Acquisition of 3D Indoor Environments with Variability and Repetition
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Figure 1: (Left) Starting from a single view scan of a 3D environment obtained using a fast range scanner, we perform scene understanding
by recognizing repeated objects, while factoring out their modes of variability (middle, right). The repeating objects have been learned
beforehand as low complexity models, along with their variability modes. We extract these objects despite a poor quality input scan with
large missing parts and many outliers. For reference, we also show a scene photograph, which is not available to the algorithm.

Abstract

Large-scale acquisition of exterior urban environments is by now
a well-established technology, supporting many applications in
search, navigation, and commerce. The same is not true for indoor
environments, however: access is often restricted and the spaces
may be cluttered. In addition, such environments typically contain
a high density of repeated objects (e.g., tables, chairs, monitors,
etc.) in regular or non-regular arrangements with significant pose
variations and articulations. In this paper, we exploit the special
structure of indoor environments to accelerate their 3D acquisition
and recognition with a low-end handheld scanner. Our approach
runs in two phases: (i) a learning phase, where we acquire 3D
models of frequently occurring objects and capture their variability
modes from only a few scans, and (ii) a recognition phase, where
from a single scan of new areas, we identify previously seen ob-
jects, but in varying poses and locations. This greatly accelerates
the capture process (average recognition time of 200ms/model). We
demonstrate our framework with the acquisition of typical areas of
a university building including cubicle or desk areas, auditoriums,
etc., using a Microsoft Kinect sensor.

1 Introduction

Significant advances have been made towards mapping the exteriors
of urban environments through large-scale city capture efforts of
Google, Nokia, Microsoft, etc. Acquiring 3D indoor environments
in private and public office buildings, however, remains challeng-
ing. While sensor-instrumented vehicles can drive down streets to
capture exterior spaces, mimicking similar setups for interior acqui-
sition requires customization, manual intervention, and is cumber-
some due to unreliable GPS signals, odometry errors, etc. Further
challenges arise due to extensive variability commonly encountered
in building interiors: doors and windows open and close, chairs get
moved around, cubicles get re-arranged, etc.
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At the same time, inexpensive range cameras (e.g., the Microsoft
Kinect) are easy-to-use, fast, and quickly becoming ubiquitous.
This opens new possibilities for large-scale indoor acquisition.
High frame-rate and increased portability, however, come at the
cost of resolution and data quality: the scans are at best of modest
resolution, often very noisy, invariably contain outliers, and suffer
from missing parts due to occlusion. Thus, although we can very
quickly acquire large volumes of data, there exists no general al-
gorithm to extract high-level scene understanding. Further, unlike
building exteriors whose facades are largely flat and have ample
clearance for scanning, indoor objects are usually geometrically
complex, contain significant articulations, and are found in cramped
surroundings. Thus, a traditional acquisition pipeline is ill-suited:
in a typical setting, one has to scan the scene multiple times from
various viewpoints, semi-automatically align the scans, and finally
construct a 3D model. The process is further complicated when the
model deforms during acquisition.

We exploit three observations to make the difficult problem of in-
door 3D acquisition much more tractable:

(1) Most office or public building indoor environments are com-
prised of basic elements, such as walls, doors, windows, furni-
ture (chairs, tables, desks, lamps, computers, cabinets, etc.), which
come from a small number of prototypes and repeat many times.

(ii) Such building components are generally formed of rigid parts
whose geometry is often locally simple, i.e., they consist of surfaces
that are well approximated by planar, cylindrical, conical, spherical
proxies. Further, although variability and articulation are dominant
(a chair moves or its base rotates, a door swings, a lamp is folded),
such variability is limited and low-dimensional (e.g., translational
motion, hinge joint, telescopic joint, etc.).

(iii) Mutual relationships among the basic objects satisfy strong pri-
ors (e.g., a chair stands on the floor, a monitor rests on the table).

In this paper, we present a simple yet effective pipeline to acquire
models of indoor objects such as furniture, together with their vari-
ability modes, and discover object repetitions and exploit them to
speed up large-scale indoor acquisition towards high-level scene
understanding.

Our algorithm works in two stages. First a learning phase where,
starting from a few scans of individual objects, we construct



primitive-based 3D models while explicitly recovering respective
joint attributes and modes of variation. We formulate the problem
of object acquisition as deciding on the types of primitives required
for describing the object model and their mutual connections from a
finite set of possible options, as well as recovering the small number
of necessary variability parameters defining the object pose. This
pre-processing phase of the approach is relatively expensive, but
applies only to a small fraction of the geometry present. Second a
fast recognition phase (about 200ms/model) where, starting from a
single-view scan, we perform segmentation and classification into
plausible objects and then recognize the objects involved and ex-
tract the pose parameters for the low complexity models gener-
ated in the learning phase. Intuitively, we use priors for primitive
types and their connections, thus greatly reducing the number of
unknowns to enable model fitting even from very sparse and low
resolution datasets, while solving for part association via a novel
Markov Random Field (MRF) formulation. Further, we demon-
strate that simple inter-object relations and their relative placements
greatly simplify segmentation and classification tasks necessary
for high-level scene understanding. Effectively, we progressively
model the surrounding environment and its modes of variability.
As new data appears, we either explain it with our current scene
model, or we incorporate the unexplained data by updating current
models, or by creating new ones. Thus, we leverage the repeatabil-
ity of common indoor environments and populate the models with
instances of already acquired objects.

We demonstrate our method on a range of challenging real-world
scenarios. We present, for the first time, basic scene reconstruc-
tion for massive indoor scenes (e.g., office desk spaces, building
auditoriums) from unreliable sparse data by exploiting the low-
complexity variability of common furniture objects and their rep-
etitions. Interestingly we can now meaningfully detect changes in
an environment. For example, we can hope to detect a new object
places in a deskspace by rescanning despite articulations and mo-
tions of the previously extant objects (e.g., desk chairs, monitors,
lamps). Thus, we can separate (and ignore) nuisance modes of
variability (e.g., motions of the chairs, etc.) from variability modes
that carry importance in an application (e.g., security, where the
new object may be a threat).

Contributions. In summary, we (i) introduce a pipeline to acquire
proxy models of common office furniture consisting of rigid parts,
as well as of their low-dimensional variability modes, (ii) detect
and recognize occurrences of such models from single low quality
scans, and (iii) quickly populate large indoor environments with
variability and repetition enabling novel recognition possibilities.

1.1 Related Works.  Surface reconstruction from unorganized
point samples has been extensively studied in computer graphics,
computational geometry and computer vision (see [Dey 2007] and
references therein). Our main goal, however, is different. We focus
on acquiring and understanding large 3D indoor environments.

Scanning technology. Powered by recent developments in real-
time range scanning, everyday users can easily acquire 3D data
at high frame-rates. The individual frames, however, are poor in
quality. Hence, researchers have proposed algorithms to accumu-
late multiple scans for better quality acquisition [Henry et al. 2010;
Izadi et al. 2011]. Unfortunately, such methods lead to ghosting
artifacts if the camera or the scene moves abruptly in course of
scanning. Furthermore, the raw scans do not provide any high-level
understanding of the scene.

Scan processing. Rusinkiewicz et al. [2002] first demonstrated the
possibility of real-time lightweight 3D scanning. In their frame-
work, the user rotates a handheld object while the system con-
tinuously updates the model to provide real-time visual feedback
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Figure 2: Our algorithm consists of two main stages: (i) a learning
phase, and (ii) a fast recognition phase, which takes average of
200 ms/model.

guiding the user where to scan next. In other related efforts, re-
searchers have used template models to learn the space of human
bodies [Allen et al. 2003], morphed database models to fill in re-
gions of missing parts [Pauly et al. 2005], used non-rigid align-
ment to better align (warped) multiple scans [Li et al. 2009], or
exploited non-local repetitions to consolidate point clouds for urban
facades [Zheng et al. 2010]. The methods, however, are not suitable
for extracting a high-level scene understanding along with appropri-
ate deformation models from sparse and unorganized inputs.

Shape analysis. Man-made objects populating indoor scenes typ-
ically have low-degree of freedom and are often arrangements of
simple primitives. Schnabel et al. [2007] introduce an algorithm to
automatically extract basic shapes (e.g., planes, cylinders, spheres,
etc.) from unorganized point clouds. Subsequently, the GlobFit [Li
et al. 2011] framework extracts a set of mutually consistent rela-
tions (e.g., coplanar, coaxial, equal length, etc.) and conform to the
recovered relations for reverse engineering. Alternately, temporal
information across multiple frames can be used to additionally track
joint information in order to recover a deformation model ([Chang
and Zwicker 2011] and references therein).

In the context of image understanding, Lee et al. [2010] construct
a box-based reconstruction of indoor scenes using volumetric con-
siderations, while Gupta et al. [2010] apply geometric constraints
and mechanical considerations to obtain a block-based 3D scene
model. In the context of 3D scans, there has been little efforts to-
wards scene understanding of large datasets. Notable exceptions
include: Triebel et al. [2010] present an unsupervised algorithm for
segmentation and object detection in indoor scenes. They apply
a graph-based clustering on pre-segmented input data and assign
part labels using a Conditional Random Field (CRF). The method,
however, does not consider object variability and cannot be applied
to unorganized pointsets, as is our goal. Boyko et al. [2011] extracts
high level information of road in noisy outdoor point sets. We also
extract high level information in the context of indoor environments
for quick and effective scene understanding.

2 Overview

Our framework works in two main stages: learning and recognition.

In the learning stage, we scan each object of interest a few times
(typically 5-10 scans over different poses). Our goal is to con-
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Figure 3: Learning stage with lamp data set. Given the set of reg-
istered point clouds (a), in the learning stage we find a coherent
model to explain the data jointly. Starting from individual primi-
tives patches (b, c), the stable and consistent primitives are detected
in the first iteration (d). Using such primitives to define a reference
frame, we establish correspondence across the other primitives, and
extract the (joint) deformation parameters. The remaining parts
are then replaced by the best configuration among the sets (e). The
process repeats until convergence.

sistently segment the scans into parts as well as identify the junc-
tion between part-pairs to recover the respective junction attributes.
This is an ambitious goal, given the quality of the inputs. We use
two scene characteristics: (i) the objects are well approximated by
a collection of simple primitives (e.g., planes, boxes, cylinders) and
(ii) the types of junctions between such primitives are limited (e.g.,
hinge, translational) and of low-complexity. We first recover a set of
primitives for each individual scan. For each object, we collectively
process its scans to extract a primitive-based proxy representation
along with the necessary inter-part junctions. Thus we obtain a
collection of models M, M, ....

In the recognition stage, we start from a single scan S of the scene.
We first extract the dominant planes in the scene — typically they de-
note the ground, walls, desks, etc. We identify the ground plane by
using the (approximate) up-vector from the acquisition device and
noting that the points lie to one side of the ground. Planes parallel
to the ground are tagged as tabletops if they are at heights as ob-
served in the training phase (typically 1-3’) — here we exploit that
working surfaces have similar heights across rooms. We remove the
points associated with the ground plane and the candidate tabletops,
and perform connected component analysis on the remaining points
(on a neighbor graph) to extract pointsets Sy, Sz, . . ..

For each pointset S;, we test if it can be satisfactorily explained by
one of the object models M;. This step, however, is challenging
since the data is unreliable and can have large geometric variations
due to pose changes. We handle such difficulties using a novel
MRF formulation and incorporating simple scene priors: (i) we
use placement relations (e.g., monitors are placed on desks, chairs
rest on the ground, etc.), (ii) each model has allowable repetition
modes (e.g., monitors are usually horizontally repeated, chairs are
repeated on the ground). We assume such priors are available as
domain knowledge (see also [Fisher et al. 2011]).

3 Learning Phase

The input to the learning phase is a set of registered point clouds
P!, ..., P"derived from the same object in different configurations.
Our goal is to build a model M comprising of parts that are linked
by joints. Note that although this stage can be unstable for very
few scans, but once we have sufficient data to construct model M,
the subsequent recognition stage becomes simple, robust, and in-
teractive. During the learning phase, we segment each point set P’
into a collection of primitives p’j We then establish correspondence
among the parts across the scans, and from the matched parts build
model M. Note that we also store transformations 7T/ between in-
dividual parts of the extracted model and the corresponding parts
in the measurement, i.e., rI]’(p’j) ~ m;j. We refine the primitives
by jointly fitting the matched parts across different measurements
using the transformation ‘Z}i (see Figure 3).

In this work, we restrict the choice of primitives to cylinders and
boxes, and joint types to rigid, telescopic, and rotational. The final
model M contains information of the individual part primitives and
possible deformation across them (cf., [Chang and Zwicker 2011]).
In addition, we can also keep necessary features for robust match-
ing. For example, the distribution of height from the ground plane
can be a strong prior for tables, or objects can have preferred rep-
etition direction, e.g., monitors or auditorium chairs are typically
repeated sidewise. These learned attributes and relationships act as
reliable regularizers in the recognition phase, when data can be very
sparse and noisy.

3.1 Individual primitive fitting. Primitive fitting can alternately be
thought of a segmentation problem: Given a set of measurements,
we have to partition the data so that each partition is well explained
by a primitive. Instead of fitting primitives directly to points, we
partition the points into a set of surface patches (x;,xz, ..., x,), and
fit primitives to such patches. We obtain initial surface patches by
iteratively sampling seed points and growing the patches to local
planar patches [Cohen-Steiner et al. 2004]. Such patches suffi-
ciently approximate the surface, and also reduce the complexity of
the problem. After convergence, we perform PCA for each patch x;
and keep the eigenvalues o1 (x;) > 02(x;) > 03(x;) and correspond-
ing eigenvectors e (x;), €2(x;), e3(x;), respectively.

We then perform fitting using RANSAC directly on the patches.
Starting with larger patches as seeds, we make a guess for the prim-
itive parameters, and progressively add neighboring patches. We
iterate between finding candidates and finding the parameters, and
retain those with sufficient witness, i.e., inlier patches thus effec-
tively grouping the initial patches to bigger ones. The initialization
from patches differ for each primitive type as follows:

Algorithm 1 Incrementally complete a coherent model M

while |P,| > 0, Vi do
for pi; € Pj; do
find a connected part pi, € P},
if such pi exists then
count number of points in all measurements explained by
the part pi- using %/
keep the part that has the maximum count
end if
end for
add the best candidate pi/. to M and the corresponding transfor-

mation 77 to T'.
add rotation or scaling if any of the measurements cannot be
explained by the part without deformation.
remove parts in P}, that are covered by the new part.
end while




Box. We parameterize a box with three mutually orthogonal di-
rections d;,d,, d; € R3, offset values p, p2, p3 € R, and lengths
1, b, 13 € R along the respective directions. We initialize a box if
(i) a patch that has small normal variation o3 (x;) < § (§ = 0.01), or
(ii) a pair of patches are nearly orthogonal, i.e., €1 (x;)Te; (x ;) = 0.
In case (i), we initialize a direction d; and an offset p;. When
a neighboring patch with a right angle is detected (also for the
initialization case (ii)), then we replace the two directions d;, d,
and corresponding offsets p;, p» by the actual values from the new
patches. The remaining direction is given by d;3 = d; x d,. Oth-
erwise, the directions and lengths are approximated by principal
components attributes, i.e., €| (x;) and e;(x;).

Cylinder. We fit a cylinder when a patch is not necessarily planar,
i.e., o3(x;) > & and elongated, i.e., 62(x;)/01(x;) < p (p = 0.5).
The cylinder axis is initialized using e; (x;) and the size of the patch,
while the remaining directions provide a starting radius. Any neigh-
boring patches that are close to the axis direction are also added.

3.2 Matching. After the individual measurements P’ are fitted with
primitives {pg.}, we find relatively large, consistent set of primi-
tives among the measurements as a starting point for the model.
We compare adjacent pairs of primitives and calculate how well
they overlap, and pick the one with the most overlap. Thus, we
give preference to larger parts, since smaller primitives arise from
unstable fits and are unreliable at this stage.

We observe that a pair of primitives with their relative positions
form a local reference frame. We add the pair to current model M
and align the measurements by adjusting the parameters by jointly
fitting the aligned primitives. We then replace the matched primi-
tives by the model primitives with the transformation 7/ € T'. Note

that measurement P’ can have multiple transformations since each
part can deform relative to each other (see Figure 3d).

3.3 Completing a coherent model. Primitives in measurement
pj; € P' are either mapped to the current model P, or are tagged as

unexplained P},. After the previous matching step discovers a pair
of parts, we start from |P},| = 2. The matched parts serve as anchors
for further matches among the remaining candidates, which are pro-
gressively attached to already matched parts (see Algorithm 1).

Man-made structures are often hierarchical. Hence, in the inner
loop of testing each part pi-, we benefit from relative information
between parent node and its connected children to find a regular
structure. We consider mirror and rotational symmetries in our
framework (see Figure 3e). We now describe how to consider such
regularity in the testing stage.

Mirror symmetry. We test for mirror symmetry when the parent
node is a box, which has 3 possible reflective symmetry planes. If
the connected child parts can be separated by one of the symmetry
planes for all » measurements, we flag a candidate mirror symme-
try. Once the symmetry plane and the candidate parts are flagged,
we similarly test each configuration with respect to measurement. If
there were n measurements of the object, there are 2n sections that
can be fitted by the same set of primitives under mirror symme-
try. The symmetric parts can also undergo possible deformations.
We use the best configuration to replace all the detected symmetric
instances (see Figure 4c).

Rotational symmetry. In case of rotational symmetry, instead of
looking for the plane of reflection, we search for the axis of rota-
tion. For any pair of patches that are neighboring and not parallel to
each other, we find the approximate point, or possible axis position.
Then we run mean-shift clustering to detect candidate axis positions
among all pairs of neighboring patches. If there is a coherent axis
position for all the measurements, then there is possible rotational
symmetry. Hence, after testing, we jointly fit a rotational structure.
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Figure 4: The chair model starts from fitting primitives and de-
tecting the dominant elements, i.e., the back and the seat (b), then
evolves as the algorithm discovers and jointly optimizes the shape
for mirror symmetry between the elements, i.e., arms (c), and rota-
tional symmetry for the legs (d).
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Figure 5: In the recognition phase, we use a MRF formulation to
match the learned chair model (a) to the input scan (b). While
simply matching height (c) or relative size (d) results in wrong
matches, we correctly identify the chair back and seat (e) using
both the terms. The most likely assignment adding binary term
is shown in (f). Note in areas of very sparse data, there can still
be mismatches, requiring further refinements, especially for small
parts, e.g., we fail to extract symmetry between the chair arms in
this example.

We fix the axis location but allow scale or rotational deformation
along the axis direction (see Figure 4d).

4 Recognition Phase

Having learned a set of models (along with their deformation be-
havior) M := {Mj,...,M;} for a particular environment, in the
recognition phase we can quickly collect and understand the en-
vironment. The scene S containing the learned models is col-
lected using the code by [Engelhard et al. 2011] in a few seconds
of time. As pre-processing, we extract large flat surfaces using
RANSAC, which effectively are the ground plane, desk tops, and
walls. We retain the plane equation of the most dominant plane
(ground plane) and the (significant) ones parallel to the dominant
plane (desks). The remaining points are partitioned into groups by
connecting neighboring points (using a neighborhood graph with
distance threshold of 1cm). The resulting clusters S = {S,...,S,}
are the input for our recognition pipeline (see Figure 2).

For each clustered single view point cloud S;, we try to match each
of learned models M;. The recognition pipeline returns how well
S; is matched to the given model M; in addition to the relative
transformation and deformation. If successful, we build a quick
and lightweight 3D model of the environment by simply replacing
the corresponding pointcloud by the matched model with correct
transformation and deformation parameters (see Figure 5). For the
rest of the section, we simply denote scan and model as S and M,
respectively.

4.1 Initial match. Recall the model M is composed of a set of prim-
itives and the connectivity between them. Similar to the learning
step, we create patches for the input cluster S and generate initial



Figure 6: Recognition results on synthetic scan of a virtual 3D scene.

segments and candidate joints between neighboring segments. We
jointly consider the deformation parameters and compare each pair
of neighboring parts with joints in models via a Markov Random
Field (MRF) formulation. Say there are segments s;,s, € S and
parts m;,mp; € M. Then we find the most likely matches between
them by minimizing the following energy function.

Z::Z@(si:mi) +nZ’V(si:mi7sj:mj) (1)

i.j

unary term binary term

We can use the distance d(f;, fn) € [0, 1] between features of s € S
and m € M for the energy function. For example, the unary term
can be written as sum of all possible feature distances:

D(s =m) = Zdi/n7 where )

dll’ngth(f”fm) = m1n(|ﬁ - fm|/fm7 1) )
d‘mgle(fs,fm) =|fs = ful/m, (3)
dhEigh’(fs,fm) =1 Zmin (fg(l)afm(l)) .

Among many possible sets of features, we use relative length and
height distribution. Height distribution is given as a histogram over
the distance from the ground plane and the distance is obtained as
a histogram intersection distance [Swain and Ballard 1991]. Note
that it is easy to integrate alternate shape features, colors, or any
other useful information to strengthen the recognition power. In all
our tests, however, we only consider geometry and ignore texture
information.

In our framework, we can robustly handle moderate and low quality
scans reliably because of the binary term. We define this term by
comparing features distances for neighboring patch pairs with joints
in a model,

V(si = my, 52 = my) = { %:i b /n if edge exists in model

if no edge exists.

(C))
Due to the limitation of single-view data, not all of the joints are
likely to be observed. The term y > 1 (we used 5) is a penalty for
assigning non-existing joints, which captures the probability that a
joint may not have been observed, or be wrongly assigned. The fea-
tures b’ we consider for the binary term include relative location of
contact, angle between the parts, length (the largest dimension from
the contact point), width (the smallest dimension from the contact
point). Since we know the possible deformation space of model
joints from the model M, we adaptively compare only features that
are invariant to the deformation. For example, we ignore angles for
rotational joints, or ignore length of corresponding directions for
telescopic joints.

Since the energy function is non-metric and non-convex, we used
a message passing algorithm [Kolmogorov 2006] to solve for the
minimum. The minimization is quick because the possible discrete
assignment space is quite small. The result certainly depends on the

individual terms used (see Figure 5). We find the initial transforma-
tion between S and M by using the matched joints with the smallest
binary term 7. If there is no joint discovered, we use the part with
smallest unary term 9D and relative ground direction.

4.2 Finding transformation and deformation parameters. After
the initial match and transformation is extracted, we incrementally
grow the match to find the local minimum for the remaining un-
knowns. Starting from the initial transformation, we find the best
deformation parameter, and establish correspondence between §
and M. We find the best transformation given the correspondence,
and then iterate until convergence. We replace the points by the
best matching model, if at least 80% of points are explained after
convergence.

Figure 7: Chang et al. [2011] can find meaningful rigid parts in
the learning stage for good scans, and such a model can be used
directly in the recognition stage. In our scenario, however, we found
a proxy-based method to be more forgiving to poor data.

5 Results

In this section, we present the results of our system on various
synthetic and real-world scenes. For real-world datasets, we used
Microsoft Kinect with an open source scanning library [Engelhard
et al. 2011] for both the learning and the recognition phases. Note
that a more accurate scanner can be used in the learning phase for
better quality models. For example, in Figure 7, we show the results
of Chang et al. [2011] on higher density scans of multiple chair
poses. Although their current method is limited to hinge and ball
joints, and hence miss the telescopic joints in the chair example, we
believe their method can be generalized to be used in the learning
stage. However, for sparse input scans, like in our setting, we found
our primitive based learning method to be more robust. Intuitively,

scene model points no.of no.of no.of
perscan  scans  prim.  joints

chair 41724 7 8 4

office monitor 20011 5 3 2
trash bin 28348 2 4 0

auditorium | chair 31534 5 4 2
chair 28445 7 10 4

synthetic stool 19944 7 3 2
monitor 60933 7 3 2

Table 1: Models obtained from the learning stage (see Figure 9).
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Figure 8: Recognition results on various office and auditorium scenes. Since the input single view scans are too poor to understand the scene
complexity, we include scene images just for visualization (they are not available to the algorithm). Note that for the auditorium examples,
we even detect the tables on the chairs — this is possible since we have extract this mode of variation for chairs in the learning phase.

we restrict the complexity of the model by our choice of primitives Comparison. We struggled to compare our method with existing
and joint types, and thus regularize the problem. techniques as we are not aware of any competing method that can
handle the quality of our target data and at this scale. Even state-



number of input points objects objects

scene -
average min max present  detected*
teaser 6187 2575 12083 | 5c 6m Ot 5¢ 4m Ot
office 1 2570 1129 3930 | 5¢2m 1t 5¢2m 1t
office 2 4952 1996 11090 | 4c6m2t  4c5m 1t
office 3 2450 1355 5234 | 8c 5m Ot 6¢ 3m Ot
aud. 1 19033 11377 29260 | 26 chairs 26 chairs
aud. 2 9381 2832 13317 | 21 chairs 19 chairs
synthetic 3227 1168 9967 | 5¢3s5m  5c¢3sS5m

*¢: chair, m: monitor, t: trash bin, s: stool

Table 2: Statistics for the recognition stage. For each scene, we
also indicate the corresponding scene in Figure 8 in parenthesis,
when applicable.

of-the-art methods like [Chang and Zwicker 2011] assume input
quality well beyond the ones we process (see Table 2). A direct
surface reconstruction on the input single view point sets is clearly
unrealistic — even we as humans find it hard to visually understand
the scene from input scans as shown in Figures 1 and 8. Further,
scan consolidation [Zheng et al. 2010] did not help since we failed
to detect the repetitions in the original scans due to the presence of
model variabilities and non-regular arrangements. In fact, we failed
to reliably consolidate the models even after the recognition stage
because of ambiguity of point-part association near segment bound-
aries, especially in noisy and incomplete regions. In our experience,
the low complexity deformation models extracted in the learning
stage are critical: for example, using simple rigid models (by freez-
ing the joints in the respective models) leads to significantly worse
recognition results in the office scenes where the objects are all in
different configurations (e.g., no two chairs have the same height).

Synthetic scenes. We evaluated our framework on a synthetic scene
obtained from Google warehouse (see Figure 6). Note that we
detected all the 5 monitors, the 5 chairs, and the 3 stools in the
scene, along with their poses, the associated ground plane, and the
desk area. The stools were particularly challenging given their thin
stems, but we recovered their positions since (i) they stand on the
ground, and (ii) their top and bottom parts provide enough support
for the MRF to recover their poses. Our experience with other scans
of the scenes was similar, and we only show one variation here. In
scenes where the top part of the stools were not visible, we failed
to detect them.
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Figure 9: Various models (chairs, stool, monitor, trash bin) learned
and used in our setups (see Table 2).

Real-world scenes. We tested our pipeline on a range of real-world
examples each consisting of multiple objects arranged over large
spaces. These are challenging especially due to the amount of vari-
ability in the individual model poses. Table 1 summarizes all the
models learned for these scenes ranging from 3-10 primitives with
0-4 joints, learned from only a few scans (see Figure 9).

The recognition results are satisfactory, e.g., in Figure 1 we detect
all the 5 chairs and the 4 monitors, although parts of the desktops
go missing. Note that the sofa, which was not among the learned
models, is not detected. The complexity of our problem setting
can be appreciated by looking at the input scan, which is hard even
for us to visually parse. We overlay the unresolved points on the

recognized parts for comparison. Note that we show the colored
points just for reference, while our algorithm only has access to the
geometry but not any color or texture attributes.

After the preprocessing (learning) phase, our recognition stage is
lightweight and fast taking on an average 205ms to compare a point
cluster to a model on a 2.4Hz CPU with 6GB RAM. We summarize
the results in Figure 8 for (cluttered) office setups and auditori-
ums. We detect the chairs, monitors, and trash bins across different
rooms, and rows of auditorium chairs in different configurations.
Surprisingly, we could also detect the small tables in the two audi-
torium scenes (1 in auditorium #1, and 3 in auditorium #2). Also
notice the detected pose changes in the auditorium seats. Even un-
der such demanding data quality, we can recognize the models and
recover poses from data sets an order of magnitude sparser than
those required in the learning phase. Specifically, we need around
1000-2000 points per model for recognition. This is possible since
the learning stage extracts only the important degrees of variation,
thus providing a very compact, yet powerful, model (and deforma-
tion) abstraction.

Overall the recognition results are satisfactory in most cases (see
Table 2) except when an individual model gets split into multi-
ple parts by occlusion, or objects are very distant (note that the
data quality deteriorates nonlinearly with distance) and the result-
ing point clouds are severely distorted. In the office scenes, we
fail to detect the white boards as they are confused with the walls.
We also successfully detect the trash cans in office #1 and office
#2 — note the size of the objects relative to the scan quality (and
resolution). In office #3, we miss a couple of the chairs, which
are mostly occluded and beyond what our framework can handle.
In the auditorium scenes, although we detect all the chairs (along
with the open tables), we fail to extract the slight arc of the chair
arrangements. Such an error can only be corrected with more global
reasoning. We decided against considering such specialized priors
as they are very domain dependent. It is, however, possible to inte-
grate a coupled global optimization to refine our recognition results
in the auditorium case (see grid-based refinement in [Pauly et al.
2008]).

As an interesting possibility, we can also use our pipeline to effi-
ciently detect change — by change, we mean introduction of a new
object, previously not seen in the learning phase while factoring
out variations due to different spatial arrangements or variation of
individual model poses. For example, in the auditorium #2, a previ-
ously unobserved chair is successfully detected (flagged in yellow).
This can be particularly useful for surveillance and automated in-
vestigation of indoor environments or for disaster planning (where
it is unsafe for a human observer to go in).

Limitations. Clearly we cannot capture features that are below the
sensor capabilities, especially small/thin protruding structures (e.g.,
wheels of chairs) or reflective objects. For example, we fail to cor-
rectly detect the pose for chairs with very thin legs, though we can
estimate their heights based on their relation to the ground. Moni-
tors in tilted angles also cannot be detected because the sensor could
not provide reliable measurements due to the material properties.
We are also limited in the learning phase. Given our part-based
segmentation, we fail to correctly recognize parts of models when
the segmentation of parts is ambiguous in certain configurations,
e.g., a cabinet with closed doors. Finally, at present we cannot han-
dle complex joint types (e.g., folding chairs) again primarily due to
segmentation limits.



6 Conclusion

We presented a simple system for recognizing models in cluttered
3D indoor environments, while factoring out deformation and spa-
tial placement, at a scale previously not demonstrated (to the best of
our knowledge). Our pipeline is scalable and general with extension
to more complex environments primarily requiring reliable acquisi-
tion of additional object models (with their variability modes) and
good priors for the inter-object relationships.

Several future possibilities remain: (i) With increasing number of
object prototypes, we will need more sophisticated search data
structures. We hope to benefit from the existing literature in shape
search and related areas. Scalability at the level of big building
interiors is probably best tested in a company environment (with
human resources), although we believe that given the simplicity of
the setup a lot can be done at a smaller scale. (ii) In this work,
we focused on a severely restricted form of sensor input, namely
poor and sparse geometry. We intentionally left out color and tex-
ture, which can be very useful in future considerations, especially
if appearance variations can be accounted for. (iii) Finally, we have
to aware of the ultimate use of the acquired models — whether
the goal is the production of interior CAD models for visualiza-
tion, or more schematic representations that may be sufficient for
navigation, or simply of scene understanding for threat detection,
location of missing objects, etc. In all these settings the ultimate
representation of the learned objects can vary, but the basic pipeline
of coupled object learning, recognition, and environment modeling
remains the same.
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