.NEQ P,LOOP . I
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JMPZ

Instruction: JMPZ . {GTR,EQL,GEQ,LSS,NEG,LEQ} . {Q,H,s,D}
Class: JOP Jump on condition relative to zero

Purpose: If OP1 ACOND NEXT(OPI) is true (where ACONDe[GTR, EQL, GEQ, LSS, NEQ,
LEQ)), control is transferred to the location specified by JUMPDEST. If the condition is
false, control is transferred to the next instruction.

Precision: OPI1 is a single-word.
Formal Description:

define JMPZ.rel:acond.p:qhsd & JOP(p] if rellopl, O) then Jump fi;

The following jumps to AWAY iff RTAs1.0.

JMPZ.LEQ #c-1.8>(RTA), AWAY
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JIVIPA

Instruction: JIVIPA
Class: JOP Jump always

Purpose: Jump unconditionally to JUMPDEST. ODI must be identically zero or a hard trap will
occur.

Formal Description:

define JMPA & JOPIX,Ul Jump;

o —

The following instruction jumps to the RTA-th address stored in the table at JVECTS.

JMPA ceJVECTS (RTA)>
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IJmvp

Instruction: INMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Increment, then jump on condition

Purpose: OP1<OPIl+1. CARRY is not affected. Then if OP1 ACOND NEXT(OPI) is true
(where ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ]}), control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the incrementing operation.

Precision: OP1 and NEXT(OP]1) are both single-words.
Formal Description:

define IUMP.reltacond & JOP[p,NRW) Add(opl, 1) » sum, ¢, ov next
Int_Overflow? next
(if rel(sum, Next(opl)) then Jump fi also
opl « sum also
Carry « ¢)y

l The following is a typical loop of the form, "For location IeM Thru N Do ..". The inner part of I
the loop may be any length when assembled.

MOV.D.D I, [(MeN) sM,N are assembly literals
LOOP:

| 1JMP.LEQ I,LOOP ' , |
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NMPZ

Instruction: WMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ)}
Class: JOP Increment, then jump on condition relative to zero

Purpose: OP1«OPIi+1. CARRY is not affected. Then if OP1 ACOND O is true (where

ACONDe¢{GTR,EQL,GEQ,LSSNEQ,LEQ}), control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next

instruction.
Side Effects: INT_OVFL may be set by the incrementing operation.
Precision: OPI1 is a single-word.

Formal Description:

define IUMPZ.reltacond = JOP[p,RW] Add(opl, 1) =+ sum, c, ov next
Int_Overflow? next

(it rel(sum, 0) then Jump fi also opl « sum also Carry « c);

The following increments N and jumps to AWAY if N=0.

[JMPZ.EQL N, AlAY
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IJMPA

Instruction: IJVIPA
Class: JOP Increment and jump always

Purpose: OP1<OPI+1. CARRY is not affected. Jump unconditionally to JUMPDEST.
Side Effects: INT_OVFL may be set by the incrementing operation.

Precision: OP1 is a single-word.

Formal Description:

define IUMPA = JOP[p,RW] Add(opl, 1) - sum, c, ov next

Int_Overflow? next
(Jump slso opl « sum also Carry « ¢);

The following is an extremely inefficient way to add RTA into RTB, assuming that integer I
overflow traps are disabled. However, it shows off the IJMPA instruction.

LOOP: DSKP.EQL RTA, #-1 tdecrement RTA; skip next instruction if -1
1JMPA RTB,LO0P jotheruwise increment RTB and loop I

L
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DJMP

Instruction: DJMP . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Decrement, then jump on condition

Purpose: OP1«OPI-1. CARRY is not affected. Then if OPI ACOND NEXT(OPI) is true
(where ACONDe¢{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to the location
specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the decrementing operation.
Precision: OP1 and NEXT(OP1) are both single-words.
Formal Description:

define DJMP.reltacond = JOP[p,NRW] Subtract(opl, 1) - dif, ¢, ov next
Int_Ouverflow? next
(if rel(dif, Next(opl)} then Jump fi also
opl & dif also
Carry « ¢);

I The following is a typical loop of the form, "For location 1«M Step -1 Thru N Do ..". The
inner part of the loop may be any length when assembled.

MOV.D.D I, [MeN] +M,N are assembly literals
LOOP:

I DJMP.GEQ 1,LOOP ' , |
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DJMPZ

Instruction: DJMPZ . {GTR,EQL,GEQ,LSS,NEQ,LEQ}
Class: JOP Decrement, then jump on condition relative to zero

Purpose: OP1«OPI-1. CARRY is not affected. Then if OP1 ACOND O is true (where
ACONDe{GTR,EQL,GEQ,LSS,NEQ,LEQ}), control is transferred to the location

specified by JUMPDEST. If the condition is false, control is transferred to the next
instruction.

Side Effects: INT_OVFL may be set by the decrementing operation.

Precision: OP1 is a single-word.

Formal Description:

define DJMPZ.reliacond = JOP[p,RW] Subtract(opl, 1) - dif, c, ov next
Int_Overflow? next

(if rel(dif, 0) then Jump fi also opl « dif also Carry « c);

The following decrements N and jumps to AWAY if N=0.

DJMPZ.EGL N, AWAY
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DJMPA

Instruction: DJIVIPA
Class: JOP Decrement and jump always

Purpose: OP1<OPI-1. CARRY is not affected. Jump unconditionally to JUMPDEST.
Side Effects: INT_OVFL may be set by the decrementing operation.

Precision: OPI1 is a single-word.

Formal Description:

define DUMPA & JOPI[p,RW] Subtract{opl, 1) - dif, c, ov next

Int_Overflow? next
(Jump also opl <« dif also Carry « c);

————

The following decrements N and jumps to AWAY.

DJMPA N, AWAY
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BNDTRP

Instruction: BNDTRP . {B,MIN,M1,0,1} . {Q,H,S,D)
Class: XOP Bounds check and trap on failure

Purpose: Check if OP1 and OP?2 satisfy the bounds condition that is specified by the first modifier.
If the condition is not satisfied then a bounds trap will occur. The following conditions
are associated with the first modifier:

Modifier Meaning
B - [Both] OP! € OP2 < NEXT(OP1)
MIN - [MINimum] MINNUM < OP2 s OPI
M1 - [Minus 1] -1 < OP2< OPI
0 - [Zero] 0 £ OP2 < OPI
I - [One) I £ OP2 s OPI

Table 5-6

BNDTRP modifiers and meanings

Precision: The precision of OP1 and OP?2 is specified by the second modifier.

The following two equivalent instructions both trap if [RTA[|>1.0

|

BNDTRP.B [-1.8 e 1.8],RTA
BNDTRP.@ #c2.8>,#cl.8>(RTA)

L
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5.9 Routine Linkage

Routine linkage instructions include the instructions to jump to and and return from
subroutines and coroutines. Instructions are also provided for returning from traps and interrupts
(see Section 6). The subroutine linkage conventions for the S-1 are described in a separate
document.

The JSR instruction is used to jump to subroutines. OP1 and the PC of the next instruction
to be executed (PC_NEXT_INSTR) are pushed into the /SR save area (JSR_.SAVE_AREA) on
the stack. It's format is shown in Figure 5-4. Control is then passed to the routine at the address
specified by JUMPDEST. See Section 4.1.4 for a description of how JUMPDEST is computed.
Return from a subroutine is accomplished using the RETSR instruction. The stack is decremented
so that the old OP1 value that was previously saved in the stack and the return address are now
popped off and saved in OP1 and PC_NEXT_INSTR respectively.

oP1
cbx8 | |PC_NEXT_INSTR<B:29>>
8 35

Figure 5-4
JSR Save Area Format

The JCR instruction is used to jump between coroutines. It allows easy transfer of control
between two routines by using OP1, OP2 and NEXT(OP?2) to transfer information. NEXT(OP2)
contains the return address to the coroutine that is not currently executing. No locations on the
stack are involved.

There are three return instructions that are used for returning from traps and interrupts.
They restore different amounts of information including status words and the return PC. RET is
used to return from instructions such as TRPSLF which do not save either PROC_STATUS or
USER_STATUS in the save area. RETUS does a return and restores USER_STATUS. This is
used for returning from soft-errors (see Section 6.1). RETFS does a return and restores full status,
that is, both PROC_STATUS and USER_STATUS are loaded from the save area. Note that the
return address is the first single-word from the end (highest memory location) of all save areas.
PROC_STATUS (if present) is the second single-word, while USER_STATUS (if present) is the
third single-word from the end of the save area. The formats of the save areas for traps and
interrupts are shown in Figures 6-3 to 6-7. Note that the RETFS restores the entire
PROC_STATUS word from the save area rather than loading partial processor status (as described
in section 2.5.1).

There are two instructions that are used to force the processor to execute trap sequences under
program control: TRPSLF and TRPEXE. TRPSLF can be used by either the executive or the
user to cause a trap to one of the TRPSLF_VECS that exist in the same address space as the
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instruction executing the TRPSLF instruction. TRPEXE can be used by either the executive or the
user to cause a trap to the executive. The vectors for TRPEXE start at location TRPEXE_VECS
in the executive’s address space.

The TRPSLF and TRPEXE instructions both deliver parameters to their respective trap
handlers by passing information in the form of two double-word trap parameter operands
(TRP_PARM_OP{1,2}){ 0.. 1] See Figure 6-6). The interpretation of these operands depends on
the value of the trap parameter descriptor single-word (TRAP_PARM_DESC_SW) which is located
in the trap vector for both TRPSLF and TRPEXE (see Figure 6-2).

The TRP_PARM_DESC_SW forms an extension to the opcode by describing ways in which
the trap parameter operands can be interpreted. It is a single-word consisting of the four
quarter-words labeled QW[ 0.. 3] respectively. QWI[0] and QWI[I] must be identically zero.
QWI[2] describes how OP2 of the trapping instruction will be passed into the trap routine in the
double-word TRP_PARM_OP1[0:1]. QWI[3] describes how OP1 of the trapping instruction will be
passed into the trap routine in TRP_PARM_OPI1[0:1]. QWI[2] and QWI[3] have identical format
and interpretation, They are interpreted as TMODE-fields (as described below).

The tables below show how the trap parameter operands are interpreted based on the value
of TMODE. Table 5-7 lists the primary uses for the different values of TMODE. Table 5-8
shows how the contents of TRP_PARM_OP{1,2}{0:1] are interpreted depending on the value of
TMODE. This table also shows the cases that cause an error trap occurs when interpreting
TMODE. The left or right arrows represent left or right justification with zero-filling respectively.

TMODE Primary Use

Check an unused operand descriptor.

Deliver a PC-relative jump descriptor.

Deliver the entire operand descriptor.

Deliver a pointer operand (cannot be an immediate).
Deliver a quarter-word value operand.

Deliver a half-word value operand.

Deliver a single-word value operand.

Deliver a double-word value operand.

~N D O WO N — O

Table 5-7
TMODE Values and their Uses
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TMODE  Trap Condition TRP_PARM _OP{12}[0] TRP_PARM_OP{1.2}1]
<0 always — _—
0 OD{1,2} =0 undefined undefined
1 never -0D{1,2} undefined
2 never -0OD{1,2} extended word for OD{1,2}*
3 IMMED(OP{1,2}) ADDRESS(OP{1,2})** undefined
4 never QW «OP{12}¥** undefined
5 HW alignment HW «OP{1,2}**¥ undefined
6 SW alignment SW OP{1,2} undefined
7 SW alignment OP{1,2}<0:35> OP{1,2}<36:71>%¥*
>7 always - —

® If TMODE-=2, then the extended word for OD{1,2} is stored in TRP_PARM_OP{1,2}(1] if

WK

KKK

the extended-word exists, otherwise TRP_PARM_OP{1,2}[1] is undefined.

the value of OD.F.

Table 5-8

Interpretation of TMODE

If TMODE=3, TRPEXE stores ADDRESS(OP{1,2}) with P-bit=1.

If TMODE= 4 .. 7, immediates are properly sign-extended and justified according to

The RET instruction is used for returning from TRPSLF instructions since it pops OP1
parameters off the stack in addition to the return PC. RETFS is used to return from TRPEXE
instructions since it restores the status words in addition to popping the PC and the parameters.
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JSR

Instruction: JSR
Class: JOP Jump to subroutine

Purpose: The return address and OP{ are pushed onto the stack and SP is ad justed accordingly.
The format of the JSR save area is shown in Figure 5-4. Control is then transferred to
JUMPDEST. If this instruction would cause SP>SL, a hard trap will occur and the stack
will not be affected. (The RETSR instruction is normally used to return from a
subroutine called by JSR.)

Precision: All operands involved are single-words.

Side Effects: SP«SP+8

The following pushes ADDRESS(FOO) and RTA on the stack before jumping to BAZ. l

JSR RTA,BAZ

FQO: oo sreturn address
L _
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JCR

Instruction: JCR
Class: XOP Jump to coroutine

Purpose: OP1 and OP2 are exchanged. NEXT(OP2) is prefetched and stored temporarily. The
PC_NEXT_INSTR of the routine that executed the JCR instruction is saved in
' NEXT(OP2). The value NEXT(OP2) that was prefetched is then loaded into PC and

control passes to the coroutine.

Precision: All operands involved are single-words.

Suppose that each of two coroutines has an associated stack. Let there be a double-word "save
area” SAVEAREA which contains the stack pointer and program counter for the currently
inactive coroutine. Whichever coroutine is actually running uses register SP as its stack pointer,
and of course uses PC as its program counter. Then the following instruction makes the current
coroutine inactive, and activates the other coroutine after setting up its stack pointer and saving
the current one.

l JCR SP,SAYE.AREA scall other coroutine l
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ALLOC

Instruction: ALLOC . {1 ..32}
Class: XOP Allocate stack locations

Purpose: This instruction is commonly used to save registers on the stack. It causes 1 .. 32
single-words starting at ADDRESS(OP1) to be moved into the memory locations starting
at SP. OP2 is added to the value of SP, producing a new value for SP (OP2 is therefore
a number of quarter-words, not a number of single-words). OP2 should be at least as
large as four times the modifier, but this may not be checked for by the hardware. If this
instruction would cause SP>SL, a hard trap will occur and the stack will not be affected.
If the source and destination overlap, the result is undefined.

Side Effects: SP«SP+OP2

( o .
Precision: All operands involved are single-words.

I The following saves all the registers and reserves an additional DW on the stack as well. l
ALLOC.32 %8, ?4x<48+2>

Note that the modifier is a decimal number, but the numbers in the operands are octal. The
same instruction could be written

I ALLOC.32 %8, ?4%<32.42> |
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RETSR

Instruction: RETSR
Class: XOP Return from subroutine

Purpose: Return from a subroutine that was invoked by the JSR instruction. The stack pointed to
by OP2 (usually SP) is decremented by eight, removing the saved OP| value and the
return address. OPI is then loaded with this old OP1 value, and control is transferred to
the location specified by the return address (See Section 5.9 for a description of the JSR
instruction and the JSR save area).

Side Effects: SP«ADDRESS(OP2)-8
Precision: All operands involved are single-words.

Formal Description:

define RETSR & XOPI[S;S,NR] Check_Jump_Address (Next (op2) <6:35>) next
(Sp « Address(op2) also
opl & op2 also
pc-nxt-instr « Next(op2)<6:33>);

I The following code calls BAZ, which returns to FOO, saving and restoring RTA on the stack. l
Assume SP is the stack pointer.

JSR RTA,BAZ
FQO: oo sreturn here

' BAZ: scalled routine

RETSR RTA, (SP) l




§5.9 Instruction Descriptions Page 181

RET

Instruction: RET ‘
Class: XOP Return and pop parameters

Purpose: Return from an exception without restoring registers. Note that OPl=1 for a return from
TRPSLF. OPI+1 single-words (OP1 parameters + return address) are popped off the
stack pointed to by ADDRESS(OP2) (usually SP), and the stack is ad justed. All popped
words except the return address are thrown away and ignored. Control is then
transferred to the location specified by the return address.

Side Effects: ADDRESS(OP2)cADDRESS(OP2)-4-OP Ix4

Precision: All operands involved are single-words.

Formal Description:

define RET = XOPI(S,R;S,R] Check_Jump_Address(op2<6:35>) next

(Sp « Address(op2) - shift{opl, 2) also
pc-nxt-instr « 0p2<6:33>);

I The following returns from a previous JSR call, throwing away the operand previously pushed I
on the stack by the JSR.

l. RET #1, (SP) l



Page 182 Instruction Descriptions §59

RETUS

Instruction: RETUS
Cilass: XOP Return, restoring user status

Purpose: Return from an exception that requires USER_STATUS to be restored (e.g., soft traps).
OP1+2 single-words (OP1 parameters + old USER_STATUS + return address) are
popped off the stack pointed to by ADDRESS(OP2), and the SP is ad justed.
USER_STATUS is loaded from the value in the stack. All other popped words except
the return address are thrown away and ignored. Control is then transferred to the

location specified by the return address.
Side Effects: SPcADDRESS(OP2)-8-OP Ix4

Precision: All operands involved are single-words.

The following returns from a soft trap (The soft-trap save area is shown in Figure 6-4).

RETUS #11, (SP)
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RETFS

Instruction: RETFS
Class: XOP Return, restoring full status

Purpose: Return from an exception that requires both USER_STATUS and PROC_STATUS to
be restored (i.e, hard traps, TRPEXE and interrupts. See Section 6.6 for a description of
the save areas associated with each of these). OPIl + 3 single-words (OP | parameters +
USER_STATUS + PROC_STATUS + return address) are popped off the stack, and the
SP is ad justed. USER_STATUS is loaded from the value saved in the stack. The entire
PROC_STATUS word is loaded from the value saved in the stack (as opposed to loading
partial processor status; see Section 2.5.1 for a description of partial processor status). All
other popped words except the return address are thrown away and ignored. Control is
then transferred to the location specified by the return address.

Restrictions: Illegal in user mode.
Side Effects: SP«ADDRESS(OP2)-12-OP 1x4

Precision: A1l operands involved are single-words.

The following returns from an interrupt.

RETFS #1, (SP)
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TRPSLF

Instruction: TRPSLF.{0..63)
Class: XOP Trap to self

Purpose: Causes a trap to a routine in the current address space. The trap vectors start at location
TRPSLF_VECS in the current address space. A particular vector in this block is selected
by the madifier. The trap vector specifies a handler address and a
TRP_PARM_DESC_SW. The save area contains two double-word trap operands, PC,
and PC_NEXT_INSTR. The interpretation of the operands is based on the TMODE
fields in TRP_.PARM_DESC_SW. See Section 5.9 for a complete discussion of these
fields and how they are interpreted.

The following causes a trap to the "number 0" trap routine in the current address space with
operands X and Y.

TRPSLF.8 X,Y
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TRPEXE

Instruction: TRPEXE.{0..63)
Class: XOP Trap to executive

Purpose: Causes a trap to a routine in the executive’s address space. The trap vectors start at
location TRPEXE_VECS in the executive’s address space. A particular vector in this
block is selected by the modifier. The trap vector specifies a handler address, a
TRP_PARM_DESC_SW, USER STATUS and PROC._STATUS. The save area
contains two double-word trap operands, PC, the old USER_STATUS and
PROC_STATUS, and PC_NEXT_INSTR. The interpretation of the operands is based
on the TMODE fields in TRP_.PARM_DESC_SW. See Section 59 for a complete
discussion of the uses of TRPEXE.

The following causes a trap to the "number 0" trap routine in the executive’s address space with
operands X and Y.

TRPEXE.B X,Y
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5.10 Stack

A stack is specified by any two consecutive single-words in memory (or in registers). The S-1
interprets these locations as a stack-pointer and a stack-limit. The meaning of these terms differs
slightly whether we are talking about upward-growing stacks or downward-growing stacks. The
interpretation of which of these two single-words is the stack-pointer and which is the stack-limit
depends on whether we are talking about upward-growing stacks or downward-growing stacks. In
the description of stacks that follows, note that an upward-growing stack and a downward-growing
stack can exist together in memory at the same time. In this case, the same register is used for the
SP of the upward-growing stack as is used for the SL of the downward-growing stack (and
vice-versa!).

Upward-growing stacks grow towards higher memory locations. Instructions that operate on
upward-growing stacks use the "UP" modifier with the stack instruction. For upward-growing
stacks, OP is the stack-pointer and NEXT(OP) is the stack-limit. The stack-pointer points to the
next free location on the stack. Thus, a push onto an upward-growing stack involves saving the
value in the location specified by the stack-pointer and then incrementing the stack pointer. The
stack-limit for an upward-growing stack is the location immediately following the stack-pointer (i.e.,
stack-limit=NEX T (stack-pointer)). It points to the first location beyond the end of the stack.

Downward-growing stacks grow towards lower memory locations. Instructions that operate on
downward-growing stacks use the "DN" modifier with the stack instruction. For downward-growing
stacks, OP is the stack-limit and NEXT(OP) is the stack-pointer. The stack-pointer points to the
top item on the stack. Thus, a push onto a downward-growing stack involves incrementing the
stack pointer and then saving the operand in this location. The stack-limit for an upward-growing
stack is the location immediately preceding the stack-pointer. It points to the last stack location into
which information can be stored.

The SP_ID field of USER_STATUS specifies a particular upward-growing stack for implicit
use by certain instructions such as JSR and ALLOG; the SP and SL for this stack must be in
registers. By contrast, the instructions in this section can operate on any arbitrary stack specified by
an explicit operand.
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ADJSP

Instruction: ADJSP . {UP,DN}
Class: XOP Ad just (arbitrary) stack pointer

Purpose: Adjust the size of an {upward-growing, downward-growing} stack. OP2 is the a
single-word two’s-complement number which is {added to, subtracted from} OP1 for
ADJSP.{UP,DN}. Thus, ADJSP with a positive OP2 makes a stack larger while ADJSP
with a negative OP2 makes a stack smaller.

Side Effects: If OPI+OP2>NEXT(OPI) for ADJSP.UP or NEXT(OP1)-OP2<OP! for
AD]JSP.DN, a hard trap will occur.

Precision: Both OP! and OP?2 are single-words.

l The following throws away the top 4 stack elements. Let SPL be the address of a stack
pointer/limit DW.

l ADJSP.UP SPL,#-4
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PUSH

Instruction: PUSH . {UP,DN} . {Q,H,S,D}
Class: XOP Push onto (arbitrary) stack

Purpose: Push OP2 with precision specified by the second modifier onto an upward-growing or
downward-growing stack.

Side Effects: If OPI+{1,2,4,8}>NEXT(OPI) for PUSH.UP or NEXT(OPI)-{1,2,4,8}<OP1 for
PUSH.DN, a hard trap will occur.

Precision: Both OP1 and OP?2 are single-words.

The following pushes RTA on a stack. Let SPL be the address of a stack pointer/limit Dq/.

PUSH.UP SPL,RTA l
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POP

Instruction: POP . {UP,DN} . {Q,H,S,D}
Class: XOP Pop from (arbitrary) stack

Purpose: Pop OP2 with precision specified by the second modifier off of an upward-growing or
downward-growing stack.

Precision: Both OPI and OP?2 are single-words.

The following pops the top value on a stack into RTA. Let SPL be the address of a stack l
pointer/limit DW.

POP.UP SPL,RTA

L _|
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5.11 Byte

The byte data types (single-word and double-word) are described in Section 3.5. Byte
pointers and byte selectors are described in Section 3.6. Byte instructions access bytes via byte
pointers.

P | IREG ADDR

POSITION LENGTH

B 1 56 17 18 35

Figure 5-5
Byte Pointer

The instruction modifier {S,D} specifies the byte precision that the instruction works with
(S=single-word byte, D=double-word byte). Let MBL be the maximum byte length for for a given
precision byte. Single-word bytes have MBL=36. Double-word bytes have MBL=72. Any byte
instruction will hard-trap if POSITION+LENGTH > MBL. Furthermore, the IAP must point to
the beginning of a single-word or the instructions will hard-trap. This restriction on the IAP and
the rule concerning MBL implies that single-word bytes may not cross single-word boundaries.

There are three immediate instructions which use only a byte selector (a <position,length>
single-word) to access an immediate byte.
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LBYT

Instruction: LBYT . {8,D}
Class: XOP Load (unsigned) byte

Purpose: OP2 is the (source) byte pointer. OPI1 is the destination word which receives the
zero-extended byte. POSITION+LENGTH>MBL causes a hard trap.

Precision: OP1 has the same precision as the modifier. OP2 is a byte pointer. OP2 points to a
byte with a precision specified by the modifier.

The following sets RTA to the exponent field of the single-word floating-point number X.

LBYT RTA, X o 1,,11 ]
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LIBYT

Instruction: LIBYT . {S,D}
Class: TOP Load immediate (unsigned) byte

Purpose: S2 is the (source) byte selector. Sl contains the (source) immediate byte. DEST receives
the zero-extended byte.

Precision: S1 and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in S1 has the same precision as the modifier.

The following sets RTA to the exponent field of the single-word floating-point number X.

LIBYT RTA,X,#cl,,11>
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LSBYT

Instruction: LSBYT . (8,0}
Class: XOP Load signed byte

Purpose: OP2 is the (source) byte pointer. OP! is the destination word which receives the
sign-extended byte. POSITION+LENGTH>MBL causes a hard trap.

Precision: OP1 has the same precision as the modifier . OP2 is a byte-pointer. OP2 points to a
byte with a precision specified by the modifier.

I The following sets RTA to the signed value of the sign and exponent fields of the single-word l
floating-point number X.

l LSBYT RTA, [X & 12] l
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LISBYT

Instruction: LISBYT . {§,D0}
Class: TOP Load immediate signed byte

Purpose: S2 is the (source) byte selector. S1 contains the (source) immediate byte. DEST receives
the sign-extended byte.

Precision: S1 and DEST have the same precision as the modifier. S2 is a byte selector. The byte
contained in S1 has the same precision as the modifier.

I The following sets RTA to the signed value of the sign and exponent fields of the single-word
floating-point number X. Notice that a short constant can be used, because the position of the
byte is zero.

I LISBYT RTA,X,#12 |
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DBYT

Instruction: DBYT . {§,D)
Class: XOP Deposit byte

Purpose: OP2 contains, as its low-order bits, the byte to be stored. OP1 is the byte pointer that
locates the byte to be replaced.

Precision: OP1 is a byte pointer. It points to a byte with the same precision as the modifer. OP2
has the same precision as the modifier.

I The following sets the mantissa of the single-word floating-point number X to the twenty-six l
low order bits of RTA.

I DBYT (X & 12,,32],RTA |
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DIBYT

Instruction: DIBYT . {§,D}
Class: TOP Deposit immediate byte

Purpose: DEST is the destination word for the immediate byte. S1 contains, as its low order bits,
the byte to be stored. S2 is the byte selector that controls the placement of the byte in
DEST.

Precision: S1 and DEST have the same precision as the modifier. $2 is a byte selector.

e

The following sets the exponent field of the single-word floating-point number in RTA to z

DIBYT RTA,#8,Hcl,,11>

Ero.
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ADJBP

Instruction: ADJBP . {8,D}
Class: TOP Ad just byte pointer

Purpose: S1 is the source byte pointer. S2 specifies the number of bytes to ad just SI by. DEST

receives S1 adjusted by the number of bytes specified by $2. In more detail, if
SI.LENGTH=0 then S1 is copied into DEST. Otherwise, DEST becomes S1 ad justed
forward or backwards by S2. If §2 is positive, the byte pointer is advanced. If S2 is
negative, the byte pointer is backed up. $2=0 causes S1 to be copied into DEST. The
ad justment assumes that single-word bytes are contained in single-words and
double-word bytes are contained in double-words (i.e, POSITION+LENGTHsMBL).
The ad justment will not cause DEST.ADDR to overflow into DEST.IREG. Instead, the
ad justment is done modulo 2% (no hard trap occurs on wrap-around).

Precision: S1 and DEST are byte pointers and the bytes they specify have precision equal to the

modifier. §2 is a single-word.

l The following advances the byte pointer at BP by one byte. I

ADJBP BP, #1

Suppose that TABLE is a vector of NBYTES four-bit bytes, packed nine per single-word.
Suppose that a purported index into this table is in RTB. This code checks the purported
index for validity and then produces the desired byte in RTA, or zero if the index was invalid.
It produces a flag indicating whether the index is valid, and then selects one of two byte pointers
‘to ad just. If the index is valid, a byte pointer to the beginning of the table is ad justed to point
to the desired byte; if not, a byte pointer to a zero-length byte is produced. Loading a byte using
a zero-length byte pointer always produces a zero. Note the "13" in the ADJBP instruction: it
causes the indexing by RTA to be double-word indexing, because byte pointers are two words

long.

BPTRS:

L

BNDSF.8 RTA, #cNBYTES-15,RTB iRTAe-1 if index okay, else 8
ADJBP RTA, cBPTRS+18>(RTA)43,RTB ;get ptr to desired byte, or null ptr

LBYT RTA,RTA s load byte into RTA
TABLE » 8,,4 sbyte pointer to beginning of TABLE
TABLE » 8,,0 s zero-length byte pointer I
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5.12 Bit

Bit instructions operate on the boolean data type. These instructions are concerned with
individual bits and their ordering. BITRV and BITRVYV reverse the order of the low-order bits
of a word. BITEX and BITEXV extract bits from a word, according to a mask, and then squeeze
them to the right of the destination. This is useful for extracting a set of flags in order to do an
N-way branch on them. BITCNT counts the number of one-bits in a word. This was designed for
counting the number of elements in a PASCAL set. BITFST gives the position of the first
(left-most) one bit in a word. This is useful for computing the index of the first element of a
PASCAL set.
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BITRV

Instruction: BITRV . {Q,H,S,D)
Class: TOP Bit reverse

Purpose: Reverse the order of the S2 low-order bits of S1, and zero-extend the result into DEST.
Precision: S1 and DEST have the same precision as the modifier. 2 is a single-word.
Formal Description:
define BITRV.p:iqhsd = TOPIp;p;S] if (s2 < 0) v (s2 > Bits(p))
then Hard_Error

else dest « Reverse_Bits(S1, s2)
fis

The following reverses all nine bits of its operand.

BITRV.Q RTA,#cl1235,#11 ;RTA=624
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BITRVV

Instruction: BITRVV . {Q,H,S5,D)
Class: TOP Bit reverse reverse

Purpose: Reverse the order of the S1 low-order bits of $2, and zero-extend the result into DEST.
Precision: $2 and DEST have the same precision as the modifier. S1 is a single-word.
Formal Description:
define BITRVV. pighsd = TOP[p;p;S] if (Sl < 0) v (Sl > Bits(p))
then Hard_Error

else dest « Reverse_Bits(s2, Sl)
fis

The following reverses all nine bits in the operand.

BITRVV RTA,#11,H#c624>  ;RTA=123
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BITEX

Instruction: BITEX . {Q,H,S,D)
Class: TOP Bit extract

Purpose: Extract the bits of S1 selected by the one-bits of S2. Squeeze these selected bits to the
right and zero-extended into DEST.

Precision: S1, 82, and DEST all have the precision specified by the modifier.
Formal Description:

define BITEX. p: qhsd = TOP(p;p;p]  dest « Extract_Bits (S1, s2);

| The following extracts alternate bits from the operand. ,

BITEX.Q RTA, #c765>, #5255 +RTA=37

This code does an eight-way dispatch based on CARRY, INT_Z_DIV_MODE, and FLAGS<0>
in USER_STATUS.

RUS RTA iread USER_STATUS into RTA

BITEX RTA, #c018008, ,400810> iselect bits

JMPA ce DISPTABLE> (RTA) 42 jdispatch through table of IAPs
DISPTABLE:

NONEOF THEM ito this address if no bits Wwere set

FLAG 1to this address if only FLAG<@> set

Z0IV sand 80 ON...

ZOIVFLAG

CARRY

CARRYFLAG

CARRYZDIY

l CARRYZODIVFLAG ,
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BITEXV

Instruction: BITEXV . {Q,H,S,D}
Class: TOP Bit extract reverse

Purpose: Extract the bits of S2 selected by the one-bits of S1. Squeeze these selected bits to the
right and zero-extended into DEST.

Precision: S1, $2, and DEST ail have the precision specified by the modifier.
Formal Description:

define BITEXV.p:ghsd = TOPI[p;pipl dest « Extract_Bits(s2, Sl);

The following extracts a group of seven bits from the operand.

BITEXY.Q RTA,#c7655,#c525> sRTA=127
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BITCNT

Instruction: BITCNT . {Q,H,S,D}
Class: XOP Bit count

Purpose: OP lenumber of one bits in OP2
Precision: OPI1 is a single-word. OP2 has the same precision as the modifier.
Formal Description:

define BITCNT.p:ghsd & XOPI[S;p) opl « Number_of_I_Bits(op2);

| The following sets RTA (flag-style) if RTA has odd parity. I

BITCNT RTA,RTA
CMPSF.ALL RTA,#1

The parity of an arbitrarily long block of bits can be obtained by using the XOR instruction to
condense the block. (The XOR operation essentially causes pairs of one-bits to cancel) If
TABLE is a block of N single-words (N>2), this code sets RTA (flag-style) if TABLE has odd

parity.

XOR RTA, cTABLE+N-15,cTABLE+N-25 ;RTA gets XOR of two words

MOV RTB, #cN-35 ;RTB counts all other words
LOOP: XOR RTA, cTABLE> (RTB) ;1 XOR in next word

0OSKP.GEQ RTB, #8,L00P ; loop until all words done

BITCNT RTA,RTB jcount result as before

CMPSF.ALL RTA,#1

A non-zero integral power of two always has a two's-complement representation with exactly one
bit set. Assuming that HUNOZ contains a positive single-word integer, this code jumps to
TWOPOWER if HUNOZ is an exact power of two.

BITCNT RTA,HUNOZ ;RTA«l if HUNOZ is a power of two
OJMPZ.EQL RTA, TWOPOWER ; jump to TWOPOWER if RTA-1 is zero

If zero is to be considered a power of two, DJMPZ.EQL can be changed to DJMPZ.LEQ.
| Alternatively, a trick involving the NEG instruction can be used instead. l
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BITFST

Instruction: BITFST . {Q,H,S,D}
Class: XOP Bit number of first one bit

Purpose: If OP2=0 then OP l«-1 else OP lebit number of the leftmost one bit in OP2
Precision: OP1 is a single-word. OP2 has the same precision as the modifier.

Formal Description:

define BITFST.piqhsd m XOP(S;pl opl « Number_of First_I_Bit(op2);

I The following sets RTA to floor(log2(RTA)) with RTA assumed to be a non-zero unsigned |
single-word integer.

BITFST RTA,RTA
SUBY RTA, #c43>

Suppose that location MASK contains a non-zero single-word. This piece of code constructs a
byte pointer in (double-word) RTA to the smallest byte containing all the one-bits in HUNOZ.

BITFST RTA,HUNOZ snumber of leading zero bits
BITRY RTA1,HUNOZ,#c36.> ;reverse HUNOZ into RTAl
BITFST RTAL snumber of trailing zero bits
ADD RTAL,RTA snumber of surrounding zero bits
SUBV RTAL,#c36.o s length of smallest containing byte
MOV.H.D RTAL,RTA tput position in high haifuord of RTAl
L— MOVADR RTA, HUNOZ imake AP to HUNOZ in RTA _J
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5.13- Block

Blocks are discussed in Sections 3.7. The instructions in this section are used for comparing,
moving, and initializing blocks. Block 1/O instructions are described in Section 5.17.

STRCMP is used to compare two blocks (or strings). BLKINI initializes a block to a given
scalar value. BLKMOY copies one block to another location. BLKID does a BLKMOYV, but
transfer a block from and INSTRUCTION page to a DATA page. This allows instructions to be
accessed as data. BLKDI transfers from a DATA page to an INSTRUCTION page, allowing data
to be executed as instructions. See Section 2.3.2 for a discussion of INSTRUCTION and DATA

pages.
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STRCMP

Instruction: STRCMP . {RTA,RTB}
Class: XQOP String compare

Purpose: Consider the two blocks OP1 and OP2 to be strings of quarter-word characters. The
blocks have the same length. {RTA,RTB} contains the block length in quarter-words.
Signed comparison is used, and each quarter-word character is compared separately. The
result of the comparison is computed as shown in the following table and is stored back
into {RTA,RTB}. The result values are designed to have two useful properties. First, the
result (as a signed integer) bears the same relation to zero that STRINGI does to
STRING2. Second, the value can be used as an index into the string no matter what the
result, because bit 0 being set does not affect indexing.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Condition Result

STRINGI = STRING2 0
STRINGI1 > STRING2 n
STRING! < STRING2  -2°%n (ie. MINNUM+n)

where n is the position of the first character to differ

Table 5-9
STRCMP Results

Precision: OPI and OP2 are blocks. The elements of the blocks are quarter-words. RTA and
RTB are single words.
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I The following sets RTA to the result of comparing the eighty-character blocks at X and Y.l

MOV RTA,?128 ;120 octal = 89 decimal
STRCMP.RTA X,Y

The following illustrates a more general sort of comparison. Assume that XLENGTH contains
the length of a string beginning at X and YLENGTH that of string at Y. For the purposes of
this comparison we will imagine that appended to the two strings are infinitely many imaginary
characters defined to be “less than" all real characters. We will then define the result of the
comparison as the resuilt of a STRCMP performed on these extended strings. (This definition is
similar to that used in some high-level languages).

MIN RTA,XLENGTH, YLENGTH 1set RTA to minimum real length
INC RTB,RTA ;save one greater in RTB for unequal case
STRCMP.RTA X,Y ;ydo comparison
JMPZ.NEQ RTA, DONE sdifference found
SKP.EQL XLENGTH, YLENGTH,DONE ;done if strings are equal length
MOV RTA,RTB +RTB is index of "imaginary" character
SKP.LEQ XLENGTH,YLENGTH,DONE ;set high-order bit if necessary
OR RTA, #c480008, , 8> ;or DIBYT RTA,#1,H#1 to save a word!

DONE s oo +RTA contains result l
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BLKMOV

Instruction: BLKMOV . {RTA,RTB}
Class: XOP Block move

Purpose: OP2 is the source block. OPI is the destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length.

The semantics of the BLKMOYV instruction are such that if the source and destination
blocks overlap, no word in the source block is overwritten until after it has been
transferred to the destination block.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OPl and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

The following moves all registers into an area starting at REGS. The original contents of RTA
must be saved temporarily in SAYRTA since RTA is used to contain the quarter-word transfer

length.

SLR.4 SAVRTA, ?4x48 ;save RTA and load Wwith transfer length
BLKMOY.RTA REGS, %8 ydo block transfer
I MOV REGS+4xRTA,SAVRTA  ;fix up saved RTA |
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BLKINI

Instruction: BLKINI . {RTA,RTB} . {Q,H,S,D}
Class: XOP Block initialize

Purpose: OP2 is the scalar initialization value. OPI1 is the block to be initialized. {RTA,RTB}
specifies the register containing the number of quarter-words to be initialized.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OPI is a block. OP2 has the same precision as the second modifier. The elements of
the block also have the same precision as the second modifier. A hard trap will occur if
the contents of {RTA,RTB} is not a multiple of the block~element precision. RTA and
RTB are single-words.

The following zeros registers 8 through 31.

MOV RTA, ?4x38 iset RTA to number of QWs
BLKINI.RTA %8,#8 sinitialize block
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BLKID

Instruction: BLKID . {RTA,RTB})
Class: XOP Block transfer instructions to data

Purpose: OP2 is the source block. OPI is the destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length. The source block must be on a page(s)
marked with INSTRUCTION=1. The destination block must be on a page(s) marked
with DATA=1.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OP1 and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

The following transfers a single word instruction at INST into RTA.

MOV RTA,?4 s load RTA with QW transfer length
BLKID.RTA,INST ;load RTA with instruction
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BLKDI

Instruction: BLKDI . {RTA,RTB)
Class: XOP Block transfer data to instructions

Purpose: OP2 is the source block. OPI is the destination block. {RTA,RTB} specifies which
register contains the quarter-word transfer length. The source block must be on a page(s)
marked with DATA=1. The destination block must be on a page(s) marked with
INSTRUCTION=1.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OP1 and OP2 are blocks. The elements of the block have quarter-word precision.
RTA and RTB are single-words.

* | The following transfers a DW value in RTA to a two word instruction at INST. ,

MOV RTB, ?18 ;set RTB to QW transfer length
BLKDI.RTB INST,RTA imove RTA to instruction space l
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5.14 Status

Status instructions are used to manipulate the USER_STATUS and PROC_STATUS words.
Instructions exist for reading, writing, and jumping based on logical conditions (LCONDs). The
LCOND:s are described in Section 5.6. See Section 2.5 for a description of the status words.
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RUS

Instruction: BRUS
Class: XOP Read user status

Purpose: OPI«USER_STATUS. OP2 is unused.

Precision: OP]1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets RTA to USER_.STATUS. Note that FASM supplies the zero operand.

RUS RTA
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Jus

Instruction: JUS . {NON,ALL,ANV,NAL)
Class: JOP Jump on selected user status bits

Purpose: If OP1 LCOND USER_STATUS (where LCONDe¢{NON,ALLANY,NALY}) is true,
control is transferred to the location specified by JUMPDEST.

Precision: All operands concerned are single-words.

Let ERRORS be a mask for several bits in USER_STATUS. The following jumps to ZIP if
any of these bits are set.

JUS ERRORS,ZIP
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JUSCLR
Instruction: JUSCLR . {NON,ALL,ANY,NAL)
Class: JOP Jump on selected user status bits and clear
Purpose: TEMP«USER_STATUS. USER_STATUS is then Iloaded according to

USER_SATUS«USER_STATUSAone's~complement(OP1). If OPl LCOND TEMP
(where LCONDe{NON,ALL,ANY,NALY}) is true, control is transferred to the location
specified by JUMPDEST. Note that a hard trap will occur if clearing the specified bits
would produce an illegal value for USER_STATUS.

Precision: All operands concerned are single-words.

Let ZDIV be the mask for the INT_Z_DIV bit in USER_STATUS. The following jumps to
YOW and clears this bit if it is set.

JUSCLR.ALL ZDIV,YOW
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WUSJMIP

Instruction: WUSJMP
Class: JOP Write user status and jump

Purpose: USER_STATUS«OPI.  Control is then transferred to the location specified by
JUMPDEST. Note that a hard trap will occur if an illegal value of USER_STATUS is

specified.

Precision: All operands concerned are single-words.

The following sets the USER_STATUS to NEWUS and jumps to AWAY.

WUSJMP NEWUS, AWAY
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SETUS

Instruction: SETUS
Class: XOP Set specified user status bits

Purpose: USER_STATUS<USER_STATUSvVOPI. OP2 is unused. Note that a hard trap will
occur if an illegal value of USER_STATUS is specified.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

 nam— —

The following sets the low order bit in USER_STATUS.

SETUS #1
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CLRUS

Instruction: CLRUS
Class: XOP Clear specified user status bits

Purpose: USER_STATUS«USER_STATUSnone's-complement(OP1). OP2 is unused. Note that a
hard trap will occur if an illegal value of USER_STATUS is specified. The JUSCLR

instruction can clear specified user status bits and simultaneously test them.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following clears the low order bit in USER_STATUS.

CLRUS #1
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RSPID

Instruction: RSPID
Class: XOP Read SP_ID

Purpose: OP1«USER_STATUSSP_ID. OP2 is unused.

Precision: OP1 is a single-word. OP?2 is unused (OD2 must equal zero).

I The following loads the top stack element into RTA, without first knowing which register is the I
stack pointer (as long as it is not RTA!).

RSPID RTA 1RTAestack register number

I MOV RTA,ce>(RTA) 42 +RTA«top of stack I
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WSPID

Instruction: WSPID
Class: XOP Write SP_ID

Purpose: USER_STATUS.SP_ID«OPI1. If OPI1>3]1 or OP1<0, the result is undefined. A hard
trap will occur if OP1=3 or OP1=31 (these are illegal values for SP_ID). OP2 is unused.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets the stack pointer/limit to the last two registers.

WSPID #36 1 SP=%36, SL=%37
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RRNDMD

Instruction: RRNDMD
Class: XOP Read rounding mode

Purpose: OP1«USER_STATUS.RND_MODE. OP2 is unused. See Section 5.3.1 for a description
of rounding modes.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).
! The following jumps to FLOOR if floor rounding is specified by USER_STATUS.

RRNDOMD RTA
l JMPZ.EQL RTA,FLOOR
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WRNDMD

Instruction: WRNDMD
Class: XOP Write rounding mode

Purpose: USER_STATUSRND_MODE«OPI. If OPI>31 or OPI<0, the result is undefined.
OP2 is unused. See Section 5.3.1 for a description of rounding modes.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).

The following sets the USER_STATUS to specify floor rounding.

WRNDMD #8
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RPS

Instruction: RPS
Class: XOP

Purpose: OP1«PROC_STATUS. OP?2 is unused.

Restrictions: Illegal in user mode.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets RTA to PROC_STATUS.

RPS RTA

Page 223

Read processor status
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WFSJMP

Instruction: WFSJMIP
Class: JOP Write full status and jump

Purpose: USER_STATUS«OP!. PROC_STATUS«NEXT(OPI!). Note that NEXT(OPI) is
loaded directly into PROC_STATUS without interpreting the PREV/CRNT_FILE or
PREV/CRNT_MODE fields in the special way that is done when loading partial
processor status. (See Section 2.5.1 for a discussion of processor status.) Note that a hard
trap will occur if an illegal value of PROC_STATUS is specified.

Restrictions: Illegal in user mode.

Precision: All operands concerned are single-words.

The following sets PROC_STATUS to NEWPST and jumps to BRAZIL.

WFSJMP NEWPST,BRAZIL
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RCFILE

Instruction: RCFILE
Class: XOP

Purpose: OP1«PROC_STATUS.CRNT_FILE. OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).

)

The following sets RTA to the current file number.

RCFILE RTA

Page 225

Read CRNT_FILE
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WCFILE

Instruction: WCFILE
Class: XOP Write CRNT_FILE

Purpose: PROC_STATUS.CRNT_FILE<OPI. If OPI>16 or OPI<0, the result is undefined.
OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets the current file number to the value in RTA.

WCFILE RTA
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RPFILE

Instruction: RPFILE
Class: XOP

Purpose: OP1«PROC_STATUS.PREV_FILE. OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).

The following loads RTA with the previous file number.

RPFILE RTA

Page 227

Read PREV_FILE
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WPFILE

Instruction: WPFILE
Class: XOP Write PREV_FILE

Purpose: PROC_STATUS.PREV_FILE<OPI. If OPI>15 or OPI<0, the result is undefined.
OP2 is unused.

Restrictions: Illegal in user mode.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets the previous file number to the value in RTA.

WPFILE RTA
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RPID

Instruction: RPID
Class: XOP Read processor identification number

Purpose: OP1<PROC_ID. OP?2 is unused.
Restrictions: Illegal in user mode.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal zero).

The following sets RTA to the processor ID number.

RPID RTA
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5.15 Céche and Map

Each $-1 processor has two private caches to reduce memory access times for those sections of
memory that are frequently accessed. One cache is for instructions. The other is for data. The
instruction cache retains only locations from pages marked with INSTRUCTIONS=1, the data
cache retains locations from pages marked with DATA=1. (See Section 2.3.2 for details on access
modes.) Instruction words may not, in general, be accessed as data (except as immediate operands).
Special instructions are provided for converting instructions to data and data to instructions. (See
BLKID, and BLKDI in Section 5.13 for details.)

Each cache uses physical addresses to tag entries, allowing the software to switch virtual
addresses spaces without sweeping the cache. This eliminates the problem of clogging the cache
with multiple copies of shared read-only information.

For purposes of communication or synchronization, it may be necessary to insure that certain
variables are not present in the cache of a specific processor. Access modes serve this purpose and
are described in Section 2.3.2. In addition, special instructions are provided to sweep the caches
(SWPIC and SWPDC). Sweeps may either update main memory, invalidate the cache residents, or
both.

No instructions are provided which, when executed on processor P,, cause the cache of
processor Py to be swept (A = B). This necessary function will be accomplished by directing a
special interrupt from P, to Py which causes Py to sweep its own cache.

Each processor also has two page map caches. These contain, for the most recently used
pages, the complete translation from virtual page addresses to physical page addresses. See Section
2.3 for a discussion of the virtual-to-physical translation. One map is for the addresses of
instructions and the other is for the addresses of data. Special sweep commands are provided for
the maps (SWPIM, SWPDM). '

Two other commands are discussed in this section: WEPJMP and WUP JMP. These write
into the executive/user segment pointer/limit registers (see Section 2.3).
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SWPIC

Instruction: SWP|C . {RTA’RTB} . {V'P}

Class: XOP Sweep instruction cache

Purpose: Sweep the instruction cache by {Virtual,Physical} addresses, killing residents. To kill
means to remove cache residents without updating memory. Updating is not provided for
the instruction cache since residents in the instruction cache cannot be modified. OP1 is
the block to be swept. {RTA,RTB} contains the number of quarter-words to be swept
(which must be a multiple of four (4) or a hard trap will occur).

The address sequence generated by the instruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (Vavirtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are legal in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtual-address sweeps.

Restrictions: Illegal in user mode.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OP1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

The following sweeps all instructions from START up to but not including the following l
instructions.

MOV RTA, <.-START> ;set RTA the number of intervening QWs

l SWPIC.RTA.Y START ;s sweep cache l
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SWPDC

Instruction: SWPDC . {(RTA,RTB} . {V,P}. {U,UK}
Class: XOP Sweep data cache

Purpose: Sweep the data cache by {Virtual, Physical} addresses, {updating, updating and killing};
residents. To kill means to remove cache residents without updating memory. No
instruction is provided for killing data cache residents without updating. OPI is the
block to be swept. {RTA,RTB} is the number of quarter-words to be swept (which be a
muitiple of four (4) or a hard trap will occur)

The address sequence generated by the instruction may be interpreted by the hardware as
either virtual or physical addresses, depending on the modifier (V=virtual,P=physical).
Physical-address sweeps are legal only in executive mode to prevent the user from
degrading system performance by sweeping addresses which not in its address space.
Virtual-address sweeps are legal in both user and executive mode.

In the case of physical-address sweeps, the microcode may, for efficiency reasons, choose to
sweep the entire cache, if a very large sweep range is specified. No sweep-range
optimization is performed for virtual-address sweeps.

Restrictions: Illegal in user mode.
Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OP1 is a block. OP2 is unused (OD2 must equal zero). RTA and RTB are
single-words.

l The following updates the registers, without removing them from the data cache (ie., not killing |
them).

MOV RTA, 72080 ;set RTA to number of QWs

I SWPDC.RTA.V.U %8 ; sueep cache I
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SWPIM

Instruction: SWPIM . {E,U}
Class: XOP Sweep instructions page map

Purpose: Sweep the instruction page map, killing {executive, user}-space residents. SWPIM is used
for eliminating residents of the instruction page map. It does not update main memory
since page map residents cannot be modified. OP1 is interpreted as a virtual address, and
the translation entry for the page containing that virtual address is removed from the
page map. OP2 is unused. Since SWPIM operates on only one page map resident at a
time, it is fast and not interruptable.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).

H The following Kills the page map entry for the next lower addressed instruction page in the users |
address space.

l SWPIM.U .-4000 |
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SWPDM

Instruction: SWPDM . {E,U}
Class: XOP Sweep data page map

Purpose: Sweep the data page map, killing {executive, user}-space residents. SWPDM is used for
eliminating residents of the instruction page map. It does not update main memory since
page map residents cannot be modified. OP1 is interpreted as a virtual address, and the
translation entry for the page containing that virtual address is removed from the page
map. OP2 is unused. Since SWPDM operates on only one page map resident at a time,
it is fast and not interruptable.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP2 is unused (OD2 must equal zero).

The following kills the page map entry for the data page containing the virtual address specified l
in RTA.

L

SWPOM.U RTA
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WUPJMP

Instruction: WUPJMP
Class: JOP Write user segment table pointer and jump

Purpose: USER_STP«OPIl. USER_STLeNEXT(OPI). PC«JUMPDEST. A hard trap will
occur if either OP1 or NEXT(OPI) contains an address that is not a multiple of four.
This instruction also kills all user residents of the instruction and data page maps.

Restrictions: Illegal in user mode.

Precision: OPI1 is a single-word. NEXT(OP1) is a single word.

| The following sets the user segment table to the six SWs pointed to by RTA and jumps to l
NEXT.

MOVPHY RTA, (RTA)
ADD RTA1,RTA, #6

I WUPJMP RTA,NEXT I
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WEPJMIP

Instruction: WEPJMP
Class: JOP Write executive segment table pointer and jump

Purpose: EXEC_STP<«OPI. EXEC_STLeNEXT(OPI). PC«JUMPDEST. A hard trap will
occur if either OP1 or NEXT(OPI) contains an address that is not a multiple of four.
This instruction also kills all executive residents of the instruction and data page maps.
Notice that the jump destination is computed in the old executive context, but the location
actually transferred to will be within the new executive context.

Restrictions: Illegal in user mode.

Precision: OP1 is a single-word. NEXT(OPI) is a single word.

| The following sets the executive segment table to the six SWs pointed to by RTA and jumps to l
NEXT.

MOVPHY RTA, (RTA)
ADD RTAL1,RTA,H6

I WEPJMP RTA,NEXT |
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5.16 Interrupt

Interrupts occur during the first stage of the instruction-execution sequence (see Section 5.1).
When an interrupt has been accepted, control is transferred to an interrupt handler whose address is
contained in the interrupt-vector associated with the particular interrupt that occurred. The
interrupt-vector format is shown in Figure 5-6. The occurrence of an interrupt also causes
information to be put on the stack in an interrupt save area (INTUPT_SAVE_AREA). The
format of this save area is shown in Figure 5-7. The concepts of save areas and vectors are
discussed in Section 6. The interrupt-parameter is used to pass information about the interrupt to
the interrupt handler. The way in which interrupt requests are handled is discussed in the
following paragraphs.

new USER_STATUS
new PROC_STATUS

handler address

Figure 5-6
Interrupt Vector Format

interrupt parameter
USER_STATUS
PROC_STATUS v
cP | |5%8 | |[PC_NEXT_INSTR<8: 295>
%] ' 35

Figure 5-7
Interrupt Save Area Format

The interrupt architecture of the S-1 allows for eight levels of priority. The priority of the
processor is specified by PROC_STATUS.PRIO<0:2>. The priority of any interrupts that are
pending and that are enabled is specified by the eight-bit register INTUPT_AT_LVL<0:7>.
INTUPT_AT_LVLI[i]=1 means that one or more interrupts are pending and have been enabled at
level i.

Associated with each priority level i (and thus with INTUPT_AT_LVL<i>) are two 36-bit
registers INTUPT_PEND[{] and INTUPT_ENBIL] The interrupt-pending registers
INTUPT_PEND[ 0.. 7] can each accept interrupt requests from up to thirty-two devices in bits
0..81. Bits 32..35 are unused. If device j with priority { requests an interrupt,
INTUPT_PENDIi)<j> is set equal to one. The second register at each priority level is the
interrupt-enable register INTUPT_ENB[ 0.. 7] INTUPT_ENBI(:] provides interrupt-enable bits
for the thirty-two devices that are handled by INTUPT_PEND[i]. As with INTUPT_PEND,
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INTUPT_ENB<32:35> is unused.

If INTUPT_PEND(il<j> and INTUPT_ENB[il<j> are both equal to one for any
combination of i and f, INTUPT_AT_LVL[] will be set to one. Zero is the highest priority and
seven the lowest. If there exists a priority i, such that INTUPT_AT_LVL[il=1 and
PROC_STATUS.PRIO>i, the processor will be interrupted. If more than one bit of
INTUPT_AT_LVL is set, the device with the highest priority (smallest magnitude) will be the one
that interrupts the processor. Within a given interrupt level i, bit zero has the highest priority and
bit thirty-one the lowest. Note that devices with priority=7 cannot interrupt the processor because
PROC_STATUS.PRIO can never be greater than seven. Note also that if
PROC_STATUS.PRIO=0, the processor cannot be interrupted at all.

Each interrupting device has a unique interrupt vector INTUPT_VEC) and a unique bit at
priority i in INTUPT_PENDIi] associated with it. When a device interrupt occurs the appropriate
bit of INTUPT_PEND is set and the interrupt-parameter is stored in a calculated position of
INTUPT_PARMI[0:255], a RAM located in the S-1 processor. (The calculation is to create an
INTUPT_VEC_NUM, described below.) When an interrupt from a device has been accepted (as
described above), control is transferred to the address specified by the handler address in the
interrupt vector. The INTUPT_PENDI[il<j> bit that caused the interrupt is cleared. New
USER_STATUS and PROC_STATUS words are also loaded from the interrupt vector. The old
USER_STATUS and PROC_STATUS words are saved in the interrupt save area
(INTUPT_SAVE_AREA). The interrupt-parameter, which contains information about the cause
of the interrupt, is also saved in INTUPT_SAVE_AREA. The format of INTUPT_SAVE_AREA

is shown in Figure 5-7.

Instructions are provided to read, write, set and clear INTUPT_ENB and INTUPT_PEND.
There are also instructions to read and and write an interrupt-parameter. All interrupt instructions
are legal in both executive and user mode.

Two terms that are used in the following instruction descriptions are INTUPT_LVL_NUM
and INTUPT_VEC_NUM. INTUPT_LVL_NUM is a 3-bit interrupt level-number (ILN),
right-justified in a single-word field of zeros (ie, €33%0 || ILN<0:2>5). It is used to specify a
priority level. INTUPT_VEC_NUM is a 3-bit level-number (ILN) concatenated with a 5-bit
interrupt bit-number (IBN) within the level, all right-justified in a single-word (ie,
c28%0 || ILN<0:2> || IBN<0:4>3). It uniquely specifies a particular interrupt vector number. (Note
that the INTUPT_VEC_NUM is also the location of the interrupt-parameter in INTUPT_PARM.)
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RIEN

Instruction: RIEN
Class: XOP Read interrupt enable

Purpose: OP2 is an INTUPT_LVL_NUM. OP/] gets the contents of the interrupt-enable register
associated with priority level OP2 (INTUPT_ENB[OP2)).

Restrictions: Illegal in user mode.

Precision: OPI and OP2 are both single-words.

The following loads RTA with the enable bits for the highest priority level.

RIEN RTA, #8
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WIEN

Instruction: WIEN
Class: XOP Write interrupt enable

Purpose: OP1 is an INTUPT_LVL_NUM. The interrupt-enable register associated with priority
level OP1 (INTUPT_ENB[OP1]) is set to OP2. If OP2<32:35> = 0, then a hard trap will

occur.
Restrictions: Illegal in user mode.

Precision: OP1 and OP2 are both single-words.

The following enables all interrupts at the second-highest priority level.

WIEN #1,#c-20>
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SIEN

Instruction: SIEN
Class: XOP Set specified bits in interrupt enable

Purpose: OPI1 is an INTUPT_LVL_NUM. The interrupt-enable bits (for priority level OP1)
corresponding to the one bits of OP2 are set to one (ie,
INTUPT_ENBI[OP1]J«OP2 v INTUPT_ENB[OP1)).

Precision: OP1 and OP2 are both single-words.
, The following enables for interrupt by the third-highest priority device at the third-highest
priority level.

l SIEN #2,Hcl00008, ,0>
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CIEN

Instruction: CIEN
Class: XOP Clear specified bits in interrupt enable

Purpose: OP1 is an INTUPT_LVL_NUM. Clear the interrupt-enable bits (for priority level OP1)
corresponding to the one bits of oP2 (ie,
INTUPT_ENB[OP 1)cone’s-complement(OP2) A INTUPT_ENB[OP1]).

Precision: OP1 and OP?2 are both single-words.

l The following disables interrupts by the fourth-highest priority device at the fourth-highest |
priority level.

I CIEN #3,#c40008,,0> !
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RIPND

Instruction: RIPND
Class: XOP , Read interrupts pending

Purpose: OP2 is an INTUPT_LVL_NUM. OPI gets the contents of the interrupt-pending
register associated with priority level OP2 (INTUPT_PEND[OP2)).

Precision: OP1 and OP?2 are both single-words.

The following sets RTA to the pending interrupts at the fourth-lowest priority level.

RIPND RTA, #4
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WIPND

Instruction: WIPND ,
Class: XOP Write interrupts pending

Purpose: OP1 is an INTUPT_LVL_NUM. The interrupt-pending register associated with priority
level OP1 (INTUPT_PEND[OP1)) is set to OP2. If OP2<32:35> = 0, then a hard trap

will occur.

Precision: OP1 and OP?2 are both single-words.

The following sets interrupts pending for all devices at the third-lowest priority level.

WIPND #5,#c-28>
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SIPND

Instruction: SIPND
Class: XOP Set specified interrupt-pending bits

Purpose: OP1 is an INTUPT_LVL_NUM. The interrupt-pending bits (for priority level OP1)
corresponding to the one bits of OP2 are set to one (ie,
INTUPT_PEND[OP1}-OP2 v INTUPT_PEND[OP1)).

Precision: OP1 and OP2 are both single-words.

The following sets an interrupt pending for the second-lowest priority device at the
second-lowest priority level.

l SIPND #6, #c48>
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CIPND

Instruction: CIPND
Class: XOP Clear specified interrupt-pending bits

Purpose: OP1 is an INTUPT_LVL_NUM. Clear the interrupt-pending bits (for priority level
OPI) corresponding to the one bits of OP2 (ie.,
INTUPT_PEND[OP IJ«one’s-complement(OP2) A INTUPT_PENDI[OP1]).

Precision: OP1 and OP2 are both single-words.

| The following clears any interrupt pending for the lowest priority device at the lowest priority I
level.

I CIPND #7,#c28> |
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RIPAR

Instruction: RIPAR
Class: XOP Read interrupt parameter

Purpose: OP2 is an INTUPT_VEC_NUM. OP!1 gets the contents of INTUPT_PARM[OP2].

Precision: OP1 and OP2 are both single-words.

The following sets RTA to the interrupt parameter for vector 1.

RIPAR RTA,#1
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WIPAR

Instruction: WIPAR ‘
Class: XOP Werite interrupt parameter

Purpose: OP1 is an INTUPT_VEC_NUM. INTUPT_PARMI[OPI] is set to OP2.

Precision: OP1 and OP2 are both single-words.

The following sets the interrupt parameter for vector 1 to RTA.

WIPAR #1,RTA
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5.7 Input/Output

The S-1 performs 1/O via I/O buffers. The number of I/O buffers is implementation
dependent (with upper bound 2°). The Mark II contains eight 1/O buffers (IOBUF[0:7]). Each of
the eight IOBUFs contains 2K single-words. Each IOBUF is connected to exactly one //O Processor
(IOP) through a simple interface (IOBUF_IFACE) in the IOP. One IOP may be connected to
multiple IOBUFs. Devices on the IOP’s internal bus (IOP_BUS) address the IOBUF either as
32-bit words or as pairs of 16-bit words. These 32-bit words are right-justified in the 36-bit
memory. The extra four bits allow the S-1 processor to use the buffers as auxiliary storage. The
IOBUF_IFACE can be configured by the IOP so that the addresses of the IOBUF can start at any
(aligned) IOP_BUS address.

The IOP and devices on the IOP_BUS can read and write locations in the IOBUF as normal
IOP_BUS locations (including 8-bit, 16-bit, and 32-bit writes). The S-1 processor can read and
write IOBUF locations in a single cycle as 36-bit single-words. A synchronization mechanism is
provided to prevent simultaneous access. One set of translation hardware is located between the
eight IOBUFs and the main data path of the S-1 processor. This hardware is able to do four
different types of translations in each direction.

IOBUF to Processor Processor to IOBUF Name

Bit stream Bit stream B
8 bits right- justified in QW QW«<1:8> in 8 bits Q
16 bits right-justified in HW ~ HW<2:17> in 16 bits H
32 bits right-justified in SW  SW<4:35> in 32 bits S

QW=quarter-word, HW=half-word, SW =single-word.

Table 5-10
Processor/IOBUF Translations

Certain areas within each IOBUF are, by convention, dedicated to IOP/S-1 control
communication. All device interrupts are forwarded through an IOP to the S-1 processor.
Interrupts are described fully in Section 5.16. When a device interrupt occurs, the IOP writes
control information into the control section of the IOBUF (including the INTUPT_PEND register
" number, the INTUPT_PEND bit number, the interrupt-parameter). The IOP then interrupts the
S-1 processor. The S-1 processor immediately processes the interrupt and interprets the control
information in the JOBUF. It should be noted that before the IOP writes the control area of
IOBUF, it busy-waits until the previous interrupt has been serviced by the S-1 processor.

Similarly, when the S-1 processor needs to interrupt the IOP, it sets up the contents of
another portion of the control area of the appropriate IOBUF and executes an instruction which
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causes the IOP to interrupt and interpret the IOBUF control area. The S-1 processor also does a
busy-wait to avoid conflicts.

There are instructions to fill and empty an IOBUF, and to interrupt an IOP. All J/O
instructions are legal in either executive or user mode.

When an operand is to be interpreted as a IOBUF address, the following procedure is used.
The virtual address which results from the operand address calculation must reside on an I/O page
(see Section 2.3.2). The standard virtual-to-physical address transformation takes place (see Section
2.3). The resulting physical address is not interpreted as a physical address in memory, but rather
as an IOBUF physical address (IOBUF_PHY_ADDR). IOBUF_PHY_ADDR has the following
format: c7%0 || IOBUF_NUM<0:8> || ADDR_IN_IOBUF<0:17>>. IOBUF_NUM refers to the
number of the IOBUF to be accessed. (On the Mark Ila IOBUF_NUM must be in the range
0..7.) ADDR_IN_IOBUF specifies the 32-bit-word address within the selected IOBUF. If
IOBUF_NUM is larger than the maximum available, or if ADDR_IN_IOBUF is not a valid
32-bit-word address within an IOBUF, or if the first seven bits of IOBUF_PHY_ADDR are not
zero, or if the virtual address specified was not on an I/O page then a hard trap will occur.

This virtual-to-physical transformation allows the executive to maintain control over the I/O
buffers, even though the I/O instructions are legal in user mode. It is up to the executive to set up
the transformation to a valid IOBUF address and to indicate that the virtual page is a valid 1/O

page.
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BLKIOR

Instruction: BLKIOR . {RTA,RTB} . (B,Q,H,S}
Class: XOP Block 1/O read and translate

Purpose: Transfer from an IOBUF to main memory. OPI is the destination memory block.
{RTA,RTB} contains the quarter-word block length. OP2 is the source IOBUF block.
{B,Q,H,S} specifies the type of translation between the IOBUF and the processor.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OP1 is a block. OP2 is an IOBUF block. RTA and RTB are single-words.

!
Assume BUFFER is a legitimate IOBUF address. To read eighty characters from the IOBUF l
(starting at BUFFER) to a block in memory starting at IMAGE the following instruction
sequence could be used.

L

MOV RTA,?120 ;set RTA to eighty QWs
BLKIOR.RTA.Q IMAGE,BUFFER ;do read |
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BLKIOW

Instruction: BLKIOW ., {RTA,RTB} . {B,Q,H,S}
Class: XQOP Block I/O write and translate

Purpose: Transfer from main memory to an IOBUF. OPI is the destination IOBUF block.
{RTA,RTB} contains the quarter-word block length. OP2 is the source memory block.
{B,Q,H,S} specifies the type of translation between the processor and the IOBUF.

Caution: This instruction may cause a non-zero value to be stored in INSTRUCTION_STATE.

Precision: OPI is an IOBUF block. OP2 is a block. RTA and RTB are single-words.

| Assume BUFFER is a legitimate IOBUF address. To transfer the two characters "S1" into the I
IOBUF starting at BUFFER the following instruction sequence could be used.

MOV RTA, #2 sset RTA to two QUs

I BLKIOW.RTA.Q BUFFER,#c"S1",,8> ;do write |
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INTIOP

Instruction: INTIOP
Class: XOP Interrupt 1/O processor

Purpose: OP1 is an IOBUF address. The IOP connected to the IOBUF containing OP1 is
interrupted. OP2 is unused.

Precision: OP1 is a single-word (and must transform to a valid IOBUF_PHY_ADR). OP2 is
unused (and hence OD2 must be zero).

I Assume BUFFER is a legitimate IOBUF address. The following instruction will interrupt the
I/O Processor containing BUFFER.

I INTIOP BUFFER |
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5.18 Performance Evaluation

The S-1 has several double-word counters which can be configured to count different events.
These counters are all be readable in user mode, but they are be writable only in executive mode.
Each counter has enable bits associated with it, accessible only in executive mode. Counter zero is
always enabled, by convention, to count real-time cycles.



§ 5.18 Instruction Descriptions Page 255

RCTR

Instruction: RCTR
Class: XOP Read counter

Purpose: OP2 is a counter number. OP1 gets the contents of the counter specified by OP2.

Precision: OP1 is a double-word. OP2 is a single-word.

The following sets RTA (DW) to the current real-time cycle count.

RCTR RTA,#8
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WCTR

Instruction: WCTR
Class: XOP

Purpose: OPI is a counter number. Write OP2 into the counter specified by OP1.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP2 is a double-word.

The following zeros the real-time cycle counter.

WCTR #0,H8

§5.18

Write counter
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RECTR

Instruction: RECTR
Class: XOP Read enable bits for counter

Purpose: OP2 is a counter number. OP1 gets the contents of the enabling register for the counter
specified by OP2.

Restrictions: Illegal in user mode.

Precision: OP1 is a double-word. OP2 is a single-word.

The following reads the enabling bits for counter COUNT into RTA.

RECTR RTA,COUNT
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WECTR

Instruction: WECTR
Class: XOP Write enable bits for counter

Purpose: OP1 is a counter number. Write OP2 into the enabling register for the counter specified
by OPI.

Restrictions: Illegal in user mode.

Precision: OPI is a single-word. OP?2 is a double-word.

The following writes ENABLE into the enabling register for counter COUNT.

WECTR COUNT, ENABLE




§5.19 Instruction Descriptions Page 259

5.19 Miscellaneous

The instructions in this section fit no general category.
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NOP

Instruction: NOP .
Class: XOP No operation

Purpose: NOP may have operands, but it performs no operation and stores no resuit. It always
transfers control to the next instruction. The operand addressing calculations are carried
through; while the operands themselves are not referenced, an invalid addressing mode

will cause a hard trap.

Precision: OP1 and OP2 may be any precision since they are not fetched.

I The following three instructions are, respectively, one, two and three word NOPs. I

NOP #8,#8
NOP #9,HcB>

I NOP #c@>,c(B)>(SP) 12 I
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JPATCH

Instruction: JPATCH
Class: HOP v Jump to patch

Purpose: JPATCH is an unconditional jump instruction which uses cODI || OD2> as a signed
24-bit offset from the PC to form the jump address. It is intended for use by a debugger,
to allow a single-word instruction to be replaced by a jump to a patch area. The use of
JPATCH in ordinary user code is discouraged; for most purposes JMPA should be used
instead.

Precision: OP1 and OP2 may be any precision since they are not fetched.

This instruction occupies only one instruction word.

JPATCH PATCH. AREA
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XCT

Instruction: XCT
Class: XOP Execute

Purpose: Execute the instruction OPI. If that instruction requires extenced-words, then

NEXT(OPI) and NEXT(NEXT(OPI)) are used as necessary. During execution of the
instruction OPl, PC means the PC of the XCT instruction, not the address of OPI.
Similarly, PC_NEXT_INSTR means the PC of the instruction following the XCT. PC is
used in all indexing off Register 3 during the interpretation of the executed instruction.
PC and PC_NEXT_INSTR are stored on the stack as specified when executing a
context-saving instruction (e.g, TRPSLF or instruction which traps due to an error).
Chaining XCT instructions is legal; in this case PC and PC_NXT_INSTR always refer to
those of the first XCT in the chain. OP2 of an XCT is unused. If OPl of an XCT
instruction is an immediate constant (either long, short, or indexed) then a hard trap will
occur. If an enabled interrupt occurs during the execution of an XCT chain, the
interrupt will be serviced, and the XCT chain will be restarted upon return. OP1 (and
the next two single-words following OP1) of an XCT must be located on a page marked
with DATA=1. As with all instructions, the two single-words following the XCT
instruction itself must be on a page marked with INSTRUCTIONS=1.

The XCT instruction must have its operand in the current address space. The instruction
being executed by XCT may access the previous address space with the same effect as if

that instruction were executed in-line.

XCT is very slow.

Precision: OP1 is a single-word. OP2 is unused (OD2 must equal 0).

Let SP be the stack pointer. Assume an entire instruction has been pushed on the stack,
followed by the negative of the number of extended words that the instruction used. The
following executes the stacked instruction.

L

XCT c-2(SP)>(-1(SP})12 l
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RMIW

Instruction: RMW
Class: TOP Read/modify/write

Purpose: In one memory cycle (and hence indivisibly with respect to other processors in a
multiprocessor system), DEST«S2 and then $2¢S1.

Precision: $1, $2, and DEST are all single-words.

I The following illustrates the use of RMW to implement a test-and-set lock for interprocessor
communication. The lock is a single-word flag which is -1 if some processor has seized the lock

and O if the lock is free.

SEIZE: RMW RTA,#-1,L0CK ;attempt to seize lock
JMPZ.NEQ RTA,SEIZE jbusy-wait if someone else has it
.o 3do .4 if lock was zero (now I have it)

FREE: MOV LOCK, #9 irelease the lock
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WAIT

Instruction: WAIT
Class: XOP

Purpose: Cause the processor to wait for an interrupt.

Restrictions: Illegal in user mode.

Precision: OP1 and OP2 are unused; hence OD| and OD2 must be zero.

The following instruction waits for an interrupt.

WAIT

§ 5,19

Wait for interrupt
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HALT

Instruction: HALT
Class: JOP Halt this processor

Purpose: Halit the processor. Execution continues at JUMPDEST when the halted processor
continues. HALT only halts the processor that executes it. OP1 is unused.

Restrictions: Illegal in user mode.

Precision: OP1 is unused (OD1 must be zero).

pr—— e ———

The first instruction continues at CONT; the second halts immediately upon continuation.

HALT CONT
HALT .
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6 Traps and Interrupts

Traps and interrupts provide a convenient means of handling exceptional conditions that
arise during program execution. They make use of trap wvectors and interrupt vectors to direct
control to exception handling routines. Each type of trap (as well as interrupts) has a block of
vectors associated with it. These vector blocks are located at fixed addresses in memory. (See Figure
6-1) The trap vector associated with each particular trap (interrupt) is located at a fixed offset
from the beginning of its vector block. See Section 6.5 for the formats of the different types of trap
vectors.

A trap (interrupt) causes a new PC to be loaded from the kandler address that is specified in
the trap vector. The low order 30-bits of the handler address specify the address of the routine that
will service the exception (the high-order bits are ignored). Other information such as status words
may also be loaded from the vector associated with the particular trap (interrupt). These values are
loaded after the previous state of the processor has been saved on the stack. The group of words
that is stored on the stack is called a save area.

The save area associated with a trap (interrupt) may contain information that is used by the
routine that will handle the trap (interrupt). Information that is put in the save area typically
includes the PC of the next instruction to be executed, status words, and information needed to
determine the cause of the trap (interrupt). The formats of the various different types of save areas
are shown in Figures 6-3, 6-4, and 6-5.

6.1 Soft Traps

A soft trap can occur as the resuit of certain types of instruction execution errors (e.g.,
integer-overflow). It causes control to be transferred to the handler address that is specified in
SFTERR_VEC. Soft-trap vectors are located in the same address space in which the soft trap
occurred (i.e. user traps to soft-trap vectors in the user's address space and the executive traps to
soft-trap vectors in the executive's address space. See Figure 6-1). They start at address
SFTERR_VECS and occupy 400, single-words giving a maximum of 85 vectors (three words per
vector). The format of SFTERR_VEC is shown in Figure 6-2.

Soft traps cause a number of words to be saved in the soft-trap save area. These are shown in
Figure 6-4. USER_STATUS is saved in a temporary location, and a new value is loaded from the
soft-trap vector. When all values shown have been stored on the stack, control is transferred to the
handler specified by the handler address in the soft-trap vector.

The RETUS instruction is used to return from soft traps. It is described in detail in Section
5.9 along with the return instructions.

6.2 Hard Traps
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A hard trap can occur as the result of certain types of illegal operations (e.g., attempting to
write a read-only page of memory). It causes control to be transferred to the handler address that is
specified in HRDERR_VEC. The hard-trap vectors start at location HRDERR_VECS and occupy
10004 single-words (thus, maximum number of vectors is 170). All hard-trap vectors are located in

the executive’s address space. They are shown in Figure 6-1.

During the processing of a hard trap, the old PROC_STATUS and USER_STATUS are
first saved in temporary locations. New PROC_STATUS and USER_STATUS are then loaded
from the trap vector. Note that the new PROC_STATUS defines a new stack and thus the location
of the save area. The remainder of the information that is put into save areas depends on the type
of hard trap. There are three types of hard traps: nested hard traps, fatal hard traps, and
recoverable hard traps.

Nested hard traps are due to hard errors that occur within a hard trap or interrupt initiation.
They save the address of the hard-trap vector from which the nested hard trap occured in
NESTED_HARD_SAVE_AREA. Fatal hard traps are hard traps from which recovery is not
normal. Information about the trap is saved in FATAL_HARD_SAVE_AREA. Recoverable hard
traps are hard traps from which recovery is the normal case. Information needed to effect recovery
is saved in RECOV_HARD_SAVE AREA. The formats for the save areas of the above
mentioned types of hard traps are shown in Figure 6-3.

The RETFS instruction is used to return from hard traps. It is described in detail later on in
this section.

6.3 Trace-Traps

Trace-trapping occurs before instructions when trace-trapping is enabled. It is useful for
debugging purposes, and for performance evaluation. The trace-trap feature uses two bits in
PROC_STATUS (TRACE_PEND and TRACE_ENB) to ensure that the proper number of trace
traps occur, and that they occur at the right times. After interrupts are processed during the first
stage of the instruction-execution sequence, the TRACE_PEND bit is sampled and reset. If
TRACE_PEND=1, then a trace-trap will occur immediately. If TRACE_PEND=0, then the
instruction-execution sequence will proceed normally. The details of the trace-trap mechanism are
described in Section 5.1.

6.4 Interrupts

Interrupts are similar to traps in the sense that they have vectors and save areas associated
with them. The interrupt vectors are located after the trap vectors in the user’s address space as
shown in Figure 6-1. The main description of the interrupt architecture is discussed in the Section
5.16 along with the descriptions of the interrupt instructions.
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6.5 Vector Locations and Formats

USER
ADDRESS SPACE

vectors for
"TRPSLF"
from USER

vectors for
soft errors
from USER

Traps and Interrupts

QW_ADDRESS
{(OCTAL)

4000
(TRPSLF _VECS)
5008
(SFTERR_VECS)

10008
(TRPEXE_VECS)

14000
{HRDERR_VECS)

200080
(INTUPT_VECS)

24008

Figure 6-1
Trap and Interrupt Vector Locations

EXEC
ADDRESS SPACE

vectors for
"TRPSLF"
from EXEC

vectors for
soft errors
from EXEC

Page 1

vectors for
"TRPEXE"
from EXEC
or USER

Page 2

vectors for
hard errors
from EXEC

or USER

interrupt
vectors

Page 4

Page 5

§6.5
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SFTERR_VEC

HROERR_VEC

INTUPT_VEC

TRPSLF_VEC

TRPEXE_VEC

Traps and Interrupts

new USER_STATUS

handler address

35

new USER_STATUS

new PROC_STATUS

handler address

35

new USER_STATUS

new PROC_STATUS

handler address

35

TRP_PARM_DESC_SW

handler address

35

TRP_PARM_DESC_SW

new USER_STATUS

new PROC_STATUS

handler address

Figure 6-2
Trap and Interrupt Vector Formats

35
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6.6 Save Area Formats

NESTED_HARD_SAVE_AREA

Vector block: HRDERR_VECS address(vector causing error)
Return instruction: RETFS ’ cP||5%@| |PC<B:29>>
’ INSTRUCTION_STATE
USER_STATUS
PROC_STATUS
cP | |5%8 | |PC_NEXT_INSTR<8:29>>
g 35
FATAL_HARD_SAVE_AREA

Vector block: HRDERR_VECS error number
Return instruction: RETFS first word of instr causing error
cP||5%8 | |PC<B:23>>
INSTRUCTION_STATE
USER_STATUS
PROC_STATUS
cP | |5%8 | |PC_NEXT_INSTR<8:29>>
8 35
RECOV_HARD_SAVE_AREA

Vector block: HRDERR_VECS parameter necessary for recovery

Return instruction: RETFS parameter necessary for reCQVérg

parameter necessary for recovery

first word of instr causing error
cP | |5%8 | |[PC<B:29>>
INSTRUCTION_STATE
USER_STATUS
PROC_STATUS
cP||5%8 | |PC_NEXT_INSTR<@:23>>
B 35

Figure 6-3
Hard-Trap Save Area Formats
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SOFT_TRAP_SAVE _AREA

Vector block : SFTERR_VECS address (DEST)

Return instruction: RETUS first word of DEST

second word of DEST
first word of S1

second word of Sl

first word of S2

second word of S2

first word of instr causing error
cbxB | |PC<B: 235>
INSTRUCTION_STATE
USER_STATUS
cbxB | [PC_NEXT_INSTR<Q:23>>
%} 35

Figure 6-4
Soft-Trap Save Area Format

INTUPT_SAVE_AREA

Yector blocks INTUPT_VECS interrupt parameter
INSTRUCTION_STATE
Return instruction: RETFS USER_STATUS

PROC_STATUS
cP | {5%8 | |PC_NEXT_INSTR<8:29>>
8 35

Figure 6-5
Interrupt Save Area Format
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TRPSLF_SAVE_AREA

Vector block: TRPSLF_VECS TRP_PARM_OP1 (8)

Return instruction: RET TRP_PARM_OP111)
TRP_PARM_OP2 (8]
TRP_PARM_OP2 (1)
cbxB | |[PC<B:29>>

cB%8 | |[PC_NEXT_INSTR<8: 29>

Figure 6-6
TRPSLF Save Area Format

TRPEXE_SAVE_AREA

Vector block: TRPEXE_VECS TRP_PARM_OP1 (8]
Return instruction: RETFS ~ TRP_PARM_OP1 (1]
TRP_PARM_OP2 (8]
TRP_PARM_OP2 (1]
cbxB| |PC<B: 295>
USER_STATUS
PROC_STATUS
c6xB | |PC_NEXT_INSTR<@: 295>

Figure 6-7
TRPEXE Save Area Format
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Yector Name Error Condition

TRACE_VEC Trace-trap due to TRACE_PEND=]
STK_OVFL_VEC SP > SL

PG_FAULT_VEC Page fault for a page not in memory
ADDRESS_MD_VEC  lilegal access mode (VA ACCESS is illegal)
USER_P_VEC User attempt to access previous context with P-bit=1

EXEC_ONLY_VEC User attempted to execute a privileged instruction

Table 6-1
Recoverable Hard-Trap Vector Descriptions

Error Number Description

I Error during soft trap

2 Address not aligned

3 register-boundary error

4 P-bit used twice, operand of XCT, or jump dest

5 Trap descriptor out of range

6 Illegal instruction

7 Illegal F-field

8 Non-zero unused OD-field

9 Register number out of bounds

10 Short-operand addressing mode 2

1 Unused

12 Jump to the registers _
13 Immediate as destination, ADDRESS(), jump destination, NEXTY(), or XCT
14 Illegal byte pointer

15 Illegal block alignment

16 I/O buffer physical address is out of range

Table 6-2
Fatal Hard-Trap Error Numbers
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Vector Name

FLT_OVFL_VEC
FLT_UNFL_VEC
FLT_NAN_VEC
INT_OVFL_VEG
INT_Z_DIV_VEC
BND_CHK_VEC

Traps and Interrupts §66

Error Condition

Integer-overflow and INT_OVFL_ENB=1
Floating-overflow and FLT_OVFL_ENB=|
Floating-underflow and FLT_UNFL_ENB=1
Zero-divide and INT_Z_DIV_MODE=0
Bounds check error

Table 6-3

Soft-Trap Vector Descriptions
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