TE K REFERENCE Part No. 070-5604-00
MANUAL Product Group 18

4404

ARTIFICIAL
INTELLIGENCE
SYSTEM

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

First Printing DEC 1984

Tektronix

COMMITTED TO EXCELLENCE

Copyright © 1984 by Tektronix, Inc., Beaverton, Oregon. Printed in
the United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission
of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or
more U.S. or foreign patents or patent applications. Information
provided upon request by Tektronix, Inc., P.O. Box 500, Beaverton,
Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.
Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is a registered trademark of Technical Systems Consult-
ants, Inc.

Portions of this manual are reprinted with permission of the copy-
right holder, Technical Systems Consultants, Inc., of Chapel Hill,
North Carolina.

The operating system software copyright information is embedded
in the code. It can be read via the “info” utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when
used properly in the specified operating environment, for a period of three (3) months from the date of
shipment, or if the program is installed by Tektronix, for a period of three (3) months from the date of
installation. If this software product does not conform as warranted, Tektronix will provide the
remedial services specified below. Tektronix does not warrant that the functions contained in this soft-
ware product will meet Customer’s requirements or that operation of this software product will be
uninterrupted or error-free or that all errors will be corrected.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the
expiration of the warranty period and make suitable arrangements for such service in accordance with
the instructions received from Tektronix. If Tektronix is unable, within a reasonable time after receipt
of such notice, to provide the remedial services specified below, Customer may terminate the license
for the software product and return this software product and any associated materials to Tektronix for
credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer.
Tektronix shall not be obligated to furnish service under this warranty with respect to any software pro-
duct a) that is used in an operating environment other than that specified or in a manner inconsistent
with the Users Manual and documentation or b) when the software product has been integrated with
other software if the result of such integration increases the time or difficulty of analyzing or servicing
the software product or the problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. TEKTRONIX RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE
WHEN SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER’S PAYMENT IS THE
SOLE AND EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRAN-
TY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE OF
THE POSSIBILITY OF SUCH DAMAGES.

MANUAL REVISION STATUS

PRODUCT: 4404 Artificial Intelligence System

This manual supports the following versions of this product: Serial Numbers B0O10100 and up.

REV DATE DESCRIPTION

DEC 1984 Original Issue

4404 Reference Manual

CONTENTS

Section 1 INTRODUCTION

About This Manual.-oo.oo.oooo.oo. ooo--oooooooooooooocoo‘o1-1
Whef'e tO Find InfOr’mation. ® © 0 5 000 068 00 060 3358558050980 000800 0000 .1_1
Manual Syntax Conventions. ® © 00 06060 0005 06035 0500580066000 0050608000008 000 01"'2

Section 2 USER COMMANDS AND UTILITIES

asmoo.oooocc.toooot0000..0.-..00.000-00'000'0000000.000.00000.

backupo.on..voou.oc.oo..oooo.oooo‘ooo.oooo.o‘nc.t'ﬁ""”"".

CC......D.O...'.Q....Q.Q.'...O....O.D.C.Q.........Il.........’

Chdoo...o-o..O'o.o00000000000000.00000000.0..0.......00.0000.0

commset..o000.00..ooo.o.c'.o.oc.t.oo...o.'o.o.ooo.....o--o'.o.

Compareooooncitooooo.oc.oooooo.o'...ool.o0000.'0.0.0..0.000'..

Consetoooooaotooaoo..oo.o'o..ou...'.Oo.‘00..00000.....0‘0.'...

Copy.ooooooooooooo..oo.ooo.oo....l.o.o.o"00"0000......-.....

Crdir-o.ot.o.o.aoo&'.o..o...o.o0.0.0-.000..000.000.000..:0....

Createoonoo.oo-.'o....t"Oo-o.ooooio.00.....0...0000‘....0.0.o

s X
date....o.oo.oo'ooooo.l.o..oo.o‘o.0000000'.0...00........‘000.

debug.ao.ooooﬁooooooooocl-n......t..ouo"o..o.....‘..t.0.00.0.

diro..o.oooo.on..0.000'..o.coto.'u..oo.'ioo...o-..000......0..

dpermcooooaooos.'.cl’.e"ﬂoo.oo.oo.ooooiﬁooolaoooooooocooo0...

dump.o ® 8 0. 0.8 000 0000000 0000008 0000 C OO PO L OO OSSN0

eCho..ouo...o'.oo.b..o'o.oooo.c....oo'o..'O‘c........oo'o...‘.

edit.o.ootooctoooloc'o.000000000.000.000.000.'...0.'...0.'0.00

flnd ® 6 0 0.0 9 0060005080000 00 0000 OO OL DS N 0L 0E SN CE OSSNSO

formatto-.oc.ooooo..oo0.0.0.6...0.0.‘00.."000000...0000.0000.

freeooo....o....o.‘o0.00..0000...000.'.00000000000000000000000

headset.oooﬁontooo.oOo.ooo..ooo.....o.oo.o.o..oo..o.oooo.oo.'.

help.-....o.oo-oooo.oooco'ooo...o..n.....000.0..........'0000.

info..ot.oo.l.0‘00-0.o.oo.c....oo...oo..a.'..olo...o.t..to.oo.

into'oo.00.o‘oc000.0.000ooo...oc.0000000..0....000......0..000

jobs.o.'.oao.oooto.o..oo....ooo..c.....ooooc....o.oo.o.c.oo...

libgen-.-00000000Doooo.no.0000Q‘oooo.oo.oo‘..o.oooooo.ooooo.oo

libinfoct.'.QIOQI...........'O..........O"..".....Q.‘.......

linkb.0..'lO....00.‘I.‘..00.....'....OCO....lO.....0.0..I..I..

listocoo.oooo...“..-..o..ocoo...t..Q'c.oooooooaoooﬂooo..O..OO

].Oadoo.ooo.l..oo00.0...0.0.0.0"0.00.000'....0.0.."O.Q.ol....

].ogj.n.‘00..000Oo.oo...000000000.00000000'...000000..O0.0'.O...

move.o0..".'.‘.0000...0.n...n..I00000.l.c...o.co...o...coooo.

1
S L2 0WVOOVOOONNNTINOOOVMUUIUMIEEREEAEESEUODINDNNNS 220N -
OONNOW_ANUIOOOOPRL 200 NDNNUILWONNORNDOOO VT WOUIND -

N O

Ownerot...oooo.oooo'l'.Qoooooo'ooao'-caIoucoo..o..oo..o-..OOOO

password.oooo.ooloooo.oo....o..o'..‘.oo.o.0.0..00.00...-.0.0..

path...l......'............0‘........'.O..........‘..'.“....'

perms.ooooooooootoo.o.ooQO.Q..'Q.'.....Q.'o.coo.o.o‘.l.o..‘..'

relinfo...o.o.ano0o'.oooo'...o.o.‘ooooo"...‘..o......000.0000

f\)l\)l\)l\)f\)l\)l\)f\)l\)l\)l\)i\)!\)l\)l\)f\)l\)l\)l\)ll\)l'\)l\)l\)l\)l\)l\)f\)I\)I\Jl\)l\)f\)l\)l\)l\)l\)l\)l\)

Pem()te-. ooooooo 0o’o...o..o.....ocooo-.coof......ooltt.o.‘..‘..

4404 Reference Manual ii

P OMOVE e e s eeososssosossasssscssssosscssssosssssasssssssssssascocs sesses2=104
PECNAME e s e v sovsossessscsesossesssssacsscscs ceeccessecsssssssscssesa2=107
PE SO L e s esososesecesssessesesssssssssssssssssssssssescsassessl=109
SCripleseceeeeees cressaess ceesssssassssssannesccces s L L
shelleeeeeoeoonens Cecececccccence teecseessessceccsscsssssscssessl=129
StALUS e e eeseseesesoessssessanssscsssssssssssssssscsssssssssseel=159
STO P eseceesoesssosasossascssssessscsssssssssssscsssssssncsesesl=143
SEP I Deeeesecesascscsocssnososssoesssosssasssasscssssssscsssssssssecl=144
TA1leeeeeseaosococcsoaoasoscsosoccssscsscsncsssssscssssnsascsscsesel—145
OUC . ¢ e evensoooososssseanossssssoscssassscssssassscsssssssccesssl=T146
UPJA T e teetereeessecocassssscsossssssssssossncssasccnsoscsscssesel—148

waitoo-i.ooo.oo'....“ooo..oooo.o...0.0 0..0‘.0'0'0.00...02_152

Section 3 "SYSTEM" UTILITIES

2ddUSereeeesecccsccsscsccssses ceececcsecccsscccvsssssssssscssased—]
D1OCKCHECK e s eeeeeosseossooscosososossssscssscsosssscscssssscsssscnsi—i
deluser‘................................-.......-..............3-5
deVCHECKeeeooooovessscsesososcsccosssscsosssosossssessssscsassssacsa e 3=7
diskrepaireeeeecesosecessscecssascncaa cecscns cecssessesssessesser=9
fdnCheCk........-o...............................-............3-19
MaKdeVeeeooeoessssassssscsccscse ceesscnes cececcccssccsscnsossese =20

mounto.o....0..o00'.0"0..0000.00.0'.00OOO‘O.....o..o..ooo...n3_22

unmount'......'...........'..'..........Q.O..........'.5-24
Section 4 4404 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Introduction..ceeeeeceas cscsscasssasasnssssses cecsscassssassecd=l
System Calls OVErVieWeeeseesessssesosscessssssssscscssssssossssnse 4-1
How 4404 Programs RUN.sessesscesccssossassosssssssscseancsscs .o 4-1
Introduction to System CallS.eeceseccesssscscscsoscscsscsocsesd=2
The "Sys" InNStruCtioN.eecececcevsesesescsessscssscsccccccscsesdd=
System Call Example.eeeceicecess cesesccessesescrsvscecscnscccsd—
Indirect System CallS.eeeeess ceecsces R
System ErrorS.eescecescccccsscscosssccnosns O
The Task Environment....ccecececcscas cescesssesscssccscccscscd-
Address SpPaCe.isecsessscsssscssssscss cetecesessescsessesesessd=T
ArgumentsS.eeeeeeesseceesossecsosscsosssssasscsssssssssssccsssld=8
Initiating and Terminating TaskS.eeeesesssssscssesossnsccescasd=10
Terminating @ TasSKeeeeoeeoosooesesoscsscssscsssccscscssssssed=11
The "Wait" System Call...eeiesess Py L
The "Exec" System Callieeieeseeesoosscescssosocsscsssncacsssesld=12
The "Fork" and "Vfork" System CallS.eecececccscsscsscscscesesd=T14
4404 File Handling.eesoesoecoeescssssscssssscsseasanss cecssessesd=15
General File DefinitionS.eeeee.. P L
Device Independent I/0.ecececccscccccsccscasccscsssscsesesd=15
File DeSCriptOrSecececescsesscosscscsssscccsscscssssscssnssd=16
Standard Input and OUtpUt...ceeeeseesscosessnssosasssanscaassd=16
Opening, Closing, and Creating FileS.eeeeeseesossesscsccceacd=17
The "Open" System Call....................................4-17

~N OV~ O

iii 4404 Reference Manual

The "Close" System Call.ieeeessosscscssscassccccnssonssosssesd=18

The "Create!" System Calleceeeeeseesescsscsccssosscssnsecssesd=18
Reading and Writing...4—19
The "Read" System Call..... cecesesesscssccscssscsssassssesd=19

The "Write" System Calleeeeecesescesesescscscccssscsscssosesd=21
Efficiency in Reading and Writing...eeeeecececoccccccccsead=23
Seeking.....-..........-....................................4-23
File Status Information..eeeesecsccscsscesesccsssscsossessssd=25
DiPeCtOFies and Linking......................................o4-28
Other System FUNCtioNnS.sceeeeceeeeascescscsssscosssssossansessesd=30
The "Break" FunCtioN..eecesesesescesescsssosescscscscscsesesd=30
The "Ttyset" and "Ttyget" FunctionsS....cececccscsscsccscssesd=30
RaW I/0 MOQ@ueteeeoeooeonososcacsosesccoosscnsssssssscscsesel=32
Echo Input CharactersS.ecececccecesceass cescsscsccsssescscsesed=33
Expand Tabs On OUtpPUTeeeeesecscoscscscscssasosscsccscssssed=33

Map Upper/LoWer CAS@eceececssccsssccsscssoscssssnscasascncassld=33
Auto Line Feed.eeeeeesseesssssscsssscsascscsscasscssscsscesed=34
Echo Backspace Echo Character.cececcececesesccscscccsecscsesed=34
Single Character Input Mod€..ceseeecesceccasccscscsnsceesed=34
Ignore Control CharactersS.eececeeeeeececcececscccccssoosssd=34
Pipes‘c-oouooooo-.ooooco-oo.oconooo.oooooooo-ooo.o'.oo.ooooo4-35
Program InterruptS.eeseececessecccsscsossassssscssssscssssscssseld=30
Sending and Catching Program InterruptS.eeseecceecccccccceesed=37
Interrupted System CallS.eeecescsscsescssosssosesscseassessed=q4
Locking and Unlocking ReCOrdS.seescsccscsoscscssscccsssosossd=dd
Shared TeXt ProgramS..ecesecsscessscsscsccsssssccascasscsssssd—4b
General Programming PracticCeS.cececccsscsssssssssscccccscsssssd=46
Starting LOCAtioNSeeeseeessosescesscsssscssccssscscscscssessd=46
Stack ConsiderationS.cecesesesceccscsccccssccsosssssssoscnessd=46
Hardware Interrupts and TrapS.ecescccscsscscoscsossccscsssosssd=47
Delays.............................. ooooo ooooooooooooooooooo4-47
System "Lib" Files Provided.eececsccecccscescccscsscscsscseased=47
Generating Unique FilenameS..cesesescscscscscsscscsccsescscsed=48
DebUEEINgeeesesoeeeesscssasossoscsssssssssesosssssscsscscssssessld=48
Programming EXample..ececeecesessscscsccscssssscsccssosesescssssd=48
Sample "Strip" Utility..0'.ooo.Q.ooloo000..0...00.00000.0..0004-51

4404 Reference Manual iv

Section 5 THE ASSEMBLER AND LINKING LOADER

Introduction.eceeeecsecseesesossossescoscccanssonnns cecesssssesess
Invoking the Assembleér.scececcsce ceessesesess st encansen e
The Command Line.ceseeeeesssecsasosess csssssssssssccsenens
Multiple Input Source Files..eseecsoes cessssssscrecccccnes
Specifying Assembly OptioNS.cesesecesscccsccscscossccscscncs
Order for Specifying Filenames, Options,
and ParametersS.ceceescccsssscecsccccsns cesscsssencsvne
Sending Output to a Hardcopy DevicCe.seeeeeececoccosscsecnns
€= 1) o B - -
Assembler Operation & Source Line ComponentS.eececececececescscons
Source Statement FieldS..ceesseeeceass esessssssssssencssev e
Label or Symbol Fieldesecseeseessossoessosssocssosssosssnssacs
Opcode Fieldeeeeeeoocoesossosossssecssssasssassssscsosssssscs
Operand Fieldeeeseeseess ceeene cesscccssssssssesssssesecess
Comment Fieldeseoesesoeseesecsccscssscsscssssscssnsscscssesd=10
Register SpecificatioON.esseescecesssescssssscscsscsnssesoseesesd=10
EXPreSSioNSeeececsecsescsssscscsoscscssscscescsssoscscsscsssssessacsed=10
Ttem TYPEeSeeeseesssessesscscssossssscsssssssssssssssssnssseesd=1]
Types 0f EXPreSSioNnS.ceiceeseccsscccesscsssccsosccssssssnessesd=12
Expression OperatorS.eecsscscsscssccscssssssscscsscscsscecsesd=13
Instruction Set DifferencesS.eccececscscscccsscscssscsscscssscacssd=15
The Instruction Set.eeeeeeeeessesesesssscscscsssssssssosssssesd=10
Programming Model...eeeeeeesececccsooccososscososscssssscssssssd=10
Addressing ModeSeeeseeeeceossscocsosssssasscoss ceesesssnasenssd=17
The Assembler Instruction Set.eeeeeeesescscscsosssssccoccscser=2]
SYNETAX e eteeeaeeaseeossaosssssssssssscsscssssssscnsscssssessed=2]
INSErUCtioNSeeeeesessseesscesssscsescsssscssscsssosnssssessed=23
Convenience MNemONiCS.eeesseeesssssscsossscsssosssssssescesesd=30
Standard Directives or Pseudo-0OpS.iceesscscsscscccccscsossscsssssr=30

dc.-o..t00!.00.0......00...'.oo.o..o-c.t.ooo....t‘o...-oo...5-31

(O RGAG RS A6 R RS RS (O RG R RG RN |
! |

!
WO~ O\ Ul &~ W=

dSooooooo-sno.-'-o-.oo.---oo-ooo.o-oo-coo.ooooooooooooooo0-05-32
EQUecessacossossnrcsonscscsnsssssonssscososs cesessesssessssesesed=32
2 o)
BVUEI e evoosocosssosososcsssooossscsessssssssssssssssessssssssssseed=I)

fcba..o...ot‘o.lOool.ooot'l.ooovtooo00o.oc00.000...00...000.5_33

fcc...ooc.o.I.lo..t‘....o..ot..‘..oo"oc.ooo.ooo oooooo 0000005—34
fdbo ooooooo 5 6 060600 52 00 09 500 O E 0SS PO OO0 OO0 NS sEOTTOEECEDS 000000005-35
fqb'........l.“......................... oooooo000.0.05-35

B o B o
l1iDeeeeeeeoosssssooenssonssssssssscesssssssssccsssassssanessd=3D
lOg...5'36
Optoooooo-ooono-..oooo--ocoooo-o-o-oaoo‘ooo'o-.oooooooo-oooo5—37
pag-out0o-oooo'o-ocoooo.ooocoo-c...ooo--oc.otoo.-ooooooo.coc5-37
Fab...5—38
Pmb..-5'58
PZb.ooo-o-ccno--oooooo-c-ouooocvoo.oaooo-ooo-oo-.-ooooooocoo5—38
SEleeieetenenensescsesscscscesasnssssssssncescscscsssssncccesd=39

Spc.o'.onioo.'looooototo..‘ouo. ooooooooooo 00'0000.00000000005—39

4404 Reference Manual

Sttl.........o-..................o....................--..o-5“39
SYSeescsccanans ccecsessecsccsesssessssscssessscsssssssssscscassd—40
ttlo.o-ooooooo ----- © 6 065 0606000606 000060600000000060000P200s0000000 005_40
Conditional Assemblyeeeeeesccosscsseasas cesesessssessssessssesser=40
The "If-Endif" ClaUSE.ceecescccssesssssccsssssseassessscssscssr—4]
The "If-Else-Endif" ConstructionNeseceeceesescescescsccsscssscessr=41
Special FeatUreS.iceeeessoscscosccssssssscsscsscssscscsscnsssnssssed=l2
End of Assembly InformatioN.escesesessccecscscsscsscsccccsessed=42
Excessive Branch Indicator.cescecscsesccscscscscscscscecsessd=43
Auto Fielding.eeeeessessecosccsessesscsssascsscsassossscsceeedr=43
Fix Mod€eeeeeesaconanncns ceccesssscssessesescesessesseccscese=44
Local LabelS.ceeeeeesecscsssoscsoscsssscsssssnsnsssessosseseesed=ld
Object Code ProductioN.cesececccscssasscsccne cessessessesesscsse=44
Relocatable (Segmented) Object Code FileS.ieesseecsssesesessesd—44
The Base and Struct DirectiveS.eeeececseecccccsscssssssssssed=40

Global..oooooc..0000.‘00000000.0.0--0....0&.0 0000!0'.005-47
Define and Enddef. S © 5 0 5 0 0 0 0 0 0 500 G000 0L LSO N OEN SO N OSSO 55_48
EXtern oooooo ® © 0 8 2 6 8 0 000005000 0005000000000 NG SOC OO OO OSSNSO .5-48

NameOOCOOOOtoooo.oo.ooo.0'.oooooo..00Oool.00000.0000000000005_48

Common and EndCOMeceesceosscsessscscscsss cesscscssescssescsses—49
Error and Warning MeSSa8ZeSeeesccesccscscsscssssssssscscssscssscsesd=50
Possible Non-Fatal Error MesSSageS.eecesesscsccscccccscsscsssed=50
Possible Fatal Error MeSSa8geS.cceescscscscscsscsscccsccsccsessed=DT
The Linking Loader.....................9...--.......g..g......5‘58
Terminology.ooo.o'oooooooooooo-oooc-;o.o-oooo.o.oo.o00000'-05_58
Linking Loader INnpUl.ccececcecssesccsessesssosssscccnssessesd=59
Linking Loader OutpUt.eceeeescosssscsscsscscsscscssosoasseseedr=59
The Standard Environment Fil€eeeeeeeececcccsccssccssocssesr=—00
Invoking the LoAder.cccesissscccesssscsssssossssassassssasssssd=00
Valid Options............................-...............-5-61
LibrarieSeeeceeeescsceseessacascascnass cetecccsssscccsssseesd=65
INtrodUCtioN.eeeeeesceeseeccsscscscsssosscsasssccssassosncsssseed—05
Library GeneratioN.eeccecececcsscccsscsssossccsssnssssassesssd—6b
EXampleSooutoo.oooooou-co..ooooooooooooooo00000000000-0-00005‘67
Segmentation and Memory Assignment.cececcececescsee ceeveccesad-68
Relocatable and Executable FileSeeeeeeecccossccsssssacssssd=08
Relocatable MOAUIES.ceeeeceoecccscscsosssscccassssasssesssr=—D8
Executable ProgramS..ceescescesscess cesesesssssescsssseeesd—69
Shared TeXt ProgramS..ceecssssccccescscccscscasssssassssesssd=09
Non-Shared TeXxt ProgramsS.ccccesecscssscscccscssscsccscssssasd=(2
Load and Module MapS.sieeseosocee cecsscesss cecscsscscassssceed=T2
Load Map.eeeeseoseacoscscconsscsssosscssesscscsnosssscsossssseed=(2
Module Mapo-uo-o.oooooooooooooooooo-ooooo000000000000000005_72
The Module Map of a Relocatable Modul€esseecsscesscssessesed=72
MiSCEllaneOUSeeeeessscsosesosssesesnsessssssssssssscsssscsesesed=lD
Transfer AddreSS.eeesessesccosccsosssossscssssssosssoscassassss 5-75
Resolution of Externals With Library ModuleS.ceecceessseesed=75
ETEXT, EDATA, and END.o.o...c.oooo.ocoo-.oooooocooooco-000005-75
ErrOr Mo SSaZeSeseresessessscsscscsscsssssssscssscssscsssscased=7D
Non-Fatal Error MeSSageSeccceeccessscscccssscscssssncccscsed=70
Fatal Error MesSsSageS.cececssecscsscsssss sesescsessens ceceeee=T7

4404 Reference Manual vi

Section 6 SYSTEM CALLS

vii

IntroductionNeeeeecescececoesccaes cecsesasssesas ceesescescssesseeseen

OVGFVieW.......-o- 5 0 0 0 0 86 ¢ 9 S 0 8 0 5 08 005 00 S BSOS OSSNSO e e

Details Of System Calls'oo-co.ooooooootoco...ooooooo.cto oooooo

System Errors..-......cco.o..co.nooooo.t.oooco.ooo.ooot..-t.
System Definitions.oo.c--ou-..o--l.0....00.000000.‘.......00

alar‘moo.0'0.0.0..t.o...o.-.......lo.coc.a.oo.-coonno.o.o'.'

O\O\O\O\O\?'\O\O\O\O\O\O\
= OWO0OOON~JTOW

breaknooao.000....00'.0'0.o‘oo...naoooct.'..o.o‘..-...‘l'ul.

ChaCCQ0000000000000000.000.000.0cooco'ooc..oootoo-o.0.00'...

chdiro.oo.0.0.0.00.oo.ot..o.ol'..ooo'ococ.'.o......oo.o....o

Chown.lcolc....'oooooot...oouocoo.....u.o.ol-ooo...o.ooooc..

Chprm.o.'0'.0.....'.'...... oooooo ® 0 8 050 00 0608600000008 000000s0000
0

Cpint..oo.toocll..ooct'..o.ot'....'oo‘.0000..0..o...ootoo'co6-1o

Closeooooocooouooocoot ooooo ® 6 0 0600060000000 0000200 s 6 0500000080

Create..00....0.-0:.00..00o.ooooo....o.oooo..'oo.oo.o 6-12
crpipeotooouoooo.....ooooo..oo'o.oo.-..oc|..000000000-00.'l06—13

Cr‘tsd..lo.o..ot..o.-...0......oo..oooo0'..'.oooo.o.o't...oo.6_13

defaCC. ® 9 00 9 0 09 0 00 0000V CC PO OSSO OECESEOEIEOCEEOEEOSITBSETDPITO ® ® 00 00000 e 0000009000 06_14
dup oooooo L I B B K BB IR 2 B B R B I N IR I IR I B I Y B B Y B N R I BN -0000.6-15
dupS ® 8 0.0 000 000 00000000 0° 00000 O OO0 LLOEEOSIOCEE OO 00006-15

exec..ooI...a..o.ooo.'o.o.o..oooooool.o.l...0000..000......'6—16

filtim.'........ ® 9 000000020 ® 6 0 2 ¢ 6000 0000000008000 00000 6_17
fork.-Q..t.ooo..oooot.oooooo.oooooo.ooo..oo..ooo..oo. 6—17
gtid...oooooooo 00000.....o.ooooc.o..no000000.000000000.6_18

guido-oooooo..oooo-o-oo-c.oooooc-oo-c---'oooo'o.coooooooo-oo6_18
INAeeeaeeeeeeecocescocossecaosssssaosnsscsassssscssssossascscsseseb=18
indx.......................o..-......................-......6—19
1iNKe oo eeeeeeoeeosacscssossescssossscossssssssossscsasscscsscssseb=1G
10CKeeeeoeeaaesssessassecsossssccnsas cecscssccsas cesescsns . 6-20
1P Ceueesesesaoeeacssossesssscssssssssssssssnsssssssscscsssseesb=20
MEMMAN ¢ ¢ s e soeeoeosasssesasesssossssssossscsssssscsscsasossscsasesb=2]
MOUNT e e eeeeseceosccsssscencsssscenccscccsooscsossssossccasscssesb=2
ofstat.eeeeeceoencencncas ceeectcceccsecsccscscsessscassenssseeeb=22
0pen..............-........-................................6—22
PhY S e eeeeeeeenesesossseessasasesessssascosscssssssssscscsesncs 6-23
PrOfileueeeeeeececcasscossessssossccscacscscsscssssscscsscscsessb=23
PCAd: teeenevecesscosccosesvcssoscsccssssscsscascsssccsssccsscccscssb=24
SCEKeteseosecoosnonsa teesscscessseessssscssccscssscsccscceseeb=25
Setpf..--.............6-25
SPiNt.eeeecececacscocnccnens A 4
STACK et eeeeeeeetseeosasceossescsossctssscssossscscsscssssccsssscscssb=26
StatUS.......................-..............................6—27
Stime...-......... oooooooooo cooonooo-oo.onooooo.oooo-.ooaoco6_28
STOD e eeseeacsserscosccoscesssascsscsssccssssssosssccsssncscesb=28
Suid. ooooo -oo.ooo-o.ooocc.ootou---oooo.oo-o-o-oooo.o.ooo'-.o6-29
term............--............... -----0..0........'0‘6-29

timeoloooo..'ooo...0.-.0..0-auoss‘ogqs.eeeoooe'.l..c.e '6-30

4404 Reference Manual

truncate.ooooo.oo.o-...t...o.o.ooo.o.o..Q.oc..oo.oooc...oo..

ttime....Oot.noooo....o.u.o.aoooaoo..oo...00.......-..0.0...

ttygetoo.oooc.-c.o..o.oo.ooo..oo.oo-a.oo.o.o..t..oo.cv...olt

ttynumoooo000.00000.0.00..0.Coo.oooooo.no.ooooco.on.‘..o.o..

ttyset'o....000.00.0..0no..ooo.ooooo..ooo.o.oo....o...'.oo.o

unlinkoo.o..ocooo-.00000.0.to..ooo.0.0.000.0..0'000000.....o

unmnt'.ocooﬁoOo.lo.oooooo.oO..000..o..0-.00...000.0..00..000

ALl ARs e YA Lo Yo e a o)
SRS TN I TS AN RN AN VISR OV eV
OOV BRB NN A0

update..oo ® © © 0 06060 0000005009 000006060005 5000000000000 000000

ureCoa-o.ooootoo..oooou.Io.oooooo.o.c.oc’.oloc.o'.......oo..

Vfork..ot...0-......0....ooooooo000.o..o.....olono.....'.000

Wait.t....ooaol.ot.oco..oooooooo.oo0oo-ooo.o.ooo..oo......oo

writeoooI0'0'.ooo..oloo.'....o.oo'l..oo-loooo...o....o.oo...

Section 7 THE 4404 C COMPILER

Invoking the "C" Compiler.icececcscccscceccscscssccsccssccsscsscacael~1
OVGPVieW...-7‘1
SyntaxX.eeeeeeeseossccsccccoccscnns Y AL

Options Available.eeeseeseesescosocscssoososossossscscnscoel=1
Detailed Description of OptioNnS.ssecscesescscescsscccosocnsssel=3
The 'a' OptiONeceeecececsosscscscoscacscacscscsssossssssscssaal—3
The 'C' OptioN.seeseesscsscscssescsssssesscssscsessssassnssl=3
The 'D' OptioNeceeecececscccsccscssoccsscccccscccsccsccsosasccsnsl=D
The 'f' Option..-.7-3
The 'i' Option...oo-7’4
The 'I' OptioNeceeeeeseessscssosccsassssesscssoscssssossssesel=4
The '1' Option.................... oooooo 0000000000-00000007_4
The 'L' Option.................--......o.-m..........-o-oo7‘5
The 'm' Option..7-5
The 'M' OPLiONeseeennueeoeeennseereennnsssocnnnnnseecnnnesl=D
The "™m' OptiON.ieececeseessccssscssscsoscsssesossccsansscsassasl=D
The 'N' Optiono‘o.ooooocooooo'oo-oo..oooo-.0000000000000007_5
The 'O' Optionooooooooooouoo.ooo.ooooooocoo..oooooo.o.oooo7—5
The 'O' Optiono-oo.oo....oooo-oooo.-oooo-oooooo-.oco--oooo7‘6
The 'Q' OptioN.seeeeceeeccesessessccccsccssccssscsscssasesel=0
The 'P' Option......................................-.....7-7
The '"R' OptioN.ceeeeeeeececeecoscessosocsssscsoscsccscsnesel=T7
The '"sS' OptioNe.cceceecsscscecessosscssscssccscsccscnssscssl =7
The 't' Option..............................-o......-...o.?“?
The ‘U' Option.o-o'-coooooo.u.ccaﬁoooooototoooooooo..tlo..?’?
The 'V, Option..........................-....o-.....-....-7-8
The 'W' Optionoooo.oo.ooooouooo-ooooo‘oc0000000..00.0..0007-8
The 'X' Option..7-8
Examples...-7-8
Language DeSCPiption.-....................-.................7-9
ObjeCt SiZeSoo-oooo.o.oooooo.ooooooo-coooo'ooo-uoooocnooot7-9
Register VariableS.ececeeceseescscesscacsccscsssssascscnsasel=10

2 oo o T T L

aCCGSS...........o..........................o.....o..........-7-12

aCCt....‘...O........l..000".......C‘...00..........0........7-14

4404 Reference Manual viii

ix

QlaArMeeecesessssscscacncoscossasssassscsss Cecececsssasccscsssesel=16
brk..............-.........................-...............-..7—17
CAatAceeeeeoseescetsososcscoscsassossssscssosssssssscssssssssscsnnaasel=18
chdireeeeeeeeenne Cetesceseesssssssasaenan cesecesssecssssccssseel=19
ChmMOd . e eeeeeceeetoseneccssasoscsesscssasasncasns cesessecccscsesnsseal=21
ChOWN e eeeeeeeeseeosseeesesssocascssossssosssossscssasssssecssasssesel=23
Chtim..........................-.....................-........7—25
ClOSE.iteteessseetsoccsacasccccsnsanas cescecs ceeesscsnesescssnsel=27
CreAbliuiceeeseessesosossscosossssosscsscsscssssssssceasssssssscscnsss (=28
dup..........-....--....................... ooooo oooooooooauooo7-31
dUup2.esacese cecsecsssesstanasasssseanens ceseseessesssessescsses (=32
EXEClieeeosoeososassaossossscocssssossssssossssesssscscsssascnssscsesl=24
eXGClp... oooooooo R EEE R E -onoo..ooooooo.ooooocooooa?’}?
EXECCVeeeosoasoootosoossosssssoascsssssossascsscccss ceesscesscccccsssesl=40
EXECVDoesseosososscssescssssesssssssssssessossessssssasssscsscsecesl~43
O K e vooeoooacossossososeesesosssssssssnsoscsscsasssasscssccscsnssssseel=40
= 3 7 U ceevssccccssscecsssee (=48
FEiMeeeeeecersosescscssessssescccsoscscansscsscssssssscssosssscscscnsesel=51
geteuid...........--..........--..............................7-53
getpPideeeeeeeeeeeeeeeacsnosonnnsoscsnsennns cesessesesessssesesl=54
getuid...........--........................--........... oooooo 7-55
Bttyerseesescacasasennenns Ceeeseccccsctsccssstsessscsscscssnsaasl=50
Killeeeeoeeooooooaoeoosooeeoaosasososscsosscsoscscsscscsscscscccsnssesrl=01
liNKeeeeooooosnoscsococnnse Cessesesescscesescscsscscecssssssesl=04
10CKeeeovoosooo Ceeceeecescsescssessesesseecssscssscssessasscsnssases =00
IreCecevennccccan cteccesscsscscanas cecees cecccecsesssscscassesl=67
156K :eeeeseeossssseoscsscccssccosccsces cecssseccscacsccsssssasel=69
11T 11112 o cesecsesecssessaseal=T71
mknOd............-...-7“73
MOUNL e eeeesaossesecscassasccosccosssssssssssssosscssnssncsscss cesceel =76
NiCEaeeesssessssssscsssscossoecsnonsosnssssessssssssssscscsssscsncscssssssl—19

open.oo ooooooooo ® 9 © 0 00 086 009060005809 0E GO SECOIEOECSLOEOOCOTS ¢ e 0o 00 000 0.0...7_80

pauseoooot.ooo.oo....oc'.-0.....0'..00oOQIOCOOOOOOO‘..o‘tiooto7-82

phys. * 0 6 0 0 00O PP e e ® 6 06 0 0 8 0 0000000 9000006000000 00 e ® e s 00000090000 07-83
pipe ® 0600 0080500 ® 5 5 6 2 00 0 0 0060600600900 0000000000000 s o000 00000 07_85
pFOfilo ooooooo 0'..'I...........l.............l‘...'...........7—87

PCA0eeeeeeosssessssssccscssscseosssscssssacsssssssosssscssscssccsssesel—89
o R i) PP
setuideeeceeeee N
Signal...-.......-.....-.........o...........................-7'96
StaCKeieeeeesseeeeeceoosceosssossososscssssscssnsscasssssssssas eesses =100
Stato--ooooooo.-ooto-oooc.-.o.ocoooooo-'oo-oau-o--.ooo..coo.oo7-1o1
stime.eeceesss et s e ecececscccseccsr s esesasssseess s o s ceceesl=104
SEEYeeeeeeeoceeseesacesosssccossscosssssesssssasssscassssasssssesel=105
SYNCavoeossanseosssesassssscsscsssssssasssassancssesssassnscsas ceesess (=109

timEO'ooooooo'...0‘.00000....000-Oc.o.oa'o.o'..0000000000000007_110

times oooooooooooo oo..oo.o.too.-o..'o..'otan'l00005000.000000007"111
truan-.. e 00000000 0 -..l-.llooot....o--0.--.......0.0...7_113
ttysloto...o.ou.l.t.oooo-.-oooilltto.C.oano.oo..o...o.o'o'l‘007-115

4404 Reference Manual

umaSK.....................................-.......-...........7-116
umount....................................o....o.............o7—117
UNLliNKeeoeooooosoososossacoooosssoscesssoscsossssssssssssncsassssssscel=119
UPECesosososssanossssasssssossssssssscascsssosssscssscsccancaese (=127
ULIMEeeeeoeeeceaeeessseasosessossssosossasscssssscscssscssesssccnesl =123
VfOFK ----- o-oooo'-oo-'oooooc-oooooooooco-o¢ooo.oo-oooocoo-ono-7'125
WAlteeeioeeseosesceaacssososcassssassssasssssossasssessssssnscssel=127
WPItEeeeeeeeeeoeeeenososososscocssosnsssnssassascsnsscsscsssssnssceel =129
Special Support LibrarieS.ccscsscscescscesscssccoscssccssocscssel =131

The ‘C' Library.. ooooo oo’..o.0000000.0.0000.".000000.000.0.7—131
abs.-oooo'-ooooooooo.o.oooooo--ouo.oo-.o---ocooo....o.oooooooo7'132
aSCtime............-...o7-135
atOh...... oooooooo o.o.oo-.ooooc'---.-o--oooo.oocoooooooo000007-134
gtOi..7-135
atOl...............................-.-...........-...........-7—156
atOO...7—137
=8 - L 1<
C2ll0Ceeeeeeeesesoscannsessessscsssocassssoscssosscsccsasncascsnsnnel—~139
Clearer P eeeesoecscsscsosasosscssscsscsssssasssscssccssnsscssccssee(—140
CPYPleeseeeeteeeroncecosesoccscscsososcsssssssssscscccnccnccees (=141
Ctime.................................-.......................7-142
daylighteceseesseeesscessesssesssesssessscsssscsancsnncscssocel=143
endpwent..........................-.................-........o7-144
endutent..ieeeiieieiieeateceeesnsccsccnsesscscscscssscasnnsessel—145

D T P S 1S
TCl0SEeeeeeesesesssasesssaseesssassasssocsssssossssasnnssssenel =147
TAOPEN et eeeeseeseoscsesssessscsssscssosssossssssessscsssnacsssccssel=148
feofoooooooooo..aooo.o.ooo.oooo.:oooo-oouolo..oo..v.ooooooo0007—150
fePPOP..........o--............................-..............7—151
FfIUS e et et ieieeeeencescsnssescsscccoscsssssscsssscascscsssnssesl=152
fgetC......-..-.......7—153
fEEtSeeeeeseeessscecssesososossssssssssssssscssscsssssascsscscssl=154
fileno...o..............7—155
fOPE e eeecesosoocsssasoscsososscssssscscscsascscsssssscssscssessacel =156
IPULC et eeeenssencsesncenseossccassossssnsocssccnssnsseasssacssssel=158
I PUES e eeeteeeeaesesossosesssssonescassssssasosssssssssscssscscs «.7-159
fread....... Ceeeessteseetssscsscssssesscessssesscssscasancnssesl=160
freeo.o-ooo-o.o.oooooooocoooco’-‘oooooo-o00.000.0.0000000000.07-161
freopen...7-162
= Lo =Y N A L
FSEEKeeeteeenoeeeasseeeeeeoanssscssssssscacsssscscsssscscssanal—=105
ftell........................-...............-..............-.7-167
fwrite..................-..............-......................7—168
getC.................................. ooooo7-170
getchaf...........-..................'..........oo..........-.7-171
getCWdooo-cc-o.o-onoooo.oo'ooooo-.--.coooo..c...ooo000000-000-7—172
getpaSS...... oooooo oooooo.ooc.o.ooo-..al.c.o.oo.0000.000.000..7-173
Bl DWeeeoooososoosesssasssasesossassssasssscscsssssassascscsnsel=175
e lPWENE et teeeosossssssssssssssssonccccsccsscsccccssassnncesel=176
EetDWNAMe e eeeseossossoesosescssnscancss cececcscssessssssssssesel=179

4404 Reference Manual X

xi

gezpwuid... sesressssessecssaces tesesssessessecssssanesns 7-181
BELSeeeseessecssssssssssssssssssasssssscnsscnsnss cesecssseness (=183
BetUtent e eeeesesesssosssssscesscsssssssosssasossscccssscssessl=184
ge%utline...$—186
B Wateesooanesossssasesnsssssssssossssscessssscsssccanssnsscssesl(—188
gmtime..ooeons cesescsssscaans T 7-189
index... ooooo ® 06 0 00000000 0 ouo-oooooaooooo.ooooooooo.oo-oo-o-o7‘191
1S21NUM.eeeeoeoeosensssoescansssssssssssssssssssssssoesosscsssesnsel=192
1S81PNa4eeeeeeecsoessosessssssscasscasscsssssssescosccssnsscssesl=193
1588Ciieeeeecceceeccccccoosscscaccssssescsssscssssscsssscssessesl=194
isCntrleceeeeccecscccsoccnccns Cececccscssetscsscscsssssscssesesses /=195
180igiteeeeeeeeosooenaceccccconcsssssscssssscssscnasssssacsessl=196
1SEraP Nt ececesesstessecssscssssssscssssessscssssssansssncscssel=197
1S]OWE P eeveeaososoesssssssssssosscsssssassssssssssssensssasesel=198
i18printeeeeececescesacessssscoscsssanssosssne cecscssecsscnssenssel=199
ispunct...-.7-200
1S SPACE ceeeescssscescccsesssscssscssscssssssssscsssssscssasssnsesl=201
isuppereecececeecses ssessccacssssancsassssnssvencs cesessesssseses (=202
isxdigiteeeeeeeeeseoseeeeccseossceecccnnccnnsse cessccen ceceessees =203
1t0Streeeeeeettncttteeenetttteccetacserrsrsccsccnsssscsssasees(—204
12t08cectctcnacnecnanns ceseeseersanssanans cesscssssssssssesse =205
13t0]ceceesccocccooscsossososcssensescscscssscsccasscsssscascnsssl =200
_14t01.....................-..................................7-207
10CaAltimeeeeeessesoeessessasssssscossscssossessossassseascsnscsesl—208
10NgIMDeeeesesssesseesssssssssosssssscsssssssssssscssssssessessl=210
1t01l3.eeeeseeosccossosnsssnsssososssssnsssssssssensssncssssccossesl=211

1t014.0..o.o..'..oooo..00.000'.....0.oocooc..oo‘ot--o.n..o..o7-212

__ltOStI‘...-. ... ® 0 6 00065 95 9 0600006069 0000000500 0000000000000000007_213
malloCO...0.0."0‘:0'-...'0000...‘o.ooo.oo...o.oooo.oo'lo..n..7-214

memccpy.oloot.o.o..o.loo.‘0000......00..O..oooo.00.0...0..0...7-215

memChr..tooo....oto.o'o.......o..o-ooooooo.ooo..to.loo..o ooooo 7—216
memcmp ooooo © 6 00 9 % 00 S GO S P OGO SO P O P E ® 6 8 O O 66O 8 E SO HESGG O 07—217
memey....-. ® 6 06 @0 00 0590000000000 0000000 ®© ® 8 65 000 000000000 .7—218

memsetooo.t.'ooo.'...oooc.o.o.‘t.. .'oooo'o...05000‘000000000007-219
:gzimp. ® 5 © 9 0 5 5 0 0 % 00 0L OO PO PP SO OSSO 0GOS PO P 000 L 0L L OL S 0SSO E NGOG .7-220

® € 0 06 & 0 06065 06 050 00009 GO P SOOI LS OO0 00 PSSO E S OSOSOS @ o 0000 00080 00 7-221
StFtO].... ® 5 5 02000 06 50200000 000 5090000 N L OL OO OO OO 0PSSO OSOE .7-222
printfo.oo ® % 0 0.5 0 000000000000 PO L OO OO0 SOOI E T O SESNESIS OSSO 0007—224

putC... '''''''' ...o...t..oo.'t.t.o.ooo.i.o.oo.'ot.n..'o'oo.o007-226

pUtCha[‘. ® © 2 0 5 0 0 0 00 C 0O C PO L0 O OP OSSO OO D OO0 L0 O S OO SO L LSS EIPIES 07—227
putpweﬂt. ® 0 5 0 6 00 060000000000 0050 C OO OL OO 0C L0 000 OSSO SIS OSIETSTTEDS .7-228
glul‘gio........l..loo....oo..o.loo..ooooI.l..ooo50000000000000007-250

® 0 0 0 8 0 0 0 0 05 O OO SO S LSO OO SO0 L0 0N OO ONENEN PO SO eSS OO 17-231
g:rolgt' ® 6 0 0 0 0 060 0 00 5000 PP S0 O 0 OO OO OO NS OO0 0L LGSO SO OSSO DPDOETSE .7_252

@ © 0 0 0 6 & 000 005 000000050000 550 S0 000 0L OO0 0SS LLOOLEEPLIOEOEESEDINOSPETDNTE 7—253
Peal 1OC. ® © @ 0.0 065 5 0 05 00 00000000000 H OGO SO OO PO LSOO SO S ENNEEBNL OIS ECEOETISIES .7-234
reWind. LI BRI I I I I 2 R B I B B I R Y Y B B B R BN I I B N IR B B N I Y R B I I B AN K B I I I I Y) .7-235
Findex. ® 0 0 0.8 0 0 0 0 600 0 000 O PO PO 0D S LS L L OD SO0 E LSOO NNSDPCEE BSOS 07-236
rrando ® 0 0 9 0 00 0 5 0 00T OO LD O OE OO SOOI LS D OO0 0L LSO SEIPOSOESIEETSTSEDNPOETDSOE 07—257

scanf..o.oQ.‘OOOO......'O'o'o'o.-...-o......0005000000000000017-238

4404 Reference Manual

Setbuf............o....o-.--ooooooooo---o..oooco-ooooot7-24o
Setjmp......--.-..o.o..o7-241
Setpwentoooooo-ouooooouoo-ooocoooooooooooooo.noo000000000000007‘242
SetUtenNteeeeeeeeereeessscssscossscsoscssscosscssssossssssscsssensse (=243
Sleep... oooooo ooco.oooo.ooooo-ooooo-o-o'ooooooooo.ooooaooooo007_244
SPriNtfeeeeeeeeeeeesesssecsssscscssscsseascsscssssscsscsssssssssssscsl =245
SPraNndececescccescccncccsse cecssesssessssenes cescessssesssessas =247
SSCANT e eeoesvsosssscsssssssssssssssssssscscscscscsssscssscssscsssceel—248
8t0l 2. ceiecceteetrcncttsccsccccscssscscssccccssssscssssssscssel =250
strcateeeecececscees cecccsevssccccsssssessssssesssssssssssssscccel =251
SErChl ceeveereesssscscccses ceesssessessessas ceeecscsssssccsncsel=252
< v o 11) o J cecsscscscsscscessl=253
SEPCPYeesesseessscsascescsscsssssacssnanscas ceesesesencans cessesl-254
ST C P Neeeeeeseseossscessossssscsossssscssosssscsossssccsssssssscsccsssl=255
SEP 1N et eeeeoeososccacssesscscssssessssscssssscssssssssssscsccssscs (=256
SEPNCAteeeeeeeoeesesscceccsscsessssccscscssssosssssccsssscsceseel =257
SEPNCMD e eetseesceecesccscsssssssssosoassscscscsssscsssssssssncsssl=258
Strncpyeeees. e esessesssccsesesssessessssssccssesscsssccscccsss =259
Strpbrk oooooooooo oo.oooo.o.oo.00000000.000000.‘o..o.00000000007-260
St P Cr ettt eeeeseeecescsssesasoscssosscsscssssssscsscsssssssssssscss (=201
StrSpn..--7-262
_Strtoiceeeeeceeeecceesecccccoscssnoscssncscccccsscccnccccssce =203
SELEOK et oo eoecosooesocseoeccocsecsscsssoscscsssssscsssssssssscsce /=205
Strt0leeeeesoeccccccocscccnee cecccccecsasecennne ceecscsscssscses =207
timezone.ceeeeeee ceececececccscccceccccsesecsccscsscescscccccse =269
toasciiceese cecseccscesccvscscccscssccsssssessessssssssssssssssee (=270
_tOlower..............-....................................-.o7-271
_toupper.iiiieiiceiccecscsecsccosccsscscaccssscsssccnsecssesce (=272
ttyname...7-273
tznameoooooooo-ooo..oo-oooooooocooooooo-ooooo'00000000000-00'07-274
TZSE T iieeseeoosesececenossscsssosssssosscsssssssosssscscsssccscnseel=275
UNZEEC et eoeeeoooososecsocssossesscsoscsscsscsscsesosscssosssssssscssesl=276

The Graphics Libraryeesecsccecscssccsccsscsccsosssssscassseasesl =277

#iNClude FileSeiceeeecccccccecccsesescncssccsssscssssscscnssscssl(=283

4404 Reference Manual xii

Section 8 4404 HARDWARE SUPPORT

Introduction..

Display, Mouse, and Keyboard SuppPOrt.sceeescccsosssesscsssssss

xiii

Device DriverSeeeeececcsecseseons
Scsi Peripherals.ieeecsceecsesscecssancs
Console Deviceeeeo
Communications Port.seeec..

® 000 050 0800809000608 000

® @ 0 0 0 P 5 08 0 e PO T O LR OO N LT OO PN OE

1

® 9 © 9 09 0 00 5 S S SO C P ST OO S

® © 06 0 ¢ S 00 5 PP S0 S L PO E OO s LD EPS

Sound Generator.seesesescescssesess
Controlling the Sound Device..cceeeeesesescccecscncces
"/dev/Sound" Operation and CommandS..cececes.

Sound EXampleS.cceeeeecsceccecssascscccsssssssnsssssssssssccss
Set the Tempo to Be 1 Beat Per Second (1000

Millisec/Bea@t)eeseeeeeeesvecsnsasasscacss
Set the Frequency for Voice 2 to Be 440 Hz..
Play
Turn

® 5 5 060 06500062 0000000000080 e
o o 00 2 0

® s 00800000006

oo ® @ CDCD('I)(DG)G)COO)(D

®® 9 00 0800000

Voice 2 at Full Volume for 1 Beatieeeeeeeoeeeecensns
the Volume of Voice 2 Down by 12 Db

and Play for 2 Beats....
Voice 2 Off ceeerecencoccccaconcas
White Noise (Hissing Sound)....... ceeeann
Down the Volume 18 Db and Hold for 2
BeatSeeeceeeeoccnns

Turn Noise Offeeeeeececcccccesvsccosnscsososossssesscsssncssssssl—
Printef POPt........,........................o..............8—
Other DevicCesS.seeeeececesrsesossoossscessssssscscsososssscsssssasssl=
.. 8-

000-0-0008_

LI]

ooo-oaoooocc-.ooo8‘
08—

100'00008’

Turn
Play
Turn

.oo-00".'.0...0.00.00.00...0‘..08—

DiSplay Panning..o...oc.o..o..o.o.o

U
SR N -

0
0
1
1

_

12
12
12

13
13
13
14
14
15

Cursor and Mouse Tracking.eeeseeessss
Display Access FunctionSeeesecesecsossccnssacss

Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

OWO~NOUVIEAEWND -0

|10 JENL N N N N W WL S g
OWOFJTAUIEB NN D O e o0 oo oo o0 00 o

N
-

: blackonwhitel.‘.Q....'....I....‘.....
: whiteOnBlack....

¢ getMousePointeeeeeeeneeeeescececscnne

: getCursorPointeeeeeeeeeecss

'-o-o.o.o.......o.t00008-15

00-00-8_15
Cursoron....."...I..........'........8_16

s e s 0090

. CUPSOFOff-ooo..---..o-c-o...o-.-......8—16

CUPSOrLIiNKe eeeosesnssosoncoccssncscsesd=16
CUrSOTrUNLinKe .eeeeeeeooooscasosssssnssed=16
CUrSOrPanON.seeeeeesccescccscsoscssnseseB=10
cursorPanOff...... R - el 1)
displayon...-.........................8—16
displayOff.ceeeceees
JOYPANON.s e eeessseessnsscscsssssnseassd=16
JoyPanOff..eceeeiiseennecscnccnsnnsensesd=17
timeoUtONeeeeeeeseercccccosasaasseneald=17
timeoUutOff.ieeeeeeeececcsnnasnccsassnsns

ooo..o.oo.ootoooo.8-16

PR o O e
JEVUR. S\ DU\ U N UL (I UL N NI N ¥
@0 @ 0 ~I~~ ~I~I~I~J

L4
.

terminalono.o.OOCO'o...'o'..o'o"oo..
terminaloff.c.0.0-..0.....'0.'00.

® e &

setMousePointiececesesscecescenses

SetCUFSOPPOint..oo..--oo-.oo.-.-o.-.o
getButtOﬂS. ® 8 9 0 00 00 5 0 PO S OO OSSNSO BSOSO
SetSOurCe.. ® 5 5 0 800609098680 00600000

4404 Reference Manual

Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32
32:

SetDeSt..............................8—18
updateCompletleceescecsscssscsssecnsssesd=19
getCursorformececesesescscscccsceesss83=19
setCursorformecececescescscsccscscesassa8=19
getViewport.iseeeeeeeeoecaossoeesnsesesd=-19
setViewporticieeeeeeeeeeseosscscasseessd=19
getDisplayState.seeeeseeseecenecseeeses8=19
setKeyboardCode.ieeeseseasoesosseesea8=-19
getMouseBouUNndS.eeeeesssscsscscesseseesd-20
setMouseBoundS.ceesescscescscecscesceesd3-20
XYtORCeeaeeoosoonsooasosnsosssoossscessd=20
RCtOXY....................-..........8-20

Keyboard and Mouse Event processSinNg.cececcscsccscscscssessosseasd=21

Event Manager Functions..
eventsEnable..
eventsDisableeeeccieeesccocscscsoscscaseed=21
eventSignalln.eeeecececeeseosssescoscconssed=21
eventMouseIntervaleieeeescesscecosscceseed3=22
getEVentcountoooo.o-ooooooooooooaoooooo8-22
getNeWEVentcount-oo-co.ooo-o000000000008-22
: getNextEvent.ieeeeeesoessecccsccnnssesad=22
getMillisecondTimEeeeeeesseecesoscnsseeed=22
setAlarmTimeeeseevececccccsosscsncscsoceeeald=22

Event Function
Event Function
Event Function
Event Function
Event Function
Event Function
Event Function
Event Function
Event Function
Event Function

40:
41
42:
43:

49:

..... ...-0.'.-.00..00...000000000008-21

----- 00.0.0....0..00..-..8-21

ClearAlarmooo.0.0.....0...000.0000000008-22

Event Manager Key COdeSo ® 0 0 0 0 00 0TS OO0 L LSOO 0SSNSO S OE O soe 8-23
Floating POint Support..otootoooooooo.o.0.'00..0....000.0000..8 25
Floatlng Polnt Functlons.oo0-ooo ® 0000008600000 000 '00.'000000.8 25

Function O:
Function 1:
Function 2:
Function 3:
Function 4:
Function 5:
Function 6:
Function 7:
Function 8:
Function 9:
Function 10:
Function 11:
Function 12:
Function 13:
Function 14:
Function 15:
Function 16:
Function 17:
Function 18:
Function 19:
Function 20:
Function 21:
Function 22:

4404 Reference Manual

FADD..ooooooo-ooooooooo-ocoooo.onooooooo.oo8 25
FOUBeeeeeeeeesocccecocooscssscscsssccccsessesd=25
L S < 2
P < R
FCMPO......00..'.........'.OO.............08-25
FNEG.o..oooo.o..no..o0...olooooaoo.....oot.8_25
FABS.0.0...OQ..O000.00....0..0..00...0..00.8—26
FItOFooooooa.ooo.o--o'oo-oo.cnooooooooo-oo08-26
T I U 48
FTtOItO.l.000.-Ooooooo..l0000000600000010008_26
FFtOItoooooao-oo.ooo-ooooooo00.000003000008-26
FFtODeceeeesoaseossoncscsssseasssssenssasssd-20
FDtOF.o...................................8—26
FDADD......00.....oo'0.000..00...0-.......8_26
FDSUB.ooonooooooooooo-ooo.oo-oouooooooooo.8-26
FDMUL..oo-o.ooooooooooooooo-o000000000-0008-26
FDDIV..oooo.oooococooc-coooocoo.ooooco'0008°26
FDCMP.....to.'...00...0...'0...0..000000..8-26
FDNEG: ceeeeanecossnsoensssscasssassssssseead-26
FDABS . tetieeeeeeececococesscsonscccosnnssesd=27
FItOD.o.o-.oooooo--coooooooo..ooooooooooc-8‘27
FDtOIPoooooco'cooooooaoooooooo.oooooooo-u.8-27
FDEpIt et eeeeeecenerecoecensansnecnnsnesd=27

xiv

Fp Function 23: FDtoIt..eeeeeeesnessccsccens ceteesesenesesB8=27
Fp Function 24: FsetStat.eeeeeeseesessssosscsscsnssncsnsssesd=27
Fp Function 25: FgetStat.s.ieeeeeeoersesccccccscsnccsnaseeseaB=27
Floating Point RetUrNS..eeeecescssesscssessescsscssscccsoocseead=27
Memory UtilizZatioN.eeeeeeeceeosessessconscsosassssesscnsensnsssesd=28
Overall AddresSsS SpPACE.cceeescsssssascsscssssssssssscsssssessd=28
PhySical MemMOrYeeeeeoossoseossscscsssssscsssssssascsnsssasesed3=28
Display MemOrYeeeeesoesosscocessssses ceseresssssssssassssessse83-28
I/0 and ROM MemOry SpPACE.eseessscccsscasscssscssassssessesessd—28
Processor Board I/0ceceececcccccesccsonscsssssssscsasssessd=29
Peripheral Board I/0.ececcccecssccsccccossoscscassossscsasesssd=29

Section 9 "edit"™ THE TEXT EDITOR

Xv

Introduction.eeeesceseesosesescsessosscssosssscsssssssosnssscsenased=l
Calling the EditOr.ceceseescecssssssssscsssssscssscsssssesscased=
Calling the Editor With a File Nam@..eeeeseeessesacssessassd=1
Calling the Editor With Two File NameS..eeesessesososcssssd=2
Options........................-..........................9'3
Operating System Interface..cccecscscssscsesssscsosscscscssnsesesd=f
Backspace Charactereeeeeceecscacsvcessosssassscssssscsccccccecs
Escape Charactereeeececcescecsccecsssocosocsscssscsscscssnsoccs
Line Delete CharacCtereceeseescessccsscssccscocscssoscssossans
Horizontal Tab Charactereceeseessessccscsscscsscssosssnssossecs
Control-D: Keyboard Signal for End-Of-File..ceececececenss
Control-C: Keyboard Interrupt..ccecececececescesccancncacs
Control- : "Quit" Signal.ceeeeeececcssscessssccssscoscsoss
The Editor's Use of Disk FileSueeeeeooseeosscsccscncssosncsnsncsnns
Creating a New FilGuieesseessesoaessessssseosssconossasscnscasns
Editing an Existing File..eeeeeeeoseecscrsccosscaccscosscnscs
Command Input From @ File.eeseeosssoeccssssssssssccscsososssss
Fatal ErrOrS.eeeeseecsccesesssessssssssscssosssncsscassnssesssns
Editor CommandSeseecceeseessassceesssssosssssosssscscasssensssocsss
Using StringsSeeisseeesssccoscsccscsccsccssoscssscsccssossssssccsesl=8
Specifying a Column Number....ceeececsscecccsscsscsscscccecessd=10
Using the Don't-Care CharacCterececeeccsccsessscosscsesssssssasad-10
The Command Repeat Character:ieeseceseccecscccsccsccsccsscsseesd=11
Using the EOL Charactere.eececsceccecsccsccssscsscssassesssesad-11
USing TabS:eeeeessesceccsccsosscsossssssasossscssscsssssssscnsessd=l
Length of Text LineS.ieesecscecssesassecssssscesscssscsscsseesI=12
CommandS.eesssesesscsscascssenssssssssssssosssssssssccssssssnseeld=12
Environment CommandsS.eeeeseescessessssscssscsssssscssssssscsssed=13

dk1.ococ¢ooooooo-ooooon--oc-.ooo.o--o.o-oo-oooo.oooo o--9_13

\O\O@@\O@\P\OKO@@@\O
ONNOOOWST\UT\U & s

dk2.|oo.-.oo....o.ob..Qooaoo...oo.oo.o....00..00.".00...0009_13
esave...9-14
eset....................................-..............-...-9-15
T Yo 1 o I L)
k1.aooooaooo--o.on-a-oo-eouoottooso-oaaessaoetoooo.ootngoo-09_16
k2.oo.--cooooo-oo.o.-.oaootooooooo.oooocoooooooooooooooc.--09—16

1k1.oo.t.'ootO.I.00....-..O.ol..tot.o.t.!.‘oooo.olo'ttnooto¢9—16

4404 Reference Manual

1K2eeeoeoeeoecessossceeocsssconsnnsnns I L
numbeFS..oo.9‘17
PENUMDE et eeeeeeeassooscssssocscssasscscsoscscsscssccsssscssceee =18
Setoo.oooo.oo-o'o-oououo-oo'oocooo-oo'oooocooooooo-cooooo-c09-18
TaDeeeovreeeccasococecccnsossoccsnscscsconccascscssssscsssssessd=19
Verify..9—19
ZONEeeeesoesssosvsscsscsssssssccssccssccsesssscsscsscscsssscssss =20
System CommandsS.seeeceescsccccsscsscsscsscsscsosssscscsssssscsssccsssI=2]
abOPt..-...-......9-21
edit.ceviceccccoccccscnsccnacs teeccssscetscsssseenns cessesnessd-21
lOg........-..........................--.-............-.....9-22
Stopooooooo.ooooooonooo.oooo.ooooooo.000too-ooooo.o.ooooooo'9-22
Uccoososssssacnsns ccesnsesesecsnsesssesseseasssesssassasncnns .5-23
Wait...-..-.......oo9-23

X.ooo.o000000000000o.0..0000..ooooooootool..o..‘.....t...o.09-24

"Current Line" MOVGPS.-.....................................oo9°25
DOLEOM. e eeeeeeeeeeeeeeeeeecnncnnnns I >,
find...-.......o9-25
NeXteeeeeeeeeonoeonns ceccsstssecnccns ceetescccecsascnsenssaaesd=20
pOSitiOH...o9-27
LODeeessessseseossesssscssossosossssessessnsssssssessscscsesscseed=2]

Editing CoOmMMANdS.eeecesessscsssessscssscsscssssssscssscsscsoseses =28
append.-o-o-ocoooooo.ooooooooooooo'ooooo-000000-0000000000009-28
break.sieeeeseencas cececscecase ceecesecccssscscecssssssesssnesesI=28
ChangEeseeseeseesesssssasessssassscssssssssssssssacssss ceeee9-29
cchange.veesssee seecesssssees ssesscssserencssancssnsscsnsense 9-30
COPYooo.o.oooooooooooooooooooooooooooooo00000.00-0-0000000009-31
delete.ieeeeeecceccncaccoscccncsncscnnsasnes cesesscscssscsesed=30
expand......................... ooooo .ooo.ooocooooo.ooo0000009-32
InSerteseeereeesseeeseroscsccccccscsccccscscsscscscssccsosncssseesI=30
inseft..................................-...........-.-.....9-33
merge...9-33
moveooo--.......oo-o..ooc--oooooooo..ooooo-o--ooooooo000‘0-09-34
OVEIrlaY eeeeossesseosseossssosscsosscsosssssasssossssncsccssccscnssnsesesI—35
OVEL 1AV eeeeoessesssessesssosssscscoscoscsscscsscssscscsscsssnscscsssI=3D
print..'..............................-............o----...-9-36
Peplace..o...................................-.........ooooo9-36
textooooooocooooooooooooooc-ooooooo-ooaoooooo..0.000000000009-37
nu11.......................---.......-......................9-37

Disk CommandsS.eeeeeeceescescoossceccsssscsssosccscassncssscssssad=38
FIUSh....................-....-............-.........-....--9—38
NEWaaoeoososooosocooosccasosscsoescssasncsssnsonscssssssscsaccsssseed=38
read.....-..-......oo-9'39

wr'ite-OOQOOOIOCoo0.000000..t.'oou.o‘ctooooo.ooo.0000000.00:09-59

Editor Messages..Io....oo'o....ooo...o..oo.o..o0000000000000..9_40

4404 Reference Manual xvi

Section 10 TERMINAL EMULATION

OVEFVieW.....-oo.-..-n-uo..-. oooooo ono.lo.oo0000.00.0'0000000010-1

Description.ct-0.0000...00.-.ooool.oooo-.ooo.c000'000000000010-1

Compliance With ANSI and ISO StandardS...... cesessssscncesl0-1
Compatibility With the DEC VT_1OOI......D.QO...'.0.0.'.'.010-2
Compatibility With Tektronix TerminalS...eeecescseceseesss10-2

Interface to the Operating SysSteMeseeeesesvseccssscccosesessal0=-2

Supported ANSI Commands.nonooo.o...oo..octo.oo.0.....000'0....10_3

xvii

<ACK> Acknowledge Character (Char #6).eeeesesscsssescseees10=3
<BEL> Bell CharacCter.eecececcscsscessscsccsscssscsssassscasseslO=3
<BS> Backspace Character.cceeeccscecccscsccssccsssossssssesscsl0=-3
KCAN> Character (#24).eeceeceescscocsessscsscssssssansaes cee.10-3
<CBT> Cursor Backward TabDeeceeseeecocecsscsscsccessssccsssesslO-4
<CHT> Cursor Horizontal Tab.ceecseecossscesossssscssssccsssiO-4
<CPR> Cursor Position RepOrt.ceeceececscoscocscscscsssseseslO-4
<CR> Carriage Return Character..c.ciceccesesceccscscsasseseslO=5
<CRM> Control Representation Mode€..eeeseeecesassscessesseslO=5
<CUB> Cursor BacCKkWard.eeeeeeeceoseecsoecscasesoescssscsssnsseslO=0
KCUDY> CUTSOr DOWNeeeeoooosoecossosscescossscoscsccsscsssssssslO=6
KCUFY CUrsSOr FOrwardeeeeeeceeceecsecscsseoscsscsssasassessslO=0
{CUP> Cursor PoSitiON.ceececscscscceccsccsccsscscsasaans eees10-7
KCUU> CUPrsSOr UPsesescoscsessosessosssssssssosssssssessscsessseslO=7
<DA> Device AttributeSeeccecececccecosossssssscccsancnncasse O=-7
<DC1> Character (Char #717)eceeeceecccessssosssosssssssssesesl0-8
<DC2> Character (Char #718).eececececccccsescscsacscscccsnssesl0=-8
<DC3> Character (Char #19)cececeesccsccscssccscscss cesesnsessl0-8
<DC4> Character (Char #20)...... cececcascscsssecsscsssscsesl0-8
<DCH> Delete CharacCter.cesscsscsscssessessoscsssssssssssesl0=9
 Character (Char #127)ceccecececsssccccssaccssssscsessl0=-9
<DL> Delete LiNnC.iiecesecseccoscsscosscsssoscscsssssssssscssessl0-9
<DLE> Character (Char #710).cececocsccccccnccscnces cesesessl0-9
<DMI> Disable Manual InpuUt.cceeececcsscccccsccccosssosoassasl0-10
<DSR> Device Status Reporti.ecesececcescecssscsosossssccnsssesl0=-10
<ECH> Erase Character.ececececsssescsscssccscsscssnscsss ceeeessl10-11
<ED> Erase in DisplayieecessceccccescsscossssccsscssssassssiO=11
<EL> Erase in LinG.iceecececccosssoseossscscscsscsscncsssssssssaslO=11
KEM> Character (Char #2959) ceeeeeeneecescsecesssccsccsesassesi0=12
<EMI> Enable Manual Input.iccceececcscecescscassssscssssssssl0=-12
<ENQ> Character (Char #5)cceeccccsccecscscscsccscsssncsessl0-12
<EOT> Character (Char #4)..eceeeeseeccsoecosssnssscsascesssl0=12
KESC> Character (Char #27).eeecessececsscscsssssscssccscsssesl0-12
KETB> Character (Char #23).eeeceeeccesssesscssscsascssasssesl0-13
KETX> Character (Char #3)ecececcececcescseccsescssoasscssel0=13
<FF> Form Feed Characterlesececccecccsssesecsccsssscscccsenesll-13
<FS> Character (Char #28).eceecseesccsccsccscsssccssssssesl0=13
<GS> Character (Char #29)eeecescececcssescssscscsssascseesl0=13
<HT) Horizontal Tab CharaCteleeeeeecosscscsccseccsssosossssl0=14
<HTS> HOI‘iZOﬂtal Tab Set..................................10-14
<HVP> Horizontal and Vertical PositioN.eceecesseccccosceessl10=-14

4404 Reference Manual

<ICH> Insert Character................-..........o........10-14
<IL> Inseft Line..10-15
CIND> INAd@XeeooecoecososoasssssosscsssosesssscssssossseanssesselO=15
<IRM> Insertion/Replacement Mod€..eeeseeescscsssescscessssl0=-15
<KAM> Keyboard Action Mode€..eeessesssscccscccsscccssssssssl0=16
KLF> Line Feed CharacCterleeeeeesceesscescssssscsscscscsscasaasl0=-16
<LNM> Line-Feed/New-Line Mode..eeee.. cesesssssesssssssssesl0=-16
<NAK> Character (Char #271).ceeeccescscessscsssosscsssssssssel0=-17
<NEL> Next Line...10-17
KNUL> Character (Char #0)eeeoeoeeesccsscscccscscccsscscssssaseslO0=-17
<PU1> Private Use 1.00...00.........t'00...COO..O..'....Q.10_17
{REPORT=-SYNTAX-MODE > . ccoeeveeccsccosscsssossscsasscsssssnsecs O=17
CRI> Reverse INdeXeeeeseeecessossssossccssscossssscassscssesse 0O=18
<RIS> Reset to Initial StatCeeeecscecseecccosscssscsosansaeesl0-18
<RM> Reset MOGE.eeeeeesoeccsossscscssscsscsscssssssssscssess 0-18
<RS> Character (Char #30)eceecsccccccsossccsscsssssssssesss 0-20
<SCS> Select Character Seteeceescscccssccsccsosscsccscnsseesl0-20
<SELECT-CODE>..-...ooooo'cooooot.'ooo.ooooooooo0000000-00110‘21
{SGR> Select Graphic RenditioON.sececeecsescscscsssssocsscsessl0-21
<SI> Shift in Charactereececeescescscsssscssccssssssesasecs 0-22
KSM> Set MOACeeeeeeoossossssssssssscsssssscssossssssssssassss 0=22
<S0> Shift Out Characterleccececccceccsscssccssasssscssesssl0=23
<SOH> Character (Char #71).eceeeceecesccoscscsssssossssssssesl0-24
<SP> "Space" Character..cccecsceccccsscsccsssssscscscsssss O-24
<SRM> Send/Receive Mode.eeesecoeecssosesssssccssssccscssessl0-24
<STX> Character (Char #2).eececeescecssssscsscscssssscscscsesl0=-24
<SUB> Character (Char #26).ceeecessscscscscscscscsscssssasesl0=-25
KSYN> Character (Char #22)..eeeceesosscsssscssssscscsccscsel0-25
<TBC> Tabulation Clear.iceeceeccscscecccssssscsssscosssscsscssl0=25
<TEKARM> Auto-Repeat MOQE€.seeeceesceccscssosccssssccsnseessl0-26
KTEKAWM> AUto-Wrap MOd@.ceeeeeeeeeecccccscscsccsscsnnsssseeal0-26
<TEKCKM> Cursor Key Mod€.eeeeeeecesccccsccosasssssssescseesl0-26
<Tekgcrep> Graphic Cursor Position Report.ccececececesesss10-27
KTEKID> Identify Terminal.ceeceecsscsscscosscsccscsscscssessl0-27
<TEKKPAM> Keypad Application Mode..eseeesscscecosccsensess10=-28
<TEKKPNM> Keypad Numeric Mod€..eeeeeeecscscscsosseasesssseses 0-28
<TEKMBREP> Mouse Button and Graphic Cursor

POSition Reporting.......................-..........10-30
<TEKOM> Origin MOde.......................................10—31
KTEKRC> Restore CUrSOlececesecescscsssoscsscccsssssccssssssesl0=-31
(TEKREQTPARM> Request Terminal Parameters........ceceee...10-31
<TEKRGCR> Request Graphic Cursor Position

Reporteeeeeececccoes cesccscsessccsessscsesssscsssssseel0-32
CTEKSC> Save CUrSOreseccecccosccsssvsescsssccsssscassssscnsecescsel 0=32
TEKSCNM> Screen Mode.ceeeceecossssescsscoscssssscscssssece 0-32
<TEKSGCRT> Select Graphic Cursor Report TypPEeceecssecessesss10-32
<TEKSTBM> Set Top and Bottom MarginS..eeeeccecesescssesessl10-33
<US> Character (Char #371)eeeecceceesoecescsccsccccssncssssel0-34
<KVT> Vertical Tab Charactereecescecsscesescssessescsssssssass 0-34
ANSI Terminal Emulator Mouse Button and Position

4404 Reference Manual xviii

REpPOrtingeesseeeseosessseasesscascsscsscsscsnssaensasl0-34
<TEKSGCRT> Select_graphic_cursor_report_type

(Tek-Private).eeseceeessesssssccasoncsoncnas ceseesaeasl0-35
<{TEKRGCR> Request Graphic Cursor Position

Report (TeK Private)eecceccccececscccccscccsssescsnsesel0-35

Ke}’board Details. coooo.uoo.oono-ooooc--o-ao.ooc00.-0.-...10"36

xix

Shift, Ctrl, and Caps LOCK KeYSesteeeosoeseesascsccsscnssnaaasal0=-36
Default ANSI Mode Meanings O0f KeySeeeeeeeoessosescasasneaassl0-36
Alphanumeric KeyS.iseeeeeeeeeaooscecscscsscssscssssscanssasal0-36
Numeric Pad KeySeeesessesosesscescsscsscssssssasssscssasessl0-39
JOYdisk KeySeeeeoasesseeescosassccsscsscsssnsscsssscsssssasl0-40
Function KeyS.:eseeeeseosseoeosssscscsssscssssssssosssssssessslO0O-41
Special Function KeyS.:eeeeeeeessssssescscsscscssssssssesesl0-42

4404 Reference Manual

Appendix A ASCII CODE CHART

INDEX

TABLES

)
(V)
o

le

O~TOWNE NN 22N -

=S 20000 OOOOSNDNN N

KK Y
OQOOOOQOO L Lt 1 1 4t vt
!

1
OV -

10-7
10-8
10-9

10-10
10-11
10-12

Description

POSSible Interfupts.....................................2—66
"Shell" Editing Keys and FunctionsS..eseecesssscccesesseel2=129
"Shell" CommandSoo.oocooooooo.o-oooo.ooo.oo00000000000002'135
Possible Task PPiOPities.-......--.....o................2-139
4404 Program InterruptSesececececsccscscscscscssscscssesed=39
Frequency Selection (Byte 1)eceeecceccesccsscssosccsseeesd=4
Frequency Selection (Byte 2)...0.oooo-.ooocooooooooooot08-5
Attenuation CONtrol.ceeeeeecessecccessocscsssssccssscnssesB=bD
Attenuation Byte Bit AssignmentsS.cececsscsccsscscssssesed=7
Noise Feedback Control.cescecccecsccecssccscscccsccssccscceed=8
Noise Frequency Control.cececcescsscccssccssssccsossscssccsed=8
Noise-Control-Byte Bit AssignmentS.cecececsecsescececsceseaB=-9
Control Register AdAressSeSesececsccccsccsscsscsscssecssessed=10
Parameter MeaningsS.eeeeececcsceesccscscsesosessesescsscsssesl0=-10
Valid Reset Mode ParametersS..cceccsscscssesecssssscssssesesl0=-19
Character Set SelecCtioN.ieescscsesesscesesssscsssssscsesl0=-20
Set Mode ParameterS.icsecsccsescscscesescssssssssscsocssssesl0=-23
Alternate Joydisk MeaningSeceessesesseescscscsecsscscssessl0=27
Keypad Application Mode Key MeaningS.:eeecsecesescescssesssl10-29
Mouse Button RepOrtSieceecceccccccececscssccssccssscocassnssl0-30
ANST Meanings of Alphanumeric KeySeeceeeooseesccssccoesesl10=-37
Applications Mode (Tekkpam) Meanings of Keypad
KGYS............--..................................10-39
ANSI Joydisk Key MeaningS.eceeceescecoscscsccscscssscsassssl0-40
ANST Meanings of Function KeyS.eeeeeseeesesocasossocseessl10-41
ANSI Meanings of Special Function KeyS..eeeesessseeesesasal10-42

4404 Reference Manual XX

Section 1
INTRODUCTION
ABOUT THIS MANUAL

This manual is the primary user's and programmer's reference to
the 4404 operating system and hardware support. This manual
contains concise summaries of the commands and utilities included
with your 4404 as standard software, and a summary of how to
invoke and use each command. This manual does not attempt to
show you how to put commands together to perform a task; that
information is covered in the 4404 User's Manual. The User's
Manual also contains a complete list of the other manuals
available for the 4404.

WHERE TO FIND INFORMATION
You have several important sources of information on the 4404:

¢ This manual, the 4404 Reference Manual, contains the
syntax and details of commands and utilities. This manual
also contains the details of the assembler, linking loader,
'C' compiler, and the remote terminal emulator.

o 4404 User's Manual The User's manual contains basic
information on system installation, startup, installing
software, and the other "how to put commands together"
discussions. See the index of the User's manual to find how
to perform particular tasks.

o The on-line "help" utility, which contains a very brief
description of the syntax of user commands.

o The Introduction to Smalltalk-80(tm) manual, which contains
details and a short tutorial on the Smalltalk-80 programming
language.

o The reference manuals for the optional languages available
on the 4404.

4404 Reference Manual @ 1-1

SECTION 1
introduction

MANUAL SYNTAX CONVENTIONS

Throughout this manual, the 4404 User's Manual, and in the
on-line Help files, the following syntax conventions apply:

1.

1-2

Words standing alone on the command line are keywords.
They are the words recognized by the system and should be
typed exactly as shown.

Words enclosed by angle brackets ("<" and ">") enclose
descriptions that you must replace with a specific argument.
If an expression is enclosed only in angle brackets, it

is an essential part of the command line. For example, in
the line:

addusr <user_name>

you must specify the name of the user in place of the
expression <user_name>.

Words or expressions surrounded by square brackets ("[" and

"]") are optional. You may omit these words or expressions

if you wish.

If the word "list" appears as part of a term, that term

consists of one or more elements of the type described in

the term, separated by spaces. For example:
{file_name_list>

consists of a series (one or more) of file names separated
by spaces.

@ 4404 Reference Manual

Section 2
USER COMMANDS AND UTILITIES

You can use the commands and utilities in this section from any
user account. Some options, however, require special privileges.
These options are mentioned in the detailed description of each
command or utility.

asm
The "asm" command is the 68000/68010 relocating assembler.
SYNTAX
asm <file name list> [+befFlLnosStu]
DESCRIPTION

Suppress binary output.

suppress summary information.

Disable field formatting.

Enable "fix" mode. (Comments that begin with
a semicolon, ';', are assembled.)

Produce a listing of the assembled source.
Preoduce listing of input file during the

first pass.

n Produce decimal line numbers with the listing.
o=<file name> Specifies the name of the binary file.

s Produce a listing of the symbol table.
S
u

o HHO o

Limit symbols internally to 8 characters.
Classify all unresolved symbols as external.

EXAMPLES

1. asm asmfile
2. asm test.a +euo=test.r
%. asm test.a test2.a test3.a +blns

The first example assembles the source file "asmfile" and
produces the relocatable binary file "asmfile.r". The assembler
sends summary information to standard output, but produces no
source listing. Any errors detected are sent to standard output.

4404 Reference Manual

®

N
|

—

SECTION 2
User Commands

The second example assembles the file "test.a" and produces the
relocatable file "test.r". No summary information is produced,
and all unresolved references are classified as external. If the
assembler detects no errors during the assembly, the user sees no
output from this command.

The third example assembles the three files, but produces no
binary output. A listing with a symbol table is sent to standard
output. The listing includes decimal line numbers.

SEE ALSO

Section 5, The Assembler and Linking Loader

2-2 @ 4404 Reference Manual

SECTION 2
User Commands

backup

Copy files from the file system to the floppy device.
SYNTAX

backup [+ AbBdlp] [+ a= days] [+ t [= filename]] [file ...]
DESCRIPTION

The "backup" command is used to create and maintain archival
backups of files or directories on the system. It can operate in
two distinct modes, selected by options: create mode, and append
mode. Create mode copies the specified files or directories to
the backup device, and destroys any data that is already on the
backup device. Append mode adds the specified files or
directories to existing files on the the backup device. Thus, it
is possible to append, to an existing backup file, a file whose
path and file names are identical with one already backed up.

The "backup" command stores files and directories on the flexible
disk drive ("/dev/floppy"). The "backup" command uses a unique
file structure, which is completely different from the standard
operating system file structure. Therefore, "/dev/floppy" must
not be mounted onto the file system using the "mount" command.
The only way to read devices written by "backup" is to use
"restore." The only other command that you should use on a
backup device is "devcheck".

The backup disk should generally be formatted before the back up
operation begins. Although the file structure created by the
format command is destroyed by "backup", the raw track formatting
is essential. During the back up process, you can request that
"backup" format disks before writing to them by pressing "f"
rather than "Return" when backup prompts you to "enter C/R."

Back ups may extend over more than one volume of the backup
medium. There are no restrictions on the sizes of files copied.
If necessary, "backup" breaks files into segments and stores each
segment on a different volume.

4404 Reference Manual @ 2-3

SECTION 2
User Commands

Arguments

{file name_ list> List of the names of files and
directories to process. Default is the
working directory.

If you specify a directory name as an argument in create or
append mode, the program processes only the files within that
directory. If you also specify the 'd' option, the program
restores all files within the given directory and its
subdirectories.

Options Available

a=<days> Copy only those files that are no older than
the specified number of days. A value of O
specifies files created since midnight on the
current day; a value of 1 specifies files
created since midnight of the previous day,
and so forth.

A Append to a previous backup.

b Print sizes of files in bytes.

B Do not back up files that end in ".bak".

d Back up entire directory structures.

1 List file names as they are copied.

P Prompt you with each file name to
determine whether or not the backup
procedure should be performed on that
particular file.

t[:(file_name>] Back up only files that have been

created or modified since the date in
the specified file. When the backup is
finished, update the date in the file
(see NOTES). If you do not

specify a file, the default is
".backup.time".

With no options, "backup" is quiet. The 'l' opticn allows you to
see what the program is actually doing.

2-4 @ 4404 Reference Manual

SECTION 2
User Commands

If you specify the 't' option, but the "backup time" file
specified as its argument does not yet exist, "backup" copies all
the files and directories listed on the command line. Thus, a
user may obtain a full backup (either without the 't' option or
with a nonexistent "backup time" file) or a partial backup, which
includes only those files created since the last backup.
EXAMPLES

1. TDbackup +1

2. Dbackup +1d filel file2 dirt dir2
backup +14 filel file2 dirtl dir2 +a=5

backup +1t

Ul B~ W

backup +1At=backup_ time

The first example backs up all files in the working directory to
the device "/dev/floppy". The file names are listed as they are
copied to the device.

The second example copies (in order) the files "filel" and
"file2", then all files and directories contained in the
directories "dir1" and "dir2".

The third example performs the same function as the second
example, except that it copies only those files that are five
days old or less.

The fourth example creates the same backup as the first example,
but only copies the files created or modified after the time
contained in the file ".backup.time". If this file does not
exist, all the files are copied.

The fifth example adds a set of files to a previously created

backup. In particular, it adds exactly the files that were
created or modified since the creation of the file "backup_ time".

NOTES

o When using append mode, you must place the final diskette in
the backup device. Because the "backup" command always
expects to receive the diskettes in order, it issues a message
saying that you have inserted the wrong volume and prompts
for permission to continue. 1In this case you want the last
volume in the drive and should respond with a 'y' to the
prompt. The program then appends files to that volume,
requesting new volumes as necessary.

4404 Reference Manual @ 2-5

SECTION 2
User Commands

O

When files are restored, they are generally restored to the
same directory location as you specified when they were
backed up. As files are backed up, "backup" makes an
indication of the path name for each file. When files are
restored, the program uses the path name to place the file
in its proper directory location. If the path name is
relative (i.e., does not begin with '/'), the path name of
the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory
location different from the one in which they were created.

An example should make this clear. If the working directory
is backed up, either by specifying no source files or by
using the directory name '.', the files are backed up with a
relative path of '.'. When these files are restored, they
are placed in the directory '.', which might not be the same
directory they originally came from. This feature allows
the manipulation of entire file systems in a general fashion.
To specify a unique directory location for a file, you
should specify its entire path name, starting with '/'.

MESSAGES

Several of the following messages prompt you for a positive

or negative response. The program interprets any response that
does not begin with an upper or lowercase 'n' as a positive
response.

Backup to "<file name>"
Update backup on "<file name>"

These messages are printed when "backup" begins. They notify
you of the function about to be performed.

Momer N/ P2V n amcmemaSt (/0O
vODY L1ili€ fiamers \y/1)i

If you specify the 'p' option, the program prints this prompt
before it takes any action. A response of 'n' or 'N' indicates
that the operation should not be performed for the given file.
Any other response is interpreted as "yes".

Device model name?

You should respond to this prompt with "TEK4404".

2-6

e 4404 Reference Manual

SECTION 2
User Commands

Do you wish to abort "append" function and create a new backup?

This message is printed at the initiation of the "append"
operating mode if an invalid header (indicating a bad backup
format) is detected. You have the option of aborting from
"append" mecde and switching to "create'" mode.

Format program name?

This prompt is issued in response to a "format" request for the
next volume. It indicates that the program could not find a
format program name in the file "/etc/format.control." You
should respond with "format" since you are backing up on the
flexible disk drive.

Insert next volume — Hit C/R to continue:

This prompt is issued when the program needs a new backup disk.
You should type a carriage return only when the next disk has
been placed in the drive. When creating new backups or when
appending to an old one, you may enter the character 'f’',
followed by a carriage return. If the program is in append mode,
it automatically switches to create mocde and starts a new backup.
The 'f' indicates that the disk has been inserted in the drive,
but that it must be formatted before continuing. In this case the
program first checks the file "/etc/format.control" for a format
program name, and if found formats the disk. If it cannot find
this file, it then prompts you for the format program necessary
to format the disk. Subsequent format operations use the same
information; thus, all disks that were not previously formatted
must have the same characteristics (e.g. double-sided,
double-density).

The program prints these messages as it takes the corresponding
action during a creation operation. .

This is Volume #<number 1> -- Expected Volume #<number 2> --
Continue? - -

The program expects you to insert volumes in sequential order.
If a volume appears out of order, "backup" prints this message.
If you type anything except an 'n' or an 'N' as the first
character of the response to the message, "backup" ignores the
fact that the volumes are out of order and continues with the
backup. Otherwise, it prompts you for another volume.

4404 Reference Manual @ 2-7

SECTION 2
User Commands

Volume name?

Each set of backup volumes has a name. You should enter the name
"TEK4404" in response to this prompt. The name may contain as
many as forty characters.

Volume <number> of "<voL_name>"

Whenever a new volume is inserted and properly validated, the
program prints this message, which indicates the name of the
backup volume and its sequence number.

ERROR MESSAGES
¥¥¥%¥ Tnvalid Volume Header -- Not a "backup" disk ¥¥**

The program validates each backup volume before using it. If
this validation fails, the program prints this message to
indicate that something is wrong. You then have another chance to
insert the proper disk and continue. If validation fails while
the program is in append mode, you may aboert from append mode and
create a totally new backup instead.

Write error! - file "<file name>"

An I/0 error occurred during the transfer of a file to the
backup. An auxiliary message is printed indicating the nature of
the error. The program tries to continue for all errors.

Unknown option: <char>

The option specified by <char> is not a valid option to the
"backup" command.

*¥ Warning: directory "<dir_name>" is too large!
¥ QSome directories were ignored

**Warning: directory "<dir_name>" is too large!
¥¥ QSome files were ignored

The program uses some internal tables during the back up process.
If the limits of these tables are exceeded (highly unlikely),
these messages are printed.

SEE ALSO

format
restore

2-8 @ 4404 Reference Manual

SECTION 2
User Commands

ccC

Invoke the 'C' compiler.

SYNTAX

cc <file name list> [+acDfiIlImMnNoOqrRtUvwx]

where <file_name_list> is a list of the names of the files to

compile.
Options Available

a

D<name>[=<defn> |
f

i=<dir_name>

1=<lib_name>

L

4404 Reference Manual'

Produce as output assembly language source
files with a ".a" extension.

Put comments in the assembly language
file.

Command line "#define".

Produce an output module suitable for
firmware.

Produce as output intermediate language
files with a ".i" extension.

Specify a directory for "#include" files.

Specify a library name to be passed to the
loader.

Produce a source listing and write it to
standard output.

Produce load and module maps from the
loader.

Leave the combined output as one ".r"
file.

Produce a listing without expanding
"#include" files.

Run the first pass only, do not procduce
any code.

Run the assembly language optimizer.

SECTION 2
User Commands

o=<file name>

a

x=<1ldr_option>

Specify the output file name.

Produce code that does calculations on
"char" and "short" variables without
first converting to "int".

Produce as output relocatable modules
with a ".r" extension, and an executable
module.

Produce as output relocatable modules
with a ".r" extension.

Produce code that does not do stack
growth checking.

Generate code that does do stack growth
checking.

Produce a shared-text, executable output
module.

Produce a line-feed character ($0A) for
' n' rather than the default of carriage
return ($0D).

Show each phase of the compilation
process (verbose mode).

Warn about duplicate "#define"
statements.

Pass the information following the '='
on to the loader for processing.

For a full discussion of the 'C' compiler, refer to Section 7 of

this manual.

4404 Reference Manual

SECTION 2
User Commands

chd

Change the user's working directory.
SYNTAX

chd [<dir name>]
DESCRIPTION

The "chd" command, which is part of both the shell and script
programs, changes the user's working directory to the directory
specified on the command line. If no directory is specified, the
default is the user's home directory (the directory entered on
logging in). The user must have execute permission in the
directory specified.

Arguments
{dir_name> The name of the directory to use as the
working directory. Default is the user's
home directory.
EXAMPLES

1. chd /mark
2. c¢hd book
3. chd

T?e first example changes the working directory to the directory
"/mark".

The second example changes the working directory to the directory
"book", which resides in the current working directory.

The third example changes the working directory to the user's
home directory.

ERROR MESSAGES

Cannot change directories.
The operating system returned an error when the shell program
tried to change directories. This message is preceded by an
interpretation of the error produced by the operating system.
SEE ALSO

shell
script

4404 Reference Manual @ 2-11

SECTION 2
User Commands

commset

Set configuration of communications port.
SYNTAX

commset [options ...]
DESCRIPTION

This utility allows you to examine or set certain I/0 options on
the RS-232 communications port. With no argument, it reports the
current setting of the options.

Options Available
The option strings are selected from the following set:

baud=nnn Set the transmit and receive baud rates.

=external Valid values are 50, 75, 110, 134, 150, 300,

=nnn.mmm 600, 1200, 1800, 4800, 9600, 19200 and

=default 38400. The keyword "external" specifies
that the external clock should be used for
the baud rate. The default of 9600 is used
if the keyword "default" is entered. If two
values are entered, then the first specifies
the transmit rate and the second specifies
the receive rate, otherwise both rates are
set to the same value.

flag=dtr Set the type of flagging to be used. The
keyword "dtr" specifies that the DTR and CTS
flag=input signals should be used to flag input and
output full conditions. The keywords
flag=output "input" and "output" specify that
CTL-S/CTL-Q flagging should be used for
flag=inout input and output, respectively. The keyword
"tandem" specifies that CTL-S/CTL-Q flagging
flag=none should be used for both input and output.

The keyword "none" disables flagging. The
flag=default default is inout flagging.

2-12 @ 4404 Reference Manual

SECTION 2
User Commands

parity=even Set the type of parity to be used. The
keyword "even" specifies that even parity be

parity=ocdd used. The keyword "odd" specifies that odd
parity be used. The keyword "high"

parity=high specifies that the parity bit should always
be a one. The keyword "low" specifies that

parity=1low the parity bit should always be a zero. The
keyword "none" specifies that the parity bit

parity=none is treated as data. The default is low
parity.

parity=default

stop=n Set the number of stop bits to be used.
Valid values are 1 and 2. The default is
stop=default one stop bit.

reset Reset the communications port, flushing any
pending data and setting all options to
their default values.

show Display the current settings for the
options. This is the same as if no option
is specified.

'C' IMPLEMENTATION NOTES

The "commset" command uses the "ttyset" and "ttyget" system calls
to communicate option settings to the communications port device
driver. The format of the 6-byte buffer used with these calls is
defined differently than for standard tty devices. The include
file "comm.h" contains definitions for the following structures
and constants.

struct commbuf { char c_com, c_value, c_parity, c_flag, c_ospeed,
c_ispeed };

The ¢ com field is used to request various commands to be
executed by the device driver during ttyset and ttyget calls.
Valid values for this field are defined as follows:

RESET_COMM 1 Reset the communications port

SETUP COMM 2 Set parity, flags and baud rates
EXCL_COMM 3 Do not accept open request until closed
or reset

BREAK COMM 4 Send break signal for c value tenths of a
second -

NOBLOCK COMM 5 Read calls do not block

BLOCK_COMM 6 Read calls do block (default)

DTRLOW COMM 7 Set DTR signal low

DTRHIGH COMM 8 Set DTR signal high (default)

RTSLOW _COMM 9 Set RTS signal low

RTSHIGH COMM 10 Set RTS signal high (default)

4404 Reference Manual @ 2-13

SECTION 2
User Commands

The SETUP_COMM request causes the parity type and number of stop
bits to be set according to the value in the c_parity field.
Valid values for this field are defined as follows:

LOW_PARITY 0
HIGH PARITY 1
EVEN PARITY 2
ODD_PARITY 3
NO PARITY 4
TWG_STOP_BITS 0x80 if msb set then two stop bits, else one
stop bit

The SETUO COMM request also causes flagging to be set by the
value in the c_flag field. Valid values for this field are
defined as follows:

NO_FILAG O

INPUT FIAG 1
OUTPUT FLAG 2
TANDEM_FLAG 3
DTR_FLAG 4

By default, read calls will block if no input is available. If
any data is available, it is read into the caller's buffer (up to
the requested number of bytes) and the number of bytes read is
returned. If NOBLOCK COMM is requested, then read calls will not
block and a zero count is returned if no bytes are available.

The following constants are used in the c_ospeed and c_ispeed
fields to indicate the transmit and receive baud rates:

EXTERNAL
€50
ER
VARV
C134
€150
C300
C600
€1200
C1800
€2400
£4800
£9600
€19200
C38400

ek A R KON BN\ Vo @)

A~ -0

SEE ALSO

conset

2-14 @ 4404 Reference Manual

SECTION 2
User Commands

compare

Compare two text files line by line and report the differences.
SYNTAX

compare <file name 1> <file name 2> [+<window_size>]
DESCRIPTION

The "compare" command compares two text files and indicates how
they differ. The information provided is usually sufficient to
allow the user to change one file into the other. By default,
the "compare" command considers that it is in the same place in
each of the files if three lines match.

The output from the command reports sets of lines which have been
deleted from, added to, or changed in either file. These
messages are written from the point of view of how to change

the first file into the second file. TFor instance, the message

File "<file name>" lines deleted

means that if the lines following the message are deleted from
{file name>, the two files will be the same.

The program alsoc reports the presence of additional lines in a
file with the following message:

File "<file name>" has additional lines

This message is not from the point of view of changing one file
into the other. Rather, it means that the file mentioned in the
message 1is the file that contains additional lines.

If a set of lines is deleted from one file and the following line
is changed as well, "compare" reports all those lines as lines
that have been changed rather than inserted or deleted.

The "compare" command can handle files of any size, but can only
process 250 lines at a time. If the files differ in any spot by
250 lines, the program reports 250 lines changed in each file and
continues comparing them.

4404 Reference Manual @ 2415

SECTION 2
User Commands

Arguments
{file name 1> The name of the first file to use.
<file name 2> The name of the file to compare to
{file name 1>
Options Available
<window_size> Use the integer <window_size> as the number
of matching lines required before considering
the files synchronized. The number specified
must be between 1 and 250. The default is 3.
EXAMPLES

1. compare /michael/test /cathy/test
1. compare test test.bak +5

The first example compares the file "test" in the directory
"/michael™ to the file "test" in the directory "/cathy".

The second example compares the two files "test" and "test.bak"
in the working directory. The window size for the comparison is
five lines.

ERROR MESSAGES

Syntax: compare <file name 1> <file name 2> [+<window size>]

The "compare" command expects exactly two arguments. This
message indicates that the argument count is wrong.

2-16 @ 4404 Reference Manual

SECTION 2
User Commands

conset
Set or examine the configuration of the console port.
SYNTAX
conset [options ...]
DESCRIPTION
The utility "conset" allows you to examine and set certain I/0

options on the console port. With no argument, it reports the
current setting of the options.

Options Available

The option strings are selected from the following set:

+ raw Set or clear the raw mode.

- raw

+ echo Enable or disable character echoing.
- echo

+ tabs Automatically expand tabs or don't.
- tabs

+ becho Echo space/backspace to erase on backspace or
- becho don't.

+ schar Enable or disable single character mode.

— schar
+ xon Enable or disable ctrl-S/ctrl-Q flagging to
- Xon suspend output.
+ any Allow or don't allow any character to restart
- any suspended output.
chardel= n "n" is a hex number specifying a character to
be used as the delete character.
linedel=n "n" is a hex number specifying a character to

be used as line delete character.

+ screensave Enable or disable screen blanking after 10
- screensave minutes.

+4

video Normal video (black on white) or inverse video.
video

4404 Reference Manual @ 2-117

SECTION 2
User Commands

+ cursor Make graphic cursor visible or invisible.

- cursor
+ track Enable or disable graphic cursor tracking the
- track mouse.

+ mousepan Enable or disable mouse panning of the

- mousepan viewport.

+ diskpan Enable or disable joydisk panning of

- diskpan viewport.

show Display the current settings for the options.

This is the same as if no option is specified.

'C' IMPLEMENTATION NOTES

The conset command uses the "ttyset" and "ttyget" system calls to
communicate the raw, echo, tabs, becho, schar, xon, any, chardel,
and linedel option settings to the console port device driver and

it uses system traps to implement the screensave, video, cursor,
track, mousepan, and diskpan options.

SEE ALSO

commset

2-18 @ 4404 Reference Manual

SECTION 2
User Commands

COopy

Copy a file or directory to the specified file or directory, or
copy one or more files to the specified directory.

SYNTAX

copy <file name 1> <file name 2> {+dbncoth1LDP}
copy <file name 1ist> <dir_name> |+dbncotBplLDP
copy <dir_name 1> <dir_name 2> [+dbncotBplLDP]

DESCRIPTION

Three forms of the "copy" command exist. The first form makes a
copy of a file and gives it the specified name. The second form
makes one copy of each specified file and places all copies in
the specified directory. The last component of each file name is
preserved in the new directory. The third form copies the
contents of one directory to another.

In any case, if no file exists which has the same name as the
name specified for the new copy, the "copy" command creates one.
If a file with that name does already exist, it is deleted and
recreated before copying takes place. Thus, the contents of the
file are lost and replaced by the contents of the file being
copied. In addition, any links to that file are broken.

The new file has the same permissions as the original file. The
owner of the new file is always the user who executes the

command. The user must have execute permission in the directory
in which copies are to be made. He or she must also have write
permission for the file being copied to and, unless the 'o' option
is specified, in the directory that is %o contain the new copy.

Arguments
{file name 1> The name of the file to copy.

{file name 2> The name of the new copy of the original
file.

{file name list> A list of the names of the files to copy
to the specified directory.

{dir_name> The name of the directory in which to place
all copies.

4404 Reference Manual @ 2-19

SECTION 2
User Commands

Options Available
d Copy directory structure for all named directories.

b Do not copy a file unless it already exists in the
destination directory.

n Copy a file if it is newer than the copy in the
destination directory. If no copy exists, perform the

copy -

c Do not copy a file if it already exists in the
destination directory. Cannot be used with "n."

0 Retain original file ownership.

t Don't create top level directories at destination.
B Don't copy files ending in ".bak".

P Prompt for permission to copy files.

1 List the name of each file as it is copied and the name
of the new copy.

L Don't unlink the destination file.

P Preserve the modification time of the source file.
EXAMPLES

1. copy parts parts.bak
2. copy letter /mark/letter +p
3. copy test 1 test 2 memo /mark +los

The first example copies the file named "parts" to a file named
"parts.bak". If a file named "parts.bak" already exists, it is
deleted and recreated before copying takes place.

The second example copies the file "letter" in the working
directory to the file "/mark/letter". If a file named
"/mark/letter" already exists, the "copy" command prompts for
permission to alter its contents before proceeding. If the user
denies permission, no copy is made. For the command to succeed
the user must have both write and execute permission in the
directory "/mark" as well as write permission for the file
"/mark/letter".

2-20 @ 4404 Reference Manual

SECTION 2
User Commands

The third example copies the files "test_ 1", "test 2", and "memo"
to the directory "/mark". The last component of each file

name is preserved in the new directory. Thus, the file
specifications of the new files are "/mark/test_1",
"/mark/test 2", and "/mark/memo". If a file with one of

these names already exists, the "copy" command overwrites its
contents without warning (the user does not need write permission
in the directory "/mark"). The name of each file and the

name of the new copy are listed as copying takes place. The
command aborts immediately if it encounters an error (e.g., one
of the files listed does not exist).

Each copy created by these commands has the same permissions as
the original file. The owner of all copied files is the user
executing the command.
ERROR MESSAGES

Entry does not exist: <file name>
The user asked for a copy of a nonexistent file.

file name 1> and <file name 2> are the same file
A file may not be copied onto itself. Both <file name 1> and
{file name 2> refer to the same file. (If their names are not
the same, They are links to the same file.)

May not copy a directory: <dir_name>

The user asked for a copy of a directory. Directories may not be
copied.

May not copy a special file: <file name>

The user asked for a copy of a block or character file. Such
files may not be copied.

Must be a directory: <file_ name>
The form of the "copy" command being used requires the last
argument to be an existing directory; <file name> is not an
existing directory.

Path cannot be followed: <file name>

One or more of the directories which make up the name of the file
do not exist.

Permissions deny access to file: <file_ name>

4404 Reference Manual @ 2-21

SECTION 2
User Commands

The permissions associated with <{file name> or with the path
leading to <file name> prevent the user from accessing the file.

Read error on file: <file name>
A physical read error occurred while reading <file name>.

Syntax: copy <file name 1> <file name 2> {+lops%
copy <file name list> <dir_name> |+1o0pS

The "copy" command expects at least two arguments. This message
indicates that the argument count is wrong.

Write error on file: <file name>
A physical write error occurred while writing to <file name>.
SEE ALSO

link

mnove
rename

2-22 @ 4404 Reference Manual

SECTION 2
User Commands

crdir
Create a directory.
SYNTAX
crdir <dir_name list>
DESCRIPTION

The "crdir" command creates a directory for each name listed as
an argument to the command. The user must have write

permission in the parent directory (the directory in which the
new directory is created) of each directory created. Each new
directory .contains the entry ".", which represents the directory
itself, and the entry "..", which represents its parent
directory.

By default, "crdir" creates a directory with "rwxrwx"
permissions. However, any default permissions set by the
"dperm" command override these permissions. The owner may, of
course, change the permissions at any time by using the "perms"
command.

Arguments

dir_name list> A list of the names of directories to create.
All directories used in the name, except the
last component of the name, must already
exist.

EXAMPLES

1. crdir book
2. crdir /sarah/book

The first example creates the directory "book" in the working
directory.

The second example creates the directory "book" in the directory

"/sarah". If the directory "/sarah" does not already
exist, the command fails.

4404 Reference Manual @ 2-2%

SECTION 2
User Commands

ERROR MESSAGES
Error creating "<dir_ name>": <reason>

The operating system returned an error when "crdir" tried to
create the specified directory. This message is followed by an
interpretation of the error returned by the operating system.

Error linking "<dir name>" to its "." file": <reason>

The operating system returned an error when "crdir" tried to link
the "." entry to the directory itself. This message is followed
by an interpretation of the error returned by the operating
gsystem.

Error linking ".." to parent of "<dir_name>": <reason>

The operating system returned an error when "crdir" tried to link
the newly created directory to its parent. This message is
followed by an interpretation of the error returned by the
operating system.

Error setting owner for "<dir name>": <reason>

Initially, the "crdir" command creates the new directory with the
owner "system". It then changes the owner to the user who
executed the command. In this case, the operating system
returned an error when "crdir" tried to change the owner of the
directory. This message is followed by an interpretation of the
error returned by the operating system.

Syntax: crdir <dir name list>

The "crdir" command expects at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO
dperm

perms
remove

2-24 @ 4404 Reference Manual

SECTION 2
User Commands

create

Create an empty file for each file name on the command line.
SYNTAX
create <file name list>

DESCRIPTION

The "create" command creates an empty file for each name
specified on the command line. If the file does not exist, it is
created with "rw-rw-" permissions, and the owner is the user who
executes the command. If the file already exists, the owner and
permissions remain intact. However, the file is truncated to a
length of O.

Arguments
{file name> The name of the file to create. The last
component of a file name may not contain more
than fourteen characters. The "create"
command ignores any additional characters.
EXAMPLES
1. create test

2. create /julie/test

The first example creates the file "test" in the user's working
directory.

The second example creates the file "test" in the directory
"/julie".

ERROR MESSAGES

Error creating "<file name>": <reason>
The operating system returned an error when "create" tried to
create <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: create <file name list>

The "create" command requires at least one argument. This
message indicates that the argument count is wrong.

SEE AILSO
edit

4404 Reference Manual @ 2-25

SECTION 2
User Commands

date

Display or set the time and date.
SYNTAX

date [[<mm>-<dd>—<yy>] <hr>:<min>[:<sec>]] [+s}
DESCRIPTION

The "date" command has two forms: one with an argument and one
without. Any user may execute the "date" command without an
argument. In response, the system returns the current date and
time. The user "system" may also use the "date" command with an
argument to set the system date and time. If the user "system"
uses the "+s" option, the system reads the hardware clock and
sets the date and time accordingly.

Arguments

<mm> A number from 1 to 12 inclusive representing the
month.

<dd> A number from 1 to 31 inclusive representing the
day.

<yy> A two-digit number representing the last two
digits of the year.

<hr> A number from O to 23 inclusive representing the
hour. (Time must be expressed as 24-hour-clock
time.)

{min> A number from O to 59 representing minutes past
the hour.

<{sec> A number from O to 59 representing seconds past

the minute. The default is O.
Options Available

s The "s" option allows the user "system" to set the
system date for the internal hardware clock.

2-26 @ 4404 Reference Manual

SECTION 2
User Commands

EXAMPLES
1. date 7-13-84 15:47:28
2. date 11:53
3. date 7-13 17:5
4. date
5. date +s

The first example sets the date to July 13, 1984, and the time to
3:47:28 P.M.

The second example sets the time to 11:53 A.M. The date defaults
to the date stored in memory.

The third example sets the date to July 13 and the time to 5:05
P. M. The value for the year defaults to the stored value, and
the value for seconds defaults to O.

The fourth example displays the date and time currently stored in
memory.

The fifth example sets the date and time to correspond to that in
the system hardware clock.

ERROR MESSAGES
Invalid <arg> specified.

The value specified for the argument shown in the error message
is not within the acceptable range.

Only the system manager may change the date!
The user who tried to change the date is not the system manager.

Syntax: date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]]

The syntax of the command line is incorrect. Most probably, the
arguments specifying the time are missing.

4404 Reference Manual @ 2-27

SECTION 2
User Commands

debug

"debug" invokes a machine-language debugging system.
SYNTAX

debug [<image file name>]
DESCRIPTION

The "debug" command is used to aid in the testing and debugging
of machine-language programs. Because all programs are
ultimately translated into machine language, any program may be
debugged using "debug."

The "debug" command is used to examine or modify the image of a
machine-language program. This image can be (1¥ a post-mortem
memory dump of a program which has been aborted by the operating
system, (2) a program image file, or (%) a program which is
currently executing under the control of "debug". If no image
file is specified on the command line, the default is the file
"core" in the working directory. The "debug" command examines
the file to determine whether it is a "core" image or an
executable image file. If it is neither, "debug" issues the
message "Invalid image type" and terminates. The third type of
image may be created only by specifying the name of an executable
image on the command line, followed by executing 'x' command to
create the controlled task.

The commands available with "debug" allow the user to examine
memory locations within the program image, to modify memory
locations, to set breakpoints, to execute single instructions (to
single step through the program), to examine and change
registers, and more. Some commands,; such as single step, are
applicable only when "debug" is being used to control the
execution of a task. However, most commands are available for
use with all image types.

Arguments
{image file name> The name of the file to debug. The

default is the file "core" in the
working directory.

2-28 @ 4404 Reference Manual

SECTION 2
User Commands

Commands Available

The "debug" command normally works in an interactive environment.
The basic command structure is designed to be simple to use
and to remember. 1In general, each command name is a single
character, which may be followed by one or more expressions.

Expressions may include the operators '+' and '-', which are

evaluated from

left to right unless parentheses are used.

Expressions may also include any of the following terms:

$<num>

<num>

<{num>

{symbol>

{register>

The hexadecimal value of <num>.

The hexadecimal value of <num>. If this form is
used, the number must start with a digit. If it
starts with a character, "debug" interprets it as
a symbol.

The decimal value of <num>.

The value of the specified symbol. Symbol names
nust be completely specified -- that is, all char
characters are significant.

The contents of the specified register. The
register may be DO through D7, AO through

A7, SR, or PC. The letters used in
specifying a register may be either upper- or
lowercase. . The last memory address
accessed.

"debug" includes these commands:

+ Execute a shell command.

? Displ

Display the value of an expression in multiple formats.

ay the "help" menu.

b Set a breakpoint.

B List

the breakpoints that are currently set.

¢ Clear one or all breakpoints.

4404 Reference

Manual @ 2-29

SECTION 2
User Commands

d Dump a section of memory.
g Continue execution of a program.
G Execute the program until reaching a branch or a

breakpoint.
i Disassemble instructions.
I Initialize symbol table.
k Terminate the currently executing task.
K Remove any pending signals for the controlled task.

m Modify bytes in memory.

M Display the current memory map.

n Display the command line for the task.

o] Terminate "debug".

r Display the contents of all registers.

R Set the contents of a register.

] Execute a single instruction.

S Set a temporary breakpoint at the instruction following
the current instruction and execute the current
instruction.

T Trace instructions until reaching a branch or a
hraalrnadn+d
[V Y Uanyu Lil U e

X Create a task to be executed under the control of
"debug".

The following paragraphs describe "debug" commands in more
detail:

+ <shell command>

This command allows the user to execute a single shell command
without exiting "debug".

2-%0 @ 4404 Reference Manual

SECTION 2
User Commands

= {expression>

This command displaYs the value of the expression symbolically,
in hexadecimal, and in decimal.

?
This command displays a menu of commands available from "debug".
b <location> [<count>]

The 'b' command sets a breakpoint at the given location. When
the program is executed, the instruction at the given location is
replaced by a special instruction which indicates to the
operating system that the user wants to break the flow of the
program. When this instruction is executed in the program, the
operating system suspends the program and notifies "debug", which
prints the location of the breakpoint and returns to command
mode. If the user specifies a count, the breakpoint is executed
<count> times before execution is halted and "debug" notified.
Once the count is exceeded, execution is halted every time the
breakpoint is encountered unless it is reset by another 'b'
command or cleared.

B

The 'B' command lists each breakpoint which is currently set as
well as the corresponding <count> if it is nonzero.

c [<address>]

If the user does not specify an address, the 'c' command prompts
for permission to clear all breakpoints that are currently set.
If the user does specify an address, it clears the breakpoint at
that address.

d <address 1> [<address 2 or count>]

The 'd' command dumps the hexadecimal contents and the ASCII
equivalents of a range of memory locations. Memory is displayed
sixteen addresses to a line. Nonprintable characters are
represented in ASCII by a period,

If the user specifies only one argument, the command displays the
contents of the specified address. If the user specifies two
arguments and the second one is greater than the first, the
command interprets the second argument as an address. I%
displays the contents of memory from the first specified address
to the second, inclusive. If the user specifies two arguments

4404 Reference Manual @ 2-31

SECTION 2
User Commands

and the second one is less than or equal to the first, the
command interprets the second argument as a count. It displays
the contents of memory beginning at the first address and
continuing for the number of addresses specified by the second
argument.

The dump may be aborted by typing the return key during the dump.
Control-C does not abort the command.

g

The 'g' command continues the execution of a controlled task.
Execution continues until the program terminates, receives a
signal or encounters a breakpoint. The user may use this command
only when executing a controlled task.

G

The 'G' command executes the program until it encounters any
branch instruction, any call instruction, or any breakpoint.

i [<address 1> [<address 2 or count>]]

The 'i' command displays the contents of memory from the first
specified address to the second, inclusive. If the user
specifies two arguments and the second one is less than or equal
to the first, the command interprets the second argument as a
count. The 'i' command interprets the specified location or
range of locations as machine-language instructions and advances
the location counter to the start of the last complete
instruction within the specified range. If the user specifies no
second argument or if the range specified by the second argument
is shorter than the complete instruction, the command displays
the instruction which begins at the starting address but does not
move the location counter. A carriage return by itself is
equivalent to the command "i .", except that the location counter
is advanced to the beginning of the next instruction.

I

The 'I' command initializes debug's internal symbol table. The
symbol table is used to interpret symbolic addresses and values.
The 'I' command prompts for the name of the file containing the
symbol table to use. The file must be a binary image file. This
command is normally for use with a core image file, because such
files do not contain any symbolic information. Once the symbol
table is initialized, however, a core image file can be
interpreted symbolically.

2-32 @ 4404 Reference Manual

SECTION 2
User Commands

ok

The 'k' command terminates execution of the current controlled
task. If no controlled task exists, the command is not allowed.
This command need not be used, because the 'x' command implicitly
kills any controlled task before creating another.

K

When a task running under the control of "debug" receives a
signal, the operating system notifies "debug" and suspends the
task. The "debug" program then enters command mode, allowing the
user to execute any "debug" command. A user who wishes to ignore
the signal may do so by entering the 'K' command. A user who
wishes the signal to take effect should simply continue the
program with the 'g' (or a similar) command.

m <address>

he 'm' command modifies the contents of one or more memory
locations in the image file. In response to this command,
"debug" first displays the specified address and its contents.
The user may change the contents by entering any expression, may
leave the contents as is by entering a period, or may terminate
the command by entering just a carriage return. Unless the user
terminates the command, "debug" modifies the contents if
appropriate, displays the next address with its contents, and
waits for input from the user.

If the image file is a core dump or an executable file, the file
itself is modified. 1If the image file is a controlled task
(i.e., an 'x' command has been executed), only the memory of that
task is altered. The executable file from which "debug" created
the task is not changed. Therefore, when patching code the user
should be aware that patches are applied only to the executing
image file.

M

The 'M' command displays a map of the logical addresses available
to the task image. If the image is either a core dump or a
controlled task, the map contains the ranges of addresses being
used by the program. These ranges may change whenever the
program executes a "break" or a "stack" system call. If the
image is an executable file, the 'M' command displays the ranges
of the addresses of the TEXT and DATA/BSS segments.

4404 Reference Manual @ 2-33

SECTION 2
User Commands

n

The 'n' command displays the command line which was used to
create the task. This is merely a display of the command
arguments passed to the program when it was created. 1In most
cases the command line consists of the shell command used to
invoke the program. The command line for a controlled task looks
just like the command line entered with the 'x' command that
created it, except that the 'x' is replaced by the program name.

r

The 'r' command displays the contents of the registers for the
image file, as well as the address of the program counter and the
instruction located at that address. For a core dump it displays
the contents of the registers at the time the program was aborted
by the system and the location of the program counter at that
time. The instruction displayed is the instruction that was in
progress when the program was aborted. For a controlled task,
the 'r' command displays the contents of the registers as they
will be when execution resumes, the address at which execution
will resume, and the instruction at that address. The registers
for an executable file are undefined. For an executable file,
the 'r' command displays the contents of the registers as zeros
and the address and contents of the entry point of the program.

R <register name> <expression>

The 'R' command, which may be used only if the image file is a
controlled task, alters the contents of a register. The register
may be DO through D7, AO through A7, SR, or PC. The letters used
in specifying a register may be either upper- or lowercase. The
supervisor portion (the upper byte) of the status register may
not be altered.

S

The 's' command executes a single machine-language instruction.
When the instruction is complete, "debug" displays the state of
the task (including the new program counter) and the next
instruction to be executed. The 's' command uses system
facilities provided by the operating system. Thus, the user may
safely single-step through macro operations such as system calls.

2-34 @ 4404 Reference Manual

SECTION 2
User Commands

-9

The 'S' command sets a temporary breakpoint at the instruction
following the current instruction. This breakpoint is removed as
soon as it is encountered. If another 'S' command is executed
before the breakpoint is encountered, it removes the original
breakpoint. This command may be used with any instruction, but
it is normally used with a call to a subroutine.

T

The 'T' command executes the program until it encounters any
branch instruction, any call instruction, or any breakpoint.
After the execution of every instruction, "debug" displays the
address of the next instruction and the instruction itself.

x [<arguments>] [<I/0_redirection>]
The 'x' command creates a controlled task from an image file. 1In
order to execute this command, the user must first invoke "debug"
with the name of an executable image file as the argument. The
task is halted before execution of its first instruction, so that
"debug" can accept commands to control its execution.
I1/0 redirection may be accomplished using the character '<' to
redirect standard input, '>' to redirect standard output, and '%'
to redirect standard error. No provisions are made for using
either append mode (">>") or implied mapping (">%").

NOTE

The more breakpoints you set, the longer the
program takes to execute.

ERROR MESSAGES
Breakpoint table full!

The user has already set the maximum number of breakpoints.
Can't access core/image "<image file name>"
The operating system returned an error when "debug" tried to

access the specified file. Most probably, either the file does
not exist or the user does not have read permission in the file.

4404 Reference Manual @ 2-35

SECTION 2
User Commands
Can't open "<file named>"
The "debug" command was unable to open the file which the user
specified as the file containing the symbol table to use. Most
probably, either the file does not exist or the user does not
have read permission in the file.
Can't write "<image file name>"
The user tried to use the 'm' command to modify the contents of a
memory location in the image file, but "debug" was unable to
write to the file. Most probably, the user does not have write
permission in the file.
Command too complicated
The user tried to use the '+4+' command to execute a shell command
from "debug", but the command line was too long for "debug" to
interpret.
Error during EXEC - <error_num>
The operating system returned an error when the user tried to
create a controlled subtask using the 'x' command. This message
is followed by the error number returned by the operating system.
Error in expression
The expression used contains a syntax error.
Illegal address
The address specified is not in the user's address space.
Illegal command, <char>, - ignored
The command specified by <char> is not a valid command for
"debug". The character is ignored, and "debug" prompts the user
for another command.
Illegal file type
The 'I' command cannot determine the file type of the image file

and, consequently, ignores the file. All previously defined
symbols are no longer defined.

2-%6 @ 4404 Reference Manual

SECTION 2
User Commands
Illegal register name
The register name specified by the user is not a valid register
name. The register name must be one of the following: DO through
D7, AO through A7, SR, or PC. The letters used may be upper- or
lowercase.

image file name>" is not executable

The user does not have execute permission in the specified image
file.

Invalid image file "<file name>"

The file specified to the "debug" command must be either an
executable file or a core dump.

No command line
The file being debugged is not a core file, and was not invoked
with the 'x' command. Therefore, no command line exists for the
file.

Not executing a task!

The command specified can execute only if the user has previously
executed the 'x' command.

Sorry, can't execute a "core" file
The 'x' command cannot be executed on a core file.
*¥¥ Syntax error
The 'x' command cannot parse the specified command line.
Undefined symbol
An expression contains a term which appears to be a symbol
(starts with a letter or an underscore character, ' ') but is not

in the symbol table. Hexadecimal values used in expressions must
begin with a digit (a leading O is accepted) or a dollar sign,'$'.

4404 Reference Manual @ 2-37

SECTION 2
User Commands

dir

List either the contents of a directory or information about a file.
SYNTAX

dir [<file_name_list>] [+abdflrsSt]
DESCRIPTION

The "dir" command is used to list either the names of the files
in the specified directory or, if the argument is not a
directory, information about the specified file. By default, the
names of the files in a directory are listed in alphabetical
order with several names per line.

Format of the Output

The information given about a file is presented on one line,
which contains several fields. These fields are described here
in the order in which they appear.

<fdn num> The number of the file descriptor node (fdn) which
describes the file in question. This field is not
present unless the user specifies the 'f' option.

{file_ name> The name of the file being described.

<{size> The size of the file in blocks. If the file is a
device, "dir" places the major and minor device
numbers in this field.

{file_type> A single character specifying the type of
file. The character 'D' represents a block
device; 'c¢', a character device; and 'd', a
directory. 1If the field is blank, the file

is a regular file.

{perms> This field, which is composed of six columns,
indicates what permissions are associated with the
file. The first three columns represent
permissions for the user who owns the file; the
last three for other users. Permissions are
always presented in the order read, write, and
execute. They are represented by the letters 'r',
A hyphen in a column means that the corresponding
permission is denied. For example, if the
permission field contains the sequence "rwxr-x",
the user who owns the file may read, write, and
execute the file, whereas other users may only
read and execute it.

2-38 @ 4404 Reference Manual

SECTION 2
User Commands

{link count> The link count is the number of directory

entries which point to a file. The 1link
count for a directory is always at least 2
because the "." entry within the directory
itself points to the same fdn as the
directory entry for that file in its parent
directory.

{owner> The user name of the owner of the file.

{last_mod time> The time and date at which the file was
last modified.
Arguments
{file name_ list> A list of the names of files to process.

The default is the working directory.

Options Available

a -

List all files in a directory, including those whose
names begin with a period, '.'. This option has no
effect if the specified file is not a directory.

List the file size in bytes rather than blocks. This
option implies the 'l' option.

If the file being processed is a directory, list the
names of all files it contains. Continue this process
for all descendant directories. This option allows the
user to see the entire directory structure.

List the number of the file descriptor node for each
file. This option implies the '1l' option.

If the specified file is a directory, give detailed
information about each file in the directory. This
option has no effect if the specified file is not a
directory because in such a case the information is
automatically given.

If the specified file is a directory, reverse the order
in which the files would otherwise be listed.

4404 Reference Manual @ 2-39

SECTION 2
User Commands

S If the specified file is a directory, list one file
name on each line. This option is useful for creating
a file which contains the names of all the files in a
directory.

S Print a summary of the information after listing all
files.

t Sort files by the time of their most recent
modification. By default, the most recently modified
file is listed first.

EXAMPLES
1. dir +1
2. dir /jay +abdfs
3. dir memo +f
4. dir /marcy +rt
5. dir /marcy +s

The first example lists information about each file in the
working directory (except those whose names begin with a period).

The second example lists information about all files, including
those whose names start with a period, in the directory

"/jay" (the 'f' and the 'b' option both imply the '1'

option). In addition, the command displays a list of the files
in each subdirectory that is a descendant of "/jay". The
information includes the fdn number of each file. The size of
each file is shown in bytes. At the end of the output is a
summary showing the total number of directories processed, the
total number of nondirectory files processed, and the total
number of blocks used by all the files.

The third example displays information about the file "memo" in
the working directory. The information includes the fdn number
of the file. '

The fourth example lists the names of those files in the
directory "/marcy" which do not begin with a period. The
names are sorted by the time of the last modification with the
sense of the sort reversed so that the most recently modified
file is the last one in the list.

The fifth example lists the names of those files in the directory

"/marcy" that do not begin with a period. One name appears
on each line.

2-40 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
Unknown option: <char>

The option specified by’<char> is not a valid option to the "dir"
command.

¥* Warning: directory "<dir_name>" is too large!
¥¥ JSome directories were ignored

The "dir" command cannot process a file if the total number of
directories in every directory between that file and the
directory specified on the command line exceeds 50. In order to
make the command succeed, the user should start at a lower point
in the directory tree.

** Warning: directory "<dir_name>" is too large!
*¥ Some files were ignored

The "dir" command cannot list more than 500 file names from a
single directory. In order to make the command succeed, the user
should split the offending directory into two or more
directories.

4404 Reference Manual @ 2-41

SECTION 2
User Commands

dperm

Set the default permissions for the creation of files by the current
shell program or by tasks generated by the current shell program.

SYNTAX
dperm [<perms list>]
DESCRIPTION

Every time a user creates a file, the operating system assigns it
a set of permission bits which determines whether the file's
owner and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the
file. The editor, for example, creates all files with "rw-rw-"
permissions, which allow the user who owns the file, as well as
other users, to read and write, but not execute, the file. The
default permission for "crdir" are "rwxrwx"; for "create",
"rw-rw-"; for "makdev", "rw-r--".

The "dperm" command, which is part of the shell program, is used
to set the default permissions for the creation of a file. It
allows the user to instruct the system always to deny certain
permissions, independent of how the file is created. It is
possible to independently turn off any of the permission bits for
the file's owner and other users. If the user specifies no
arguments, the operating system removes the existing default
permissions.

It is only possible to deny permissions with the "dperm" command.
The "perms" command may be used to add permissions to individual
files. "perms" overrides the defaults set by "dperm".

Arguments

{perms_list> A list defining the permission bits to be
used as defaults.

Format for Arguments

{perms_list> The first character of an element in a
permissions list specifies if the argument
applies to the user who owns the file ('u')
or to other users ('o'). The second
character must be a minus sign, '-', which
indicates that the following permissions are
to be denied. The minus sign is followed by
one, two, or three of the characters 'r',
'w', and 'x' (for read, write, and execute).

2-42 @ 4404 Reference Manual

SECTION 2
User Commands

EXAMPLES

1. dperm o-rwx
2. dperm u-w 0-wX
3. dperm

The first example sets the default permissions so that the
operating system denies all permissions to other users whenever
it creates a file.

The second example sets the default permissions so that the
operating system denies write permission to the user who owns the
file, and both write and execute permission to other users
whenever it creates a file.

The third example removes all default permissions.

NOTE

The "dperm" command is only effective while
the shell program under which it is invoked
is running. The default permissions for
files created by the login shell can be
permanently altered by placing the
appropriate command in the file ".login" in
the user's home directory. This file is
automatically executed each time the user
logs in.

ERROR MESSAGES

Error in permissions specification.
The format of the permissions list is incorrect. Most likely,
the user has specified a plus sign, '+4+', instead of a minus sign,
or has used an invalid character.

SEE ALSO

perms

4404 Reference Manual @ 2-43%

SECTION 2
User Commands

dump

Send both a hexadecimal and an ASCII listing of a file to
standard output.

SYNTAX

dump <file name> [+1i]
dump [<file name list>]

DESCRIPTION

The "dump" command sends a hexadecimal and an ASCII listing of a
file to standard output. The two versions of the file appear
side by side. A line of output consists of the address in the
file at which that line starts, the hexadecimal contents of the
byte at that address and of the following fifteen bytes, and the
sequence of characters represented by these bytes. A
nonprintable character appears as a period, '.', in the ASCII
part of the listing.

The user may interrupt the "dump" command at any time by typing a
control-C. Normally, a control-C returns the user to the shell
program. However, if the "dump" command is in interactive mode
and is actually displaying information when the user types a
control-C, "dump" stops the output and prompts for another
address.

Arguments

{file_name> The name of the file to dump. The default is
standard input.

Options Available

i Enter interactive mode. The 'i' option may be used
only if exactly one file name appears on the command
line. If the user specifies the 'i' option, the "dump"
command prompts for the address at which to begin. The
address is relative to the first byte in the file,
whose address is O. An address preceded by a period is
a decimal address; otherwise it is a hexadecimal
address. The user may specify a single address, a
range of addresses (two addresses separated by a

2-44 @ 4404 Reference Manual

SECTION 2
User Commands

hyphen, or an initial address and an offset (an address
followed by either a comma or a space, followed by a
number). In the first case, the "dump" command
displays sixteen bytes of information, beginning with
the specified address. In the second case, it displays
all the bytes from the first to the second address
inclusive. 1In the third case, it begins displaying
bytes at the address specified and continues for as
many bytes as the following number dictates.

EXAMPLES

1. dump memo /cynthia/letter
2. dump letter +i1
3. dump testprog >test.dump
The first example sends both a hexadecimal and an ASCII listing of

the file "memo", which is the working directory, and the file
"letter", which is in the directory "/cynthia", to standard output.

The second example enters interactive mode and prompts the user for
the address at which to begin the dumping the file "letter".

The third example sends a hexadecimal and ASCII listing of the
file testprog via redirected I/0 to the file test.dump.

ERROR MESSAGES
Cannot interactively dump multiple files.

The 'i' option may not be used if more than one file name appears
on the command line.

Cannot interactively dump standard input.
If the user specifies no file name on the command line, the
default is standard input. The 'i' option may not be used in
such a case.

Error opening "<file name>": <reason>
The operating system returned an error when "dump" tried open
{file name>. This message is followed by an interpretation of
the error returned by the operating system.

Invalid option '<char>': ignored.

The option specified by <char> is not a valld option to the
"dump" command. The command ignhores it.

4404 Reference Manual @ 2-45

SECTION 2
User Commands

echo

Write the arguments on the command line to standard output.
SYNTAX

echo [<arg list>] [+1]
DESCRIPTION

The "echo" command writes the arguments in <arg list> to standard
output. A space character appears after each string argument; no
space appears after a hexadecimal argument; while the last
argument is followed by a carriage return. You can use "echo" to
non-destructively show how the "shell" or "script" programs
evaluate special characters in the <arg listd.

Arguments
arg list> A list of arguments to write to standard output.
Format for Arguments
{arg list> Each element in <arg list> consists either of
a string or of a hexadecimal number preceded
by a plus sign, '+'.

Options Available

1 Do not write a carriage return after echoing the
argument list.

EXAMPLES

1. echo This is a test!
2. echo This is a test! +7 +1 >/dev/console

The first example writes the string "This is a test!" to standard
output, which defaults to the user's terminal.

The second example writes the string "This is a test!", followed
by a bell character (hexadecimal 7), to standard output.
Standard output is /dev/console (the 4404 display). The output
is not followed with a carriage return. (The "+1" is the option
"plus el", not the hexadecimal argument "plus one".)

2-46 @ 4404 Reference Manual

SECTION 2
User Commands

edit

Invoke the text editor in order to create a new text file or edit
an existing one.

SYNTAX
edit [<file name 1> [<file name 2>]] [+bny]
DESCRIPTION

The "edit" command may be used with zero, one, or two arguments.
With one argument, "edit" opens the specified file for editing,
creating it if necessary, and reads as much of the file as
possible into the edit buffer. At the end of an editing session
of a pre-existing file, the editor renames the original file by
appending the letters ".bak" to its name. If this addition would
result in a file name of more than fourteen characters (the
maximum allowed by the operating system), the editor shortens

the original name before adding the suffix. If a backup file
already exists, the editor prompts for permission to delete it.

If the user specifies no arguments, the editor prompts for the
name of the file at the end of the editing session, before
returning control to the operating system. It does not accept
the name of an existing file.

If the user specifies two file names, the operating system makes
a copy of the first file specified, gives it the name specified
by the second argument, and opens it for editing. If a file with
that name already exists, the editor prompts for permission to
delete it before proceeding. In such a case, the editor creates
the new file with the same permissions as the old file.

Files created by the editor have permissions of "rw-rw-."

Arguments

{file name 1> The name of the file to open for editing, or,
if two file names are specified, the name of
the file to copy.

{file name 2> The name to give to the copy of the file

specified by <file name 1>. It is this copy
that is opened for editing.

4404 Reference Manual @ 2-47

SECTION 2
User Commands

Options Available

b Do not save the original copy of the file as a backup
file at the end of the editing session.

n Do not read any text into the edit buffer. This option
allows the user to make large insertions at the
beginning of a file.

y If only one argument appears on the command line, at
end of the editing session automatically replace any
existing backup file with the original copy of the file
being edited. If two arguments appear on the command
line and the second file specified already exists,
delete that file at the beginning of the editing
session.

EXAMPLES

1. edit test +ny
2. edit test oldtest

The first example opens the file "test" in the working directory
but does not read any of it into the edit buffer. If the file
does not exist, the editor creates it. At the end of the
session, "edit" automatically replaces any existing backup file
with the original copy of "test".

The second example makes a copy of the file "test", names it
"oldtest", and opens it for editing. If a file named "oldtest"
already exists, the editor asks for permission to delete it.

MESSAGES
Delete existing copy of new file?

The file specified by <file name 2> already exists. If the user
responds with a 'y', the editor deletes the existing copy of the
file and opens the new file for editing. If the user responds
with an '"n', the editor leaves the existing file intact and
returns the user to the operating system.

File already exists
File name?

The "edit" command was executed with no arguments on the command
line. At the end of the editing session, when the editor
prompted for the name of the file, the user specified an existing
file. Under these circumstances, the editor does not accept the
name of an existing file.

2-48 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES

Cannot create new file
The editor cannot open the file specified by <file name 2>. Most
probably, either the user specified a path name that could not be
followed or the user does not have the permissions necessary to
open the file.

Cannot open edit file
The editor cannot open the file specified by <file name 1>. Most
probably, either the user specified a path name that could not be
followed or the user does not have the permissions necessary to
open the file.

Cannot read edit file

The editor encountered an I/0 error trying to read the specified
file.

Bdit file does not exist

The user has specified two file names on the command line, but
{file name 1> does not exist.

New file is the same as the old file

Both <file name 1> and <file name 2> refer to the same file. (If
their names are not the same, they are links to the same file.)

Too many file names specified.

The "edit" command requires zero, one, or two arguments. This
message indicates that the argument count is wrong.

Unknown option specified

An option on the command line is not a valid option to the "edit"
command. The command ignores the option and proceeds.

SEE ALSO

dperm
Section 9, EDIT, The Text Editor

4404 Reference Manual @ 2-49

SECTION 2
User Commands

find

Search for a string in a file or in standard input.
SYNTAX

find [+cu] <str_1>[&str_2>] [<file name list>]
DESCRIPTION

The "find" command looks in the specified file for the specified
string. By default, lowercase characters and uppercase
characters are distinct.

Arguments
<str_1> The string to search for.

{str_2> The second string to search for (only if '&', the
"and" operator, is used).

{file name list> A 1list of the names of files to search.
The default is standard input.

Specifying a String

The user may completely specify a string or may take advantage of
the matching characters recognized by the "find" command.

Because some of these matching characters also have special
meanings to the shell program, strings which use them must be
enclosed in single or double quotation marks.

\ When used just before any matching character, including
R S I -] 4. ThmmlreT mmdle mlnimunm mde o mmn am e AT e e e Vo e
ivseil, the backslash character negaves vne maivcning

ability of the character.

? The question mark matches any character except a new-line
character.

< A left angle bracket specifies that the following
string must be found at the beginning of a line. It
loses its matching ability if it is not the first
character of the string.

> A right angle bracket specifies that the preceding
string must be found at the end of a line. It loses
its matching ability if it is not the last character of
the string.

2-50 @ 4404 Reference Manual

SECTION 2
User Commands

& The "and" operator may be used between two strings (see
the syntax statement). The "find" command reports only
those lines on which both strings occur.

[] Square brackets enclose a list or a range of characters
from which the "find" command can choose when looking
for a string. A list of characters consists of
adjacent characters. A range consists of two
characters separated by a hyphen.

! The exclamation point may be used in conjunction with
the square brackets. If it is the first character
inside the brackets, the "find" command can choose from
all characters not specified in the brackets when
looking for a string.

Options Available

Any options used with the "find" command must appear immediately
after the command name.

c Instead of writing the lines that contain the specified
string to standard output, report the number of lines
containing the string.

a Do not distinguish between upper- and lowercase.
EXAMPLES

1. find +u syntax test

2. find +u "<syntax" test trial

5. find +u 'syntax&statement' test

4. find +c " <" test

5. find +u '[a-e]nd' test

The first example writes to standard output all lines from the
file "test" which contain the string "syntax". The command does
not distinguish between upper- and lowercase.

The second example writes to standard output all lines from the
files "test" and "trial" which contain the string "syntax" at the
beginning of the line. The command does not distinguish between
upper- and lowercase. Because matching characters are used to
specify the string, the string must be enclosed in either single
or double quotation marks.

The third example writes to standard output all lines from the

file "test" which contain both the string "syntax" and the string
"statement". ‘

4404 Reference Manual @ 2-51

SECTION 2
User Commands

The fourth example writes to standard output the number of lines
in the file "test" which contain a left-hand angle bracket. The
matching ability of the angle bracket is negated because of the
backslash character which precedes it.
The fifth example writes to standard output all lines from the
file "test" which contain any of the following strings: "and",
"bnd", "Cnd", Ildndll’ or "endl!_
ERROR MESSAGES
Error opening "<file name>": <reason>
The operating system returned an error when "find" tried to open
the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error processing "<file name>": <reason>
The operating system returned an error when "find" tried to
process the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Invalid option: '<char>'. Command aborted.

The option specified by <char> is not a valid option to the
"find" command.

Syntax: find [+cu] <str_1>[&<str _2>] [<file name list>]

The "find" command expects at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

shell
script

2-52 @ 4404 Reference Manual

SECTION 2
User Commands

format

Format‘a flexible disk for use on the 4404 flexible disk drive.
SYNTAX

format [+fFqv]
Options Availsable

f=<blocks> Establish <blocks> blocks for file descriptor
nodes (fdns).

F Logical format only. ©No physical format performed.
q Use quiet mode.
s Verify the disk after formatting.

DESCRIPTION

The "format" command formats a flexible disk for use in the
4404's flexible disk drive, "/dev/floppy." The device model name
is "TEK4404" which formats the disks as double-sided,
double-density, 40 TPI, with eight 512-bit sectors per track.

DETAILED DESCRIPTION OF "FORMAT" OPTIONS
The 'f' Option

Formatted disks use fdn blocks (each fdn block contains eight
fdns) to hold information about files on the disk. By default,
"format" uses 3% of the total disk space for fdn blocks. You can
ovveride this default value with the 'f' option and specify the
decimal number of fdn blocks to establish on the disk. At least
one block must be allocated for fdns on every formatted disk.

The 'F' Option

The 'F' option does not physically format the disk. It performs
a logical format only and erases all data on the disk.

The 'q' Option

Before actually starting to format the disk, "format" normally
sends a prompt to ask if the user is ready to continue. The 'q'
(quiet) option suppresses this prompt and inhibits all
informative messages from "format" if no errors are encountered
during formatting.

4404 Reference Manual @ 2-53

SECTION 2
User Commands

The 'v' Option

The 'v' (verify) option instructs "format" to verify the media
after formatting. If this option is specified, "format"
individually verifies every sector on the disk. It first

writes an arbitrary pattern to each sector; then reads and
verifies each one. Because verification of a large disk may take
a long time, the "format" command prints symbols to indicate its
progress. It prints an asterisk, '*', each time it finishes
writing fifty sectors; a dollar sign, '$', each time it finishes
reading and verifying fifty sectors. It reports any sectors
which fail this test to the user.

The option is often desirable when the user is formatting a

floppy disk because floppies do not automatically verify all
written data.

2-54 @ 4404 Reference Manual

SECTION 2
User Commands

free

Report the amount of free space available on the specified
devices.

SYNTAX
free <dev_name 1list> [+d]
DESCRIPTION

The "free" command reports the amount of free space remaining on
the specified device. It reports both the total number of free
blocks available for use in files and the total number of file
descriptor nodes (fdns) available. The number of fdns available
tells the user how many more files can be created on the device
(assuming that sufficient free blocks remain for use in the
files). If the number of available fdns drops to O, no more
files can be created on the disk, no matter how many free blocks
remain.

Arguments

{dev_name_ list> A list of the names of the devices to
report on. The devices may be either
mounted or unmounted.

Options Available

d Provide more detailed information with the output.
This extra information includes the names of the file
system and the volume if they were specified when the
disk was formatted, as well as the amount of swap space
on the disk.

EXAMPLES
1. free /dev/disk
2. free /dev/floppy

The first example reports both the number of fdns available and
the number of free blocks on the standard winchester hard disk.

The second example reports the same information on a mounted
flexible disk.

4404 Reference Manual @ 2-55

SECTION 2
User Commands

ERROR MESSAGES
Cannot open <dev_name>
The specified device does not exist; the specified device exists,
but no hardware is connected to it; or the device exists and
hardware is connected to it, but no disk is in the device.
{dev_name> is not a block device.
The specified device must be a block device.

Unknown option: <char>

The option specified is not a valid option to the "free" command.

2-56 @ 4404 Reference Manual

SECTION 2
User Commands

headset

Change information in the binary header of an executable file.
SYNTAX

headset <file name list> [+aAbBcCdSt]
DESCRIPTION

The "headset" command can alter certain portions of the binary
header of an executable object module. TFeatures such as whether
or not the module is shared-text, whether or not the module can
produce a core dump, and the initial stack size can be altered
without reloading the module.

The characters used for options are identical to those used when
invoking the loader with the "load" command. Those options
which do not take an argument can be disabled by preceding the
character with a minus sign, '-', instead of the usual plus sign,
l+|‘

Arguments

{file name list> A list of the names of the files to
process.

Options Available

a=<num> Specifies the minimum number of pages to
allocate to this task at all times. The
minimum value for the argument is O; the
maximum, %2767. The default is 0. The
operating system tries to honor the specified
number, but if it cannot, it uses as many
pages as it needs.

A=<num> Specifies the maximum number of pages to
allocate to this task at all times. The
minimum value for the argument is O; the
maximum, %2767. The default is 0. The
operating system tries to honor the specified
number, but if it cannot, it uses as many
pages as it needs.

4404 Reference Manual @ 2-57

SECTION 2
User Commands

b=<task size>

c=<source_type>

C=<config num>

S=<hex_ num>

2-58 e

Specifies the maximum size to which the task
may grow. The argument <task size> may be
"128K", v|512Kn, "2048K", "8192K", nzmn, or
"8M". The default is "128K". The letters
'M' and 'K' can be either upper- or
lowercase.

If the task size specified by the user is not
large enough to hold the code from all the
modules being loaded, "headset" automatically
adjusts the size to the smallest value that
can contain all the code.

Set a bit in the binary header of the output
module which tells the operating system to
zero neither the bss space nor any memory
allocated while the task is running.

Sets a flag in the binary header of the
output module which indicates the type
of source code from which the module was
created. The argument <source type> may
be "ASSEMBLER" or "C". The names can be
specified in either upper- or lowercase.

By default, the loader uses the
configuration number of the current
hardware. The user may, however, use
the 'C' option to specify a
configuration number which overrides the
default. This option is useful when
loading a module for a machine other
than the one on which it is running.

" H i+ T d+lha TS an e
Set the "no core dump" bit in the binary
header.

Specifies the initial stack size, which is
written into the binary header of the module
produced by the loader. The hexadecimal
nunmber is the number of bytes to reserve.
The default is O, in which case the system
assigns the default stack size of 4K.

Produce a shared-text executable module.

4404 Reference Manual

SECTION 2
User Commands

EXAMPLES
1. headset mathtest +t -4 +35=2000
2. headset run_1 run 2 +tB +a=10

The first example makes the executable object module "mathtest" a
shared-text module. It turns off the "no core dump" bit, so that
the program can produce core dumps, and sets the initial stack
size to hexadecimal 2000.

The second example changes the headers in the files "run 1" and
"run 2". Both modules become shared-text modules. The operating
system will zero neither the bss space nor any memory allocated
while the task is running. The minimum page allocation is set to
ten pages.

NOTES

o The user may make a change in a header which results in an
inconsistent header. In such a case the "headset" command
makes whatever adjustments are necessary in the fields which
were not changed to remove the inconsistency. The user is
notified of these adjustments.

0 For example, if the user alters the initial stack size, the
task size might have to be changed. If this change is
necessary, "headset" notifies the user and adjusts the task
size to the appropriate value. Adjustments may also be made
when either the minimum or maximum page allocation is
altered.

o If the task size specified by the user is not large enough
to hold the code from all the modules being loaded,
"headset" automatically adjusts the size to the smallest
value that can contain all the code.

o If the user changes either the minimum or the maximum value
for page allocation so that the minimum is greater than the
maximum, "headset" automatically adjusts them according to
the following rules.

o The value for the maximum is always greater than or
equal to the value for the minimum.

o The value for the maximum can be O, but if it is
greater than 0, it must be at least 4.

4404 Reference Manual @ 2-59

SECTION 2
User Commands

MESSAGES
File "<file name>": changed max page allocation to <numb>.

The user specified a minimum page allocation that was above the
current maximum page allocation. The utility set the maximum
equal to the minimum.
File "<file name>": changed min page allocation to <num>.
The user specified a maximum page allocation that was below the

current minimum page allocation. The utility set the minimum
equal to the maximum.

File "<file name>": task size set to <{task size>.
The "headset" command had to adjust the task size either because

the user specified an initial stack size that made the module
larger, or because the task size specified on the command was too

small for the calculated size of the module.
ERROR MESSAGES
Error opening'"<file_name>": {reason>
The operating system returned an error when "headset"
open the specified file. This message is followed by
interpretation of the error returned by the operating
Error processing "<file name>": <reason>
The operating system returned an error when "headset"
process the specified file. This message is followed
interpretation of the error returned by the operating
Error reading "<file name>": <reason>
The operating system returned an error when "headset"
read the specified file. This message is followed by
interpretation of the error returned by the operating
Error seeking in "<file name>": <reason>
The operating system returned an error when "headset"
seek in the specified file. This message is followed
interpretation of the error returned by the operating
Error writing to "<file name>": <reason>
The operating system returned an error when "headset"

write to the specified file.
interpretation of the error returned by the operating

2-60 e

tried to
an
system.

tried to
by an
system.

tried to
an
systemn.

tried to
by an
system.

tried to

This message is followed by an

system.

4404 Reference Manual

SECTION 2
User Commands
File "<file name>" is not a binary file.
The specified file does not contain a binary header.
File "<file name>" is not a regular file.
The specified file is either a device or a directory.
File "<file name>" is not executable.
The specified file is not an executable binary file.
Illegal configuration specified.
The configuration type must be between O and 255 inclusive.
Illegal hex number: <hex_ num>.
The number specified is not a valid hexadecimal number.
Illegal maximum page allocation specified.

The maximum page allocation must be between O and 32767
inclusive.

Tllegal minimum page allocation specified.

The minimum page allocation must be between O and 32767
inclusive.

Illegal task size specified.
The argument specified is not a valid argument to the 'b' option.
Invalid option: '<chard>'.

The option specified by <char> is not a valid option to the
"headset" command.

Minimum page allocation greater than maximum.

Both the 'a' and 'A' options appeared on the command line, but
the minimum page allocation specified was greater than the
maximum.

Unknown source type specified.

The argument specified is not a valid argumeént to the 'c' option.

4404 Reference Manual @ 2-61

SECTION 2
User Commands

help

Display a brief description of the use and syntax of the
specified command.

SYNTAX
help [<command name list>]
DESCRIPTION

The "help" command displays a brief description of the use and
syntax of the specified command. To obtain this information, it
looks for a file in the "/gen/help" directory with the same name
as the specified command. Descriptions of most 4404 commands are
available. If you enter "help help" or "help" with no arguments,
the "help" command displays a list of all the commands it can
help with and prompts for the name of a specific command. Typing
a carriage return terminates the command.

Arguments

{command name list> A list of the names of commands about
which the user wants information.

EXAMPLES

1. help copy remove
2. help

The first example displays brief descriptions of the use and
syntax of the "copy" and "remove" commands.

The second example displays a list of all the commands that the
"help" command can help with, followed by a prompt for the name

of a specific command.
NOTES

o The user may add files to "/gen/help". When the "help"
command is executed, it simply looks for the specified file
in "/gen/help", reads the contents, and writes it to
standard output.

0o If the file specified is a directory, the "help" command
lists the contents of the directory and asks what command
the user would 1like help with. If the command specified is
not in that directory, "help" prompts for permission to
search "/gen/help".

2-62 @ 4404 Reference Manual

SECTION 2
User Commands
ERROR MESSAGES
Cannot help with <command name>.

No description of the specified command is available to the
"help" command.

Error opening "<file name>": <reason>
The operating system returned an error when "help" tried to open
the file <file name>, which describes the specified command.
This message is followed by an interpretation of the error
returned by the operating system.

Error reading "<file name>": <reason>
The operating system returned an error when "help" tried to read
the file <{file name>, which describes the specified command.
This message is followed by an interpretation of the error
returned by the operating system.

Too many files in directory.

The "help" command cannot function if the directory "/gen/help"
contains more than 500 entries.

4404 Reference Manual @ 2-63

SECTION 2
User Commands

info
Display the contents of the information field associated with the
specified binary file.
SYNTAX
info <file name list>
DESCRIPTION

A binary file may have an "information field" that stores textual
information associated with the file. This information can
include things like the version number and release date of the
file, as well as other useful information pertaining to the file.
The "info" command displays the contents of the information
field.

Arguments

{file name list> A list of the names of the files for
which to display the information field.

EXAMPLES

1. info /system.boot
2. info /bin/edit /bin/info

The first example displays the version number, release date, and
copyright information for the file "/system.boot", the operating
system itself.
The second example displays version numbers, release dates, and
copyright information for the text editor ("/bpin/edit") and the
"info" command ("/bin/info").
ERROR MESSAGES
Error opening "<file name>": <reason>
The operating system returned an error when "info" tried to open
the file <file name>. This message is followed by an
interpretation of the error returned by the operating system.
Error processing "<file name>": <reason>

The operating system returned an error when "info" tried to
process the file <file name>. This message is followed by an
interpretation of the error returned by the operating systemn.

2-64 @ 4404 Reference Manual

SECTION 2
User Commands

Error reading "<file name>": <reason>

The operating system returned an error when "info" tried to read
the file <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Error seeking in "<file name>": <reason>

The operating system returned an error when "info" tried to seek
to the appropriate location in <file name>. This message is
followed by an interpretation of the error returned by the
operating system.

Error writing to "standard output": <reason>
The operating system returned an error when "info" tried to write
the output of the "info" command to standard output. This
message is followed by an interpretation of the error returned by
the operating systemn.

file name>" has no information field.

The optional information field is not present in the specified
file.

file name>" is not a binary file.
The specified file lacks the header which identifies it as a
binary file. The argument to the "info" command must be a binary
file.

file name>" is not a regular file.
The specified file is a directory or a special file (a block or
character device). The argument to the "info" command must be a
regular file.

Syntax: info <file name list>

The "info" command requires at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

addinfo
Section 5, The Assembler and Linking Loader

4404 Reference Manual @ 2-65

SECTION 2
User Commands

int

Send a program interrupt to another task.
SYNTAX

int <task ID> [+<int_ num>]
DESCRIPTION

The "int" command sends the specified interrupt to the task
identified by the task ID on the command line. If the user does
not specify an interrupt, a termination interrupt (SIGTERM) is
sent. A task ID is reported by the shell program whenever the
user executes a task in the background. An ID can also be
determined by the "jobs" command.

Arguments
{task ID> The task ID of the task to interrupt. A task

ID of O specifies all tasks associated with

the user's terminal and owned by the user.

+<int_num> The number associated with the

interrupt the user wishes to send. The plus

sign, '+', is necessary to distinguish the

number of the interrupt from the task ID.

Table 2-1 shows a list of the possible

interrupts.

Table 2-1
POSSIBLE INTERRUPTS

| Name ! Number | Description ' ACDIR |
| SIGHUP ! 1 | Hangup b+ + -+ +
! SIGINT I 2 | Keyboard by o+ =+ +
| SIGQUIT ! 3 I Quit D+ o+ o+ o+
| SIGEMT ! 4 | EMT $Axxx emulation b d o+ + + o+
| SIGKILL | 5 | Task kill b+ = = =+ |
| SIGPIPE ! 6 | Broken pipe b+ -+

2-66 @ 4404 Reference Manual

SECTION 2
User Commands

! SIGSWAP I 7 | Swap error by = = = 4+]
| SIeTRACE | 8 | Trace 1 a+-+-1
\steTIME | 9 | Time limit 4+ 4+ -+ |
U SIGAIRM | 10 | Alarm i+ +-++ !
SIGTERM	11	Task terminate	4+ 4+ -+ +
SIGIRAPY	12	TRAPV instruction	+ 4+ + + +
SIGCHK	13	CHK instraction	+ + 4+ + +
U STGEMT2	14	EMT $Pxxx emulation	+ + + + +
SIGTRAPY	15	TRAP #1 instruction	+ 4 + + +
STGTRAP2	16	TRAP #2 imstruction	+ 4+ + 4 +
SIGTRAP3	17	TRAP #3 instruction	£ 4 + + +
SIGTRAP4	18	TRAP #4 imstruction	+ + + 4+ +
SIGTRAPS	19	TRAP #5 instruction	+ 4 + + +
SIGTRAP6	20	TRAP #6-14 inmstruction	+ + + + +
SIGPAR	21	Parity error	+ -+ -+
1 SIGILL	22	Illegal imstruction	+ - + — +
SIGDIV	23	DIVIDE by O i+ 4+ ++ !	
SIGPRIV	24	Privileged imstraction	4 - + - +
STGADDR	25	Address error	4+ -4 -+
SIGDEAD	26	Dead ohild -4 -+ + !	
SIGVRIT	27	Write to READ-ONLY memory	+ - + - +
SIGEXEC	28	Execate from STACK/DATA space	+ - + — +
SIGBND	29	Segmentation violation	+ 4 + - +

4404 Reference Manual @ 2-67

SECTION 2
User Commands

o ———————— — o T — 1 —— i ———— —— ————— — — —————] ——" A ——— ———— —— —————— — o — ————

! SIGUSR1 | 30 | User-defined interrupt #1 by + -+ + !
| SIGUSR2 | 31 | User-defined interrupt #2 b+ + -+
! SIGUSR3 I 32 | User-defined interrupt #3 by + =+ +
| I 3%-63 ! VYendor-defined interrupts | i
Notes
A = Default state is "abort" (otherwise, "ignore")
C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered
EXAMPLES
1. int 263
2. int +5-149
3. int 149 45

The first example sends a termination interrupt (SIGTERM) to task
number 263.

The second example sends a SIGKILL interrupt to task 149. No
~program can trap or ignore a SIGKILL interrupt.

The third example is identical to the second one. The order of
the arguments is irrelevant.

ERROR MESSAGES

Error sending interrupt: <reason>
The operating system returned an error when "int" tried to send
the interrupt. This message is followed by an interpretation of
the error returned by the operating system.

Illegal interrupt specified: <int_num>

The number specified must be an integer between 1 and the number
of signals, inclusive. At the time of this writing the number of
signals is 32.

2-68 @ 4404 Reference Manual

SECTION 2
User Commands

Illegal task ID specified: <task ID>

The task ID specified contains some characters that are not
digits. A legal task ID contains only digits.

Syntax: int <task ID> [+<int num>]
The "int" command expects exactly one task ID and no more than
one interrupt number. This message indicates that the argument
count is wrong.

SEE ALSO

jobs

4404 Reference Manual @ 2-69

SECTION 2
User Commands

jobs

Report the task IDs and starting times of all background tasks
originated by the user from the current shell program.
SYNTAX

jobs
DESCRIPTION
The "jobs" command, which is part of the shell program, reports
the task IDs and starting times of all background tasks
originated by the user from the current shell program. (If
"script" is running as the shell, the task IDs are preceded by
the)letter 'T' for task. This letter is not part of the task
ID.
EXAMPLES

jobs
This example is the only valid form of the "jobs" command. It
reports the task ID and starting time of all active background
tasks originated by the user from the current shell program.
MESSAGES

No tasks active.
The user has no active tasks in the background.

SEE ALSO

int

2-70 @ 4404 Reference Manual

SECTION 2
User Commands

libgen

Create a new library or update an existing one.
SYNTAX

libgen o0=<o0ld 1ib> n=<new_1ib> [u=<update>] [<del list>] [+al]
DESCRIPTION

The "libgen" command creates a new library of relocatable or
executable modules or updates an existing library. ZEach module
in a library must have a name. The name is assigned to a module
by either the "name" pseudo-op in the relocating assembler or the
'N' option of the linking loader. The "libgen" command does not
accept a module without a name.

As it runs, "libgen" produces a report describing the action that
it takes for each module in the library. The report includes the
name of the module and the file from which it was read (the old
library or one of the update files).

Arguments

0=<901d 1ib> The name of an existing library file that was
- previously created by the "libgen" command.
"libgen" is being called to update an
existing library rather than to create a new
one. Either the "o=<old 1ib>" or
"n=<new_1ib>" argument, or both, must appear
on the command line.

n=<new_1ib> The name of a new library. If a file with
this name already exists, "libgen" deletes it
without warning before writing the new
library. If the user does not specify a name
for the new library, it defaults to the name
of the o0ld library. In such a case
"libgen" puts the new library in a scratch
file, deletes the old library, and renames
the scratch file with the name of the old
library. ZEither the "o=<o0ld 1ib>" or
"n=<new 1ib>" argument, or both, must appear
on the command line.

4404 Reference Manaal @ 2-T1

SECTION 2
User Commands

u=<update> The name of a file containing modules to add
to the library. Modules of the same name are
replaced by modules from the update file.
The user may specify up to nine update files
by repeating the "u=<update>" argument for
each one.

del list> A list of the names of modules to delete from
the o0ld library.

Options Available

a Produce an abbreviated report that contains information
only about modules that were replaced, added, or
deleted.

1 Suppress the production of a report.

EXAMPLES

1. 1libgen n=binlib u=one u=two u=three
2. 1libgen o=binlib u=new +a
3. 1libgen o=binlib u=newmods n=newlib transpose add +1

The first example creates a new library named "binlib" that
contains all the modules from the files "one," "two," and
"three."

The second example updates the library "binlib" by adding or
replacing modules from the file "new." The command produces an
abbreviated report.
The third example updates the library "binlib" by adding or
replacing modules from the file "newmods" and by deleting the
modules named "transpose" and "add". The updated library is
written to the file "newlib". The o0ld library is deleted.
ERROR MESSAGES

An o0ld or new library name must be specified.

Either the "o0=<o0ld 1ib>" or "n=<new_ 1lib>" argument, or both, must
appear on the command line.

2-72 @ 4404 Reference Manual

SECTION 2
User Commands
No index found in <1lib name>
The "libgen" command creates every library with an index. This
message indicates either that the file specified is not a library
or that it is a library, but has been badly damaged, and can no
longer be used.
Record not found in <module name>
One of the files in the list of modules to delete from the old
library was not found in that library. The command ignores that
file name and continues.
Record with no name found in <module_name>
Every relocatable or executable module that goes into a library

ni8t have a name. The user should remake the specified module
and give it a name.

Unknown argument: <str>

The argument specified by <str> is not a valid argument to the
"libgen" command.

Unrecognizable record in <module_name>

All modules in a library must be either executable or
relocatable.

SEE ALSO

ISection 5, The Assembler and Linking Loader
libinfo

4404 Reference Manual @ 2-T3

SECTION 2
User Commands

libinfo

Display information about a library.
SYNTAX

libinfo <library name list> [+emM]
DESCRIPTION

The "libinfo" command lists the entry points and module names
contained in a library produced by the "libgen" command. The
user can optionally display only the entry points or only the
module names. Information about a particular module within a
library can also be displayed.

Arguments

{library name list> A list of the names of the
libraries to report on.

Options Available

e Display only entry points in the specified library.
m Display only module names in the specified library.

M=<{mod name> Display information about module <mod_ nameb>.
This option is incompatible with both the 'e!
and 'm' options. If the user specifies
incompatible options, "libinfo" uses the 'M'
option and ignores any others.

EXAMPLES
1. 1libinfo testlidb
2. libinfo runlib +m
3. 1libinfo /1lib/mathlib +M=Arctan

The first example lists all entry points and module names in the
library "testlib."

The second example lists all the module names contained in the
library "runlib."

The third example displays the entry points and module names in
the module "Arctan" in the library "/lib/mathlib."

2-T4 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
Error opening "<file name>" : <reason>
The operating system returned an error when "libinfo" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error reading "<file name>" : <reason>
The operating system returned an error when "libinfo" tried to
read the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error seeking to <location> in "<file name>" : <reason>
The operating system returned an error when "libinfo" tried to
seek to the specified location (in hexadecimal) in the specified
file. This message is followed by an interpretation of the error
returned by the operating system.

"<file name>" is not a library!

The file specified does not have the correct format for a library
created with the "libgen" command.

*¥¥ 'M' taken, others ignored **%*
The 'm' and 'e' options are incompatible with the 'M' option. If
the user specifies incompatible options, "libinfo" uses the 'M!
option and ignores any others.

Unknown option '<char>' ignored.
An unknown option was found and ignored.

SEE ALSO

libgen
relinfo

4404 Reference Manual

®

2-75

SECTION 2
User Commands

link

Establish a new 1link to an existing file.
SYNTAX

link <file name 1> <file name 2>
DESCRIPTION
The "link" command establishes a new link to an existing file.
If the command is successful, both <file name 1> and
{file_name 2> refer to the same file.
The user must have write permission in the parent directory in
which the new link is created, and must have execute permission
in the directory containing the original copy of the file. Only
the system manager may make a link to a directory. A link cannot
cross a volume boundary.
Arguments

{file_name 1> The name of the existing file to which to
establish a link.

{file name 2> The name to link to the existing file.
EXAMPLES

link /susan/.editconfigure .editconfigure
This example creates a file named ".editconfigure" in the user's
working directory and links it to the existing file
".editconfigure" in the directory "/susan".
ERROR MESSAGES

Cannot link across devices

The specified file names reside on different volumes and,
therefore, cannot be linked.

Entry already exists: <file name 2>

The file specified by <file name 2> must be a nonexistent file.

2-76 @ 4404 Reference Manual

SECTION 2
User Commands

Entry does not exist: <file name 1>

If the file to which the link is to be made does not exist, it is
impossible to link the files.

Entry is a directory: <file name 1>

The existing file specified is, in fact, a directory. Only the
system manager can link to a directory.

Invalid option: <char>
The "link" command supports no options.
Path cannot be followed: <file name>

One or more of the directories that make up the name of the file
do not exist.

Permissions deny access: <file name>
The user does not have permission to access the specified file.
If the file is the existing flle, <file name 1>, the user does
not have execute permission in the parent dlrectory If the file
is <{file name 2>, the user does not have write permission in the
parent directory.

Syntax: link <file name 1> <file_name 2>

The "1link" command expects exactly two arguments. This message
indicates that the argument count is wrong.

SEE ALSO

cCopy
move

4404 Reference Manual @ 2-T7

SECTION 2
User Commands

list

Write the contents of the specified file to standard output.
SYNTAX

list [<file name list>] [+1<num>]
DESCRIPTION
The "list" command writes the contents of the specified file to
standard output. If the user specifies more than one file, the

files are listed one after the other with no space between then.

The default file name is standard input. A plus sign, '+', may
also be used as an argument to indicate standard input.

Arguments
{file name list> A 1list of the names of the files to
write to standard output. The default
is standard input.

Options Available

1 Include line numbers in the listing.
<num> The number of the line at which to begin listing
the file.
EXAMPLES
1. 1list test
2. 1list test +120C >>test.out
3. 1list part_ 1 part 2 + part 3 >whole thing

The first example writes the file "test" to standard output.

The second example also writes the file "test" to standard
output. However, in this case standard output is redirected so
that the listing is appended to the contents of the file
"test.out". The listing is accompanied by line numbers and
starts at line 20 of the file.

The third example writes the files "part 1" and "part 2",

followed by the text entered from standard input, followed by
"part 3", to the file "whole thing".

2~78

®

4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
Error listing "<file name>": <reason>
The operating system returned an error when "list" tried to write
{file name> to standard output. This message is followed by an
interpretation of the error returned by the operating system.
Error opening "<file name>": <reason>
The operating system returned an error when "list" tried to open
the file <file name>. This message is followed Dby an
interpretation of the error returned by the operating system.
Error reading "<file name>": <reason>
The operating system returned an error when "list" tried to read
the file <{file name>. This message is followed by an
interpretation of the error returned by the operating system.

Invalid option: '<char>'. Command aborted!

The option specified by <char> is not a valid option to the
"list" command.

Invalid starting line number. Command aborted!

The string used to specify the starting line of the listing
either is not a string of digits or is too large.

4404 Reference Manual @ 2-T79

SECTION 2
User Commands

load

The "load" command is the linking loader.
SYNTAX

load <file name list> [+aAbcCdDeFilImMnNoPrsStTul]
DESCRIPTION

The "load" command takes as input one or more relocatable binary
modules and produces as output either a relocatable module or an
executable module. The relocatable modules used as input should
have been produced by the relocating assembler or the linking
loader. Options are available for producing load and module maps
as well as a global symbol table. Starting addresses for text
and data segments can be adjusted for the particular hardware
being used. The page size can also be adjusted. The loader can
search libraries produced by the "libgen" utility in order to
resolve external references.

The user can place all desired options in a file specified with
the "load" command's 'F' option rather than specifying them
individually on the command line. The operating system comes
with one such file, the file "/1ib/std env", which describes the
hardware environment. The loader always reads this file before
processing any other options. It then processes options in the
order in which they appear on the command line. If an option is
specified more than once (e.g., once in a file and once on the
command line), the last specification overrides all others.

Arguments
file name list> A list of files to load.
Options Available

a=<num> Specifies the minimum number of pages to allocate
to this task at all times. The default is 0. The
operating system tries to honor the specified
number, but if it cannot, it uses as many pages as
it needs.

A=<{num> Specifies the maximum number of pages to allocate
to this task at all times. The default is 0. The
operating system tries to honor the specified
number, but if it cannot, it uses as many pages as
it needs.

2-80

()

4404 Reference Manual

SECTION 2
User Commands

b=<task size> Specifies the size of the task, where

- {task size> is "128K", "512K", "2048K",
"8192K", "2M", or "8M". The default is
"512K". If the argument specified by the
user is not large enough, the "load" command
adjusts it to the smallest possible size.
The letters 'M' and 'K' can be either upper-
or lowercase.

c=<module type> Specifies the source code of the
modules, where <module type> is
"ASSEMBLER", "C", "COBOL", "FORTRAN", or
"PASCAL". The names can be specified in
either upper- or lowercase.

C=<{configuration> By default, the loader uses the
configuration number of the current
hardware. The user may, however, use
the 'C' option to specify a
configuration number which overrides the
default. This option is useful when
loading a module for a machine other than
the one on which it is running.

d Sets the "no core dump" bit in the binary header.

D[:(hex_num>] Specifies the starting address of the data
segment. If the user does not specify the
option or specifies the option without an
argument, the data segment immediately
follows the text segment.

e Prints each occurrence of any unresolved external. By
default, the loader prints only the first occurrence.

F[:(file_name>] Specifies the name of a file of options
to process. The default file name is
"ldr opts". The 'F' option may be used
repeatedly but may not be nested.

i Writes all global symbols to the symbol table of the
binary file.

4404 Reference Manual @ 2-81

SECTION 2
User Commands

2-82

1=<library name> Specifies the name of a library to

search. The loader first searches the
working directory, then the "1ib"
directory in the working directory, and
finally the directory "/1lib." Libraries
are searched in the order specified on
the command line. Up to five libraries
may be specified in this manner. By
default, unless the user specifies five
libraries on the command line, the
library "/1ib/Syslib68k" is the last one

searched.
L Does not search any libraries for unresolved externals.
m Produces load and module maps and writes them to standard

output (see the 'M' option).

M=<file name>

Specifies the name of the file in which to
put the output of the 'm' option (load and
module maps) and the 's' option (a global
symbol table). This information is purely
textual. The user may edit or list the file
like any other text file. If the 'm' or 's'
option is used without the 'M' option, the
loader sends the information to standard
output.

n Produces an executable module with separate instruction
and data space.

N=<module_ name>

P=<hex_num>

Specifies the name to give to the file
containing the module.
pecifies the name to give to the binary
ile.

Hy U2

Specifies the page size. The hexadecimal
number should always be a power of 2;
otherwise, the results are unpredictable.
The "load" command uses the page size to
determine the starting address of the data
segment when it immediately follows the text
segment (the data segment starts at the next
page boundary). The default is O (i.e., the
loader rounds the starting address to the
next even location after the end of the text
segment) .

4404 Reference Manual

SECTION 2
User Commands

r Produces a relocatable module as output. Do not search
any libraries.

S Writes the global symbol table to standard output (see
the 'M' option).

S=<hex_num> Specifies an initial stack size where the
hexadecimal number is the number of bytes to
reserve. The default is O (the system
determines the size of the stack).

% Produces a shared-text executable module.

T=<hex num> Specifies the starting address of the text
segment. Default is O.

a Does not print any unresolved messages when producing a
relocatable module.

U=<trap num> Sets the trap number for system calls. The
default is hardware-dependent. The user can
specify the argument as either "TRAP n" where
'n' is a number between O and 15 inclusive,
or as a string of four hexadecimal digits
which represent a bit pattern to use as an
instruction instead of the system call.

EXAMPLES
1. load ¥*.r +F=/1ib/ldr environ +t +1=Clib +o=tester
2. load t1.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test
3. 1load sqrt +msM=loadmap +l=mathlib +i
4. 1load temp?.r +reo=combined.r
5. load t1.r t2.r +a=10 +A=100 +b=2M +1l=testlib +do=test

The first example loads all files whose names end with ".r" in
the working directory. The loader reads the file

"/1ib/1ldr environ" and processes the options therein. It uses
the libraTy "Clib" to resolve externals. The executable output
module, which is a shared-text module, is named "tester".

The second example loads the the files specified and produces a
binary file named "test". The internal module-name is "mod".
The text segment begins at 20000 hexadecimal, and the data
segment follows it at the next page boundary (page size 2000
hexadecimal). The source code is "C". All global symbols are
inserted in the symbol table of the binary file.

4404 Reference Manual @ 2-83%

SECTION 2
User Commands

The third example loads the file "sqrt" and produces an
executable module named "sqrt.o". The loader searches the
library "mathlib" for unresolved externals. It produces load and
module maps, as well as a symbol table, and writes them to the
file "loadmap". All global symbols are added to the symbol table
of the binary file.

The fourth example loads the files in the working directory whose
names match the pattern "temp?.r" and produces a relocatable
module named "combined.r". The loader prints each occurrence of
all unresolved externals rather than only the first occurrence of
each. Because the 'r' option is specified, the loader does not
search any libraries.

The fifth example loads the files "t1.r" and "t2.r" and produces
the binary file named "test". The minimum page allocation is set
to 10; the maximum, to 100. The task size of the module is set
to 2 Megabytes. The executable module does not produce a core
dump.

NOTES

o If the file "/lib/std_env" contains information about the
starting address of the text segment, the data segment, or
both, and if the user wishes to override this standard
configuration, starting addresses for both text and data
segments should be specified.

o If the user specifies page allocation values that don't make
sense, the loader automatically adjust them according to the
following rules:

The value for the maximum is always greater than or equal to
the value for the minimum. The value for the maximum can be
0, but 1if it is greater than 0, it must be at least 4.

SEE ALSO

Section 5, The Assembler and Linking Loader

2-84 @ 4404 Reference Manual

SECTION 2
User Commands

login

Give a usér access to the operating system.
SYNTAX

login <user_name>
DESCRIPTION

The "login" command gives a user access to the operating system.
If the user does not have a password, the system automatically
honors the command. If the user does have a password, the system
requests it. If it is entered correctly correctly, the user is
given access to the operating system. Otherwise, the system
returns an error message, followed by a login prompt.

Arguments
{user name> The name of the user to put in contact with
the operating system. If no <user name> is
supplied, the system prompts for it.
EXAMPLES

login leslie

This example tells the operating system to give the user whose
user name is "leslie" access to the operating system.

4404 Reference Manual @ 2-85

SECTION 2
User Commands

NOTES

o The "login" command creates a file called ".home?" in the
aser's login directory. This file contains the full path
name of the login directory, which is defined in the

assword file, "/etc/log/password". If the login program

also defined in the password file) is the shell program, it
reads this file and deletes it. Thus, it knows what the
user's home directory is. If the login program is not the
shell program, the file ".home?" remains intact. This
short file (it uses one block) does not affect the rest of
the systemn.

ERROR MESSAGES
Login incorrect!

The combination of the user name specified and the password
entered is invalid. This message is followed by a2 login prompt.

No "login" name specified.
The user did not specify a user name on the command line.
SEE ALSO

log

script
shell

2-86 @ 4404 Reference Manual

SECTION 2
User Commands

move

Rename a file or move a file to another directory.
SYNTAX

move <file name 1> <file name 2> [+klps]
move <file name list> <dir_ name> [+klps]

DESCRIPTION

The "move" command moves or renames one or more files. The first
form of the command renames <file name 1> to <file name 2>. The
second form moves each file named in <file name list> to

<dir name>. In either case, if there is already a file with the
same name as the file created by the "move" command, it is
overwritten without warning.

Directories and special files (block devices and character
devices) may not be moved. The user must have write and execute
permissions in the parent directory of each file being moved and
in the directory to which the files are moved. ZEach original
file is removed.

A file may not be moved from one device to another unless the
user has read permission on the file. A file may not be moved to
itself.

Normally the "move" command links the new file to the original
file and deletes the original one. Thus, a link between files on
different devices is not permitted; if you attempt to "move" a
file to a different device, the original file is copied to the new
file, then the original file is deleted.

4404 Reference Manual @ 2-87

SECTION 2
User Commands

Arguments
<file_name_1> The name of the file to move or rename.

<file name 2> The name of the file to which to move
B <file name 1>.

<dir_name> The name of the directory to which to move
all the specified files.

Options Available

k Do not delete the original file.

1 List the name of each file as it is moved.

p Prompt for permission to replace existing files.

8 Stop as soon as an error is encountered.
EXAMPLES

1. move test oldtest +1

2. move test /elaine

3. move test /elaine/oldtest +kp
4. move * /elaine +s

The first example renames the file "test" in the working
directory; the new name is "oldtest." The "move" command issues
a message describing the move.

The second example moves the file "test" from the working
directory to the directory "/elaine". The last component of
the file name is preserved, so the name of the new file is
"/elaine/test".

The third example moves the file "test" from the working
directory to the directory "/elaine" and renames it

"oldtest." If the file "/elaine/oldtest" already exists, the
uaser 1is prompted for permission to delete the file. If
permission is denied, the move does not take place. Even if the
move takes place, the original files remain intact.

The fourth example moves all the files in the working directory

to the directory "/elaine". The last component of each file
name is preserved. The command aborts if it encounters an error.

2-88 @ 4404 Reference Manual

SECTION 2
User Commands

MESSAGES
{file_name 1>" copied to "<file name 2>"
This message is produced only if both the '1' and 'k' options are
specified. It means that <(file name 1> has been copied to
{file name 2>, but that the original file remains intact. This
message indicates that the two files are on different devices.
"<{file_name 1>" linked to "<file name 2>"
This message is produced only if both the 'l' and 'k' options are
specified. It means that the two files have been linked but that
the original file remains intact (the user specified the 'k
option).
"<file name 1>" moved to "<file name 2>"
This is the normal message issued by the "move" command. It
means that <file name 1> has been either linked or copied to
{file name 2>, and that <file name 1> has been deleted.
ERROR MESSAGES
Cannot move a block special file: <file name>

The file <file name> is a block special file (block device) and
may not be moved.

Cannot move a character special file: <file name>

The file <file name> is a character special file (character
device) and may not be moved.

Cannot move across devices: <fi1q_name>

The file <file name> is read-protected and, therefore, cannot be
moved across devices.

Directory is not accessible: <dir name>

The user does not have the necessary permissions (write and
execute) to move a file to <dir_nameb.

4404 Reference Manual @ 2-89

SECTION 2
User Commands
"<file_name_1>" and "<file name 2>" are the same file.

The user tried to move a file to itself, which if allowed would
destroy the file. 1If <file name 1> and <file name 2> are
different, they are links to the same file.

Permissions deny access: <file name>

The user does not have write permission in the parent of the
specified directory.

SEE AILSO

copy
link

2-90 @ 4404 Reference Manual

SECTION 2
User. Commands

owner

Change the owner of a file.
SYNTAX

owner <new_owner> <file name list>
DESCRIPTION

The "owner" command changes the owner of the specified file.
Only the system manager may execute this command.

Arguments

{new_owner> The user name or user ID of the new owner of
the file.

{file name list> A list of the names of the files for
which to change the owner.

EXAMPLES
1. owner system /john/¥
2. owner 110 /john/*

The first example changes the owner of all the files in the
directory "/john" to "system".

The second example changes the owner of all the files in the
directory "/john" to the user whose ID is 110.

ERROR MESSAGES

Error changing owner for "<file name>": <reason>
The operating system returned an error when "owner" tried change
the owner of the specified file. This message is followed by an
interpretation of the error returned by the operating system.

"(name>" is not a valid user name.

The specified name is not in the password file and, therefore, is
not a valid user name.

<{num> is not a valid user identification number.

4404 Reference Manual @ 2-91

SECTION 2
User Commands

The specified number is not in the password file and, therefore,
is not a valid user ID.

Syntax: owner <new_owner> <file name 1list>

The "owner" command expects at least two arguments. This message
indicates that the argument count is wrong.

You must be system manager to run "owner".

Only the system manager may execute the "owner" command.

2-G2 @ 4404 Reference Manual

SECTION 2
User Commands

password

Set or change a user's password.
SYNTAX
password [<user name>]

DESCRIPTION

The "password" command sets or changes a user's password. Only
the system manager may change another user's password. When a
user other than the system manager invokes the command, the
operating system prompts for the existing password (if there is
one). If the password is entered correctly, the system prompts
for the new password. Generally, a password should contain
between five and eight random characters. After the new password
is entered, the system prompts for it again to verify it. If the
second entry agrees with the first, the password is entered in
the password file. 1In order to maintain the secrecy of the
password, the operating system does not echo the characters typed
in response to the prompts for either the existing or the new
password.

To remove a password, enter a carriage return for the new
password.

Arguments
{user_name> The name of user whose password is being
changed. The default is the user invoking
the command.
EXAMPLES

1. password
2. vpassword greg

The first example changes the password of the user who invoked
the command.

The second example uses the command form that can be used only by

the system manager. It changes the password associated with the
user name "greg".

4404 Reference Manual @ 2-93

SECTION 2
User Commands

ERROR MESSAGES
Cannot find "<user_name>" in the password file.

The file "/etc/log/password" does not contain an entry for the
user <user_name>.

Cannot find your name in the password file.
The file "/etc/log/password" does not contain an entry for the
user issuing the command. This situation is extremely unlikely to
occur.

Error linking "/tmp/pswd" to "/etc/log/password": <reason>
The operating system returned an error when "password" tried to
link the new version of the password file to the o0ld password
file. This message is followed by an interpretation of the error
returned by the operating system.

Error opening "<file name>": <reason>
The operating system returned an error when "password" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error unlinking "<file_ name>": <reason>
The operating system returned an error when "password" tried to
unlink the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error writing "<file name>": <reason>

The operating system returned an error when "password" tried to
write to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Only the system manager may change another's password.

Use of the form of the "password" command that takes an argument
is limited to the system manager.

Password not correct. Permission denied!
The user did not enter the existing password correctly.

Retry different password unchanged.

2-94 @ 4404 Reference Manual

SECTION 2
User Commands

The first and second entries of the new password were not
identical. The password command aborts, leaving the original
password in place.

Syntax: password [<user name>]

The "password" command expects no more than one argument. This
message indicates that the argument count is wrong.

System busy - +try again later.

The file "/+tmp/pswd", which must be created by the "password"
command already exists. Either someone else is using the command
or it was interrupted before it had a chance to delete the
temporary file. If no one is using the command, you should

login as "system" and delete the file "/tmp/pswd".

4404 Reference Manual @ 2-95

SECTION 2
User Commands

path

Write the path name of the working directory to standard output.
SYNTAX

path
DESCRIPTION
The "path" command writes the path name of the working directory,
followed by a carriage return, to standard output. The path
name, also called the file specification, is the unique path from

the root directory through the directory tree to the file in
guestion.

EXAMPLES

path
This example is the only valid form of the "path" command. It
writes the name of the working directory, followed by a carriage
return, to standard output, which defaults to the user's
terminal. Of course, the user may redirect standard output.
ERROR MESSAGES

Directory structure is corrupt
The directory path from the root directory, '/', to the working
directory is corrupt. Therefore, the "path" command cannot
determine the path name of the working directory.

SEE ALSO

chd

2-96 @ 4404 Reference Manual

SECTION 2
User Commands

perms

Change the permissions associated with a file.
SYNTAX
perms <{perms list> <file name list>

DESCRIPTION

Every time a user creates a file, the operating system assigns it
a set of permission bits which determines whether or not the
file's owner and other users may read, write, or execute the
file. The permissions assigned depend on the command used to
create the file. The editor, for example, creates all files
with "rw-rw-" permissions, which allow the user who owns the
file, as well as other users, to read and write, but not execute,
the file. The default permission for "crdir" are "rwxrwx"; for
create, "rw-rw-"; for "makdev", "rw-r--".

Read permission allows a regular file to be read. A user cannot
execute commands such as "list" and "copy" without read
permission on the file in question. Write permission allows a
file to be modified. Execute permission allows the name of the
file to be used as a command.

Permissions for directories are similar to those for normal
files. Read permission allows the user to read file names that
are actually in the directory. Write permission allows the user
to create and delete files in the directory. Execute permission
allows the directory to be searched for a name used as part of a
file specification or file name. The user must have execute
permission to successfully use a directory as the argument to the
"chd" command.

In addition to these permissions, each file has associated with
it a user ID bit. If this bit is set for a given file, any user
executing the file has the same privileges as the file's owner
for the duration of the task.

The "perms" command changes the permission bits associated with a
file. Only the owner of a file or the system manager may change
the permissions associated with it.

4404 Reference Manual @ 2-97

SECTION 2
User Commands

Arguments

{perms list> The list of permission bits to alter.
Permission bits not mentioned are not
changed.

{file name list> A list of the names of the files for
which to alter the permissions.

Format for Arguments

{perms_list> The first character of an element in the
permissions list specifies whether the
argument applies to the user who owns the
file ('u') or to others ('o'). The second
character specifies whether to add ('+') or

remove ('-') the permissions in question.
The second character is followed by one, two,
or three of the characters 'r', 'w', and 'x'

(for read, write, and execute). The user ID
bit is set or cleared with one of the
following arguments: "s+" or "s-".

EXAMPLES

1. perms o-wx inventory
2. perms o+Xx u+x script
%. perms o-rw o+X s+ inventory script

The first example removes write and execute permissions for other
users from the file "inventory" in the working directory.

The second example gives execute permissions on the file "script"
to both the user who owns it and to other users.

The third example removes read and write permissions for others
from the files "inventory" and "script". It also sets execute
permissions for others, as well as the user ID bit. Thus,
although other users may neither read from nor write to the
files, they may execute them. While they are executing them, they
have the same permissions on all files as the owner of these
files does.

2-98

()

4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
Error changing permissions for "<file name>": <reason>
The operating system returned an error when "perms" tried change
the permissions on the specified file. This message is followed
by an interpretation of the error returned by the operating
system.
Error processing "<file name>": <{reason>
The operating system returned an error when "perms" tried to determine
the original permissions on the file. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: perms <perms_list> <file name list>

The "perms" command expects at least two arguments. This message
indicates that the argument count is wrong.

Unrecognizable character, '<char>', found in permissions list.
Command aborted!

A character following a plus or minus sign in an element in the
permissions list was not an 'r', 'w', or 'x'. The command aborts
without altering any permissions.

SEE ALSO

dir
dperm

4404 Reference Manual @ 2-99

SECTION 2
User Commands

relinfo

Display information about an object file.
SYNTAX

relinfo <file name list> [+ehrs]
DESCRIPTION
The "relinfo" command examines an object file or all the modules
in a library and displays information about the binary header,
the symbol table, and both the relocation and external records.
Normally, "relinfo" displays all the information. The available
options restrict the display to the specified information.
Arguments

{file name list> A list of the names of files to report on.

Options Available

e Display only information about external records.
h Display only information about the binary header.
r Display only information about relocation records.

s Display only information about the global symbol table.
EXAMPLES

1. relinfo tester
2. relinfo /lib/mathlib +h
3. relinfo reporter +se

The first example displays information about the binary header,
the symbol table, and both the relocation and external records in
the object file "tester" in the working directory.

The second example displays the information about the binary
headers from all the modules in the library "/lib/mathlib".

The third example displays the information about both the

relocation and external records in the file "reporter" in the
working directory.

2-100 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
Error opening "<file name>" : <reason>
The operating system returned an error when "relinfo" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error reading "<file name>" : <reason>
The operating system returned an error when "relinfo" tried to
read the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error seeking to <location> in "<file name>" : <reason>
The operating system returned an error when "relinfo" tried to
seek to the specified location (in hexadecimal) in the specified
file. This message is followed by an interpretation of the error
returned by the operating system.
file name>" is not a binary file!
The specified file does not have a valid binary header.
Unknown option '<char>' ignored.
An unknown option was found and ignored.
SEE ALSO
libgen
libinfo

load
asm

4404 Reference Manual @ 2-101

SECTION 2
User Commands

remote

Communicate with a host computer via the RS-23%2 port,
"/dev/comm."

SYNTAX
remote [+1= filename [+n]]
DESCRIPTION

The utility "remote" allows the 4404 to be used as a terminal to
a remote host computer connected to the "/dev/comm" port.

"Remote" allows you to capture both sides of a session with a
host into a disk file for later editing and review. In addition,
this utility also allows file transfers to and from the host
under control of a host program.

Options Available
+1= filename

Output from the host will be directed to the specified file in
addition to being sent to the terminal emulator and appearing on
the screen. This function can be toggles on and off using
function key F3. +n This options specifies that linefeed
characters be ignored when directing to the file specified by the
+1 option. The +1 option must be specified for this option to
have any meaning.

FUNCTION KEY ACTIONS
™M Terminates remote.

F2 Create and enter a subshell. Any executing file
transfers will continue uninterrupted.

F3 Toggles output to file specified by the +1 option on
and off.

FILE TRANSFERS
Remote supports a file transfer protocol which works in
conjunction with a program running on the remote host. The 'C'

source code for a sample of such a program, which will run under
the Unix<tm> operating system, may be found in "/samples/xfer.c"

2~102 @ 4404 Reference Manual

SECTION 2
User Commands

CONFIGURING THE COMMUNICATIONS PORT

The "commset" command is used to set the various parameters of the
communications port. For example, the baud rate of the part may
be set with a command like:

commset baud=9600

See the documentation on the "commset" command for further
information on configuring the communications port.

4404 Reference Manual @ 2-103%

SECTION 2
User Commands

remove

Remove the specified file from the systen.
SYNTAX

remove <file name list> [+dklpw]
DESCRIPTION

The "remove" command removes the specified file, which may be any
type of file, from the file system. The user must own the file,
must have write permission in the parent directory of the file
being removed and, by default, must also have write permission in
the file itself. Restrictions on deleting a directory are
discussed with the options.

Arguments

{file name list> A list of the names of files to remove
- - from the file system. The list may
include regular files, special files,
and directories.

Options Available
d If the specified file is a directory and it is empty,
delete it. By default, the "remove" command does not
delete directories.

k If the specified file is a directory, delete it and all
the files it contains.

1 List the name of each file as it is removed.
P Prompt for permission to remove each file. The file is

removed if the user responds to the prompt with a 'y'.

w Prompt for permission to remove files for which the
user does not have write permission. By default, the
"remove" command does not delete such files. The file
is removed if the user responds to the prompt with a
'y! .

q Quiet mode. Do not issue messages.

2-104 @ 4404 Reference Manual

SECTION 2
User Commands

EXAMPLES

The

1. remove first_file dir_file second file +w
2. remove first file dir_file second_file +dp
3. remove first file dir file +kl

first example removes the files "first file" and

"second_file", prompting for permission to do so if the user does

not
not

The
and

have write permissions in the file. The file "dir_file" is
removed because it is a directory.

second example prompts for permission to remove "first file"
"second file" (assuming the user has the proper permissions).

It also prompts for permission to remove "dir file" if the
directory is empty.

The

third example removes "first file" and "dir file" from the

file system. In addition, it descends the directory structure of
"dir file", deleting the directory itself as well as every file.

The

command lists the name of each file as it is deleted.

CAUTION

The "remove" command, especially when
executed with the 'k' option, is an extremely
powerful and potentially destructive command.

ERROR MESSAGES

The

The
the

Cannot delete the root directory: "/"
user tried to delete the root directory.
Directory "<dir_name>" is not empty.

"remove" command cannot delete a nonempty directory unless
user specifies the 'k' option.

Error deleting "<file name>": <reason>

The operating system returned an error when "remove" tried to
delete <file name>. This message is followed by an
interpretation of the error returned by the operating system.

4404 Reference Manual @ 2-105

SECTION 2
User Commands
Error deleting "." in "<dir_name>": <reason>
The operating system returned an error when "remove" tried to
delete the "." entry in <dir_name>. This message is followed by
an interpretation of the error returned by the operating systemn.
Error getting status for "<file name>": <reason>
The operating system returned an error when "remove" tried to
read the fdn for <{file name>. This message is followed by an
interpretation of the error returned by the operating system.
Error removing "<file name>": <reason>
The operating system returned an error when "remove" tried to
remove <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Invalid option: '<char>'

The option specified by <char> is not a valid option to the
"remove" command.

Syntax: remove <file name list> [+dklpw]

The "remove" command expects at least one argument. This message
indicates that the argument is wrong.

You do not own "<file name>".
The user may not delete a file that is owned by someone else.
SEE ALSO

deluser

2-106 @ 4404 Reference Manual

SECTION 2
User Commands

rename

Change the name of the specified file.
SYNTAX
rename <file name 1> <file name 2>
DESCRIPTION
The "rename" command changes the name of the specified file. If
a fi}e named <file name 2> already exists, it is deleted without
warning.
ARGUMENTS
{file name 1> The name of an existing file.
<filé_name_2> The new name for <file name 15>.

EXAMPLES

1. rename test oldtest
2. rename test /elaine/oldtest

The first example changes the name of the file "test" in the
working directory to "oldtest". If a file named "oldtest"
already exists, it is deleted without warning.

The second example changes the name of the file "test" in the
working directory to "/elaine/oldtest".

ERROR MESSAGES
Error renaming "<file name 1>": <{reason>
The operating system returned an error when "rename" tried change
the name of <{file name 1>. This message is followed by an
interpretation of the error returned by the operating system.
Error renaming to "<file name 2>": <reason>
The operating system returned an error when "rename" tried to

assign the new file name. This message is followed by an
interpretation of the error returned by the operating system.

4404 Reference Manual

@

2-107

SECTION 2
User Commands

Error unlinking "<file name 1>": <{reason>
The operating system returned an error when "rename" tried to
unlink <file name 1> from the new file. This message is followed
by an interpretation of the error returned by the operating
system.

File "<file name 1>" does not exist!

The first name on the command line must be the name of an
existing file.

File "<file name>" is a directory!

The "rename" command can neither rename a directory nor assign a
directory name to an existing file.

Syntax: rename <file name 1> <file name 2>

The "rename" command expects exactly two arguments. This message
indicates that the argument count is wrong.

SEE ALSO

move

2-108 @ 4404 Reference Manual

SECTION 2
User Commands

restore

Catalog or Copy files from the floppy device back onto the file
system.

SYNTAX
restore [+ bBCALlnp] [+ a =days] [file ...]
DESCRIPTION

The "restore" command is used to copy backup files from the
floppy device back onto the file system. Although the program is
named Restore, it can operate in two distinct modes, selected by
options: catalog mode and restore mode. Catalog mode lists the
contents of the backup device in much the same format as that
ased by the "dir" and "1s" commands. Restore mode retrieves
files or directories from a backup device.

The "restore" command retrieves backup files and directories from
/dev/floppy only. You should not attempt to "mount" a backup
diskette; the only way to read disks written by "backup" is to
use the "restore" command. The only other command that you
should use on a backup diskette is "devcheck".

Arguments

{file name list> List of the names of files and
directories to process. Default is the
working directory.

If you specify a directory name as an argument in restore mode,
the program processes only the files within that directory. If
you also specify the 'd' option, the program restores all files
within the given directory and its subdirectories.

Options Available

a=<days> Restore only those files that are less than
the specified number of days. A value of O
specifies files created since midnight on the
current day; a value of 1 specifies files
created since midnight of the previous day,
and so forth.

b Print sizes of files in bytes.

B Do not restore files that end in ".bak".

4404 Reference Manual @ 2-109

SECTION 2
User Commands

C Print a catalog of the files on an existing
backup. If you specify the 'C'
option, "backup" ignores all the names in
{file_name list>.

d Restore entire directory structures.

1 List file names as they are restored.

L Do not unlink files before restoring.

n Only restore a file if the copy on the back

up device is newer than the copy at the
destination. If the destination file does
not exist, the program restores the file
(unless prohibited by another option, such as
the 'B' option). The 'n' option may be used
only in restore mode.

P Prompt you with each file name to
determine whether or not the restore
procedure should be performed on that
particular file.

"restore" normally works in a quiet mode. The 'l' option allows
you to see what the program is actually doing.

EXAMPLES
1. restore +1R
2. restore +1Rn filel dir2
3. restore +C >catalog

The first example restores all of the files, excluding
subdirectories and their contents, from the backup diskettes you
are prompted to insert in the flexible disk drive.

The second example restores the file "filel" from the backup. It
then restores the files contained in "dir2" on the backup,
creating the directory "dir2" if necessary. This example does
not restore any subdirectories in "dir2" or any files or
directories contained in subdirectories in "dir2".

The third eXample catalogs the files on the backup set and stores
it in a file called "catalog."

2-110 @ 4404 Reference Manual

SECTION 2
User Commands

NOTES

o In restore mode, file names or directory names on the
command line are used to select the files or directories to
be restored. The program searches the entire backup for
each argument specified. If multiple files satisfy the
restoration criteria, the program restores them all,
destroying the older version as the new one is restored.
Thus, to ensure proyer restoration, you must provide
all backup volumes {in order) for each argument.

o When files are restored, they are generally restored to the
same directory location as you specified when they were
backed up. As files are backed up, "backup" makes an
indication of the path name for each file. When files are
restored, "restore" uses the path name to place the file
in its proper directory location. If the path name is
relative (i.e., does not begin with '/'), the path name of
the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory
location different from the one in which they were created.

An example should make this clear. If the working directory
is backed up, either by specifying no source files or by
using the directory name '.', the files are backed up with a
relative path of '.'. When these files are restored, they
are placed in the directory '.', which might not be the same
directory they originally came from. This feature allows

the manipulation of entire file systems in a general fashion.
To specify a unique directory location for a file, you
should specify its entire path name, starting with '/'.

o It is possible to restore backed up data onto the device
currently being used as the root device or system disk. Two
possible problems arise, however. PFirst of all, if the
operating system is restored from a backup, the result is
not bootable. 1In such a case, the file must be copied from
the original master diskette and installed in order to allow
booting. The second problem occurs if the shell program or
the device "ttyOO" is restored over the current shell or
"ttyOO". This operation leaves unreferenced files in the
file system. TUnreferenced files must be corrected with the
"diskrepair" command. In general, it is always a good idea
to run "diskrepair" on the root device after restoring
backed-up data to it.

4404 Reference Manual @ 2-111

SECTION 2
User Commands

MESSAGES

Several of the following messages prompt you for a positive

or negative response. The program interprets any response that
does not begin with an upper or lowercase 'n' as a positive
response. ’

Catalog of backup on "<file name>"
Restore backup from "<file name>"

These messages are printed when "backup" begins. They notify
you of the function about to be performed.

Restore "<file name>" (y/n)?

If you specify the 'p' option, the program prints one of these
prompts before it takes any action. A response of 'n' or 'N'
indicates that the operation should not be performed for the
given file. Any other response is interpreted as "yes".

Insert next volume - Hit C/R to continue:

This prompt is issued when the program needs a new backup volume.
You should type a carriage return only when the next volume has
been placed in the device.

link "<file name 1>" to "<file name 2>"
copy "<file name>"
Copying from "<dir name>"

The program prints these messages as it takes the corresponding
action during a creation operation.

This is Volume #<number_1> -— Expected Volume #<number 2> --
Continue? -

The program expects you to insert volumes in sequential order.
If a volume appears out of order, "backup" prints this message.
If you type anything except an 'n' or an 'N' as the first
character of the response to the message, "backup" ignores the
fact that the volumes are out of order and continues with the
backup. Otherwise, it prompts you for another volume. It is
important to insert volumes sequentially because "backup" cannot
correctly restore files that are broken across volumes if the
volumes are inserted out of order.

2-112 @ 4404 Reference Manual

SECTION 2
User Commands

Volume <number> of "<vol name>"

Whenever a new volume is inserted and properly validated, the
program prints this message, which indicates the name of the
backup volume and its sequence number.

ERROR MESSAGES
dev_name>" is not a block device

The destination device for the backup must be a block device.
This message indicates that the specified device (that is always
the first argument) is not such a device.

file name>" not located - try again?

When using the program in restore mode, you may specify which
files or directories to restore. If the program cannot find a
specified file or directory after searching the entire backup, it
prints this message. If the response is not 'n' or 'N', the
program searches the entire archive again. This option is
allowed because volumes need not be inserted in order of their
creation when the program is in restore mode. If one volume is
left out or if the final volume is inserted before the entire
archive has been processed, some files might not be processed.
Note that if you specify more than one file name or directory
name, the program processes the entire archive for each file
before proceeding to the next one.

Formatting not allowed during Catalog/Restore

You may not format a disk if the program is in either catalog or
restore mode.

Read error! - file "<file name>"
An I/0 error occurred during the transfer of a file either to or
from the backup. An auxiliary message is printed indicating the

nature of the error. The program tries to continue for all
errors except "device full" during restore mode.

4404 Reference Manual @ 2-1173

SECTION 2
User Commands

Unknown option: <char>

The option specified by <char> is not a valid option to the
"backup" command.

¥ Warning: directory "<dir name>" is too large!
¥ Some directories were ignored

**Warning: directory "<dir name>" is too large!
¥¥ Some files were ignored

The program uses some internal tables during the back up process
(not during restore or catalog). If the limits of these tables
are exceeded (highly unlikely), these messages are printed.

SEE ALSO

backup

2-114 @ 4404 Reference Manaal

SECTION 2
User Commands

script

The script execution shell.
DESCRIPTION

The program named"script" is a command interpreter used primarily
to execute commands from a file. It can be run as an interactive
interface, but does not support aliases, history, and
environmental variables that are available under "shell."

If you run "script" as an interactive shell, it collects and
interprets your commands and executes some built-in commands
("Chd", "dperm", "jObS", "lOg", "login", "time", and "wait")
itself. It passes others to the operating system kernel which,
in turn, performs the operations requested.

A "script" command line consists of a command name, which may be
followed by arguments, options, or both. All elements of the
command line must be separated by either spaces or commas. The
command may be one of the commands supplied with the operating
system, the name of a binary file produced by either the

assembler or a compiler, or the name of a text file (with execute
permission turned on) which contains a series of commands to
execute. In all cases the script program spawns a child-task which
executes the specified command or commands.

Search Path

The list of directories searched by the script program is known
as the search path. Because most commands reside on disk, the
script program must locate the command before executing it. By
default, the script program sequentially searches the following
directories: your working directory, "<home dir>/bin", and
"/bin". If you are the system manager, the system also searches
the directory "/etc" immediately after searching

"<home dir>/bin". (The home directory is your login directory,
as specified in the password file.)

4404 Reference Manual @ 2-115

SECTION 2
User Commands

Background Tasks

If you follow a command with an ampersand, '&', the script
program, as usual, spawns a child-task which executes the
command. However, in this case the script does not wait for the
task to complete. Thus, you may start another command while the
first one is executing. A single script program can support a
maximum of five of these "background tasks". Each time you send
a task to the background, the script program reports the task ID
assigned to that task, preceding it with a 'T', which is not part
of the task ID. The user may need the task ID to execute the
"wait" or "int" command. The task ID may also be obtained by
executing the "jobs" command, which returns the task ID and
starting time of all background tasks originated by you at the
current terminal from the script program. The ampersand may be
used following a single command or separating one task from
another on the command line.

Multiple Commands on a Line

You may specify more than one command on a command line by
separating them with any of several special symbols.

The script program sequentially executes commands that are
separated by a semicolon, ';'. If a task terminates abnormally,
the script program stops executing the command line.

Two additional command separators, the conjunction operator
("&&") and the disjunction operator ("||"), are available. With
these separators, execution of the command following the operator
is dependent on the outcome of the command preceding it. A
command is "true" if it terminates with a termination status of
zero, indicating successful completion, and "false" if it
terminates with a nonzero termination status, indicating failure.
When two commands are separated by the conjunction operator, the
script program executes the second one only if it completes the
first one successfully (it is "true"). When two commands are
separated by the disjunction operator, the script program
executes the second one only if the first one fails (it is
"false"). '

Normally, the command line is evaluated from left to right;
however, parentheses may be used to group commands. Commands in
parentheses are treated as a single command. Commands separated
by a pipe (see Redirected I/0) are also treated as one command.

2-116 @ 4404 Reference Manual

SECTION 2
User Commands

The processing of the command separators may be summarized as
follows:

&& If the command preceding the conjunction operator
succeeds, the script program tries to execute the next
command. If the command preceding the conjunction
operator fails, the script program looks for a
disjunction operator. If it finds one, it tries to
execute the command which follows it. If it does not
find one, processing of the command line ceases.

If the command preceding the disjunction operator
succeeds, the script program looks for a semicolon,
's'. If it finds one, it tries to execute the command
which follows it. If it does not find one, processing
of the command line ceases. If the command preceding
the disjunction operator fails, the script program
tries to execute the next command.

; If the command preceding a semicolon succeeds, the
script program tries to execute the next command. If
the command preceding a semicolon fails, processing of
the command line ceases.

& Whether the command preceding a single ampersand
succeeds or fails, the script program processes the
next command on the command line.

Consider the following example:
<task 1> && <task 2> || <task 3> && <task 4>

The script program first tries to execute <task 1>. If the task
is unsuccessful, the script skips <task 2> and proceeds to

{task 3>. If <task 3> fails, the script program skips <task 4>;
if <task 3> succeeds, it tries to execute <task - 4>. If, however,
<{task 1> succeeds, the script program tries to execute <task 2>.
If <task 2> also succeeds, the script program skips the rest of
the command line. If, after the successful execution of

{task 1>, <task 2> fails, the script tries to execute <task 3>.

If and only if <{task 3> succeeds, it goes on to <{task 4>.

The use of parentheses can change the interpretation of the same
set of commands separated by the same operators:

<task 1> && (<task 2> || <task 3>) && <task 4>

4404 Reference Manual @ 2-117

SECTION 2
User Commands

In this case, the script once again begins by trying to execute
{task 1>. 1If it fails, the script program skips the remaining
tasks. If, on the other hand, <task 1> is successful, the script
program spawns a subshell (because of the presence of the
parentheses). This subshell tries to execute {task 2> and, if
and only if it fails, it tries to execute <task 3>. If <{task 2>
succeeds, it returns a termination status of "true" to its parent
script. If <task 2> fails but <task 3> succeeds, it also returns
a termination status of "true". If, however, both <task 2> and
{task 3> fail, the termination status returned is "false". If
the termination status returned by the subshell is "true", the
parent script tries to execute <task 4>.

Termination Status

Normally, the script program does not report the termination
status of a command it executes unless the task terminates
abnormally (because of a program interrupt). A list of the
possible program interrupts appears in the documentation of the
"int" command. The script program does, however, always report
the termination status of a background task, even if it
terminates normally.

Redirected I/0

The script program associates three files with every command it
executes: standard input, standard output, and standard error.
Standard input is the file from which a command takes its input.
Standard output is the file to which a command sends its output.
Standard error is the file to which many error messages are
directed. By default, the system uses your keyboard as
standard input and your terminal as both standard output

and standard error. However, you can direct the script to

use another flle for any of these standard files. This process

2o _ e n AL mm m A o a

is Known as _L/U redirection.

The symbol '<' tells the script program to take its standard
input from the file whose name follows the symbol. Similarly,
the symbols '>' and '' are used to send standard output and
standard error to a file. The file to which standard input is
redirected must already exist. However, if the file to which
standard output or standard error is redirected does not exist,
the system creates it. In fact, if the file does already exist,
the system deletes the contents of the file before executing the
command. To avoid this effect, you may use the ">>" symbol to
direct the script program to append data to the file specified as
standard error or standard output. For example, you might add
the results of the "compare" command to one of the pre-existing
files.

2-118 @ 4404 Reference Manual

SECTION 2
User Commands

It is also possible to redirect standard output or standard error
(or both) to another task. This form of redirection is
accomplished by using a "pipe". A pipe is a function that
connects programs so that the output from one program becomes the
input for another. Standard output is piped from one task to
another by using one of the symbols '1* or '"'., TFor instance,
the following example lists all the files in the working
directory, formats the listing with the "page" command, and
prints the listing on the printer "/dev/printer."

ls . | page | /dev/printer

Similarly, you can redirect standard error with either of
the symbols "|" or """.

Although you can place many pipes on the command line, a single
task can support only one pipe. Thus, you cannot pipe standard
error and standard output to separate tasks. It is possible,
however, to duplicate standard error onto standard output and to
redirect them both to the same task. You have a choice of
symbols for duplicating standard error onto standard output: ">%"
or "#>". Neither of these symbols takes an argument. After
duplicating standard error onto standard output, you redirect
standard output to a file or a task in the usual way. Whenever
standard error and standard output are routed to the same
destination, their contents may be intermingled. TFor instance,
you can get a listing of all the files in the working directory,
redirect both standard error and standard output to the "page"
command, and print the results on the printer "/dev/printer" with
the following command:

l1s . > | page | /dev/printer

Finally, the following constructions redirect I/0 from or to the
null device, "/dev/null": "<-" for standard input, ">-" for
standard output, and "-" for standard error. If either standard
output or standard error is redirected to the null device, its

contents are lost. If the null device is used as standard input,
an end-of-file character is read.

4404 Reference Manual @ 2-119

SECTION 2
User Commands

Continuation of the Command Line

Command lines may be continued across more than one physical line
by terminating each line, except the last, with a backslash
character, " ," immediately followed by a carriage return. As an
interactive shell, "script" uses the prompt "+>" to indicate that
the line being entered is a continuation of the previous line.
When the script program processes the line, it replaces the
backslash and the carriage return with a space. Typing a
line-delete character (control-U) only affects the physical line
being typed. You may delete previous lines of a continued
command line by typing a keyboard interrupt (control-C), which
deletes the entire command line.

Pattern Matching Characters

The operating system recognizes several characters, known as
pattern matching characters, which allow you to specify files
with similar names without typing each name individually. The
special characters are the asterisk, '¥'; the question mark, The
script program matches these special characters to characters in
the filenames in the specified directory. If the matching
character appears in the last component of the file name, the
script tries to match it to the names of all files in the
specified directory (by default, the working directory). If the
matching character appears in any other position in the file
name, the script tries to match it to the names of directories
only.

An asterisk in a command line matches any character or
characters, including the null string but not including a leading
period. Thus, the command

list *.bak

lists all files in the working directory whose names end in
".bak" and do not begin with a period.

The question mark matches any single character except the null
character or a leading period. For example, the command

list chapter_ ?

lists all files whose names begin with the string "chapter " and
end with a single character other than the null character.

You can use more than one matching character at a time. For
instance, the command

list *.7

2-120 e 4404 Reference Manual

SECTION 2
User Commands

lists all files in the working directory whose names end with a
period followed by a single character (except those whose names
begin with a period).

Square brackets allow you to specify a set of characters to use
in the matching process. The set of characters is defined by
listing individual characters or by specifying two characters
separated by a hyphen. In the former case, the script program
looks for all file names which use any one of the enclosed
characters in the appropriate place. In the latter, the two
characters specify a class of characters containing the two
characters themselves and any characters which lexically fall
between them in the ASCII character set. For example, if your
working directory contains nine files named "chapteri",
"chapter2", "chapter3", and so forth, the following command lists
the first three chapters, the fifth chapter, and the last three
chapters:

list chapter[1-357-9]

If the script program cannot find a match for any of the
arguments containing matching characters, it aborts the command.
If it finds a match for at least one argument containing matching
characters, it ignores any other arguments containing matching
characters for which it cannot find a match.

If a filename actually contains one of the matching characters or
either a space or a comma, you must enclose the name in single or
double quotation marks. In such a case the script program passes
the arguments to the command without performing any character
matching.

"gseript" Scripts

A "script" script is a file that contains a list of commands for
the script program. Such a file might consist of a list of
commands that are frequently executed in sequence, or of a
single, lengthy command that is often used. If you set

execute permissions on such a file, the name of the file can be
used as a command.

You may add to the versatility of a "script" script by using
arguments within the script. The arguments are specified within
the script as "$1", "$2", "$3", and so forth. The argument "$O"
specifies the name of the calling program. These arguments may
appear anywhere in a command argument.

4404 Reference Manual @ 2-121

SECTION 2
User Commands

If an argument being passed to a command actually contains an
ampersand, the argument must be enclosed in single quotation
marks so that the script program does not try to perform any
substitution. Note that single quotation marks prevent both
substitution of arguments and the expansion of matching
characters, whereas double quotation marks prevent the expansion
of matching characters but allow the substitution of arguments.

The script program supports several commands that are used
exclusively with "script" scripts. These commands--"verbose",
"exit", "proceed", and "sabort"--are discussed in the following
paragraphs.

"verbose"

When the script program executes a script file, it does not
normally echo the commands being executed. The "verbose" command
causes the script program to echo commands from a script file as
they are executed. Each line that is echoed is preceded by two
hyphens and a space character.

The "verbose" command may be called without arguments or with one
argument, which must be one of the strings "on" or "off". If
called without an argument, the default is "on". The command may
be executed by the login script or may be part of a script
script. The verbose attribute is always passed from a parent
script program to a child shell, but never from a child to a
parent.

"exit" and "proceed"

"script" permits a limited amount of control over the processing
of script files. "shell" sequentially processes commands in a
script file until one of the commands fails or it reaches the end
cf the file. If a command fails, "script" begins to search the
remainder of the script file for a line that contains one of the
commands "exit" or "proceed". If it encounters one of these
commands, "script" resumes processing the script after that
command. The only difference between "exit" and "proceed"
commands is that during successful execution of a script file
"script" stops processing the file if it encounters an "exit"
command, whereas it ignores a "proceed" command. The search for
both these commands takes place before both the substitution of
any arguments and the expansion of any matching characters.
Thus, the script program does not see an "exit" or "proceed"
command that is created as the result of either of these
processes.

2-122 @ 4404 Reference Manual

SECTION 2
User Commands

Here's an example of the "proceed" command:

/etc/mount /dev/floppy /usr2
/usr2 runjob

echo "Successful execution."
proceed

/etc/unmount /dev/floppy

In this example, "script" mounts a disk and tries to execute the
command "/usr2/runjob" on that disk. If the command succeeds,
"script" echoes the message, "Successful execution." and proceeds
to unmount the disk. If the command fails, "script" skips all
commands between the one that failed and the "proceed" command.
It resumes execution with the "unmount" command. Thus, if
"/usr2/runjob" fails, your disk is unmounted, but no message is
sent to standard output.

By adding an "exit" command you can modify this example to notify
you of either successful or unsuccessful execution:

/etc/mount /dev/floppy /usr2
/usr2/runjob

/etc/unmount /dev/floppy

echo "Successful execution."
exit

/etc/unmount /dev/floppy

echo "Unsuccessful execution."

Here, if "/usr2/runjob" succeeds, the script program continues
execution with the "unmount" command and echoes the string
"Successful execution." to standard output. The "exit" command
then causes the script program to stop processing the script
because it encounters the "exit" command during normal execution.
If "/usr2/runjob" fails, the script program skips all commands
until it encounters the "exit" command. It then resumes
execution with the "unmount" command and echoes the string
"Unsuccessful execution." to standard output.

"sabort"

The "sabort" command can be used to turn off the search for
either an "exit" or "proceed" command, thus forcing execution of

every command in the script, regardless of the failure of a
command.

4404 Reference Manual @ 2~-123%

SECTION 2
User Commands

"sabort" may be called without arguments or with one argument,
which nust be one of the strings "on" or "off". When "sabort" is
"on", "script" looks for an "exit" or "proceed" command whenever
a command in the script fails. When "sabort" is off, "script"
processes every command in the script. If you execute the
"sabort" command without an argument, it both rescinds the effect
of any previous "sabort on" and fails. Thus, if "script" is
executing a script, "script" immediately begins looking for an
"exit" or "proceed" command.

The "sabort" command may be executed by a login shell (if you use
"script" as your shell) or may be part of a "script" script. The
attribute is always passed from a parent program to a child shell,
but never from a child to a parent.

The system also supports startup files for individual users.
Whenever a user logs in using "script" as an interactive shell,
the script program looks for a file named ".startup" in your home
directory (as defined in the password file). If the file exists
and you have read permissions in it, "script" executes the file
before issuing the system prompt.

The script program can also be used as a command in its own
right. This form is used primarily to execute a "script"
scriptfile for which execute permissions are not set, to call the
script program from another program, or in the password file.

SYNTAX
script [abelnvx] [<argument listd]
DESCRIPTION OF THE "SCRIPT" COMMAND

If the "script" command is executed without any options or
arguments, the operating system simply spawns another sheil for
you. This script program functions as a normal shell, but
because it is the child of the shell or script program from which
the command was executed, it does not know what your home
directory is. The "log" command terminates the child shell and
returns control to the parent script.

The "script" command can also be executed with options only.
This form of the command also spawns a script program that
interacts with you. If used in the password file, the
command should be executed with the 'l' option (see Options
Available).

V]
8]
T~
©

4404 Reference Manual

SECTION 2
User Commands

Finally, the "script" command can be executed with arguments or
with both options and arguments. This form may be used, for
example, to execute a "script" script for which you do not

have execute permissions. ZEither of the following commands
executes the file "scriptfile":

script scriptfile
script <scriptfile

"script" first checks to see that the file specified as an
argument is actually a file that contains commands. If it is
not, "script" executes it only if you specify the 'c' option (see
Options Available).

Arguments

argument list> A list of arguments to pass to the

- script command. Each element in the
argument list consists of a command name
followed by the appropriate arguments
and options. The elements in the list
must be separated by a valid command
separator E)n; n, nen , ng&" , OT "‘l : n) . It
any separator characters are used, the
entire argument list must be enclosed
in s or double quotation marks.

Options Available

Options specified to the script program must appear immediately
after the name "script" on the command line, so that they are not

confused with options that pertain to the arguments passed to the
script.

Start execution with the "sabort" attribute off.
Ignore control-C and control-\.

Process the argument list as a command.

Run as a login shell. A login shell tries to find the
name of the user's home directory by looking in the
file ".home?". It also automatically executes the file
".startup" in the working directory.

Start execution with the verbose attribute on.

X On the next command, do not fork unless necessary.
This option is used only when calling a script program
from another program.

Ho o

<

NOTE

It is impossible to specify a null string as
an argument to a command because the script
program removes null strings from the command
line.

4404 Reference Manual @ 2-125

SECTION 2
User Commands

ERROR MESSAGES
Built-in commands may not use pipes.

Input to or output from the script built-in commands ("chd,"
"dperm," "jobs," "log," "login," and "wait") may not be routed
through a pipe.

Cannot execute "<cmd_name>".

The operating system was unable to execute the specified command.
Either the command does not exist or you do not have execute
permission.

Cannot initialize tables.

This error, which should not occur, is usually indicative of a
hardware failure. If it does occur, contact your Tektronix
field office.

Cannot open I/0 redirection file.

The operating system returned an error when the script program
tried to open the file specified for I/0 redirection. Most
probably, the path specified cannot be followed (one of the
directories does not exist) or you do not have the permissions
necessary for opening the file. This message is preceded by an
interpretation of the error produced by the operating system.

Cannot open pipe.
The operating system returned an error when the script program
tried to open the specified pipe. This message is preceded by an
interpretation of the error produced by the operating system.
Error opening a file.
The operating system returned an error when the script program
tried to open the specified file. This message is preceded by an
interpretation of the error produced by the operating system.
Error reading a file.
The operating system returned an error when the script program
tried to read the specified file. This message is preceded by an
interpretation of the error produced by the operating system.

Error writing a file.

no
1
N
[e}
®

4404 Reference Manual

SECTION 2
User Commands

The operating system returned an error when the script program
tried to write to the specified file. This message is preceded
by an interpretation of the error produced by the operating
system.

I1/0 redirection conflict.

You tried to redirect standard input, standard output, or
standard error to more than one place.

I1/0 redirection error.

The operating system returned an error when the script program
tried to perform the specified I/0 redirection. This message is
preceded by an interpretation of the error produced by the
operating system.

Memory overflow.
There is not enough memory available to perform the specified
command. Most probably, the expansion of the matching characters
used on the command line, for which many matches were possible,
caused the error.

Missing "]" or invalid character range.
Either the right square bracket is missing from the specification
of a range of matching characters, or the range specified is
invalid.

No matching file names found.

Matching characters appear on the command line, but no file names
match the specified pattern.

Parenthesis usage error.
The parentheses used on the command line are unbalanced.

Too many tasks.
The script program tried to fork, but too many tasks were running
at the time. The limit to the number of tasks allowed either to

the individual user or to the operating system as a whole was
reached.

4404 Reference Manual @ 2-127

SECTION 2
User Commands

Unknown error.

This error should not occur. If it does, contact your Tektronix
field office.

Unrecognized argument to built-in command.

The argument specified is not a valid argument to the built-in
command in question.

Unterminated string.
The quotation marks used on the command line are unbalanced.
SEE ALSO

chd
dpern
jobs
log
login
time
wait

2-128 @ 4404 Reference Manual

SECTION 2
User Commands

shell

DESCRIPTION

"shell". is an interactive command language that gives you many
conveniences when working with the 4404 operating system. When
using "shell" as the command language, you can do command line
editing, as certain editing keys are defined as in the EMACS text
editor.

Editing and History

"shell" remembers a limited number of commands. You can use the
shell command "history" to retrieve a list of commands that
"shell" accepted. You can then use control (or function) keys to
recall and modify commands.

You enter commands one character at a time, editing the command
line (either with backspace and re-typing or with the command
editor) and press the return key to execute the command.

Table 2-1 shows the keys or key sequences associated with the

"shell" editing functions and a brief description of those
fanctions.

Table 2-1
"SHELL" EDITING KEYS AND FUNCTIONS

—— e o S T —— - - o~ —— ————— — — — —— T . o — —— — ————— —— — — ————— T - ———— —— —~_ " = ———

| Key i Function | Description |
i P L up ! Recalls the previous command with |
| | | the same prefix. }
| °F i right i Moves the cursor right one '
i i i character. 1
I "B b lefst ! Moves the cursor left one }
| | | character. !
I D | erase | Erases the character at the !
I ! character ! cursor. }
| "H or | backspace | Brases the character preceding !

| DEL | | the cursor. !

4404 Reference Manual

®

2-129

SECTION 2
User Commands

| ESC-F | word right ! Moves the cursor to the right to !
| { | the start of the next word. !

word left ! Moves the cursor to the left to !
! the start of the nearest word. !

—— — o —————— — — —— T —— — — —— — — — —— — — T ——— — T — —— ——— — Y — o " — o D {ot " T — T —

Erases to the end of the word at }
or following the cursor. :

e . e — —— — . ———— — — — —— — — — T _———— i —— T — — 1 —— — —————— T —— —— ——— — - ——————

i |
| |
I or "W | word

A | begin line | Moves the cursor to the beginning |
| | i of the line. |
B ! end line | Move the cursor to the end of the |
{ } | line. }
I K | erase to end | Erase characters from the cursor {
! ! ! to the end of the line. !
btu | erase line | Erase (or restore) the entire !
I i | line. |
Lot | transpose | Transpose the previous two
I | | characters. !
. | redisplay | Redisplay the current line. I
Pt | quote ! Enters the key value of the i
| } | following key. }
i RET | return E Executes the command. !
Ar T I |
i Vi il 1] |

When editing, the characters you insert will appear at the cursor
position and the following characters will shift to the right.

The most commonly command used with "history" is "up." If you do
not have the cursor positioned at the start of a line, successive
calls to "up" recall only commands that begin with the same
non-blank character string as that preceding the cursor. For
example, if you have the cursor after the string "help" (where
you had used the "help" command) pressing "P will take you back
to the previous command where you used "help."

2-13%0 @ 4404 Reference Manual

SECTION 2
User Commands

ENVIRONMENT VARIABLES AND ALIASES

A 1list of name-value pairs called environment variables is

kept by "shell." When "shell" encounters a string that it
recognizes as an environment variable, it emits the value it has
stored for that variable. You may define or modify an
environment variable by writing a quoted string of the form:
"name=value" to "shell." TFor example to define the variable
COMMAND as /bin, type the string "COMMAND=/bin." Then, to change
your working directory to /bin, type "chd $COMMAND."

You can delete environment variables with "unset," used as "unset
COMMAND." The "set" command displays the currently listed
environment variables.

Search Path

The environment variable "PATH" defines the search path for the
directory containing the command. Each alternative directory
name is separated by a colon. If the command name contains a
"/", the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has
execute permission, but is not a binary file, it is assumed to be
a file containing shell commands. A subshell (i.e., a separate
process) is spawned and the script shell "script" is used to read
and execute it. A command contained within parentheses is also
executed in a subshell.

Variable Arguments
Variables may contain argument designators to extract arguments
from commands (such as used when defining aliases). The argument

designators are:

$0 The first word of the command (the command itself)
$n The nth argument of the command

3 The first argument of the command (equivalent to $1)
3$ The last argument of the command
$x-y The range of arguments from x to y (such as $3-5)

$-y Abbreviation of $0-y

$* Abbreviation of $"-$ ($1 $2 ...$3)

$n* Abbreviation of $n-$

$n- Abbreviation of $n-($-1) (omits last argument)
$- Abbreviation of $0-($-1) (omits last argument)

When evaluating aliases, these argument designators extract the
arguments from the command line to pass to the aliased commands.

4404 Reference Manual @ 2-13%1

SECTION 2
User Commands

Aliases

"shell" maintains a list of aliases, or command redefinitions.
When you enter a command line, "shell" checks the first word of
the command to see if it is an alias. If so, "shell" executes
the text of the alias and can use argument designators to extract
the arguments to the aliased command.

You can create or modify an alias with the "alias" command. You
can delete an alias with the "unalias" command. You can see the
currently defined aliases by entering the "alias" command without
any arguments.

For example, if a Unix<tm> programmer were to want the command "11"
to perform the action of the operating system command "dir +1,"

that person could create that alias by typing (without the double
quotes) "alias 11 'dir +1 $*'". Then typing "11 /bin" would have the
same effect as typing "dir +1 /bin."

Function Keys

The function keys and joydisk are represented by special
environment variables. By defining these variables, you can
cause the joydisk and function keys to perform actions. When you
press a function key or the joydisk, "shell" echoes the string
defined for that variable.

You can insert special characters into function key and joydisk
variable definitions by using the quote character, “Q. The
following

The twelve function key variables are $F1 - $F12 and the joydisk
variables are $JOYUP, $JOYDOWN, $JOYLEFT, and $JOYRIGHT. The
"Break" key is bound to the variable $BREAK, and the arrow key
{upper right of keyboard) is bound to $ARROW and $SARROW for the
shifted arrow key.

COMMAND SYNTAX
A command is either a simple-command or a list.

A simple-command is a sequence of non blank words separated

by blanks (a blank is a tab or a space). The first word
specifies the name of the command to be executed. Except as
later specified, the remaining words are passed as arguments to
the invoked command. (The command name is passed as argument O.)

2-13%2 @ 4404 Reference Manual

SECTION 2
User Commands

A list is a sequence of one or more pipelines separated by

"s™ or "&", and optionally terminated by ";" or "&". ";" and "&"
have equal precedence. A semicolon causes sequential execution;
an ampersand causes the preceding pipeline to be executed without
waiting for it to finish. Newlines may appear in a list, instead
of semicolons, to delimit commands.

A pipeline is a sequence of one or more commands separated by
"I The standard output of each command but the last is
connected by a pipe to the standard input of the next command.
Each command is run as a separate process; the shell waits for
the last command to terminate.

Command Substitution

The standard output from a command enclosed in a pair of back
quotes (°7) may be used as part or all of a word; trailing
newlines are removed.

"Wild Card" Characters

Following substitution, each command word is scanned for the
characters "*", "?" gand "[". If one of these characters
appears, the word is regarded as a pattern. The word is replaced
with alphabetically sorted file names that match the pattern. If
no file name is found that matches the pattern, the word is left
unchanged. The character "." a%t the start of a file name or
immediately following a "/", and the character "/", must be
matched explicitly.

The special characters match in this manner:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the characters enclosed. A
pair of characters separated by "-" matches any

character lexically between the pair.

An additional special character is the tilde. When a tilde is
the first character in a filename, "shell" expands it by
replacing it by the home directory of the named user. For
example, if user sandra has a home directory (defined in the
password file) of /public /sandra, the filename "“sandra/file"
expands to "/public/sandra/file."

4404 Reference Manual

®

2-133

SECTION 2
User Commands

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted.

" : n ne.n n(" n) n "newline" (1} space" "taph"
A character may be quoted by preceding it with a "\".

"\newline" is ignored. All characters enclosed between a pair
of single quote marks (''), except a single quote, are quoted.

Inside double quotes (" ") parameter and command substitution
occurs and "\" quotes the characters "\", "'",'"t and "$".
Execution

Bach time a command is executed, the above substitutions are
carried out.

You can run commands in the background by inserting a "&" as
either the first or last nonblank character on a command line.
"shell" prints the name and process ID for each background task
when it begins, and again when it terminates.

You can group commands for a subshell with parentheses, put the
subshell in the background by following the closing parentheses
with "&," and redirect I/0 for the subshell.

You can time execution of a command by using "%" as the first or
last nonblank character on a command line. "shell" prints the
real, user, and system times for the command's execution.

To quickly access the script shell, "script," use "!" as the
first non-blank character on a line. To pass the remaining
characters to "script" uninterpreted, use the +c option.

Redirecting Input and Output and Error

To redirect standard output, use ">" and ">>." ">" directs
standard output of a preceding command into the filename
following it, writing over an old file. ">>" appends the
standard output of a preceding command into the filename
following it.

To redirect standard input into a command, follow the command
with "<" in front of the command that will generate the input for
the first command.

nNo
H
AN
~
(5]

4404 Reference Manual

SECTION 2
User Commands

To redirect standard error, use ""," and """" as you would
standard output redirection. You can combine redirection of
standard input, output, and error to a file by using a
combination of symbols. For example you can redirect both
standard error and output to the file "temp" with "“>temp." You

can also connect both standard output and error to a pipe with
ne n
| o

SUMMARY OF "SHELL" COMMANDS

Table 2-2 lists the commands (followed by a brief description)
that are part of "shell." You cannot redirect I/0 for these
commands.

Table 2-2
"shell™ COMMANDS

————— —— ——————— —— — —— T — — — _———— —— —_——— - T —— ———— {— — —— ———— ——— — T ——] — ————— . ————

With no arguments, prints the names
of all defined aliases. With one
argument, prints the associated
alias. With two arguments, the
second argument is defined to be an
alias for the first.

T i o o . e o T B0 . e s S . — T ——————— — T ——— ————————— T — - ——— ——— ——————— ————— —— —— ——

! chd [arg] | Change current directory (default to |
| | user's home directory) |
dirs Lists the current working directory

| |
I |
| and the directory stack. Lists the |
| directory stack. l
Sets default permissions for file
creation.

o —— — . —— o —— — ———— — T —— T ——— — — W] — - —— T — — . ———— T —— — - ————— — — ——————

T o — " —— ——— — —————— — ————— — ——— — ———— —— — " — o T — ——— —————— ———— — " — o —

Lists currently executing background
jobs for present user.

Terminate this interactive session !
and start the login process. I

. e S s s o o o T T o T ———— —————— ——_———— —— T — ———— — ——— i ——— T ————— — ————— ——

p exit i Terminate a subshell. i

®

4404 Reference Manual 2-135

SECTION 2
User Commands

| Changes the working directory to the |
| one whose name is on the top of the |
| directory stack. :
pushd [dir] Pushes the name of the working
directory on the directory stack and
changes to the specified directory.
With no argument, this command
exchanges the top of the directory
stack and the current working
directory.
set [file] Without an argument, "set" displays |
the current state of the shell and I
the values of the defined I
environment variables. If you |
specify a file, it executes the |
commands in it as if you had typed !
them. Use this option to set !
environment variables and the user !
file creation mask. "set" }
terminates an input line and cannot |
be used as an alias. I
Deletes the named alias from the set |
of aliases. !
| Waits for all background processes
| to terminate and reports their
| termination status. If the "wait"
| command is interrupted, then a list
i of currently active processes is
|

2-13%6 @ 4404 Reference Manual

SECTION 2
User Commands

SYNTAX

shell [+1][+h=<filename> |[+c <string>][+i][<filename>]

DESCRIPTION OF THE "SHELL" COMMAND

If you call "shell" with no arguments, it spawns a subshell with
which you then interact until you issue either the "exit" or
"logout" commands. This shell executes commands in the file
".,shellbegin" in your home directory, but does not store the name
of your home directory. When you exit the subshell, control
returns to the parent shell.

Options and Arguments

1 The "1" option tells "shell" to run as a login shell.
This option causes shell to execute commands from the
files ".login" and ".shellbegin" (in your home
directory) when it begins execution, and from the file
".logout" when it terminates. The "exit" command
terminates a subshell, use "logout" to end a session
with the login shell.

h=<filename> This option causes "shell" to initialige
its state from that saved in <{filename>.
When "shell" terminates it saves its history,
environment variables, and aliases into this
file. Without this option, "shell" reads and
writes its state into the file
".shellhistory" in your home directory. To
prevent state recovery and saving, use "none"
as the <filename> (+h=none).

{filename> If "shell" is followed by a filename without
the "c" or "i" options, it assumes that the
file is a command script. "shell" passes
control and the argument to the script shell,
"script."

c <string> The "c" option causes "shell" to assume the
next string of characters is a shell command,
to execute that command and then terminate.

i <filename> The "i" option causes "shell" to process the
commands contained in <filename> and then
terminate, rather than passing the commands
to "script."

4404 Reference Manual @ 2-137

SECTION 2
User Commands

DIAGNOSTICS

"shell" gives error messages similar to other messages detailed
in this manual whenever directories and files cannot be opened,

whenever it detects a syntax error, and when it reaches its
memory limits.

LIMITS
"shell" has the following limits:

256 environment variables

30 saved commands (history)

16 entries on the directory stack
128 characters per command line

Command expansion cannot exceed 512 arguments and 5120
characters

OO0 o0 O0O0

SEE ALSO

script

2~1%8 @ 4404 Reference Manual

SECTION 2
User Commands

status

Display the status of running tasks.

SYNTAX

status [+alswx]

DESCRIPTION

The "status" command reports, to standard output, the status of
tasks running on the system. By default, this report does not
include shell or login programs and is restricted to tasks
belonging to the user who executes the command. The command is
not always completely accurate due to the dynamic nature of the
operating system. By default, the "status" command reports on
the following parameters:

Task-id

Mode

tty

Prio

—— o . o B i

The number assigned to the task by the operating
system.

Indicates whether the task is in memory ('c') or
has been swapped to the disk ('s').

The number of the terminal from which the task
originated. An "xx" in the field indicates that
no terminal is associated with the task.

If the entry in this field is a number, it
indicates the priority of the task. A higher

number indicates a higher priority. Other
priorities are described in Table 2.3%.

Table 2-3

POSSIBLE TASK PRIORITIES

- —— —— —————— —————— ————— —————————— — ———————— ——, —————— "

| Halted by another task. {

4404 Reference Manual @ 2-139

SECTION 2
User Commands

| in | Waiting for input from the terminal. !
Iout | Waiting for outpub to the berminal to |
| ! end. }
| pipe | Waiting for pipe data (usually inpat) |
\upa | Updating en fan. |
| slp | Sleeping (not execating). |
I'swap | Being swapped to or from the disk. |
|'sys | Highest possible priority. |
| wait | Waiting for another task to end. |
Time If the command is "System", this parameter is the

amount of unused CPU time since the system was
booted. Otherwise, it is the total CPU time that
a particular task has used.

Command The command which originated the task. By
default, the "status" command shows the first
thirty-five characters of the command line; the
rest are truncated. The command "System" is the
operating system. The command "/etc/init"
executes the login program. If the "status"
command cannot determine what was on the command
line, this field contains the entry "?7?".

Options Available

a List all tasks on the system, not just those belonging
to the user.

1 Produce a more detailed description of the status of
each task.

s Produce a statistical summary of the use of the
operating system.

=<num | Wait <num> seconds after reporting the
status; then produce another report. The
command repeats 100 times. The default is
thirty seconds.

W

2-140 @ 4404 Reference Manual

SECTION 2
User Commands

X List all tasks (a normal listing does not include shell
programs, the "System" command, or the command
"/etc/init").

If the user specifies the '1l' option, the following additional
items are included in the report:

Status The status of the task. P0881ble values include run
(task is running), sleep (task is waiting for some-
thing to happen% and term (the task has terminated).

User The user name of the person who owns the task. If
two or more user names share the same user ID,
"status" uses the name that appears first in the
password file.

Parent The task ID of the parent task. If the parent
task in no longer active, the ID shown in this

field is 1.
Size The amount of memory that the task is using.
Res A rough measure of the amount of time a task has

been in memory or swapped out to the disk. Each
unit represents four seconds. The largest number
that is ever displayed is 255. This number is set
to O whenever a task is swapped into or out of
memory.

If the user specifies the 's' option, the following statistics
are included in the report. They represent activity on the
system since the time the system was booted.

Total block I/0 transfer attempts.

The number of times the system has tried to access a disk block
in the cache.

Total disk I/0 operations.

The number of times the system has had to access the disk. This
statistic does not include swap operations.

4404 Reference Manual

@

2-141

SECTION 2
User Commands

Total blocks freed.

The number of blocks that have been released from a file to the
free list. If the same block has been released more than once,
each release is counted.

total system calls

total PAGE IN operations
total PAGE OUT operations
total pages stolen

EXAMPLES

1. status +s
2. status +alxw=15H

The first example displays the default information about the
status of all tasks except shell programs that belong to the
user. A summary of the use of the operating system is included
in the output.

The second example displays detailed information about the status
of all tasks on the system. It waits fifteen seconds, then
issues another report. The command repeats 100 times unless the
user interrupts it by typing a control-C.

2-142 @ 4404 Reference Manual

SECTION 2
User Commands

stop

Stop the system and prepare to shut off the power or ;eset.
SYNTAX

stop
DESCRIPTION
The command "stop" terminates any background processes, closes
open files, flushes buffers to the disk, and does the general

housekeeping necessary to perform an orderly system shut-down.

You should always run "stop" before turning off the power to the
4404 or pressing the Reset Button.

EXAMPLES
stop
This is the only form of this command.
MESSAGES
When "stop" is finished, it prints the message:
System shutdown complete

At this point, the system has been completely shut down and it is
safe to turn off the power or to reset the system.

4404 Reference Manual @ 2-1473

SECTION 2
User Commands

strip

Remove the symbol table from an executable binary file.
SYNTAX

strip <file name list>
DESCRIPTION

The "strip" command removes the symbol table from an executable
binary file.

Arguments
A list of files to process.
EXAMPLES

strip testprog

This example removes the symbol table from the executable binary
file "testprog".

ERROR MESSAGES
Error creating "<file_ name>": <reason>
The operating system returned an error when "strip" tried to
create the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error opening "<file name>": <reason>
The operating system returned an error when "strip" tried to open
the specified file. This message is followed by an
interpretation of the error returned by the operating system.
Error unlinking "<file name>": <reason>
The operating system returned an error when "strip" tried to
unlink the specified file. This message is followed by an
interpretation of the error returned by the operating system.
File "<file_name>" cannot be located.
The specified file does not exist.

File "<file name>" is a device or a directory.

The specified file is not a regular file.

2-144 @ L4404 Reference Manual

SECTION 2
User Commands

tail

Print a specifiable number (up to 250) of characters from the end
of a text file.

SYNTAX

tail file [n]
DESCRIPTION
This utility prints the last "n" characters in a text file. If
"n" characters from the end of the file happens to fall in the
middle of a line, the line will be preceded by "..." to show that
only a part of the line has been printed. Whole lines are
printed as they appear in the file.

Special characters such as carriage returns and tabs are counted
as part of the "n" characters.

Arguments
file The file from which characters are to be printed.
n The number of characters from the end to start
printing. The default is 250 characters. If "n"
exceeds the number of characters in the file, the
whole file is printed.
EXAMPLES

1. tail .shellbegin

2. tail testfile 30
The first example will print the last 250 characters of
".shellbegin", or the entire file if it contains less than 250

characters.

The second example prints the last 30 characters from the file
"testfile."

SEE ALSO

head

4404 Reference Manual @ 2-145

SECTION 2
User Commands

touch

Set the time of the last modification of a file to the current
date and time.

SYNTAX
touch <file name list>
DESCRIPTION

The "touch" command sets the time of last modification for the
specified file to the current date and time. The user must have
read and write permission in a file in order to "touch" it. This
command is often used in conjunction with the "update" command.
It is also useful for correcting the last modification time of a
file which was created or modified when the system time was
incorrect.

Arguments

{file name list> A list of the names of the files to
modify.

EXAMPLES
touch letter memo

This example changes the modification time of the "letter" and
"memo" files to the current date and time.

ERROR MESSAGES
Error seeking to bveginning of file "<file_name>": <reason>
The operating system returned an error when "touch" tried to seek

to the beginning of <file name>. This message is followed by an
interpretation of the error returned by the operating system.

no
1
~
o
©

4404 Reference Manual

SECTION 2
User Commands
Error touching "<file name>": <reason>
The operating system returned an error when "touch" tried to
change the last modification time of <file name>. This message
is followed by an interpretation of the error returned by the
operating systen.

File "<file name>" does not exist!

The "touch" command could not find <file_ name> in the file
system.

SEE ALSO

date
update

4404 Reference Manual @ 2-1417

SECTION 2
User Commands

update

Process a set of files, performing the specified operation on
each file if it is newer than the file it is compared to. .

SYNTAX
update [<make file name>] [+q]
DESCRIPTION

The "update" command reads the specified "makefile", which
must conform to a special format, and conditionally performs
the command or commands in that file. By default, the
"update" sends informative messages to standard output
telling the user what it is doing. The command is most often
used to recompile programs whose sources have been updated.

Arguments

{make file name> The name of the file to read for
- - instructions. This file must be in a
special format (see Format of the
"makefile"). The default is the file
"magkefile" in the working directory.

Format of the "makefile"

The "makefile" is composed of modules, each of which is
terminated with a percent sign, '%', in column 1. A module
itself is composed of up to two parts. The first part specifies
the process that "update" is to perform. The format for this
first part is as follows:

[<item-one>::<item two>;]<command sequence>

where <item_ one> and <item two> are the names of files; "::" is
the "is newer than" operator; and the semicolon, ';', separates
the file names from the command sequence.

The command sequence is composed of one or more operating system
commands. The "update" command replaces any sequence of more
than one space character with a single space. Multiple commands
are separated by additional semicolons. If the commands do not
fit on one line, the user must begin and end the sequence with an
exclamation point, '!', which serves to delimit the entire
command sequence. If the first portion of the module uses more
than one line, the second exclamation point marks the boundary
between the first and second portions of the module. The command
sequence is executed if <item 1> is newer than <{item 2>.

2-148 @ 4404 Reference Manual

SECTION 2
User Commands

The user may substitute an ampersand, '&', for any character or
sequence of characters in <item one>, <item two>, or the command
sequence. In such a case the "update" command substitutes

for all ampersands the strings specified in the second portion of
the module. If the second portion of the file is absent, no
command sequence is performed. This portion consists of one or
more lines, each of which contains a single string to substitute
for the ampersands. The "update" command replaces each
occurrence of an ampersand with the string on the first line of
the second portion of the module and performs the command
sequence if <item one> is newer than <item 2>. It then replaces
all ampersands with the string from the second line, continuing
in this fashion until it reaches the end of the second portion of
the module (marked by a percent sign in column 1).

If the file represented by <item_ two> does not exist,

"update" considers that <item one> is newer than <item two>.

If the file represented by <item one> does not exist, or if
neither the file represented by <item one> nor <item two> exists,
{item one> is not considered to be newer than <item two>.

For instance, consider the following "makefile":

&::&.bjasm & +sly
file 1
file 2

file n

%

An "update" command which references this file makes the
following translation:

If "file 1" is newer than "file 1.b", execute the command
"asm file 1 +sly".

If "file 2" is newer than "file 2.b", execute the command
"asm file 2 +sly".

It continues in this fashion until "file n" is processed.
The percent sign in column 1 marks the end of the module,
and because it is the only module in the file, the
"update" command terminates.

More than one set of commands can be processed with a single
"makefile" if the user includes more than one module in the file.

4404 Reference Manual @ 2-149

SECTION 2
User Commands

Options Available
q Do not send informative messages to standard output.
NOTES
0 The "chd" command has no effect in a "makefile".

o The "update" command always tries to substitute the
strings strings specified in the second portion of a module
for all ampersands which appear in the first portion. Thus,
the command sequence itself cannot contain an ampersand.
Consequently, tasks specified in a "makefile" cannot be
executed in the background (although the "update"
command itself may be sent to the background).

ERROR MESSAGES

x Can't access Makefile "<file name>" aborted!
The operating system returned an error when "update" tried to
open <file name> for reading. Most probably, the file
specification is incorrect, the file does not exist, or the user

does not have read permission for the file.

a¥** Error: Command too complicated.
{command_sequence>

After substitution for the ampersands has taken place, the
command sequence is too long (the 1limit is 512 characters).

¥*¥¥ Error: Pattern too complicated.
<command sequence>

P ¢

or the command sequence (before substitution for
kes place) is tco long (the limit is 512

Makefile syntax error aborted

The "update" command was unable to interpret the "makefile".

2-150 @ 4404 Reference Manual

SECTION 2
User Commands

Syntax: update [<make file name>] [+q]

The "update" command requires exactly one argument. This
message indicates that the argument count is wrong.

Unknown option: <char>

The option specified by <char> is not a valid option to the
"update" command.

SEE ALSO

touch

4404 Reference Manual @ 2-151

SECTION 2
User Commands

wait

Wait for a background task to complete before accepting any more input.
SYNTAX

wait [<task ID>]
walt any

DESCRIPTION

The "wait" command, which is part of the shell program, tells the
shell program not to accept any more commands until the specified
background task is complete. The termination status of the task
is reported when the task is complete. If the user does not
specify a task ID, the shell program waits for all active
background tasks that are children of the shell program that
issued the "wait" command to finish before accepting any new
commands. The user may interrupt the "wait" command with a
control-C.

Arguments
{task ID> The ID of the task to wait for. The shell
program reports the ID when it sends a task
to the background. The ID may also be
obtained by executing either the "jobs" or
the "status" command.
any If the user specifies the argument "any", the
shell program waits for any one background
task that is one of its children to finish
before accepting a new command.
EXAMPLES
1. wait 495
2. walt

3. walt any

The first example tells the shell program to accept no further
commands until task 495 is complete.

The second example tells the shell program to accept no further
commands from the user until all background tasks belonging to
that shell program are complete.

The third example tells the shell program to accept no further

commands from the user until one background task belonging to
that shell is complete.

2-152 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES
No tasks running in the background.

The shell program has no tasks running in the background.
Specified task not running in the background.

The task specified either is not a child of the current shell
program or does not exist.

SEE ALSO

jobs
shell
status

4404 Reference Manual @ 2-153%

Section 3%
"SYSTEM" UTILITIES

These utilities are generally reserved for the user logged in as
"system." They tend to be either powerful utilities, with great
potential for misuse, or utilities that should be reserved to a
limited number of users where many accounts are set up.

User "system" generally has the directory "/etc" defined in the
search path, and needs only enter the name of the utility %o
invoke it. The full path name is given here, however, to
emphasize the special purpose of these utilities.

adduser

Add a new user to the system.
SYNTAX

/etc/adduser <user name>
DESCRIPTION
The "adduser" command is used to add a new user to the system.
The specified user name must be unique to the system. It must be
between one and eight letters long. All letters must be

lower-case. Only the "system" user may invoke this command.

The "adduser" command performs the following tasks:

1. Adds the new name to the end of the password file,
"/etc/log/password".

2. Assigns a user ID to the user.

3. Creates a home directory owned by the new user with

"rwxr-x" permissions. The name of this directory is
"/<user name>".

The "system" user or the new user should use the "password"
command to ensure protection of the new user's files.

4404 Reference Manual @ B-1

SECTION 3
"system" Commands

Arguments
{user_name> A unique name assigned to the new user for
use in response to the login prompt.
EXAMPLE

/etc/adduser chris
This example adds the user name "chris" to the bottom of the file
"/etc/log/password", assigns a user ID, and creates the directory
"/chris"--which is owned by "chris" and has permissions
"rwxr-x".
ERROR MESSAGES

Error adding "<user_name>" to password file: <reason>
The operating system returned an error when "adduser" tried to add

"{user_name>" to the password file. This message is followed by
an interpretation of the error returned by the operating system.

Error assigning owner to "/<user_name>": {reason>
The operating system returned an error when "adduser" tried to
make the specified user the owner of the file "/<user_named".
This message is followed by an interpretation of the error
returned by the operating system.
Error creating "/<user_name>": <reason>
The operating system returned an error when "adduser" tried to
create the file "/<user name>". This message is followed by
an interpretation of the error returned by the operating system.
Error creating "." file: <reason>
The operating system returned an error when "adduser" tried to
create the file ".". This message is followed by an
interpretation of the error returned by the operating system.
Error creating ".." file: <reason>
The operating system returned an error when "adduser" tried to
create the file "..". This message is followed by an
interpretation of the error returned by the operating system.

Name must be 1 to 8 lowercase letters.

32 @ 4404 Reference Manual

SECTION 3
"system" Commands

The specified user name must be between one and eight letters
long. All letters must be lowercase.

Syntax: /etc/adduser <user named

The "adduser" command expects exactly one argument. This message
indicates that the argument count is wrong.

The name "<user name>" is already in use.
The specified user name must be unique to the system.
You must be system manager to run "adduser".

Only the "system" user may execute the "adduser" command.
SEE ALSO
deluser

password
perms

4404 Reference Manual @ 5-3

SECTION 3
"system" Commands

blockeheck

Check the integrity of the allocation of all blocks used in files
and of the free list on the specified device.

SYNTAX
/etc/blockcheck <dev name>
DESCRIPTION

"blockcheck" checks the integrity of the block allocation used in
the files and free list on the specified device. It locates
problems such as duplicate blocks, missing blocks, and invalid
block addresses.

This command is primarily intended for use by the "diskrepair"
utility, which calls it. It may also be used on its own as a
diagnostic utility; however, "blockcheck" can only check the
disk; it cannot repair it. If "blocheck's" output suggests that
the disk is damaged, use "diskrepair" on the disk.

You should only use "blockcheck" if no other tasks are active on
the system; otherwise, the results are unpredictable.

Arguments
{dev_name> The name of the device to check. It must be
a block device.
EXAMPLES

/etc/blockcheck /dev/floppy

This example checks the integrity of the the allocation of blocks
on the floppy disk.

SEE ALSO
devcheck

diskrepair
fdncheck

3-4 e 4404 Reference Manual

SECTION 3%
"system" Commands

deluser

Remove a user from the system.

SYNTAX
/etc/deluser <user name> [x]
DESCRIPTION

The "deluser" command removes the specified user from the system.
It removes the corresponding entry from the file
"/etc/log/password" and destroys files and subdirectories in

the user's home directory that are owned by that user. It also
deletes the home directory itself if it is empty after all the
deletions are complete. Only the "system" user may execute this
command.

Arguments
{user_name> The name of the user to delete from the
system.
Options
X Delete the user, but do not delete the user's files
from the system.
EXAMPLES

/etc/deluser chris

This example deletes the line containing the entry for the user
name "chris" from the file "/etc/log/password". It also deletes
all files and subdirectories in the directory "/chris," as

well as that directory itself.

CAUTION

This command should be used with great care
as it may recursively descend the user's
directory tree, deleting all files within it
that are owned by the specified user.

4404 Reference Manual @ 3-5

SECTION 3
"system" Commands

ERROR MESSAGES
Cannot delete a user with an ID of O or 1.

The "deluser" command cannot delete user ID O (system) or 1
(public).

Cannot execute "remove".
<user_name>" not removed from systen.

The "remove" command, which is called by "deluser" is not in
"/bin" or "/bin". The command aborts without editing the
password file.

Name must be 1 to 8 lowercase letters.

The specified user name must be between one and eight letters
long. All letters must be lowercase.

Syntax: /etc/deluser <user name>

The "deluser" command expects exactly one argument. This message
indicates that the argument count is wrong.

<user_name>" is not in the password file.

The file "/etc/log/password" does not contain an entry for the
specified user name.

You must be system manager to run "deluser".
Only the "system" user may execute the "deluser" command.
SEE ALSO

adduser
remove

%-6 @ 4404 Reference Manual

SECTION 3
"system" Commands

devcheck

Check a device for I/0 errors.
SYNTAX
/etc/devcheck <dev name> [+fsv]

DESCRIPTION
The "devcheck" command checks the specified device for I/0
errors. As it checks the device, it prints informative messages,
which tell the user what part of the device is being checked. It
always checks the boot sector and the system information record
(S8IR). By default, it also checks the fdn space, the swap space,
and the volume space.
Every time it finds a bad block, it prints a message giving the
address of the block in hexadecimal. When it is finished,
"devcheck" prints a message reporting the total number of bad
blocks on the disk.
If a floppy disk contains one or more bad blocks, it should
probably be discarded. If a hard disk contains one or more bad
blocks, it should be reformatted with the addresses of all bad
blocks placed in the file ".badblocks". It is wise to run this
command immediately after formatting a disk.
Arguments
The name of the device to check. It must be a block device.
Options

o Check only the fdn space.

o Check only the swap space.

o Check only the volume space.
EXAMPLES

1. /etc/devcheck /dev/floppy

2. [etc/devcheck /dev/floppy +v

The first example checks the entire disk in the floppy drive for
I1/0 errors.

AA04 Reference Manual

(>

3-1

SECTION 3
"system" Commands

The second example checks the boot sector, the SIR, and the
volume space of the disk in the floppy drive for I/0 errors.

MESSAGES

Badblocks file too large - continuing without list.

"Devcheck" cannot read a ".badblocks" file that has more than 138
bad blocks in it. Currently, this theoretical limitation on the
number of bad blocks is unlikely to present a practical
limitation. The number of bad blocks on a disk should not even
approach 138.

Can't open character device '<dev_name>'.

The "devcheck" command cannot open the character device which
corresponds to the block device specified on the command line.
Most probably, either the device does not exist or the user does
not have the permissions necessary to open it. In such a case
the command continues, but it may report the blocks in the file
".badblocks" as bad.

Can't read '.badblocks' file - continuing without list.

The "devcheck" command encountered an I/0 error when it tried to
read the file ".badblocks".

File '.badblocks' not found - continuing with check.

The device specified does not contain a file named ".badblocks",
or due to damage in the logical structure of the disk, "devcheck"
cannot locate the file.

ERROR MESSAGES

Can't open '<dev_name>'.

The "devcheck" command cannot open the device specified on the
command line. Most probably, either the device does not exist or
the user does not have the permissions necessary to open it.

File '<file name>' is not a block device.

The "devcheck" command can only check a block device.

Unknown optién '<char>' - option ignored.

The option specified by <char> is not a valid option to the
"devcheck" command.

SEE ALSO

blockcheck diskrepair fdncheck

3-8

S

4404 Reference Manual

SECTION 3
"system" Commands

diskrepair

Check and, optionally, repair inconsistencies in the logical
structure of a disk.

SYNTAX
/etc/diskrepair <dev_name list> [+bfmnpgruv]
DESCRIPTION

The "diskrepair" utility checks the structure of the disk or
disks specified in <dev_name list>. The structure of the disk
refers to the layout of and the connections among files,
directories, free space, swap space, and other information that
makes up the file system. Any inconsistencies in the structure
are reported and, optionally, repaired. "Diskrepair" does not
check or repair media errors (I/0 errors).

Related Utilities

While it is operating, "diskrepair" calls two other utilities--
"blockcheck" and "fdncheck", which are both located in the
directory "/ete".

o "Blockcheck" is concerned with the allocation of blocks on
the disk. It locates problems such as duplicate blocks,
missing blocks, and invalid block addresses.

0o "Pdncheck" is concerned with the directories on the disk.
It locates problems such as unreferenced files, file names
with invalid associated files, and so forth.

Major Modes of Operation
There are two major modes of operation, simple and verbose.

o The simple mode is selected by default; the verbose mode is
selected by the 'v' option.

o In the verbose mode "diskrepair" reports all detected
errors. In the simple mode it reports only those errors
which require the deletion of files or of directory entries.

o If executed in simple mode, "diskrepair" issues a message
upon completion which informs the user whether or not the
disk is in need of repair. By default, all detected errors
are automatically repaired (if possible).

4404 Reference Manual @ 3-9

SECTION 3
"system" Commands

Options

Two options ('n' and 'p') exist to alter the handling of errors.

9]

The 'n' option instructs "diskrepair" not to repair any
errors. The 'p' option instructs "diskrepair" to prompt the
user for permission to repair the errors it reports.

In verbose mode the 'p' option causes "diskrepair" to prompt
the user regarding all errors. In the simple mode, the user
is prompted only for those errors which require the deletion
of files or of directory entries; all other errors are
automatically repaired without prompting.

NOTE

Most repairs result in a loss of data. The
user can generally infer which data have been
lost from the messages displayed.

When using the command in simple mode (without the
'v' option), the user need not understand what
types of checks are made by "diskrepair". The
only decisions required are whether or not to
delete the reported files. In verbose mode, much
more information is given to the user.

While this document is not intended to give full details of this
information, the following list shows most of the inconsistencies
in disk structure for which "diskrepair" checks. First, however,
a few definitions are in order.

Definitions

0

1

[1)

A "file descriptor node® (or fdn) is an area on the disk
which contains all the information the system needs about a
file. There should always be one fdn per file on the disk.

A 4404 directory entry is simply a file name and a

pointer to the proper fdn. There may be multiple directory
entries pointing to the same fdn (multiple names for the
same file).

Each pointer to an fdn is called a "1link" to that file. If
there is a file with no links, it is considered to be
"unreferenced". "Out-of-range" refers to a pointer to a
disk block or to an fdn which is beyond the valid number of
blocks or fdns for the disk being tested.

@ 4404 Reference Manual

SECTION 3
"system" Commands

Inconsistencies

Here now, is a partial list of inconsistencies that "diskrepair"
checks for:

o]

0

O

o]

0

Blocks duplicated in files or free list
Out-of-range blocks or fdns

Missing blocks

Bad free list

Unreferenced files

Inactive fdns

Unknown fdn type

Incorrect link counts

Incorrect free block or free fdn count

Invalid sizes in System Information Record

Unreferenced Piles

These are handled in one of two ways:

1.

An attempt is made to give the file a name by putting it
into the directory "lost+found" in the root directory of the
disk being tested. The name given to the file is of the
form "file<fdn>", where <fdn> represents the fdn number of
the file.

In order for this procedure to work, the directory
"lost+found" must already exist on the disk being checked,
and it must have room for the entry. The program "crdisk"
creates this directory, but if for any reason it has been
deleted, the user should recreate it before running
"dlskrepalr" The user must must also create empty slots
for entries by creating a number of files and then deleting
them.

If it is not possible to put the unreferenced file into the
"lost+found" directory (because there is either no directory
"lost+found" or no room in it), "diskrepair" deletes the
file (or prompts for permission to delete it if 'p' was
specified

4404 Reference Manual @ 5-11

SECTION 3
"system" Commands

Fdn Error Data

If an error is associated with an fdn, a display of pertinent
data from that fdn is printed. The display includes the fdn
number of the file, its size in bytes, its owner, the time of its
last modification, and one of the following types:

b = block device

¢ = character device
d = directory

f = file

i = inactive

1 = unknown

The "diskrepair" utility should generally be run only on an
otherwise inactive system. It should never be run on an active
disk. If the "n' option is not specified (the disk may be
written to), "diskrepair" attempts to unmount the disk being
tested. If the disk being tested is the system disk, and if a
repair is made which requires writing to the System Information
Record (block number 1), "diskrepair" stops the system upon
completion and issues an appropriate message instructing the user
to reboot the operating system. This procedure is necessary to
prevent conflicts between the written data and similar data kept
in memory.

Options

'pb'" Option The 'b' option instructs 'diskrepair' to run
only the 'blockcheck' portion of the utility.
This procedure is often considerably faster,
but still provides a fairly complete
assessment of the validity of the disk
structure.

'f' Option The 'f' option instructs "diskrepair" to run
only the "fdncheck" portion of the utility.
This option is useful if a problem is
suspected in the directory structure, but the
result is by no means a thorough check of the
structure of the disk.

'm' Option The operating system maintains a list of
blocks available for use called the free
list. A missing block is any block in the
volume space which is not a part of any file
and is not in the free list. The existence
of such blocks is a harmless error in the
structure of the disk.

W
!

A8}

©

4404 Reference Manual

SECTION 3
"system" Commands

"Diskrepair" generally places missing blocks
in the free list. The 'm' option, however,
instructs "diskrepair" not to rebuild the
free list solely on account of missing
blocks. This option reduces the time
required for "diskrepair" to run if missing
blocks are the only problem in the free list.

'n' Option The 'n' option tells "diskrepair" to report
all errors but to make no attempt to fix
them. Therefore, "diskrepair" opens the
device for reading only. This option is
useful for checking the structure of a disk
without risking the loss of data during
repairs.

'p' Option If the user specifies the 'p' option,
"diskrepair" reports each error, followed by
a prompt requesting permission for the
proposed repair. All prompts require an
answer of either 'y' (%yes") or 'n' ("no").

NOTE

Many repairs result in the loss of data.

(You can generally infer what has been lost
from the messages "diskrepair" displays.)
Judicious use of the 'n' and 'p' options not
only allows you to assess the damage to the
disk and decide which information you are
willing to sacrifice during the repair
process; it also gives you the opportunity to
try to salvage the data before repairing the
disk.

'q' Option This option inhibits certain warnings and
messages from "diskrepair". Several
conditions exist which, while not technically
errors in disk structure, may cause problems.
These conditions usually result in a warning
message; the 'q' option inhibits them.

'r' Option By default, if "diskrepair" finds that the
free list is in error, it rebuilds it. The
'r' option instructs "diskrepair" to rebuild
the free list whether or not it contains
errors. This option is useful if the free
list is known to be bad or if the user wants
to reduce fragmentation within the list.

4404 Reference Manual @ 3-13

SECTION 3
"system" Commands

'a' Option The 'u' option generates a report on the
block usage of the specified device. This
report is printed at the end of the
"diskrepair" operation, and contains
statistics on the following: (1) the number
of each type of file in the file system and
the total number of files in the system; (2)
the number of unused blocks and the number of
used blocks, including a breakdown of how the
used blocks are allocated; (%) the number of
free fdns and the number of fdns in use.

'v' Option "Diskrepair" operates in one of two modes:
simple or verbose. Simple mode is selected
by default; verbose mode is selected by the
'v' option. In simple mode, "diskrepair"
reports only those errors which require the
deletion of either files or directory
entries. In verbose mode, all errors are
reported. In addition, informative messages
are printed describing what phase
"diskrepair" is performing.

In verbose mode the 'p' option causes
"diskrepair" to prompt for permission
regarding all errors. In simple mode the
user is prompted only for those errors which
require the deletion of either files or
directory entries; all other errors are
automatically repaired without prompting.

/ 4

1. /E€3C/

2. /etc/diskrepair /dev/disk +n

3. /etc/diskrepair /dev/floppy +pv

4. /etc/diskrepair /dev/floppy +ru

5. /etc/diskrepair /dev/disk +mq
The first example checks the logical structure of the system
disk. By default, "diskrepair" tries to fix every error it

encounters. These repairs may result in the loss of data from
the disk.

3-14 @ 4404 Reference Manual

SECTION 3
"system" Commands

The second example checks the logical structure of the system
disk, reports those errors which require the deletion of either
files or directory entries, but performs no repairs.

The third example checks the logical structure of the disk in the
floppy drive. "Diskrepair" reports all errors it finds and
prompts for permission before making any repairs.

The fourth example checks the logical structure of the disk in
the floppy drive. "Diskrepair" rebuilds the free list no matter
what and prints a summary of block usage when it is finished.

The fifth example also checks the logical structure of the disk
in the floppy drive. It does not rebuild the free list solely on
account of missing blocks; neither does it print the warnings and
messages which result from problems not technically errors in the
structure of the disk, but which may cause problems.

NOTES

"Diskrepair" cannot solve all the problems your disk may have.
For example, it cannot fix physical media problems. As for
problems with the logical structure of the disk, "diskrepair" can
only repair an error if the damaged information is redundant --
that is, if there is some way of determining what the information
should be.

"Diskrepair cannot, for instance, fix a badly damaged SIR; nor
can it repair a disk if the root directory is severely damaged.
It is therefore imperative that up-to-date backups of all
important files be maintained.
ERROR MESSAGES

Blockcheck terminated abnormally.
"Blockcheck" received a program interrupt from the operating
system. The uaser cannot determine the source of such an error;
however, it is not indicative of a problem with either

"diskrepair" or the device. "Diskrepair" should be rerun, for
the problem may not recur.

Can't call /etc/blockcheck.
"Diskrepair" cannot read or execute the file "/etc/blockcheck".
Can't call /etc/fdncheck.

"Diskrepair" cannot read or execute the file "/etc/fdncheck".

4404 Reference Manual

®

3-15

SECTION 3
"systen" Commands

Can't read System Information Record.
The SIR is so badly damaged physically that "diskrepair" cannot
read it. The user may be able to salvage some information from
the disk, but must eventually reformat it.

Can't stat root.
"Diskrepair" cannot read the fdn which describes the root
directory. The user may be able to salvage some information from
the disk, but must eventually reformat it.

Can't stat std. output.
"Diskrepair" cannot read the fdn of whatever file is opened as
standard output. The user should rerun "diskrepair" with
"/dev/console" as standard output.

Conflicting options.

The options specified on the command line conflict with each
other.

Device is busy.
Any alterations that "diskrepair" makes must be made when the
disk is not in use. Therefore, "diskrepair" determines whether
or not the specified disk is mounted, and, unless the user
specifies the 'n' option, it tries to unmount a mounted disk
before proceeding. This error message means that either some
user's working directory is on the specified disk or some task is
accessing a file on that disk.

Disk needs repair!

The structure of the disk is not logically sound. The user
should rerun "diskrepair" to correct the problems.

Error reading block <block num>.

Error reading fdn <fdn_number> in block <block num>.

Error writing block <block num>.

Error writing fdn <fdn_num> in block <block num>.
"Diskrepair" encountered a physical error on the disk. If either

the 'p' or 'n' cption is in effect, "diskrepair" prompts for
permission to continue. If the user chooses to continue when the

N
i
—a
[e)
@

4404 Reference Manual

SECTION 3
"system" Commands

'n' option is not in effect, the results are entirely
anpredictable. They depend on precisely which block is damaged.
Continuing with "diskrepair" may cause further damage to the
disk, but in some cases, it may be the desired course of action.

NOTE

The first time "diskrepair" reports an I/0
error, answer "no" to the offer to continue
and immediately rerun "diskrepair". It is
possible, though unlikely, that the I/0 error
is a soft one and will not recur.

Error updating SIR. Disk is bad!

"Diskrepair" encountered an I/0 error when it tried to make the
necessary changes in the SIR. The user should try again to
execute "diskrepair". If the error persists, the user cannot
salvage any of the data on the disk.

/etc/blockcheck is invalid.

The version of the "blockcheck" command is not the correct one.
/etc/fdncheck is invalid.

The version of the "fdncheck" command is not the correct one.
Fdncheck terminated abnormally.

"Fdncheck" received a program interrupt from the operating
system. The user cannot determine the source of such an error;
however, it is not indicative of a problem with either
"diskrepair" or the device. "Diskrepair" should be rerun, for
the problem may not recur.

Intentional system stop. Reboot system.

If the SIR of the root device must be updated, "diskrepair" kills
all tasks running on the system and locks up the system so that
no new tasks can begin. It then modifies the SIR. This
procedure is necessary to prevent conflicts between the written
data and similar data kept in memory. After updating the SIR,
"diskrepair" stops the system and prints this error message. The
user must reboot the system before proceeding.

No device specified.

The user did not specify a device on the command line.

4404 Reference Manual @ 3-17

SECTION 3%
"system" Commands

No such device.

The user specified a nonexistent device on the command line.
Not a block device.

"Diskrepair" can only operate on block devices.
Output directed to device under test.

When testing the structure of a disk, it is impractical to try to
redirect the output (the results of the test) to a file on the
disk being tested. The user should reexecute "diskrepair"
without redirecting the output or redirecting it to a different,
mounted device.

Permission denied.

A user who executes "diskrepair" without the 'n' option must have
both read and write permission on the specified device. A user
who executes "diskrepair" with the 'n' option needs only read
permission.

Problems encountered. Diskrepair should be rerun.

"Diskrepair" may encounter more problems than it can fix during
one run. For example, it can only handle a certain number of
duplicate or out-of-range blocks. If "diskrepair" cannot fix all
the errors it encounters, or if it encounters an I/0 error but
continues operation, it prints this error message when it
finishes.

Unknown option: '<char>'

The option specified by <char> is not a valid option to the
"diskrepair" command.

Unmount error: <error_num>
"Diskrepair" encountered some problem other than a busy device
when it tried to unmount the device. The accompanying error
number is the number of the 4404 error that caused the

failure. The user should consult the operating system manual for
an explanation of the error.

SEE ALSO

blockcheck
fdncheck

3-18 @ : 4404 Reference Manual

SECTION 3
"system" Commands

fdncheck

Check the integrity of the structure of the file descriptor nodes
(fdns) on the specified disk.

SYNTAX
/etc/fdncheck <dev_name>
DESCRIPTION

The "fdncheck" command checks the integrity of the structure of
the file descriptor nodes (fdns) on the specified disk. An fdn
contains all the information that the operating system needs to
know about a file.

This information includes, but is not limited to, the type of
file, the owner of the file, the size of the file, and the
addresses of all the blocks that are a part of the file. The
"fdncheck" command locates problems such as unreferenced files,
directory entries with invalid associated files, and so forth.

This command is primarily intended for use by the "diskrepair"
atility, which calls it. It may also be used on its own.
However, "fdncheck" can only check the structure of the disk; it
cannot repair it. If the output from the command suggests that
the structure of the fdns is damaged, the user should execute
"diskrepair" on the disk.

The "fdncheck" command should be executed only when no other
tasks are active on the system. Otherwise, the results are
anpredictable.
Arguments
The name of the device to check. It must be a block device.
EXAMPLES

/etc/fdncheck /dev/floppyO

This example checks the structure of the fdns on the disk in
floppy drive O.

4404 Reference Manual @ 3-19

SECTION 3
"system" Commands

makdev

Create a special type of file, representing a device.
SYNTAX
/etc/makdev <file name><dev_type><maj dev_num><min_dev_num>

DESCRIPTION

The "makdev" command creates a special type of file which
represents a device. This type of file allows the user to access
the device drivers for the corresponding physical device. Only
the "system" user may invoke this command.

Arguments

{file_name> The name of the file to create. For a block
device, the last component of the file name
must consist of a string of letters followed
by a string of digits. TFor a character
device, the last component of the file name
must consist of the same string of letters,
followed by the letter 'c', followed by the
same string of digits.

{dev_type> A letter designating whether the device is a
block device, (b), or a character device,

(c).

<maj dev_num> A number which tells the operating system
which set of device drivers to use for the
specified device.

<{min_dev_num> A number which tells the operating systen
which physical device to associate with
{file name>.

EXAMPLES
1. /etc/makdev /dev/floppy b 0 O
2. /etc/makdev /dev/floppyc ¢ 3 O

The first example creates a special file named "/dev/floppy", which
represents a block device. Currently, all block devices have the
same major device number, O. The first four (beginning with 0)
minor device numbers for this major device number designate

floppy disk drives O through 3. Thus, this command tells the
operating system to use the device driver for block devices and

to assoclate the file with the floppy drive.

3-20

®

4404 Reference Manual

SECTION 3
"system" Commands

The second example creates a special file named "/dev/floppyc",
which represents the character device associated with the block
device "/dev/floppy". The major device number for a character
device associated with a floppy disk drive is 3. The first four
(beginning with O) minor device numbers for this major device
number designate floppy disk drives O through 3. Thus, this
command tells the operating system to use the device driver for a
character device associated with a floppy disk drive and to
associate the file with the floppy drive.

NOTES
0 Every disk device requires both a block device and a
corresponding character device in order to function
properly.
ERROR MESSAGES

'<{char>' is not a valid type of device.

The argument <dev type> must be either 'b', for a block device,
or 'c¢', for a character device.

Error creating "<file name>": <reason>
The operating system returned an error when "makdev" tried to
create the special file <file name>. This message is followed by
an interpretation of the error returned by the operating system.
Invalid major device number: <num>
The number specified as the major device number is invalid.
Invalid minor device number: <numd>

The number specified as the minor device number is invalid.

Syntax: /etc/makdev {file name> <dev_type> <maj dev_num>
{min_dev_num>

The "makdev" command expects exactly four arguments. The command
line does not conform to the syntax.

You must be system manager to run "makdev".

Only the "system" user may execute the "makdev" command.

®

4404 Reference Manual 521

SECTION 3
"system" Commands

mount

Insert a block device at a node of the directory tree structure.
SYNTAX

/etc/mount <dev_name> <dir_ name> [r]
DESCRIPTION

The "mount" command temporarily inserts a block device at a node
of the directory tree structure. As long as the device is
mounted, any references to <dir name> actually access the root
directory of the device mounted there. Any files in the
directory at which the device is mounted are inaccessible while
the device is mounted.

Arguments
{dev_name> The name of the device to mount. It must be
a block device.
{dir_name> The name of the directory on which to mount

the specified device.
Options Available
r Mount the device for reading only. This option must
not be preceded by a plus sign. It is useful when
trying to salvage data from a damaged disk because it

prevents inadvertent writing to the disk, which could
make matters worse.

1. /etc/mount /dev/floppy /usr2
2. /etc/mount /dev/diskl /usr2 r
The first example mounts the disk in the floppy drive on the

directory "/usr2". References to "/usr2" now access the root
directory of that disk.

3-22

5]

4404 Reference Manual

SECTION 3
"system" Commands

The second example mounts an accessory hard disk drive, disk1, as
"/usr2". Because the 'r' option appears on the command line, no
user may write to the disk.
NOTE

When a user's working directory is the root

directory of a mounted device, the command

"chd .." does not change the working

directory.
ERROR MESSAGES

<dev_name>" is not a block device.

The device specified either does not exist or is not a block
device. Only block devices may be mounted.

Error mounting "<dev_name>" on "<dir_name>": <reason>
The operating system returned an error when "mount" tried to
insert the specified device in the directory tree. This message
is followed by an interpretation of the error returned by the
operating system.

Only read option allowed for mode.

The only acceptable option is the 'r' option, which must not be
preceded by a plus sign.

Syntax: /etc/mount <dev_name> <dir_ name> [r]
The "mount" command expects exactly two arguments and,
optionally, the single option 'r'. This command indicates that
the command line does not conform to the syntax.

SEE ALSO

anmount

4404 Reference Manual @ 3-273%

SECTION 3
"gsystem" Commands

unmount

Unmount a previously mounted device from the file system.
SYNTAX
/etc/unmount <dev_name>
DESCRIPTION
The "unmount" command unmounts the specified device from the file
system. Once the device is unmounted, the files in the directory
on which it was mounted become accessible. Only the system
manager may execute this command.
Arguments
dev_name> The name of the device to unmount.
EXAMPLES
/etc/unmount /dev/floppy
This example unmounts the floppy drive.
ERROR MESSAGES
Error unmounting "<dev_name>": <reason>
The operating system returned an error when "unmount" tried to

anmount the specified device. This message is followed by an
interpretation of the error returned by the operating system.

1T e 4 <AA-v e AN
[VSERIIROAVES Y] ucv dallic/

The "unmount" command expects exactly one argument. This message
indicates that the argument count is wrong.

SEE ALSO

mount

%-24 @ 4404 Reference Manual

Section 4
4404 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

INTRODUCTION

This section, the 4404 Programmer's Guide provides a general
introduction to 68000/68010 assembly language programming on the
4404. This section includes a sample 4404 utility program that
you can type in and execute.

For detailed information on system calls, see Section 6, System
Calls. TFor detailed information on the 68000/68010 assembler,

see Section 6, The Assembler and Linking Loader. Systen

programming in T is described in secftion 7, HE 4404 C COMPILER, while
programming in other languages is described in the reference

manuals for those languages.

SYSTEM CALLS OVERVIEW

The following paragraphs give an overview of assembly language
programs on the 4404: how they run, how they perform system
function calls, how they handle errors, and what the task
environment is like.

HOW 4404 PROGRAMS RUN

Most programs or utilities are run by the user's typing the name
of such a program in response to a prompt from the shell. The
shell assumes the name which was typed is a file containing an
executable binary program. (There are exceptions such as command
text files and others, but we will ignore those for now). This
binary program is loaded into memory and executed. If desired,
this program can obtain parameters from the calling line. When

it is finished, the program terminates, passing control back to
the shell.

Every program that runs on the system is a task. Many tasks may
be active at once, but in reality only one task is running at any
given instance. The system switches from task to task so rapidly
that the appearance is that all of the tasks are executing
concurrently. If you were to freeze the system at some point in
time, you would see a single task or program in the cpu's address
space. The task may not have all of RAM assigned to it, but it
would have the entire address space available. Other tasks may
be resident in other memory, but that memory is not mapped into
the cpu's space. When the task terminates, its allocated memory
is returned to the system, and control is passed to the parent
task)(the task which created or initiated the terminating

task).

4404 Reference Manual @ 4-1

SECTICON 4
Programmer's Guide

This section discusses how to write the program which the
shell can load and execute, how this program can communicate
with the user, system, other tasks, etc, and how to terminate
the program's execution.

INTRODUCTION TO SYSTEM CALLS

When a user's program communicates with the user, a disk file,
another task, or anything else in the system, It uses calls to
the operating system. The operating system is essentially
another task, is always available, that has built in routines to
perform a multitude of system oriented functions. These
functions include reading files, writing files, seeking to file
locations, setting permissions, creating pipes, reporting id's,
creating tasks, terminating tasks, mounting devices, reporting
the time, and so on. A user program can execute these functions
by making a call to the system with a proper function code and
input parameters. The technique of making the call in the
assembler code is the "sys" instruction recognized by the
assembler.

THE "SYS" INSTRUCTION

The assembler has a built-in instruction to make system calls.
It is the "sys" instruction and has the following format:

sys <function>,<parameteri!>,{parameter2>,...

The only required portion of the operand is the <function>, which
is simply a numeric code for the desired function. The
parameters required depend on the particular function. There may
be no parameters or as many as four. The function code is a
16-bit value; while parameters are always %2-bit values. Many
system functions also require certain values or parameters to be
in one or more of the 68010 cpu's registers before executing a
"sys" instruction. When some parameters are required in
registers, it is the programmer's responsibility to see that the
proper values are loaded before calling on the systenm.

When the "sys" instruction has completed execution, control
generally passes to the next instruction in the program. In some
cases, the system function returns one or more values to the
calling program, by placing the values in selected cpu registers.
In some cases the returned value or values will be placed at a
location specified as one of the input parameters.

I
no
(2]

4404 Reference Manual

SECTION 4
Programmer's Guide

Section 7, System Calls, describes the operating system
functions. ~Along with the description, the necessary parameters
and returned values are specified. TFor example, look at the
"read" system call in that section. Under the USAGE heading you
will see the following:

{file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

This shows that before executing the read function call, you must
ensure that the desired "file descriptor" must be loaded into the
68010's DO register. In addition to the read function code
itself, you must supply a buffer address (32-bit address of a
buffer to read into) and a count (32-bit count of how many
characters to read). After the read function has been executed,
the actual number of bytes read will be returned in the 68010's
DO register.

All user-accessible 68010 registers except for the DO, AO, and CCR
registers are left intact across system calls. The contents of
the DO, AO, and CCR registers upon return from a system call vary
depending on the particular call.

The actual system function code numbers in the "sysdef" file
located in the "/ 1ib" directory. This file is provided on disk
so that you can include those definitions in your program by
including the "sysdef" file in your source via a "lib sysdef"
instruction.

Briefly, the "sys" function works by generating a software
interrupt. When this interrupt occurs, the handling routine maps
the calling task out of the cpu's address space and maps the
operating system code in. This system code then performs the
requested function. It obtains the function number and
parameters from the code directly following the software
interrupt itself. When the system function has completed, the
operating system is mapped out, and the task is mapped back in to
continue with its instructions.

4404 Reference Manual @ 4-3

SECTION 4
Programmer's Guide

SYSTEM CALL EXAMPLE

Before cluttering things up, let's try a sample program that
includes a system function call. The simplest program would be
one which did nothing at all: as soon as it is initiated, it will
immediately terminate. Thus the only system function we will
need to call is the "term" function. The description of "term"
in Section 7, System Calls shows that there are no parameters
required on the "sys" instruction itself (besides the function
code), but that you must put a status value in the DO register
before performing the call. If there are no errors this status
should be zero. Thus youa can write an extremely simple program
that looks like the following:

1ib sysdef

start move.l #0,d0 Get status in DO
sys term Terminate task
end start

The first line includes the definitions of all system function
codes so that we can specify the term function as a symbol
("term") and not have to type in the particular number for that
function. The second line puts the status in DO, as required by
the "term" function, and line 3 terminates the program. In the
case of the "term" function, control is not returned to the
calling program after execution of the call. O0Of course, that is
the reason for the function; it terminates the current task (the
task which made the call) and returns control to that task's
parent. Notice that the program's end statement includes the
symbol "start". This tells the assembler the beginning location
for execution and also induces the assembler to make the
resulting code executable by setting the permission bits.

rce file "nothing.txt" and assemble

Let's assume you call the sou
and .

. - .
it with the follcwing comman

++ asm nothing.txt +1s +o=nothing.r
++ load nothing.r +o=nothing

The result would be a binary file which when executed by the
command:

++ nothing

would load, run, and immediately return to the shell. This is,
of course, a meaningless example, but it does show the
rudimentary steps in writing, assembling, and executing a 4404
assembly language program.

®

4-4 4404 Reference Manual

SECTION 4
Programmer's Guide

INDIRECT SYSTEM CALLS

In order to use the "sys" instruction directly, all the
parameters must be defined at assembly time. When parameters are
not known at assembly time (because they will be determined or
changed during the execution of the program), you must use
indirect system calls. There are two types of indirect

system calls -- "ind" and "indx" -- and they are themselves
system functions called with the normal sys instruction. They
permit the programmer to tell the system that the parameters do
not actually follow the software interrupt, but instead are
placed at some other specified location in memory. This memory
location, specified by the programmer, can be in an area of
memory containing data and not program code.

The first of these indirect system call functions is called
"ind". Its format is:

sys ind,label

The "label" is the address of the memory locations that will
contain the actual desired function code and parameters. Thus,
when this function is executed, the system goes to location
"label" and picks up the desired function code and any necessary
parameters. The system executes that function and returns ‘
control to the statement following the "sys ind,label"”
instruction.

To illustrate, let's assume a program that needs to read from a
file, but does not know how many characters to read until it is
executing. Somewhere in the first part of the executing progranm,
the number of characters to be read is determined and stored in a
label called "rcount." The indirect function call is used:

move.l rcount,iread+6 Get count to read

move.l fd,d0 Get file descriptor

sys ind,iread Do indirect read call
iread dec.w read READ function code

de.1l buffer Read buffer location

de.1 0 Read count (unknown)
buffer ds.b $4000 Space for read buffer

(At this point we're not concerned with details of how the read
really works or what the file descriptor is, we simply want %o
show how the indirect system call is made.)’

4404 Reference Manual @ 4-5

SECTION 4
Programmer's Guide

The second form of indirect system call is the "indx" function,
and is very similar to the "ind" function. The difference is
that the call to "ind" includes a parameter ("label") that points
to the parameters in memory; with the "indx" function the pointer
to the parameters in memory is in the AO register. To see how
this works, we can modify the above sample by changing the
instruction "sys ind,iread" to:

lea iread,al Get address of parameter
sys indx Do indirect read call

An obvious use of indx is to push the parameters onto the systenm
stack and point AO to it, thereby eliminating the need for the
parameter buffer in memory. For example:

move.l rcount,-(a7) Setcount to read
move.l #vbuffer,-(a7) Set buffer address
move.w #read,-(a7) Set read function code
move.l fd,d40 Get file descriptor
move.l a7,al Point to parameters on
stack

sys indx Do indirect read call
lea 10(a7),a7 Clean parameters off
stack

buffer ds.b $4000 Space for read buffer

Note the importance of the order in which the parameters are
pushed onto the stack. Also note the "lea 10(a7),a7" instruction

Td mamaarrae
ERY)

LT T o2 a1 ¥ < PP P SN ~e=1
J.U.L.LUWJ.IL% vfi€e 1TUncvion Cairi.
were pushed onto the stack so that the stack is where it was
before the system call section.

SYSTEM ERRORS

Upon completion, system calls return to the calling program with
an error flag. This flag is the carry bit in the condition code
register. If the bit is zero on return, it implies that no error
occurred. If the bit is set (a one), then an error has occurred
and the DO register contains an error number. The assembler
supports two special mnemonics for testing the error status on
return from a system call: "bes" for "branch if error set" and
"bec" for "branch if error cleared." These are equivalent to the
standard mnemonics "bcs" and "bee."

4-6 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Section 7, OSystem Calls, contains a list of the error

numbers and their meanings. There is also a file of equates
called "/lib/syserrors" which assign standard labels to the error
numbers. These can be used in a program by simply including the
file with a "1ib syserrors" instruction. Note that the operating
system does not report errors directly to the user. ZError
numbers are returned from system calls and it is entirely up to
the user's program to report such errors or handle them as
required by the specific application.

THE TASK ENVIRONMENT

A "task" is a single program which has complete use of the cpu's
directly-accessible address space. It can call on functions in
the operating system, but is essentially a single, stand-alone
program. Each time a program is run, a new task is generated and
the program becomes that task. Whenever that executing task
performs some I/0 or system call that will require it to wait,
the task is mapped out so that another waiting active task may be
mapped in and executed. If the executing task does not perform
any type of system call which would cause it to be mapped out, it
will eventuaally run into a time-slice interrupt which will force
the task out so that other tasks can get some execution time.

In this manner, multiple tasks can be run at what seems like the
same time. To assist in keeping track of all the active tasks,
the operating system assigns a unique "task id" number to each
task. This is a 15 bit unsigned value that can be used to
uniquely identify a particular task. The "gtid" system call
allows a task or program to obtain this task id if desired.

ADDRESS SPACE

The addresses which can be generated by a program make up what is
known as the logical address space. Under hardware memory
management, these logical addresses are not presented directly to
the system memory. Instead, they are routed through the hardware
memory manager, which translates the logical addresses into
physical addresses. Memory management allows programs which
reside at a particular logical address to actually load into
system memory at a different physical address. The total range
of physical addresses makes up the physical address space.

4404 Reference Manual @ 4-7

SECTION 4
Programmer's Guide

Although it would be possible to pass the addresses generated by
the program directly to the system memory, the use of a hardware
memory manager provides several benefits. First, and perhaps
foremost, it prevents one task from reading from or writing to
the memory allocated to another task. In addition, it allows
multiple tasks to reside in physical memory without the need for
each task to reside in a different area in the logical address
space. Thus, all programs can be written to execute at the same
fixed logical address. No matter where those programs are loaded
into physical memory when they are executed, the memory
management unit converts the logical addresses used by the
program to the proper physical addresses.

The 4404's logical address space is divided into three sections:
text, data, and stack. The program itself resides in the text
section. This section cannot be written to during execution of
the program. The data section contains any data used by the
program. It can be both read from and written to during
execution. The system stack is located in the stack section.

The memory management unit allocates a certain amount of memory
to each section when the task is initiated. The amount of memory
assigned to each section is determined by the size of the task
and its needs. It is also possible, as we shall see later, for a
task to add more memory to the data or stack section during
execuation.

ARGUMENTS

It is often desirable to pass arguments or parameters to a
program when you begin its execution. The "exec" system call
provides this ability. "exec" is the call which is used to
begin execution of a program or binary file.

Arguments are passed to a program by leaving them on the system
stack. When the program is initiated, the system stack pointer
(A7) is left pointing at some unknown location in the stack page.
Any arguments passed to the program are found in a special format
just above where the stack pointer points. The arguments
themselves are simply strings of characters which the program
must know how to use. In order to easily find these strings, the
system provides a list of pointers to the beginning of the
strings. In addition, the system provides a count of how many
arguments have been passed. This argument information is laid
out as follows:

4-8 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

1. The stack pointer is pointing to the argument count. It is
a 4 byte value and should always be greater than zero.

2. Just above the argument count (higher addresses in memory)
is the list of pointers to the argument strings. These
pointers are 32 bit addresses of the actual strings.

3. At the end of the pointer list are four bytes of zero to
signify the end of the list. (A null pointer.)

4. The actual string arguments begin above the zero bytes.
Each argument string is the string of characters that make
up the argument followed by a zero byte.

Let's look at an example. Assume that whoever started our task
passed us three parameters: the name of our program, a file name,
and an option which starts with a plus sign. The system always
passes the name of the program or command being executed as the
first argument (argument number O). Assume the program name is
"pile", the specified file name is "data2", and the option is
"+b". Our argument count will be three. Let us arbitrarily say
the system stack pointer is at $FFFFFDEO. We should see the
following data on the stack:

item location contents
arg 2 terminator SFFFFFEO1 $00
argument 2 $FFFFFDFF '+b!

arg 1 terminator $FFFFFDFE $00
argument 1 $FFFFFDF9 'data2'
arg O terminator $FFFFFDF8 300
argument O $FFFFFDF4 'pile!
arg list terminator $FFFFFDFO $00000000
pointer to arg 2 $FFFFFDEC $FFFFFDFF
pointer to arg 1 SFFFFFDE8 $FFFFFDF9
pointer to arg O SFFFFFDE4 $FFFFFDF4
argument count $FFFFFDEO $00000003

Thus if we want to get the second argument (argument number 1),

we read the pointer stored at the stack pointer + 8.
$FFFFFDF9, is the pointer to the argument string itself.

This value,
At the

location to which the pointer points is the string of characters

"data2" followed by a zero byte.

4404 Reference Manual

4-9

SECTION 4
Programmer's Guide

In general, the programs or utilities that a éystem programmer
writes will be initiated by the shell. Specifically, they will
be started when the user types the name of that program in
response to the shell's prompt. The shell starts the program by
performing an "exec" system call. The arguments that the shell
sets up for the exec (which are those passed to the program) are
the arguments that are typed on the shell command line after the
program name. By convention, the shell sets argument O to be the
command or program name itself. The arguments after the program
name are then numbered sequentially beginning with one. If our
"pile" program above were an executable binary file, the
arguments described above would resalt from a shell command line
that looked 1like this:

++ pile data2 +b

The shell performs pattern-matching before passing the arguments
to the command. TFor example, consider the command:

++1ist file¥*

The shell does not pass "file*" as an argument to list, but
rather searches the directory for all filenames that match and
passes them all as individual arguments. Thus, the list program
would see four arguments:

argument O -> list
argument 1 -> file1
argument 2 -> file?
argument 3 -> filename

(Recall that argument number zero is always the name of the
program or command being executed.)

INITIATING AND TERMINATING TASKS

In a multi-tasking environment, one task can spawn or start a new
task. There must, of course, also be means for terminating tasks
and for the parent of a terminating task to be informed of that
termination. The following discussion covers these techniques.

4-10 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

TERMINATING A TASK

Tasks or programs are terminated with the "term" system call.
When this function is executed, the task is halted and its memory
is relinquished to the system. Before calling the "term"
function, the programmer is required to place an error status
value in the DO register. When the task terminates, this value
is passed back to the task's parent. If there is no error on
termination, this error status should be zero to indicate a clean
termination. If the task terminates due to a system error such
as an I/0 error, the error value returned by that system call
should be used as the error status for the term function. If

the task terminates due to an error defined by the program (for
example, the program expects an argument but none was supplied),
the recommended value to return is $000000FF. By convention the
parent task would recognize this as a user defined error. The
parent would know some error had occurred that caused the program
to terminate, but would not be able to determine the exact

nature of the error. A user-defined error should not return a
termination status of greater than $000000FF.

THE "WAIT" SYSTEM CALL

The "wait" system function is issued by a task when it wants to
wait for one of the children tasks it has spawned to terminate.
It is through the wait command that the parent task receives the
termination status from its child. "wait" has the following
syntax:

sys wait

When the system call returns, the termination status is in the AO
register and the terminated task's id is in the DO register.

If there are no children tasks when a wait call is issued, an
error will be returned. If a child task is still running when
the parent issues a wait, the parent will be put to sleep until
the child task has terminated. If a child task terminates before
its parent has issued a wait, the system will save the child's
task id and termination status until the parent does issue a
wait. If several children tasks have been spawned, the parent
must issue a wait call for each one individually.

4404 Reference Manual @ 4-11

SECTION 4
Programmer's Guide

The termination status is a two-byte value that is returned in
the lower half of the AO register. The lower byte (bits 0-7 of
AO) is the low-order byte of the status value passed by the
"term" system call. If this byte is non-zero, some sort of error
condition caused termination. Under normal termination
conditions, the higher byte of the termination status (bits 8-15
of AQ) is zero. If non-zero, the task was terminated by some
system interrupt, and the least significant seven bits of this
byte contain the interrupt number. If the most significant bit
of this byte is set, a core dump was produced as a result of the
termin?tion. (Interrupt numbers and core dumps will be described
later.

THE "EXEC" SYSTEM CALL

At times, a user-written program may wish to load and execute a
program by itself without going back to the shell. The tool used
to load and execute another program or binary file is the "exec"
system function. That is the very function which the shell uses
when it loads and executes a program. (Remember the shell itself
is just another program.)

The program which makes the exec call is thrown away and the new
program (a binary file) is loaded into memory and executed. The
same task id number is retained. If the exec is successful (i.e.
no errors such as the file not existing), there will be no return
to the calling program. The calling program is thrown away,
making it impossible to return. If, however, there is an error
in attempting to perform the "exec" function, the system will not
load the new program but will return an error status to the
calling program which is still intact. Thus a properly written
program will follow any "sys exec" call with error handling code.

The "exec" call requires two arguments: a pointer to the name of
the file to be executed and a pointer to a list of arguments to
be supplied to the new program. "exec's" format is:

sys exec,fname,arglist

The "fname" is the pointer to the filename. This filename is a
string of appropriate characters located somewhere in memory and
terminated by a zero byte. The "arglist" is the pointer to a
list of argument pointers. In other words, "arglist" is an
address at which we will find a list of pointers. This list of
pointers is consecutive 4-byte addresses or pointers to the
actual argument strings. The list is terminated by four bytes of
zero (which could be considered a pointer to zero). Each pointer
in the list is the address of the actual argument string also
terminated by a zero byte. When the exec function is complete,
the new program will have these arguments available in the exact
format previously described.

4-12 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Let's try an example of the use of exec. As you know the "1ls"
command can be run by typing the name and possible arguments on
the shell command line. The shell actually starts execution of
ls by performing an exec. As an exercise, let's write our own
program that executes the ls command automatically, always
providing an argument of "+ba". This will provide a long
directory with file sizes specified in bytes and which includes
all files. We will not specify any specific directory, so our
command will always perform the directory command on the current
directory. The filename to exec should be "/bin/ls," and there
will be two arguments, "1ls" and "+ba". We supply "1ls" as
argument zero because by convention argument number O is the
command name. Our program looks like this:

1ib sysdef
start sys exec,filen,args
*¥ This point is reached only if the exec fails. There
* would normally be error handling code here, but to keep
*¥ things simple, we will just terminate if an error.
* Note the DO register already has the error from exec.

sys term

*¥ strings and data

filen fece '/bin/1s',0

arg0 fce '1s',0

args fcc '+ba',0

args ds.1l argO0,argl!,0
end start

If we called this utility "1s-ba", after assembling we could
execute it by typing "ls-ba" as a command to the shell. Our
program would be loaded and executed by the shell, and it would
in turn load and execute the 1ls command with a "+ba" option.

Thuﬁ typing "ls-ba" would produce the same results as typing "ls
+ba™.

4404 Reference Manual @) 4-13

SECTION 4
Programmer's Guide

THE "FORK" AND "VFORK" SYSTEM CALLS

The "fork" and "vfork" system calls are used to spawn a new task,
and are the only way to create new tasks. They create a new

task which is almost identical to the old (the old task is still
around). This new task has the same memory and stack allocation,
same code in the memory space, same open files, pointers, etc.
Thus, immediately after a fork, there are essentially two
identical tasks or programs running on the system. Usually you
want the new task to do something different, so in most cases the
new task will immediately perform an "exec" call to load some
program from disk and execute it. This is the technique used by
the shell to start background jobs. When the shell sees a
command ending with an ampersand ("&"), instead of directly doing
an "exec" it does a fork to create a second shell. Now the newly
created shell will do an "exec" of the desired command, while the
0ld shell is still around to accept further commands.

The syntax of either fork command is simply:

sys fork -- or
sys vfork

The tricky part of the fork call is in how the two
almost-identical tasks know which is which. If the two tasks
have the same code, how can the new one do an exec while the o0ld
one does not? The answer is in the return from a fork call.
After the fork operation, execution will resume in each of the
two programs. The difference is in where that execution

resumes. In the new task, execution resumes in the instruction
immediately following the fork system call. The old task resumes
execution at a point two bytes past the system call. In this
manner, the same program can be run in two tasks via a fork and
yet do different things after the fork. Since the new task
resumes directly after the fork call and the o0ld task resumes two
bytes after the fork call, it is obvious that the first
instruction in the new task must be a short branch instruction
(which requires only two bytes). Note that the new task's id is
made available to the old task by supplying the id in the DO
register upon return from the fork. 'If an error occurs when
attempting a fork, the new task will not be created, and an error
status will be returned to the old task (still two bytes past the
fork system call).

The following section of code will help illustrate the fork:

sys fork spawn new task

4-14 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

* new task begins execution here
bra.s newtsk branch to code for new task

¥ o0ld task resumes execution here

bes frkerr check and branch if error
move.l d0,d1 save new task's id

prwait 8ys wait wait for child task
cmp.l do,d1 right one?
bne.s prwait wait some more if not

continue code for old task

sys term

newtsk sys exec,name,args new task probably

does exec

bra excerr branch if error in exec

In this example, the "wait" system call at "prwait" makes the old
task wait for the new one (it's child) to finish before
continuing. Note that the "wait" system call returns the
terminated task's id in the DO register.

4404 FILE HANDLING

This topic describes the manipulation of files, terminals,
directories, printers, and other devices on the 4404.

GENERAL FILE DEFINITIONS

Before delving into the actual manipulation of files on the 4404,
we need to define and describe some of their characteristics.

Device Independent I/0

Under the 4404 operating system, anything outside the program's
memory to which the program can write or from which it can read,
is treated the same. A file on disk, a terminal, a pipe, and a
printer spooler are treated the same way. This concept, termed
"device independent I/O" means you can develop a program that
sends its output to a terminal, and that same program, without
change, will also be able to output to a disk file, printer
spooler, pipe, or any other device on the system. This feature
lends a great amount of versatility to the system and makes
program development and updating much smoother.

4404 Reference Manual @ 4-15

SECTION 4
Programmer's Guide

This device independence is made possible by device driver
routines -- the system routines that take care of the specifics
of the device for which they are written, creating a standard
interface to the device. There is a routine to open the device
and one to close it. These permit the system to do anything
necessary to prepare the device for reading and writing and to
finalize anything necessary when all I/0 is complete. The two
most important device driver routines are the "read" and "write"
routines, which permit the caller to read or write data from the
device.

File Descriptors

A file descriptor informs the system which file to operate

on. (We use the term "file", but because of device independence,
the file descriptor can refer to a disk file, terminal, pipe, or
any other device). The file descriptor is a four-byte numeric
representation of a specific file or device. This number is
assigned to the file by the system when that file is opened or
created. The operating system then keeps track of the file
descriptors and the files to which they are assigned. In this
way, the user supplys a number instead of an entire file name
each time the file is to be referenced.

For example, the "read" system call requires a file descriptor
value in the DO register before making the call. 1In general use,
we would have saved the file descriptor number of the file we
wish to read when it was opened. Now, to do the read, we need
only load the DO register with that number.

File descriptor numbers begin with O and extend up to the maximum
possible number of open files on the system. This maximum will
vary depending on the system configuration, but generally will be
around 12-25.

Standard Input and Output

When the shell begins execution of a task, it automatically
assigns input and output files to that task. Generally the input
file is the user's keyboard, and the output file is the user's
display. 1In fact, when a task begins execution, it can always
count on three input/output files being already opened, assigned
a file descriptor, and ready for reading or writing: "standard
input," "standard output," and "standard error output." Standard
input is an open file ready for reading and is always assigned a
file descriptor of O. Generally the standard input file is the
4404 keyboard. Standard output is an open file ready for writing
to and is always assigned a file descriptor of 1. Generally the
standard output file is the 4404 display. Standard error output
is an open file ready for writing to and is always assigned a

4-16 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

file descriptor of 2. This output file is reserved for reporting
error messages. It is almost always the 4404 display.

Because these standard input and output files are already opened
and assigned a file descriptor, the user program does not have to
perform any "apen" or "create" calls in order to perform I/0
activities on them. As soon as a task begins running, it can
perform a read with a file descriptor of O (standard input) or
write with a file descriptor of 1 or 2 (standard output and error
output).

Standard input and output can be "redirected" without any change
to the program. In other words, a program which outputs some
message to the user's terminal can also output the message to a
disk file without any modifications. This I/0 redirection is
accomplished from the shell by use of the "<" and ">" operators
(redirected input and output, respectively). If the shell
desires, it can provide a standard input or output file to the
program which is different from the user's terminal. The user
program need not be concerned with what the standard input or
output is pointing to. Because of device independence and the
fact that the program knows that the file or device (whatever it
may be) has been previously opened, the program simply performs
the I/0 and doesn't care where it's going.

OPENING, CLOSING, AND CREATING FILES

Before a file or device can be read from or written to, it must
be opened. When a program has completed all its input and output
to a file, it should generally close that file. A user program
may also need the ability to create new files on the system.

This topic addresses those operations in detail.

The "open" System Call
The format of an "open" system call is:

sys open,fname,mode
The "fname" is a pointer to a zero-terminated string containing
the name of the file to be opened. The "mode" is a number (0, 1,
or 2) which sets the read/write mode. If O, the file is opened
for reading only. If 1, the file is opened for writing only. If
2, the file is opened for both reading and writing.
On return from the open call, register DO will contain the 4-Dbyte

file descriptor number assigned to that file. All future
references to the file will be made via this file descriptor.

4404 Reference Manual @ 4-17

SECTION 4
Programmer's Guide

An error will be returned from this call if the file to be opened
does not exist, if the task opening the file does not have proper
permissions, if too many files are already opened, or if the
directory path leading to the file cannot be searched.

The "close" System Call

When a task terminates, the operating system automatically closes
any files that remain open. It is wise, however, to manually
close files within a program whenever possible. There are two
reasons for doing so. TFirst, since the system has a finite
number of files which may be open at one time, closing a file
will free up a slot in which another file may be opened. Second,
in case of a system crash, you will be better off having closed
any files which no longer require I/0. The "close" system call
is performed by loading register DO with the file descriptor of
the file you wish to close, then performing a "sys close".

The "create" System Call

The "create" system call is used to create disk files. Other
system calls are used to create directories, pipes, devices, etc.
The format of create is:

sys create,fname,perm

Once again, "fname" is a pointer to a zero-terminated string
containing the name of the file t0 create. The file will be
created in the default directory unless a directory is explicitly
specified in the file name. The "perm" is a value which permits
the user to set the desired permissions on the new file. (Refer
to Section 7, System Calls for details of setting these
permissions.)

Note that if the file already exists in the specified directory,
it will be truncated to zero length (all existing data deleted).
In addition, the original permissions will be retained regardless
of the "perm" value supplied to the create call. In other words
if the file "fname" already exists, the "perm" parameter on the
create call will be ignored.

If the file does not exist, permission setting will be subject to
any default permission settings the file owner has previously
specified. The "perm" parameter in the "create" call allows you
to deny permissions which the default permissions grant, but does
not let you grant permissions that the default permissions deny.
You can think of this as a logical AND of the "perm" parameter and
the default permission byte.

4-18 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Every task has associated with it a default permissions byte. If
that task attempts to create any new tasks, the new tasks are
created with at least those default permissions. As we saw
above, additional permissions may be denied by the "perm" value
specified to a "create" call. Additionally, the new task is
started with the same default permission byte (for creating more
tasks) as it's parent. In normal use, a user may set the default
permissions in his copy of the shell upon first logging on. If
the default permissions are not changed by the user or any task
he runs, any files the user creates will have those default
permissions. (Note that the user can change default permissions
with the "dperm" command and for a task to change its own default
permissions with the "defacc" system call.

READING AND WRITING

Perhaps the most heavily used system calls are "read" and
"write." It is by these functions that a program communicates
with the user, disk files, printers, other tasks, and anything
else in the outside world. Reading and writing permits great
versatility in how files are accessed. For example, with a disk
file, the user can begin at any particular point in the file
(right down to a specific character) and read or write as many
characters as desired from that point. This makes both
sequential and random access of the files quite simple.

The "read" and "write" system calls assume a "file position
pointer" has already been set. This is a pointer which the
system maintains to show the current position for reading and
writing in a file. The discussion on "seeking," later in this
section, shows how it can be set. The only parameters required,
then, are the file descriptor to specify which file, the count of
characters to be read or written, and a memory buffer address to
read into or write from.

The "read" System Call

To execute a "read" call, the programmer must first load register
DO with the file descriptor number. Then he or she makes the
"read" call with the following syntax:

sys read,buffer,count

4404 Reference Manual @ 4-19

SECTION 4
Programmer's Guide

The "buffer" parameter is an address in the user program's
memory. It specifies where the data read from the file should be
placed in memory. The "count" is the maximum number of
characters the programmer wants the system to read. We say
maximum because, depending on the situation, the system may not
actually read as many characters as requested. Upon return from
the read system call, register DO contains the number of bytes
that was actually read.

When dealing with a regular disk file, the system will always
read "count" bytes if possible. There are only two reasons that
the system would read less than that number from a regular disk
file: a physical I/0 error occurs, or the specified count forces
the system to attempt to read past the end of the file. For
example, if a file has only 120 characters and a "read" call is
issued with a "count" parameter of 256, the read will take place
and return with no error, but will show that only 120 characters
were actually read. After this call the file position pointer
will be left pointing at the end of the file. Any subsequent
read call will return with no error, but with the number of bytes
read equal to zero. This is in fact how a user program should
detect an "end of file" condition: a return from a read system
call with no error but with the actual number of characters read
being zero.

Reading and writing to terminals is handled with the same systenm
calls as when reading and writing disk files. There is a
difference in the result of a read call, however, in that if the
file being read is a terminal, only one line will be returned at
most. By one line we mean all the characters typed since the
last carriage return, terminated by a carriage return. Thus,
even though we execute a call with a desired "count" of 1024
characters to be read, if the user at the terminal types the
letters "halt" followed by a carriage return, the read call would
return with an actual-bytes-read count of only five. If the user
has not typed anything when the call is issued, the calling
program must wait until something is typed.

As with regular disk files, it is possible to detect an "end of
file" condition from a terminal by performing a "read" and
receiving no error and no characters. An "end of file" condition
from a terminal is produced by typing a Control-D. Note that the
Control-D character itself is not actually passed on to the
operating system, only the "end of file" condition.

4-20 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

As an example of the use of the read call, let's examine a
section of code that attempts to read 1024 bytes of data, placing
them in a buffer called "buffer". We assume the file has already
been opened for reading and the file descriptor is stored at
"fdsave".

move.l fdsave,dO get file descriptor
sys read,buffer,1024 read 1024 bytes into
buffer

bes.1 rderr branch if error

tst.1l do end-of-file-condition?

beq.1l endof special handling if so

add.l #vuffer,do point to end of data

move.l dO,bufend save buffer end pointer
buffer ds.b 1024

Upon return from the "read" system call, we first check for a
returned error status. If an error occurred, we assume the
program handles it properly at "rderr". If no error, we check
for an "end of file" condition. Recall that an "end of file"
condition is recognized by a program as zero characters read when
there was no error. If we are at the end of the file, the
program jumps to "endof," where we again assume that such a
condition is properly handled. If we did not receive an error
and were not at the end of the file, our program calculates a
pointer to one past the last byte read into the buffer and stores
that pointer at "bufend". Normally this pointer should be
"buffer+1024", but if the read call returned less than 1024 bytes
it would be lower.

The "write" System Call

The "write" function is executed by

first loading register DO with the file descriptor number and
then issuing the "write" call:

sys write,buffer,count

4404 Reference Manual

®

4-21

SECTION 4
Programmer's Guide

The "buffer" parameter is the address of the location in the user
program's memory where the data to be written is located. The
"count" is the number of characters to be written to the file.
Upon return from the "write" system call, the DO register will
contain the actual byte count written (if there is no error). It
is not necessary to compare this value to the requested count to
be written because if there was no error, you can be sure the
entire write function took place properly.

Let's look at a complete program to send the message "Hello
there!" to the standard output file. If there is an error in
writing to that file, we will then send the message "Error
writing standard output." to the standard error output file.
(Recall that the standard output is assigned file descriptor
number 1 and standard error output is assigned file descriptor
number 2.)

1ib sysdef include system definitions

*¥ start of main program

sayhi move.l #1,40 write to standard. output
sys write,hello,hlng send message
bec.s done exit if no error
move.l d0,-(a7) else, save error number
move.l #2,d0 write to std. error output
sys write,erm,elng send error message
move.l (a7)+,d0 restore error number
bra.s done?

done move.l #0,d0

done?2 sys term terminate program

* strings

hello fce 'Hello there!',$d,0

hlng equ *¥~hello compute length of string

erm fee '"Error writing standard output.',$d,0

elng equ ¥—erm compute length of string
end sayhi give starting address

There is no "open" system call because we know that the standard
output and standard error output files are already opened and
ready for writing when the program begins execution. Note the
convenient method of providing the count of characters to be
written. Also note that we did not look for an error after the
system call to write to the standard error output. We really
have no good recourse if an error does occur while reporting an
error, so we simply terminate.

4-22 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Efficiency in Reading and Writing

There are several things a system programmer can do to achieve
efficient reading and writing of files on the 4404. The first
and most obvious of these is to read or write as much of a disk’
file as possible with a single call. There is much less system
overhead in executing one call to read 4096 characters than in
executing 32 calls to read 128 characters each. The most
efficient reads and writes are those made in multiples of 512
bytes. This is, of course, due to the fact that the 4404 disk
block size is 512 bytes. Due to the way memory mapping works,
additional efficiency can be gained by placing all read and write
buffers on 512 byte address boundaries in memory.

By all means do not perform single character I/0 with system
calls for each character. If single-character I/0 is required,
the user program should handle the necessary buffering so that
system calls are made only on a buffer full of characters.

SEEKING

For each open disk file, the operating system maintains a pointer
that indicates the current position for reading or writing in
that file. This pointer can point to any place in the file,
right down to any specific character position. The user does not
have direct access to this pointer, but use the "seek" system
call position it to any desired spot in a file. The format of
the seek call is:

sys seek,offset,type

Before making a system call to "seek", the user must load the
desired file descriptor in register DO. Seeks are done on a
relative basis. That is, a seek amount is supplied to the call
and the seek is to be that amount relative to some reference

point. (This reference point is the "type" parameter shown
above.)

There are three possible reference points: the beginning of the
file, the current position in the file, and the end of the file.
The "type" value should be as follows:

type starting position or reference point
0 beginning of the file

1 carrent position in file

2 end of the file

4404 Reference Manual @ 4-23

SECTION 4
Programmer's Guide

The argument "offset" is a four-byte 2's complement offset that
represents the amount of offset to be added to the reference
point to find the new position in the file. A positive number
indicates forward in the file; a negative number indicates
backward into the file. On return from the "seek" call, the new
current position is left in register DO. This is the current
position relative to the start of the file. To find the current
position in a file, you could use a system call of "sys
seek,0,1", finding the result in DO.

As an example, let's construct a simple random access routine.
Assume we have a data file with fixed-length records of 256
characters per record. We know we will never have more than
32000 records in our file, so the record number can be
represented in 16 bits. We want to write a subroutine that will
read the record specified by the record number in register a0 and
leave the data at the location specified by the AO register. The
basic procedure will be to find the starting position of the
desired record in the file by multiplying the record number by
the record size of 256. Then we seek to that position and read
256 bytes. Our routine looks like this:

4-24 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

getrec move.l a0,iread+2 save address for read
ext.l do make record number long
1sl.1 #8,40 record*256 is offset

¥ gseek to record

move.l d0, iseek+2 set seek address parameter
move.l fd4,d0 assume file descriptor at fd
sys ind,iseek indirect call to seek

bes.1 skerr branch if error

* file pointer positioned, now read record

move.l fd,d0 get file descriptor

sys ind,iread indirect call to read

bes.1l rderr branch if error

ris all finished

iseek dc.w seek seek function

code

de.l 0 seek address (unknown)

de.l 0 type O: position from begin
iread de.w read read function code

dc.1 0 buffer location (unknown)

de.1l 256 character count to read

Notice that we used indirect calls to "seek" and "read," because
at assembly time we do not know what address we will need to seek
nor where in memory to place the data we read. By using indirect
calls, we can set aside an area of memory (at "iseek" and

"iread") where these values can be stored as the program
executes.

FILE STATUS INFORMATION

The "status" and "ofstat" calls are used to obtain information
about each file or device. "ofstat" is used to obtain
information about a previously opened file while "status" obtains
information from an unopened file. The format for ofstat is:

<file descriptor in DO>
sys ofstat,buffer

The user must load register DO with the file descriptor of the
previously opened file.

4404 Reference Manual

®

4-25

SECTION 4
Programmer's Guide

The format for status is:
sys status,fname,buffer

With "status", the file is specified by providing the "fname"
parameter, which is a pointer to a zero-terminated string
containing the desired file name. In both commands the "buffer"
parameter is a pointer to a buffer in memory or an area of memory
into which the information about the file can be placed. This
buffer must be at least 22 bytes long. When the "status" or
"ofstat" call is completed, this buffer will contain all the
information available for the file in the format described below.

Assuming the buffer begins at some location called "buf", the
information in the buffer is as follows:

Name Location Pield Size Information in Field

st _dev buf 2 device number

st_fdn buf+2 2 fdn number st fil

buf+4 1 spare (for word alignment)

st_mod buf+5
st_prm buf+6
st_cnt buf+7
st_own buf+8
st_siz buf+10
st_mtm buf+14
st_spr buf+18

file mode

permission bits

link count

file owner's user id

file size in bytes

time of last file modification
reserved for future use

N N e

The device number is a number assigned to the device on which the
file resides. The fdn number is the number of the "file
descriptor node" associated with the file. The file descriptor
node is a block of information about the file and where it
resides on the disk. It is from the fdn that "status" and
"ofstat" obtain their information.

The link count is the number of directory entries that are linked
to the fdn or actual file. More information on linking can be
found later in this section in the discussion titled "Directories
and Linking." The file owner's user id is a two-byte id that was
assigned to the user by the system manager when the user was
given a user name. The file size in bytes is the exact number of
characters in the file. The time of last modification is the
internal representation of the last time the file was written to.

4-26 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

The file mode and permission bytes each hold several bits of
information. This is done by assigning single bits within the

. file mode to particular file types and within the permission byte
to the various possible permission types. The state of the
particular bit (O or 1) indicates which type of file mode or
whether permission is given or denied. The file mode looks like
this:

file mode (st mod):

_________ block device
_____________ character device
_________________ directory

Notice that only three bits are used in this byte. Only one of
the three bits should be set at a time and it indicates the file
type. If the file is a regular disk file, none of the bits will
be set. A block device is a device such as a disk drive which
handles data in 512 byte blocks. A character device is one such
as the sound device (/dev/sound) that handles data single
character at a time.

The permissions byte shows what permissions are granted or denied
for the file. 1Its format is as follows:

permissions (st _prm):

e 2 e i i e i e o . . o — . —— —— —— ——— —— — —— o

| |

{ !

! H—— owner read permission
. owner write permission
_____________ owner execute permission
_________________ others read permission
_____________________ others write permission
_________________________ others execute permission
_____________________________ user id bit for execute

In this byte, any or all of the permission bits may be set at one

time. If a bit is set, that type of permission is granted. If
cleared, permission is denied.

4404 Reference Manual @ 4-27

SECTION 4
Programmer's Guide

The "user id" permission bit requires further clarification. If
this bit is set, it gives the user of a file the same permissions
as the owner while that file is executing. As an example of the
usefulness of this feature, consider a user, "joe", who has a
database program which manipulates a large data file. Now "joe"
does not want anybody on the system to be able to directly read
or write his data file, so he denies read and write permissions
on that file to others. (Of course, he grants read and write
permissions for himself.) ZEven though he does not want anyone to
be able to read and write his data file directly, "joe" would
like for other users to be able to run his database progranm,
which manipulates the data file. All he need do is set the "user
id" permission bit in his database program. With the "user id"
bit set, anyone who runs the database program has the same
permissions as "joe," which allows them to manipulate the data
file while running the database program. As soon as the database
program is terminated, however, the other user no longer has the
permissions of "joe," the owner.

Another example of the use of the "user id" bit can be seen in
the "crdir" or "create directory" command. A directory is a
special type of file, and the only way to create a directory is
with the "crtsd" system call. That call may only be executed by
the system manager. Without the "user id" bit, the only person
who could use the "crdir" command (which contains a "crtsd"
system call) would be the system manager. The "crdir" program
has the "user id" bit set, however, so that anyone who runs it
temporarily has the same permissions as the owner. The owner of
"crdir" is the system manager; thus any user can create a
directory.

DIRECTORIES AND LINKING

A directory entry is nothing more than the name of a file and a
single pointer to the file descriptor node (fdn) for the file.
This fdn is a small unit on the disk; it contains various
information about a particular file. There is one and only one
fdn on a disk for each file which resides on the same disk. It
is possible, however, to have more than one directory entry point
to the same fdn. Two different users could have an entry in
their own directory which pointed to the same fdn and therefore
the same file. This feature is called a "1link" and you can see
it is possible to have many "links" to the same file.

4-28 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

A long directory listing (1ls +1) shows the number of directory
entries which point to or are linked to each file. This is
always "1" or greater; if it ever goes to zero no one is linked
to the file and it will be deleted. 1In fact when you "remove" a
file, the command merely removes that name from the directory.
This decrements the link count in the associated fdn. If that
count is still non-zero, someone else is linked to the file and
it is not deleted from the disk. If the count does go to zero,
no one else is linked to the file and it is deleted.

An example of linking can be seen in every directory on a 4404
disk. Recall that there are two entries, "." and "..," in each
directory. (They don't appear in a "1ls" listing unless you use
the "+a" option.) The "." entry represents the directory in
which that entry is found; ".." represents the parent directory
of the directory in which it is found. Thus typing "." as a
directory name is equivalent to typing the entire path name for
the current directory. Typing ".." is equivalent to typing the
path name for the parent directory of the current directory.
These directory entries are not separate files, but are links to
the current directory file and the parent of the current
directory. That is why you see a link count of more than one for
every directory on the system.

The "link" and "unlink" system calls allow the programmer to link
to files and unlink from files, respectively. The "link"
function is quite straightforward: one specifies a pointer to the
name of the file to be linked to, and a pointer to the new name
that will be put into the directory. The "unlink" call is
equally straightforward: the programmer simply provides a pointer
to the filename or directory entry to be unlinked. This "unlink"
call is the method of deleting files, the "remove" command calls
on the "unlink" function to perform the file deletion. Note that
a file is not deleted by an "unlink" call unless the call removes
the last 1link to the file.

If a file is open when an "unlink" call is made, the link is
removed, but the file will not be deleted or closed by the
operation. The user can still read or write to the file as long
as it is left open. The 4404 operating system waits until the
file is actually closed and then checks the link count to see if
it should be deleted from the disk. This creates interesting
possibilities for a program. A file can be opened and then
immediately unlinked. As long as the program leaves that file
open, it can read from it or write to it. When the program is
finished with the file, it has only to close it. If no one else
is linked to the file, it will be immediately deleted.

4404 Reference Manual @ 4-29

SECTION 4
Programmer's Guide

OTHER SYSTEM FUNCTIONS

This discussion describes several features and functions
available to the system programmer that are somewhat specialized.
Specific calling formats and parameters will not always be given;
for this refer to Section 7, System Calls.

THE "BREAK" FUNCTION

Earlier, we learned that when a task is started, it is allocated
text, data, and stack memory according to the program size. It
is possible for a running task to change the amount of memory
allocated to it's data or stack spaces. It is also possible to
relinquish allocated memory back to the system, that is to
deallocate data or stack memory. The means of performing this
dynamic memory or stack allocation and deallocation are the
"break" and "stack" commands. An address is supplied to break
and the system attempts to allocate memory to be sure there is
RAM up through the specified address. Memory is allocated in
sections, so depending on the address specified there may be some
memory beyond the address. If an address is specified which
falls below the amount of program memory already allocated, that
memory is relinquished or returned back to the system.

THE "TTYSET" AND "TTYGET" FUNCTIONS

The 4404's "ttyset" and "ttyget" functions provide a way to alter
and examine several configuration parameters of devices. (The
communications port and console devices differ slightly in
format.) These parameters include such things as the line-cancel
character, the backspace character, adjustable delay after
carriage returns, mapping of upper to lower case, tab expansion,
etc. The configuration of all these parameters is represented in
six bytes of data. These six bytes can be read with the "ttyget"
system call to examine the current configurations, or can be set
with the "ttyset" system call to alter the current configuration.
A six-byte buffer must be established in memory to hold the
desired configurations for "ttyset" or to receive the current
configuration information for "ttyget." If we assume this buffer
begins at "ttbuf", the data has the following format:

Name Location Contents
tt_flg ttbhuf Flag byte
tt dly ttbuf+i (reserved)

tt cnc ttbuf+2 Line cancel character (default is Ctrl-U)
tt_bks ttbuf+3 Backspace character (default is Ctrl-H)
tt_spd ttbuf+4 Terminal speed

tt_spr ttbuf+5 Stop output byte

4-730 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

The Terminal Speed byte presently implements only one bit. It is
the high order bit (bit 7) and, if set, indicates that the
terminal has input characters waiting for the program. This bit
is meaningful only when read, i.e. the input-ready condition
cannot be set via this bit and "ttyset." The byte looks like
this:

Terminal Speed byte (tt_spd):

_________ anused
_____________ unused
_________________ unused
_____________________ anused
_________________________ unused
_____________________________ unused
_________________________________ input ready

Under normal input operations, the "Input Ready" bit is not set
until an entire line has been input and terminated by a carriage
return. There are special input modes which can be established,
however, where the "Input Ready" bit will be set as soon as a
single character is input. These are the "raw I/0 mode" and the
"single character input mode", and are described later in this
section. '

The Stop Output byte contains bits which control the stopping and
starting of output to terminals. There are two methods by which
a user can stop and start output to a terminal: the escape key
and XON/XOFF processing. The escape key method permits a user to
type an escape character (hex 1B) to stop output. A subsequent
escape character restarts the output. The XON/XOFF method
permits a user to type an XOFF character (hex 13) to stop output
and a subsequent XON character (hex 11) to restart it. Many
terminals produce XON and XOFF characters automatically to
prevent the computer from sending too many characters to the
terminal at once. The escape and XON/XOFF mechanisms can be
independently enabled or disabled by setting or clearing the
proper bits in the "tt spr" byte. The byte looks like this:

4404 Reference Manual @ 4-3%1

SECTION 4
Programmer's Guide

——— ———————— " — — " _—— = ——y—— o T — {—— -

———-—— unused

_________ unused

_____________ unused

_________________ anused

_____________________ unused
_________________________ any character restarts output
_____________________________ enable XON/XOFF for output
_________________________________ disable ESC for stopping output

When set, "Any Character Restarts Output" bit instructs the
terminal drivers to restart the output if it has been stopped by
either an escape or XOFF.

The eight bits of the Flag byte represent eight different modes
of operation for the terminal. When set, they imply that the
indicated mode is in operation. The format is as follows:

Flag byte (tt_flg):

_____ Raw I/0 mode

————————— Echo input characters
_____________ Expand tabs on output
_________________ Map upper/lower case
_____________________ Auto line feed
_________________________ Echo backspace echo char.
_____________________________ Single character input mode
_________________________________ Ignore control characters

The following paragraphs describe each of these modes.
Raw I/0 Mode

In "raw mode", the terminal drivers effectively do no special
processing of the input or output characters. Each and every
character typed on the terminal is directly input, including
backspace characters, line cancel characters, tab characters,
Ctrl-C characters, and so on. Similarly, every character output
to the terminal is output directly: no tab expansion is
performed, no line feeds are appended to carriage returns, etc.
In addition, the parity bit is not stripped on either input or
output.

4-32 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

In "raw mode," the executing program has complete control of
every character input or output and the program must perform any
special processing itself. Under raw mode a "read" system call
will not have to wait for an entire line to be input before it
can read characters. If there is a single character available,
the "read" call will return with just that character. It is
still possible for a single "read" call to read more than one
character, but only if the characters have already been typed
into the input buffer before the call is made.

Echo Input Characters

If this mode is enabled, each character typed on the terminal
will be echoed to the display device. In such a case, the
terminal should be operating in full-duplex. An example of this
mode occurs when a user logs in and is asked for his password.
The login program writes the "Password:" message and then turns
the "echo input characters"™ bit off while the password is
entered. In that way the password is not echoed to the screen.
This mode is on by default.

Expand Tabs on Output

If the terminal does not have hardware tab expansion, this bit
can be set to allow the terminal driver software to automatically
expand tabs on output. Tab stops are assumed to be at 8 column
intervals. In other words, if this bit is on, then each time a
horizontal tab character ($09) is output, the system will space
over to the next column which is a multiple of 8 (unless it is
already at such a column). This mode is on by default.

Map Upper/Lower Case

The 4404 assumes that the terminal has upper and lower case
capability and that the user will type most commands and input in
lower case. It is possible, however, to use an "upper case only"
terminal by instructing the terminal drivers to map all typed
input characters from upper to lower case and to map all output
characters from lower to upper case. This is done by turning on
the "Map Upper/Lower Case" bit in the ttyset flag byte. When
this mode is on, then mapping is done in both directions. By
default, this mode is off (assumes lower case capability). It is
auatomatically turned on, however, if a user logs in with upper
case characters for his name. 1In this way an "upper case only"
terminal can be connected to the 4404 without special
considerations.

4404 Reference Manual

®

4-33

SECTION 4
Programmer's Guide

Auto Line Feed

When this mode is on, the terminal drivers will automatically
output a line feed ($0A) after each carriage return is output.
This mode is on by default.

Echo Backspace Echo Character

If this mode is on and the backspace character is defined to be a
Ctrl-H ($08), the terminal drivers will echo the Ctrl-H, then
output a space, and then output another Ctrl-H. This will erase
the incorrect character for terminals which do not do so
automatically. This mode is on by default.

Single Character Input Mode

"Single Character Input Mode" allows a program to input one
character at a time without having to wait for a carriage return.
When not in the single character input mode, a call to read a
single character would have to wait until an entire line
terminated by a carriage return had been typed before it would
have access to a single character within the line. If single
character input mode is on, the program can read a character as
soon as it has been typed. Note that it is still possible to
read multiple characters while in the single character input
mode, if they are available. While in the single character input
mode, the parity bit is stripped off of input characters, but
only Ctrl-C, Ctrl-D, and Ctrl- are treated as special
characters. In other words, tabs, backspaces, and line cancels
are ignored and should be processed by the user's program if
desired. This mode is off by default.

Ignore Control Characters

When this mode is on, the system will ignores all control
characters except for the following:

Carriage Return

Horizontal Tab

Ctrli-C

Ctrl-D

Ctrl-

Backspace Character

(if defined to be a control character)
Line Cancel Character

(if defined to be a control character)

000000

o

Those control characters which are ignored will still be echoed
if the echo input characters mode is also on. This mode is off
by default.

4-34 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

PIPES

A pipe is a mechanism that permits.a task to communicate with
a child task.

A pipe allows communication in one direction only; it allows one
task to send information to another, but not to receive. If a
pair of tasks need two-way communication, two pipes must be
established; one to send from the first task to the second and
one to send from the second task to the first. Once the pipe is
established, the first task sends information to the second by
using the "write" system call, just as it would in writing to any
other device. The second task receives information from the
first by using the "read" system call. The file descriptor
numbers for these write and read operations are provided by the
system when the pipe is created.

The pipe mechanism works sort of like a holding tank with a valve
on the input and output lines. If the tank is not full, the
writing task can pump data into it even though the reading task
has the output valve closed (is not actively reading). Likewise,
if the tank is not empty, the reading task can drain information
out of it even though the writing task has the input valve closed
(is not currently writing). If the tank is full, the writing
task is forced to wait until the reading task has emptied it
before being permitted to pump in more data. If the tank is
empty, the reading task must wait until the writing task has
pumped in some data. This "holding tank" is a 4K disk buffer.
There is a buffer for each pipe, but none show up in any
directory. These pipe buffers are placed on the disk unit which
has been configured as the pipe device.

The following section of code establishes a pipe between a task
(A) and its child task (B). PFirst, Task A calls "crpipe" to
create the pipe. Next, we immediately fork to create Task B, and
then set up the file descriptors so that we will be writing from
task A to task B. The code would look something like this:

4404 Reference Manual @ 4-35

SECTION 4
Programmer's Guide

sys crpipe create pipe system call
bes.1 piperr branch if error

move.l do, rdfd save read file descriptor
move.l a0,wrtfd save write file descriptor
sys fork fork to spawn task B
bra.s child new task B here

bes.l frkerr task A checks for error
move.l dO0,tskBid save task id of child
move.l rdfd,do pipe read file descriptor
sys close close read (A only writes)

move.l wrtfd,pipefd save pipe write file descriptor
* now Task A can write to pipe using pipefd

s&é term end of task A

¥ code for Task B

child move.l wrtfd,do pipe write file descriptor
sys close close write (B only reads)
move.l rdfd,pipefd save pipe read file descriptor

*¥ now Task B can read from pipe using pipefd

Notice that each task closes the portion of the pipe that it
cannot use. As previously stated, a pipe allows data to be
transmitted in only one direction. After performing the fork,
both tasks have open read and write pipe files. Now it is
assumed that the writing task will eventually close the write
pipe file, and the reading task will eventually close the read
pipe file. However, we must be sure that the writing task closes
the read file and the reading task closes the write file. 1In
fact, these files should be closed as soon as possible, before
any reads or writes to the pipe are performed.

PROGRAM INTERRUPTS

Program interrupts provide a way to interrupt tasks under
software control. One program or task can send a program
interrupt to another task. This permits timing and
synchronization among the tasks in the system. It also gives the
programmer the ability to terminate tasks prematurely under
software control.

4-36 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Sending and Catching Program Interrupts

Here is an example of how a program sends an interrupt.

mé&e.l #327,40 get task number in DO
sys spint,SIGQUIT send quit interrupt
bes.1 error

Assuming the effective user id of the task executing the above
code matches that of task number %27 or that the above task is
owned by the system manager, a "quit" interrupt will be sent to
task %327. (We will define the quit interrupt and other
interrupts in a moment.) Notice the system call used to send
program interrupts is "spint". It is also possible for a program
to send an interrupt to all tasks associated with the terminal
which executed the program. Consult the "spint" description in
Section 7, System Calls for details.

The "cpint" (for "catch program interrupt") provides a way for a
task to "catch" or intercept a program interrupt when it is
received. The task may then permit the interrupt to complete its
default action (usually task termination), may ignore the
interrupt completely, or may take some special user-defined
action. ‘

In effect, "cpint" permits the user to set up an interrupt vector
address, so that if a program interrupt is received, control is
vectored to that address. The programmer may place a routine at
that address which handles the interrupt in some special way.

Two addresses, 3000000 and $000001, are special. If the address
specified for the caught interrupt is $000000, the default action
of the interrupt will be allowed to occur, much as if the
interrupt had not been caught at all. If the address specified
is $000001, the interrupt will be ignored, much as if the
interrupt had not even been sent. Note that no code is actually
placed at these addresses. The "cpint" function recognizes them
as special values and performs the indicated interrupt handling
without ever jumping to or using them as real addresses. Any
other address supplied to "cpint" is assumed to be a valid
program memory address, and control is passed to that location.
There, the programmer places the desired interrupt handling
routine; this routine must be exited with an RTR instruction, so
that control is resumed at the same point in the program where
the interrupt occurred.

4404 Reference Manual

®

4-37

SECTION 4
Programmer's Guide

Once a program interrupt has been caught and processed, the
system resets itself back to the default condition, and
interrupts are no longer intercepted. Therefore, to continue
catching program interrupts, the programmer must issue a new
"cpint" call after each interrupt is processed.

Table 4-1 shows the program interrupts that are available on the
4404.

4-38 e 4404 Reference Manual

SECTION 4
Programmer's Guide

Table 4-1

4404 PROGRAM INTERRUPTS

o ———————— T 0 — —— - ——— i 7 o . s W o —— —— A ——— ——— v ——— —— _——— ———— — " — ——— {—— — o~ o~ e > — e s —

| Name | Number | Description | Comments |
| SIGHUP b ! hangup interrupt | I
! SIGINT | 2 ! keyboard : |
{ ' | interrupt ! {
! SIGQUIT | 3 | quit interrupt | produces core dump }
| SIGEMT b4 | EMT $AXXX | produces core dump |
} } | emulation int. ! |
! SIGKILL | 5 ! task kill ! can't be caught/ignored |
} } | interrupt } |
| SIGPIPE | 6 ! write broken pipe | |
| | | . | |
i i i int.] t
SIGBUS	7 ! bus fault :		
SIGAIRM	10	alarm interrupt	
SIGTERM	11	task termination	
l l	interrupt !		
SIGTRAPV	12	TRAPV instruction	produces core dump l
SIGCHK P13	CHK instruction ! produces core dump }		
! SIGEMT2	14	EMT $PXXX	produces core dump !
I }	emulation int. !		
SIGTRAP1	15 ! TRAP #	produces core dump !	
{ !	instruction } f		
SIGTRAP2	16 I TRAP #2 ! produces core dump !		
! } ! instruction ' i
! SIGTRAP3 | 17 | TRAP #3% ! produces core dump !
! } | instruction ! i
4404 Reference Manual @ 4-%9

SECTION 4
Programmer's Guide

| SIGTRAP4 | 18 | TRAP #4 ! produces core dump '=
! ! ! instruction ! .
| SIGTRAP5 | 19 ! TRAP #5 | produces core dump i
I I ! instruction ! |
! SIGTRAP6 | 20 | TRAP #6 ! produces core dump l
! ! ! instruction l |
| SIGILL I 22 | illegal | produces core dump {
! ! ! instruction } !
| SIGDIV I 23 i divide by zero | produces core dump !
| SIGPRIV | 24 | privilege i produces core dump g
! { | violation | |
| SIGADDR | 25 | address error | produces core dump '
| SIGDEAD | 26 | dead child task ! ignored by default !
I | | interrupt ' I

SIGWRIT | 27 I write %o
! | read-only memory

| SIGBND I 29 | segmentation | produces core dump }
i ' | violation H I
| SIGUSR1 | 30 | user-defined ! }
{ ! | interrupt #1 | |
! SIGUSR2 | 31 ! user-defined ! i
5 | i interrupt #2 { !
i SIGUSR3 32 user-defined

i i
interrupt #3 ! }

— ————————— ————— = ———— —— " —————] —— — —]~ — — — — — T -~ - — ——— — — — —— — —— — ——— e

If not caught or ignored, all of these program interrupts (except
SIGDEAD) by default cause termination of the task to which they
are sent. As listed above, some also produce a "core dump". A
"core dump" is a disk file which contains a mirror image of the
contents of memory. ZEach byte in the program and stack space are
written to a disk file immediately after receipt of the
interrupt. This file can be examined to determine the state of
memory at the time the interrupt was received. This is often
useful for diagnostic purposes.

4-40 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Many of the interrupts are initiated by 68010 exception
processing. The cause of those interrupts can be understood by
studying the documentation of the 68010 microprocessor. Certain
interrupts in the list are not directly initiated by the 68010
and ‘need further definition.

10.

1.

14.

Hangup Interrupt: Generated by the operating system when a
terminal driver loses the carrier that it had previously
established for modem operation. This interrupt causes the
user associated with the terminal to be automatically logged
off. Certain programs (such as the editor and BASICX
intercept this interrupt and take proper actions to save
current files before logging off.

Keyboard Interrupt: Generated by typing a Ctrl-C on the
terminal. This interrupt terminates the foreground task of
the associated terminal.

Quit Interrupt: Generated by typing a Ctrl-Backslash on the
terminal. This interrupt is just like the Keyboard
Interrupt except that it additionally produces a core dump.

EMT $AXXX Emulation Interrupt: Generated by the 68010 when
an instruction with the pattern 1010 in bits 15 through 12
is encountered.

Task Kill Interrupt: Always kills the task to which it is
sent. A task may not catch or ignore this interrupt.

. Write Broken Pipe Interrupt: Generated when a pipe between

two tasks is broken. This occurs when the reader is closed
and the writer attempts further writing.

Alarm Interrupt: Generated by the "alarm" system call after
the specified number of seconds. Unless caught or ignored,
this interrupt will terminate the task.

Task Termination Interrupt: This interrupt is the normal
means of interrupting and terminating a task. Unlike the
Task Kill Interrupt, the Task Termination Interrupt may be
caught or ignored.

EMT $FXXX Emulation Interrupt: Generated by the 68010 when
an instruction with the pattern 1111 in bits 15 through 12
is encountered.

4404 Reference Manual @ 4-41

SECTION 4
Programmer's Guide

26. Dead Child Task Interrupt: When a task terminates, it sends
an interrupt to its parent task, informing the parent that
the child has terminated. This interrupt is ignored by
default--it must be explicitly caught by the parent in order
to function. At the time of this writing, the Dead Child
Task Interrupt is not implemented.

27. Write to Read-Only Memory: An attempt was made to write to a
section of memory which has been reserved as Read-Only by
the memory management systen.

29. Segmentation Violation: An attempt was made to access memory
which is outside the address space allotted to a task.

30-32. User-Defined Interrupts: These interrupts are additional
interrupts which a user program or set of programs may
issue and catch for whatever purpose they wish.

On return from a "cpint" call, register DO contains an address.
This address is the address which the system was using on receipt
of program interrupts. In other words, it is the address which
was provided in the previous "cpint" call. This old address can
be used to tell what kind of action a program was taking on
receipt of program interrupts before the current "cpint" call.
For example, assume we have a program that is ignoring quit
interrupts. If we now issue the instruction:

sys cpint,SIGQUIT,O

(which says to take the default action on receipt of a quit
interrupt{ we would find "1" returned in the DO register. That 1
is the address which was previously being used, and we know that
an address of 1 says to ignore the interrupt.

Knowing what type of program interrupt action is currently being
taken can be very useful in the case where one task starts
another. If one task is ignoring some particular interrupt and
that task starts some new task running, the new task should
usually also ignore the interrupt. Assume we Program A starts
Program B by doing a "fork"™ and "exec". Also assume Program B
normally wishes to catch keyboard interrupts (Ctrl-Cs) and
process them in a special way. Program B should be written to
first check how Program A was handling keyboard interrupts. If
Program A was not intercepting keyboard interrupts or was
catching them, Program B may go ahead and catch them and process
them as desired. If, however, Program A was ignoring keyboard
interrupts, then Program B should also ignore them. The code for
Program B to handle all this properly would be:

4-42 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

sys cpint,SIGINT,1 Start by ignoring
cmp.l #1,d0 Was program A ignoring?
beq contin If so, then so should we
sys cpint,SIGINT,handle If not, catch it

contin .

Note that by ignoring the keyboard interrupt while checking what
Program A was doing, we avoid a potential chance for a keyboard
interrupt to come through and be improperly handled.

As an example of program interrupt catching, let's examine a
portion of code that would put a program to sleep for 30 seconds.
The technique will be to send an alarm interrupt with the "alarm"
system call, then put the task to sleep with the "stop" systenm
call. In order to catch the "alarm" interrupt and continue
properly in our program, we will use the "cpint" system call.

sys cpint,SIGALRM,wake catch alarm & goto wake
move.l #30,4d0 delay 30 seconds

sys alarm

sys stop wait for alarm interrupt

continue with program

wake rtr do nothing with interrupt

The "cpint" system call tells the task to catch any alarm

interrupts and handle them as specified by the code at "wake".
In this example the code at "wake" does absolutely nothing but
retarn. That is because when the alarm is received we want to

simply continue execution of the program where we left off (just
after the "stop" system call).

4404 Reference Manual @ 4-47%

SECTION 4
Programmer's Guide

Interrupted System Calls

Most system calls cannot be interrupted by a program interrupt.
That is, once a system call is executing, it will finish
regardless of whether a program interrupt is pending. Once that
system call is completed, the user's program will then see any
waiting program interrupt. There are a few calls, however, which
may be terminated by a program interrupt. In particular, those
system calls which may be interrupted are "read" and "write" (if
the device being read or written is a slow device such as a
terminal or printer) and the "stop" and "wait" calls. A "read"
or "write" call to a fast device, such as a disk file, will never
be terminated by a program interrupt.

If a program interrupt does get through to one of the system
calls, the following action takes place. First, the system call
is immediately terminated, and control is passed to the program
interrupt handling code if the interrupt is being caught. Then,
when the interrupt handling code is complete, control is passed
to the instruction immediately following the interrupted system
call and an error status is returned. This error status is
accompanied by an "EINTR" error (number 27). In this way, the
program which made the system call can detect that it was
interrupted and re-issue the system call if desired.

As an example, consider a program which prompts the user for a
line of data from the terminal. If a program interrupt is sent
to that program while a "read" system call is getting the data
from the terminal, that call may be prematurely terminated; i.e.
not all the data may be returned. Once the program interrupt
handling code was complete, our program would continue right
after the "read" call, but would show an "EINTR" error. Our
program may choose to treat the EINTR error like any other and
terminate with an error message. An alternative , however, would
be to recognize that it was an EINTR error and loop back in our
code t0 re-issue the prompt and the “read™ system call to input
the data again.

LOCKING AND UNLOCKING RECORDS

The "lrec" and "urec" system calls provide a record locking
mechanism that prevents more than one task attempting to access a
file at one time. A program or task can "lock" a record of data
until such time as it is ready to "unlock" or release it for
others to use. While that record is locked, no other task would
be able to access ift.

4-44 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

The operating system maintains a table showing what records are
locked in the system. These records may be of any length, as
specified by the task which performs the lock. Note that a
single task may lock only one record in a file. However, other
tasks can lock other records in that same file, and a single task
can lock a record in more than one file at a time.

When a task issues an "lrec" call to lock some record within a
file, the system first checks the locked record table to see if
the calling task already has a record locked in this file. If
so, any such record is unlocked before the new record lock can be
made. Next, the system checks to see if the record to be locked
is available or if some other task may have previously locked
some portion of it. If available for locking, the system makes
an entry in the locked record table and returns to the calling
task. If the desired record overlaps some portion of an already
locked record, the system returns with an ELOCK error. At this
point, the calling program could take some appropriate action.

There are three ways for a task to unlock a record. The first is
through use of the "urec" system call, which unlocks whatever
record may have been locked by the calling task for the specified
file. The second is by closing a file. Upon closing, any
records locked by the task that opened the file are automatically
unlocked. The third is by locking another record in the same
file; this will automatically unlock any record which is
currently locked.

Having said this, we must back up and tell you that "locking" a
record does not really prevent another task from accessing it.
Any program that wishes to can still read or write the data which
some other program has locked in a record. 1In order for locking
to provide the desired results, all programs must take upon
themselves the responsibility of avoiding reading or writing to a
locked record. This may be accomplished by attempting to lock
records before reading or writing them. If the record is
available, no error is returned, and we can go ahead with the
read or write. If an error is returned (ELOCK error), we know
that someone else already has the record locked and we should
take some other action. One possibility is to put our task to
sleep for a few seconds (with the "alarm" and "stop" system
calls), and then try locking the record again. Proper use of the
lock and unlock calls will yield the same result as if locking
actually did prevent another task from reading or writing. Note
that locking and unlocking will not be necessary in all cases,
only in those where a data file is shared and conflicts can
occur.

4404 Reference Manual @ 4-45

SECTION 4
Programmer's Guide

SHARED TEXT PROGRAMS

The 4404 operating system lets you separate an assembly language
program into two sections, a "text" segment for nonchanging
memory or memory which will only be read, and a "data" segment
for memory which can be changed by writing into it. When a task
runs this program, a section of memory will be assigned to each
segment. If a second task runs the program at the same time, the
system will recognize the fact that it already has a copy of the
text segment in memory and will only load the data segment into
memory for the second task. The system will then map the same
memory that contains the text segment for the first task into the
address space for the second task when it runs. For more details
on how to produce a shared text type program, refer to Section 5,
The Assembler and Linking Loader.

GENERAL PROGRAMMING PRACTICES

This discussion covers several general programming practices that
are recommended when writing assembly language programs to run
on the 4404.

STARTING LOCATIONS

Assembly language programs should not have specific origin
addresses. Rather, the load addresses for the text and data
sections of a program (as well as the stack established by the
system) should be specified at load time. These addresses can be
explicitly specified to the loader, but should generally assume
the default values found in the file "/1ib/ std env". This file
contains the proper addresses for the hardware memory manager and
is automatically read by the linking-loader.

STACK CONSIDERATIONS

When a program begins execution, it is assigned a portion of
memory to contain the program stack. The cpu's system stack
pointer (register A7) is left pointing to some location within
this memory. The user's program should not write into locations
in memory higher than this initial stack pointer location. The

assed parameters which lie directly above the stack pointer
%higher in memory) may be read, but nothing should be written
above the initial stack pointer location.

4-46 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

HARDWARE INTERRUPTS AND TRAPS

In general, a user program need not perform any hardware
interrupt or trap handling. Some traps can be handled in the
same fashion as program interrupts by using the "cpint" system
call.

DELAYS

To maintain system efficiency, a user's program should not
contain delay routines which tie up the processor for long
periods of time. Because of task switching, a delay loop does
not provide accurate timing delays anyway. The preferred method
is to use the "alarm" system call followed by a "stop" system
call. The program must also then use the "cpint" system call to
catch the "alarm" interrupt and continue with the desired code.

SYSTEM "LIB" FILES PROVIDED

Several system library files are provided for the convenience of
the assembly language programmer. Located in the "/1lib"
directory, these files contain definitions for several system
related calls, tables, buffers, etc. The programmer may include
these definitions in his programs by simply using the "1lib"
instruction in the 68010 assembler. These files include:

sysdef System call definitions

sysdisplay " System display and event definitions
syserrors System error definitions

sysints Program interrupt definitions
sysstat Status and ofstat buffer layout
systim Time and ttime buffer layouts

systty Ttyget and ttyset buffer layout

An additional file is provided for use by the linking-loader. It
is called by the linking loader and should not be included in an
assembler program.

std _env Standard environment for linking-loader

4404 Reference Manual @ 4-47

SECTION 4
Programmer's Guide

GENERATING UNIQUE FILENAMES

Often, it is necessary for a program to generate a filename. A
typical example is when a program wishes to create a scratch file
of some sort. In a single-task environment, the program could
just use some name defined at assembly time. In a multi-task
environment, however, more caution is required. If the program
which generates the filename is run as more than one task
(background/foreground for example) there may well be conflicts
since each copy of the running program would be attempting to
create and manipulate the same file. The proper technique to
avoid this problem is to have the program include the current
task id as part of the filename. Since each executing copy of
the program has a different task id, they will each generate
different filenames. Use the "gtid" system call to obtain the
task id number, then convert it to ASCII and include it as part
of the filename.

DEBUGGING

Assembly language debugging on the 4404 is accomplished via the
"debug" command. This command provides tools such as memory
dumps, breakpointing, and single-stepping. Refer to Section 2,
User Commands and Utilities, for documentation on the "debug"
utility.

PROGRAMMING EXAMPLE

The following sample utility demonstrates several of the calls
and techniques in writing assembly language utilities on the
4404. This utility reads a file (or list of files) and strips
out all control characters except for carriage returns ($0d) and
horizontal tabs ($09). The syntax of the command line is as
follows:

strip [file] ...

The square brackets indicate that the file name specification is
optional. If no filename is supplied, "strip will read the
standard input. The three periods ("...") indicate that it is
possible to supply more than one file name. In such a case,
strip will read all the files in order and write the stripped
output to the standard output.

4-48 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Our basic task, then, is to read either a list of files or the
standard input, strip the necessary control characters, and write
the result to the standard output device. In order to handle any
size file(s), we shall read and write the data into a buffer. We
know that for efficiency, the buffer should be an even multiple
of 512 bytes, but how big a multiple? The code to implement this
utility will obviously be quite small, such that the program and
the buffer could easily fit in 4K of memory. Since this utility
will probably not be frequently used, we decided to 1limit the
program memory utilization to only 4K. We will make the
read/write buffer as large as possible within that 4K space,
while keeping it a multiple of 512 bytes.

The first step, after titling and describing the program, is to
include the system definitions with the "1ib" instruction on line
17. DNext we actually begin the code section of our program with
the "text" statement in line 2%. In line 27 we load the "a6"
register with a pointer to the list of filename arguments. The
list is null if no filename was specified. DNotice that we skip
eight bytes, four containing the argument count and four
containing argument O which is the name of the command itself.

Lines 28 through 31 check to see if a file or files were
specified on the command line. If so, the argument count (what
the system stack is pointing to) will be greater than 1 because
argument O (the command name) counts as one. If the argument
count is 1, no file was specified, so we must read the standard
input. The file descriptor for standard input is O, so that
value is saved in "ifd" and we Jjump ahead to process that input.
If a file was specified, we enter a loop to read through all
specified files.

In line 35 we obtain the pointer to the next file in the list and
store it at "opname". If that pointer is zero (a null pointer),
we have reached the end of the list, and we jump off to the exit
code at "done." If it is non-zero, it must be the address of a
filename string. Lines 40 through 42 open that file for read and
save the file descriptor in "ifd". Note that the open is done
via an indirect system call. This is necessary because when the
program is written, we do not know what filename to specify in an
open call. The pointer to the name of the file to be opened is
only discovered as we run the program. When we stored the
filename pointer at "opname" in line 35, we were actually storing
the filename pointer in the parameter 1list for the upcoming
indirect open system call.

4404 Reference Manual @ 4-49

SECTION 4
Programmer's Guide

In line 46 we call a subroutine named "strip" to read through the
file whose descriptor is in "ifd," strip out the control
characters, and write the result to standard output. Line 47
branches back to the top of the loop to look for another possible
input file. :

The "strip" subroutine is where the control characters are
actually stripped. In lines 67 through 69 we read "BUFSIZ"
characters into memory at "buffer." ILines 73 and 74 check for
end-of-file. If we were at the end of the file, we jump to
"strip9" and exit the subroutine. If not, we go on to lines 80
through 91, where the control characters are stripped from the
buffer. Note that after the control characters are stripped, the
resulting data is left in the same buffer. Because some
characters may have been stripped out, the location of the end of
the data in the buffer may be lower than before the stripping.

After the stripping, we fall into lines 96 through 101, where the
stripped data is written out to standard output. Lines 96 and 97
calculate the number of characters to write. It is equal to the
difference between the pointer to the end of the data in the
buffer and the pointer to the beginning of the buffer. The
result is stored in the parameters for an indirect write call.

In line 98 we obtain the file descriptor for the standard output
file. Lines 99 and 100 carry out the indirect write system call.
In 101 we jump back to the beginning of the subroutine to read in
another buffer of data.

Lines 113 through 134 contain the error handling code. If an
error occurs, we simply write an appropriate message to the
standard error output (file descriptor 2). The important thing
to note about this code is that we save the error status so that
it may be passed on to the "term" system call.

Lines 144 through 158 contain temporary storage and buffers.
First are the parameter lists for the indirect open and write
calls mentioned earlier. Line 153 reserves storage space for the
current input file descriptor. Lines 155 through 158 reserve the
read/write buffer. The buffer starts on a 512 byte boundary and
the end of the buffer is the end of the 4K memory page. Recall
that read/write efficiency is gained not only by a buffer size
which is a multiple of 512 bytes, but also by beginning the
buffer on a 512 byte boundary. Line 157 establishes the buffer
size by calculating the difference between the end of the 4K page
($1000§ and the beginning of the buffer. The "end" statement on
line 161 specifies the utility starting address in its operand
field.

4-50 @ 4404 Reference Manual

r\)—b—)
QUWOJOVJIUN O

O
—

N NN
B S V)

25
27

N
(o))

47
48
49
50
51
52
53

SECTION 4
Programmer's Guide

SAMPLE "STRIP" UTILITY

KRR A KK REKEEK KA EREE XN LR EEXXE XXX IR KX R EEEX XXX XX XXX XXX
Sample "strip" Utility

Copyright (c) 1984 by
Technical Systems Consultants, Inc.

Utility to strip all meaningless control characters from
input file and write stripped version to standard output.
¥ Accepts list of input files or defaults to standard input.
*¥ For the purpose of this utility, "meaningless control
* characters" are all characters with and ASCII value between
*
*x

* ok ok ok ok ok ok Kk

$00 and $1F inclusive except carriage return ($0D) and

horizontal tab ($09).
KKK IR KRR NERR LXK NEERREE KL LR EREXXXH XXX EXXXKAERRKRNX*

1ib sysdef read system definitions

EHEXEXKXLE LXK XXX XXX XXX XXX XX XXX XXAXXX

* start of main program
KHKEEK AU XXX KR K XXX X LKL EX XXX XX R XX XXXXX

text begin text segment

* start by seeing if any input files were specified

start lea 8(a7),ab set arg ptr past count & argO
cmp.1 #,(aT) file specified only if argent >1
bhi.s main? branch if filenames present
move. 1 #0,ifd else use standard input
bra.s maing go process std. input

* check to see if any more files specified

main2 move.1 (ab)+,opname get next argument in list
beq.s done branch if no more args

* open specified file for read
sys ind,iopen do indirect open call
bes.s opnerr branch if error
move.1 do,ifd save input file descriptor

* strip control characters from this file

main4 bsr.s strip subroutine to strip CTRLs
bra.s main?2 look for more files

¥ finished all input files, terminate task

done move.1 #0,40 show normal termination
sys term

4404 Reference Manual @ 4-51

SECTION 4
Programmer's Guide

54
55

56 KKK EEIXRE LXK KEEEEXXX IR XXX EXXX XXX XXX XXX

57

58

59 * subroutine to strip meaningless control characters
60 * from the file specified by file descriptor in "ifd¥
61 * and write result to standard output.

62

63

64

65 *begin by reading a buffer full

66 :

67 strip move.1 ifd,do get input file descriptor
68 sys read, buffer,BUFSIZ read buffer full
69 bes.s rderr branch if read error

70

71 * check for end of file (O characters read)

72

3 tst.1 do end of input file?

74 beq.s strip9 exit if so

75

76 * do actual stripping of control characters. This will

77 * be done in place in the buffer by collapsing the data
78 * as meaningless control characters are stripped.

79

80 move.1 #buffer,al point to source buffer

81 move.1 a0,al point a1l to destination buffer
82 bra.s stripb6 enter DBcc loop

83 strip4 move.b (a0)+,d1 get a character into 41

84 cmp.b $#1F,d1 a control character?

85 bhi.s stripb g0 keep character if not

86 cmp.b #30D, d1 a carriage return

87 beq.s stripb keep if so

88 cmp.b #$09,4d1 a tab?

89 bne.s stripb if not, don't keep

90 strip5 move.b a1,(atl)+ put char. in buffer

8; strip6 dbra dO,strip4 decrement count; loop if more

93 * finished stripping, al points to end of buffer of
94 * stripped data ready to be written

95

96 sub.1 #buffer,al find no. of chars to write
97 move.1 al,wrtcent store in parameters

98 move. ! #1,4d0 write to standard output
99 sy s ind,iwrite do indirect write

100 bes.s writerr branch if error

101 bra.s strip go read another section
102

103 strip9 rts exit routine

104

105

106

4-52 e 4404 Reference Manual

107
108

- O
OO

—_ e e ad e e
_h e A e e e e
W O~1 U NN —

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

4404 Reference Manual

SECTION 4
Programmer's Guide

FEEXXERER XXX EL XXX EEXXX XXX XXX XXX XXXKX

¥ error

opnerr

rderr

wrterr

err

opners
opnerl
rderrs
rderr1
wrters
wrter]

handling routines

move.1
move.1
sys
bra.s
move.1
move.1
sys
bra.s
move.1
move.i
sys

move.]
sys

fece
equ
fecc
equ
fce
equ

do,-(a7) save error status on stack
#2,d0 standard error output
write,opners,opneri

err

d0,-(a7) save error status on stack
#2,4d0 standard error output
write,rderrs,rderri

err

dao,~-(a7) save error status on stack
#2,40 standard error output
write,wrterr,wrtert

(a7)+,d0 pull error status from stack
term exit program

"Can't open input file.",$d4,0

*-opners
'Error reading input file.',$d,0
¥~rderrs
'Error writing output file.',$d,0
*-wrters

KEEXEKEEEEXXXXEXX XXX XXX EXXXX XX XXX XXXXXXXX

*¥ temporary storage and buffers

begin data segment

¥ indirect open system call parameters

data
iopen dc.w
opname dc.1
opmode dc.1
* indirect write
iwrite dc.w
wrtbuf dec.1
wrtent dc.1
ifd ds.1
ds.b
buffer equ
BUFSIZ equ
ds.b
end

open open function code

0 name of file to open

0 open mode 1 (reading)
system call parameters

write write function code

buffer buffer to write from

0 byte count to write

1 input file descriptor
512-24 reserve up to 512-byte boundary
* start on 512-byte boundary
$1000-512 multiple of 512 bytes
BUFSIZ reserve space for buffer
start

@ 4-53

Section 5

THE ASSEMBLER AND LINKING LOADER

INTRODUCTION

The 4404's assembler supports conditional assembly as well as
numerous other directives for convenient assembler control. The
assembler executes in two passes and can accept any size file so
long as sufficient memory is installed to contain the symbol
table. Output from the assembler is in the form of a relocatable
object file.

This section describes the operation and use of the Assembler and
Linking Loader. The Assembler accepts most of the Motorola
standard mnemonics for instructions, and fully supports the
68000/68010 instruction set. This section describes differences
between the Motorola standard for instructions and those
supported by the assembler.

This section is not intended to teach the reader assembly
language programming nor the full details of the 68000
instruction set. It assumes the user has a working knowledge of
assembly language programming and a manual describing the 68C00
instruction set and addressing modes in full.

Throughout this section angle brackets ("<" and ">"). are often
used to enclose the description of a particular item. The angle
brackets to show that it is a single item even though the
description may require several words. In addition, square
brackets ("[" and "]") are used to enclose an optional item.

Details of the instruction set, assembler syntax, and addressing
modes were obtained from "M68000 16/32-Bit Microprocessor

Programmer's Reference Manual", Copyright 1984 by Motorola
Incorporated.

INVOKING THE ASSEMBLER

Assembler text files must be standard text files with no line
numbers or control characters (except for carriage returns and
tabs). Once you have both the assembler and the edited source
file on a disk or disks which are inserted in a powered-up
system, you are ready to begin.

The Command Line

The minimum command line necessary to assemble a source file is:

++ asm sourcefile

4404 Reference Manual @ 5-1

SECTION 5
Assembler and Loader

When parameters are omitted, the assembler will assume default
parameters. Two types of output are available from the
assembler: object code output and assembled source listing
output. (The options regarding the assembled source listing
output will be described a little later.) Object code is written
into a operating system file. It is also possible to disable
production of the object code file. Since no specifications are
made concerning object code output in the above example, the
assembler will assume the default case, which is to produce an
object file. ©Since no name was specified, the object file will
assume the same name as the input source file specified but with
the characters ".r" appended. If there is not room to append
those two characters, the last one or two characters of the input
file name will be truncated to make room. In our above example,
the created binary file would be named "sourcefile.r". Should a
file exist with the same name, it will be automatically deleted
with no prompting.

If you wish to create an object file with another name, you may
do so by placing the desired file specification on the command
line as follows:

++ asm sourcefile +o=objectfile

The "+o=" is an option to the assembler which specifies that an
object file is being created with the specified name. This
example would produce an object file named "objectfile". Again,
if a file by that name already existed, it would be deleted to
permit creation of the new object file.

Multiple Input Source Files

The 4404 assembler is capable of accepting more than one file as
the source for assembly. If multiple input files are specified,
they are read in the calling order and assembled together to
produce a single output file. This permits the user to break
source programs down into more convenient size source files which
may then be assembled into one object file. As mentioned, the
files are read sequentially in the calling order with the last
line of source from the current file being followed immediately
by the first line of the ensuing file. All "end" statements in
the source are effectively ignored and the assembly is terminated
when the last line of the last source file is read.

There are two ways to specify multiple input files to the
assembler: by entering the name of each file and by a match list
in a file specification. Entering each filename would look like
this:

++ asm filel file2 file® file4

5-2 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Using a match list in the file specification we might have:
++ asm file[1-4]

In this example, the square brackets do not denote an optional
item, but rather are the method of specifying a list of match
characters. Both of the above examples would produce the same
result. Note that in these examples an object file would be
created by default and would be called "filetl.r" (the name is
taken from the first input file). As before, we can also specify
an object file name as follows:

++ asm file1 file2 file3 file4 +o=command
which would result in an object file called "command".
Specifying Assembly Options

Now we shall go one step further and add a set of single
character option flags which may be set on the command line as
follows:

++ asm sourcefile +options

The plus sign is required to separate the option(s) from the file
specification(s). 1In this example, the word "options" following
the plus sign represents a single character option flag or list
of character option flags which either enable or disable a
particular option or options. In all cases, they reverse the
sense of the particular option from its default sense. Any
number of options may be specified and they may be specified in
any order. There may not be spaces within the option list.

Following is a list and description of the available options:

+b Do not create a binary file on the disk, even if an
binary file name is specified. This is useful when
assembling a program to check for errors before the
final program is completed or when obtaining a printed
source listing.

+e Suppress end summary information. At the end of the
assembly, the assembler may report the size of the
segments and the total count of errors, warnings and
excessive jumps. Often the user does not wish to have
any output generated at all; the +e option will
suppress this summary information. If this is used
without selecting the +1 and +s options, then it is

®

4404 Reference Manual 5-3

SECTION 5

Assembler and Loader

5-4

+f

+F

+1

+L

+n

+S

+3

possible that no listing output will be generated.
However, if there are any errors reported in the
module, this summary information will not be
suppressed.

Disables the auto-fielding feature of the assembler
such that assembled output lines appear in the exact
form as found in the input file.

Enable debug or "fix" mode. There are two forms of
line comments. One begins with an asterisk (*) the
other with a semicolon (;), both in the first column of
the source line. If the comment begins with a
semicolon, the +F option will instruct the assembler to
ignore the semicolon and process the line as though the
semicolon never existed. The asterisk in the first
column of a source line will always denote a comment
regardless of the state of this option.

Produce the assembled listing output. If specified,
the assembler will output each line as it is assembled
in the second pass, honoring the 'lis' and 'nol'
options (see the 'opt' directive). Those lines
containing errors will always be printed, regardless of
whether or not this option is specified.

Produce a listing of the file during the first pass of
the assembler. The assembler prints unformatted lines
(exactly as read) to standard output.

Enables the printing of decimal line numbers on each
output line. These numbers are the consecutive number
of the line as read by the assembler. Error lines are
always output with the line number, regardless of the
state of this option.

Produce the symbol table output. If this option is
specified, the assembler will produce a sorted symbol
table at the end of an assembly. Note that the '1l'
option will not produce the symbol table output, just
the source listing. In the symbol table, global
symbols are preceded by an '*,' and other symbols by a
blank.

Limit each symbol to only eight characters internally.
Normally, the user can define and use symbols that
contain 63 unique characters. However, in some cases,
it may be necessary to limit the uniqueness of the
symbols to only eight characters.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

+1t Produce object code for the 68000 rather than the
68010. This option affects only the code generation
for the "Move from CCR" instruction. Normally the
assembler produces the 68010 version of this
instruction. If this option is specified, the
assembler produces the 68000 "Move from SR" instruction
(Privileged on the 68010), in its place.

+u Set all undefined symbols as external. In some cases
the user may wish to assemble a module that has some
undefined external symbols. The +u option will treat
all undefined references as external references. The
+a option should not substitute for the good
programming practice of listing all external symbols in
the operand field of the "extern" directive.

+0 file Allows specification of an output object file name
(in this example "file").

Order for Specifying Filenames, Options, and Parameters

Input filenames, options, and command line parameters can be
specified to the assembler in any order. The assembler scans the
input command line twice, once to pick out all options and
parameters (they all begin with a plus sign) and then again to
pick out all file specifications. Place order is significant
only when multiple input files are specified. They will be
assembled in the order entered on the calling line.

Sending Output to a Hardcopy Device
The assembler uses the facilities of the 4404's operating system
to send the assembled listing to a hardcopy device. The most
common means are to route the standard output to a file that may
later be spooled or to pipe the standard output to a spooler.
EXAMPLES:

++ asm test
Assembles a file called "test" and creates an binary file called
"test.r" in the same directory. No listing is output (except for
any lines with errors) and no symbol table is output.

++ asm test +1s

Same as before except that assembled listing is output to the
terminal, as is the symbol table.

4404 Reference Manual @ 5-5

SECTION 5
Assembler and Loader

++ asm test +o=/bin/test +1s

Assembles a file called "test" in the current directory and
produces an object file in the "bin" directory called "test".

The listing and symbol table are output to the terminal, and if a
file by the name of "test" already resides in the "bin"
directory, it will be automatically deleted before the assembly
starts.

++ asm /john/main +bnl

This command assembles the file "main" in John's directory but
does not produce a binary file. The assembled listing is output
with line numbers. No symbol table is printed.

++ asm file[1-4] +bln

This command assembles all files beginning with "file" and ending
with a 1, 2, 3, or 4. DNo binary or symbol table is output, and
line numbers are turned on.

++ asm +u dumper +nel

This command demonstrates the fact that the filenames, and

options can come in any desired order on the command line. The
file to be assembled is called "dumper". The assembled listing

is output with 1ine numbers. All undefined references will be
made external, no summary information will be output, and no symbol
table is produced.

ASSEMBLER OPERATION & SOURCE LINE COMPONENTS

The 4404 assembler is a two-pass assembler. In Pass One a
symbolic reference table is constructed and, in Pass Two the code
is actually assembled, and a listing and object code are produced
if requested. The source may be supplied in free format, as
described below. Each source line consists of the actual source
statement, terminated with a carriage return (OD hex). The
source nust be comprised of ASCII characters with their parity or
8th bit cleared to zero. Special meaning is attached to many of
these characters as will be described later. Control characters
($00 to $FF) other than the carriage return ($0D) and horizontal
tab ($09) should not be in the actual source statement part of
the line. Their inclusion in the source statement will produce
undefined results.

5-6 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Bach source line consists of up to four fields: Label, Opcode,
Operand, and Comment. With two exceptions, every line must have
an opcode while the other fields may or may not be optional.
These two exceptions are:

1. "Comment Lines" may be inserted anywhere in the source and
are ignored by the assembler during object code production.
Comment lines may be either of two types:

a. Any line beginning with an asterisk (hex 2A) or
semicolon (hex 3B) in column one.

b. A null line or a line containing only a carriage
return. While this line can contain no text, it is
still considered a comment line as it causes a space in
the output listing.

2. Lines which contain a label but no opcode or operand field.
SOURCE STATEMENT FIELDS

The following pages describe the four source statement fields and
their format specifications. The fields are free format which
means there may be any number of spaces separating each field.

In general, no spaces are allowed within a field.

Label or Symbol Field

This field may contain a symbolic label or name that is assigned
the instruction's address and may be called upon throughout the
source program.

1. Ordinary Labels

a. The label must begin in column 1 and must be unique.
Labels are optional. If the label is to be omitted,
the first character of the line must be a space.

b. A label may consist of letters (A-Z or a-z), numbers
(0-9), or an underscore (_ or 5F hex). Note that upper
and lower case letters are not considered equivalent.
Thus "ABC" is a different label from "Abc".

c. Every label must begin with a letter or underscore.

d. Labels may be of any length, but only the first 63
characters are significant.

e. The label field must be terminated by a space, tab, or
a return.

4404 Reference Manual @ 5-T7

SECTION 5

Assembler and ILoader

2.

Local labels

a.

Local labels follow many of the same rules as ordinary
labels. They must begin in column one and they must be
terminated by a space, tab or return.

. Local labels consist of a number from O to 99. These

numbers may be repeated as often as desired in the same
source module; they need not be in numerical order.
Note that the labels "OO"™ and "O", "O1" and ™", etc.,
are unique labels.

Local labels may be treated as ordinary labels;
however, they cannot be global or external. They may
not be used in the label field of an "equ" or "set"
directive.

Local labels are referenced by using the local label
number terminated with an 'f' for first forward
reference found or a for the first backward reference
found. A backward or forward reference can never refer
to the same line that it is found on. TFor example,

2 beq 2f "2f" => next occurrence of "2"
2 jsr xx both branches point here
2 bra 2b "2b" => previous occurrence of "2"

Local labels should be used primarily (but not
necessarily exclusively) for branching or jumping
around some sections of code. In most cases, branching
around a few lines of code does not warrant the use of
an ordinary label. When making a reference to a nearby
location in the program there is often no appropriate
name with much significance; therefore, programmers
have tended to use symbols like 11,12, etc. This can
lead to the danger of using the same label twice.

Local labels have freed the programmer from the
necessity of thinking of a symbolic name of a location.
Farthermore, local labels require less storage
internally and lookup is faster than with ordinary
labels. A maximum of 500 local labels may be used in
one module.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

Opcode Field

This field contains the opcode (mnemonic) or a pseudo-op. It
specifies the operation that is to be performed. The pseudo-ops
recognized by this assembler are described later in this section.

1. The opcode is made up of letters (A-Z or a-z). In this
field, upper and lower case may be used interchangeably.

2. This field must be terminated by a space or tab if there is
an operand or by a space, tab, or return if there is no
operand.

3. The opcode may have a length specification associated with
it. This length specification indicates whether the
operation is to take place on bytes, words, or long words.
The default is words. The specification consists of a
period followed by one of the letters "b", "w", "1", or "s".
Upper case letters are also permitted. The following
summarizes the specifications:

b or .B bytes (8-bits)

w or .W words (16-bits, the default)

1 or .IL 1long words (32-bits)

s or .S short specification (for branches)

Operand Field

The operand provides data or address information required by the
opcode. This field may or may not be required, depending on the
opcode. Operands are generally combinations of register
specifications and mathematical expressions. See the heading of
Expressions, later in this section for the rules for forming
valid expressions.

1. The operand field can contain no spaces or tabs.
2. This field is terminated with a space, tab, or return.
%. Any of several types of data may make up the operand:

register specifications, numeric constants, symbols, ASCII
literals.

4404 Reference Manual @ 5-9

SECTION 5
Assembler and Loader

Comment Field
The comment field may be used to insert comments on each line of
source. Comments are for the programmer's convenience only and
are ignored by the assembler.

1. The comment field is always optional.

2. This field must be preceded by a space or tab.

3. Comments may contain any characters from SPACE (hex 20)
through DELETE (hex 7F) and the tab character.

3. This field is terminated by a carriage return.
REGISTER SPECIFICATION
Many opcodes require that the operand following them specify one

or more registers. Both lower and upper case are allowed. The
following are possible register names:

DO-D7 Data Registers

AO-AT Address Registers

A7, SP Oystem stack pointer of the active system state

USP User stack pointer

CCR Condition Code Register (Part of SR)

SR Status Register

VBR Vector Base Register (68010)

SFC Source Function Code Register (68010)

DFC Destination Function Code Register (68010)
EXPRESSIONS

Many operands must include an expression. This expression may be
one or more items combined by any of four operator types:
arithmetic, logical, relational, and shift.

Expressions are always evaluated as full 32-bit operations. If
the result of the operation is to be fewer bits, the assembler
truncates the upper part.

An expression must not contain any embedded spaces or tabs.

5-10 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

ITEM TYPES

The item or items in an expression may be any of the four types
listed below. These may stand alone or may be intermixed by the
use of the operators.

1.

NUMERICAL CONSTANTS: Numbers may be supplied to the
assembler in any of the four number bases shown below. The
number given will be converted to 32 bits truncating any
numbers greater than that. If smaller numbers are required,
the 32-bit number will then be further truncated to the
proper size. To specify which number base is desired, the
programmer must supply a prefix character to a number.

BASE PREFIX CHARACTERS ALLOWED

Decimal none O thru 9

Binary % 0 or 1

Octal @ O thru 7

Hexadecimal § O thru 9, A thru F

If no prefix is assigned, the assembler assumes the number
to be decimal.

ASCII CONSTANTS: ASCII constants may be specified in
expressions by enclosing the string in single or double
quotation marks. The string must consist of one to four
characters, depending on the desired size attribute. The
specified characters may not include control characters
(must be between 20 hex and 7F hex inclusive).

LABELS: An expression may contain labels which have been
assigned some address, constant, relocatable or external
value. As described above under the label field, a label
consists of letters, digits, and underscores beginning with
a letter or underscore. The label may be of any length, but
only the first 63 characters are significant. Any label
used in the operand field must be defined elsewhere in the
program. Local labels may also be used in the operand
field. None of the standard register specifications should
be used as a label.

PC DESIGNATOR: The asterisk (*) has been set aside as a
special PC designator (Program Counter). It may be used in
an expression just as any other value and is equal to the
address of the current instruction. The value of the PC
designator is relocatable in the text, data or bss segments;
its value is given at load time.

4404 Reference Manual @ 5-11

SECTION 5
Assembler and Loader

Types of Expressions

Three types of expressions are possible in the 4404 assembler:
absolute, relocatable and external expressions.

Absolute Expressions. An expression is absolute if its v
value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable symbols, under both
of the following conditions:

1. The expression contains an even number of relocatable
elements.

2. The relocatable elements must cancel each other. That is,
each relocatable element (or multiple) in a segment must be
canceled by another element (or multiple) in the same
segment. In other words, pairs of elements in the same
segment must have signs that oppose each other. The
elements that form a pair need not be contiguous in the
expression.

For example, textl and text2 are two relocatable symbols in the
text segment; the following examples are absolute expressions.

textl-text2
5%(text1-text2)

Relocatable Expressions. An expression is relocatable
if its value is affected by program relocation in a relocatable
module. A relocatable expression consists of a single
relocatable symbol or, under all three of the following
conditions, a combination of relocatable and absolute elements.

1. The expression does not contain an even number of
relocatable elements.

2. All the relocatable elements but one must be organized in
pairs that cancel each other. That is, for all but one
segment, each relocatable element (or multiple) in a segment
must be canceled by another element (or multiple) in the
same block.

3. The uncancelled element can have either positive or negative
relocation.

5-12 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

For example, textl and text2 are symbols from the text segment,
datal and data?2 are symbols from the data segment, and bssi1 and
bss2 are symbols from the bss segment; the following examples are
relocatable:

-bss2+3*5+(datal2-data?) negative relocation from bss segment
textl+(datal-data2)+(bss2-bss1) relocation from text segment
datal-(bss2-bss1) relocation from data segment
* (PC Designator) relocation from current segment

External Expressions. An expression is external if its

value depends upon the value of a symbol defined outside of the
current source module. An external expression can consist of a
single external symbol, or, under both of the following
conditions, an external expression may consist of an external
symbol, relocatable elements and absolute elements:

1. The expression contains an even number of relocatable
elements

2. The relocatable elements must cancel each other. That is,
each relocatable element (or multiple) in a segment must be
canceled by another element in the same segment. In other
words, pairs of elements in the same segment must have signs
that oppose each other.

For example, if ext!1 is an external symbol, textl, text2, datal,
data2, bss1, bss2 all have the same meaning as above in the
previous examples; then the following examples are external:

(textl1-text2)+ext1-(data2-datal)
b+extt1-3
3/(text2-textl)-ext1

Expression Operators

Operators permit operations such as addition or division to take
place during the assembly, and the result becomes a permanent
part of your program. Many of these operators will only apply to
absolute symbols and expressions. It does not make sense to
multiply a relocatable or external value at assembly-time! Only
the + and - operators can apply to relocatable and external
symbols and expressions.

4404 Reference Manual @ 5-173%

SECTION 5
Assembler and Loader

Arithmetic Operators. The arithmetic operators are:

Operator Meaning

+ Unary or binary addition

- Unary or binary subtraction

* Maltiplication

/ Division (any remainder is discarded)

Logical Operators. The logical operators are:
Operator Meaning

& Logical AND operator
| Logical OR operator
! Logical NOT operator
>> Shift right operator

<X Shift left operator

The logical operations are full 32-bit operations. In other
words for the AND operation, every bit from the first operand or
item is individually ANDed with its corresponding bit from the
second operand or item. The shift operators shift the left term
the number of places indicated by the right term. Zeroes are
shifted in and any bits shifted out are lost.

Relational Operators. The relational operators are:
Operator Meaning

Equal

Less than

Greater than

Not equal

Less than or equal
Greater than or equal

VAANANVAL
non v

The relational operations yield a true-false result. If the
evaluation of the relation is true, the resulting value be all
ones. If false, the resulting value will will be all zeros.
Relational operations are generally used in conjunction with
conditional assembly, as shown in that discussion.

5-14 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Operator Precedence. Certain operators take precedence

over others in an expression. This precedence can be overcome by
the use of parentheses. If there is more than one operator of
the same precedence level, and no parentheses indicate the order
in which they should be evaluated, then the operations are
carried out in left to right order.

The following list classifies the operators in order of
precedence (highest priority first):

Parenthesized expressions
Unary + and -

Shift operators

Multiply and Divide

Relational Operators
Logical NOT Operator
Logical AND and OR Operators

DIV —
N e e e e s

INSTRUCTION SET DIFFERENCES

This discussion describes the differences in the instruction
mnemonics accepted by the assembler and the Motorola standard.
The standard is assumed to be that defined in the "MC68000 16-Bit
Microprocessor User's Guide," published by Motorola Semiconductor
Products, Inc. It is assumed that the reader is familiar with
the contents of the "Instruction Set Details" portion of that
manual. In particular, the user should be familiar with the
description of the assembler syntax that accompanies the
discussion of the individual instructions.

The assembler recognizes the standard instruction set with the
exception of some of the so-called "variations". Having a
specific opcode for these variations is not necessary, because
the assembler can infer their existence from an analysis of the
operands and generate the proper code. This relieves the
programmer from the need for remembering the opcodes, and the
particulars of each. The variations that are handled in this
manner are: address, quick, and immediate. Note that the
"extend" variation is still supported. Thus, the following
instructions are not specifically recognized by the Assembler:

ADDA, ADDQ, ADDI Use ADD instead
ANDI Use AND instead
CMPA, CMPI, CMPM Use CMP instead
EORI Use EOR instead
MOVEA, MOVEQ Use MOVE instead
ORI Use OR instead

SUBA, SUBQ, SUBI Use SUB instead

4404 Reference Manual @ Hh-15

SECTION 5
Assembler and Loader

Remember that even though these mnemonics are not recognized, the
assembler can and does generate code for address, quick, and
immediate instructions. The proper instruction is selected
automatically after analyzing the operands.

The default data size is "word". Instructions that can
manipulate more than one size of data item may be modified by
postfixing a data length specification to the opcode. The data
length specifications are:

1 or .L For long word (32 bits)

w or .W For word (16 bits, the default)

THE INSTRUCTION SET

PROGRAMMING MODEL

The 68000 microprocessor has 16 32-bit general purpose registers,
a 32-bit program counter, and an 8-bit condition code register.
The registers are:

DO-D7 Data registers
AO-A6 Address registers

A7 Stack pointer (Also available as "SP")
CCR The condition code register
PC Program counter

The supervisor programmer's model also includes:

SSP Supervisor stack pointer

SR Status register

VBR Vector base register (68010)

SFC Source function code register (68010)

DFC Destination function code register (68010)

The data registers can be used for 8-bit, 16-bit, or 32-bit
operations. The address registers can be used for 16-bit or
32-bit operations as can base address registers. All registers
can be used as index registers.

5-16 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

ADDRESSING MODES

Twelve addressing modes are available on the 68000, divided into
six categories. ©Each assembled instruction takes a minimum of
one word of storage. The different addressing modes use
different amounts of storage depending on what information is
needed to form the specified effective address. The maximum
storage required by any addressing mode is two words. The amount
of extra storage required by an addressing mode, called extension
words, is stated with each description. In the descriptions,
registers are specified as "Dn", "An", or "Rn", referring to data
register 'n', address register or either data or address register
respectively. The 'D' and 'A' in the register specification can
be either upper- or lowercase. must be number from to inclusive.

1. Data Register Direct The operand is in the data register
gspecified.

Assembler Syntax: Dn
Example: EXT.L DO Sign-extends data register O to %2-bits.

2. Address Register Direct The operand is in the address
register specified.

Assembler Syntax: An

Example: ADD.L A1,A2 Add the contents of address
register 1 to address register 2.

%. Address Register Indirect The address of the operand is in
the address register specified.

Assembler Syntax: (An)

Example: SUB.L D5, (A4) Subtract the contents of data
register 5 from the long operand
at the address in address register

4.
4. Address Register Indirect With Postincrement
The address of the operand is in the address register
specified. After the operand address is used, it is
incremented by one, two, or four depending on whether the
size of the operand is byte, word, or long.

Assembler Syntax: (An)+

4404 Reference Manual @ 5-17

SECTION 5
Assembler and Loader

5-18

Example: CIR.W (A5)+ Zero the word at the address in
address register five, then increment
the register by two.

Address Register Indirect With Predecrement

The address of the operand is in the address register
specified. Before the operand address is used, it is
decremented by one, two, or four depending on whether the
size of the operand is byte, word, or long.

Assembler Syntax: -(An)

Example: CILR.B -(A3) Decrement address register 3 by one,
then zero the byte at the address now
in address register three.

Address Register Indirect With Displacement

The address of the operand is the sum of the address in the
address register and the sign-extended displacement
specified. The displacement must be an absolute, 16-bit
expression. This addressing mode requires one word of
extension.

Assembler Syntax: displacement(An)

Example: MOVE.L 6(A0),D1 Move the four bytes at address
register zero plus six into
data register one.

Address Register Indirect With Index

The address of the operand is the sum of the address in the
address register, the sign-extended displacement specified,
and the contents of the index register. The displacement
need not be specified, in which case it is assumed to be
zero. The displacement, if specified, must be an absolute,
8-bit expression. ZEither the entire 32 bits of the index
register (".L" extension), or the sign-extended low-order,
16 bits may be used (".W" extension). The default is to use
the low-order 16 bits and the 'W' and 'L' may be upper- or
lowercase. One word of extension is required by this
addressing mode.

Assembler Syntax: displacement(An,Rn.W)
displacement(An,Rn.L)

@ 4404 Reference Manual

10.

SECTION 5
Assembler and Loader

Example: CIR.L $A(A1,D1.W) Zero the four bytes at address
register 1 plus the low-order 16
bits of data register 1 plus $A
(10 decimal).

TST.L (A2,A3.L) Test the four bytes at address
register 2 plus address register

3.
Absolute Short Address

The address of the operand is the absolute or relocatable
displacement specified. The 16-bit address is sign-extended
before it is used. This addressing mode requires one word
of extension. The assembler requires that only program
labels be used with the ":W" extension.

Assembler Syntax: label:W

Example: JSR sqrt:W Jump to the subroutine "sqrt" using a
16~bit address.

Absolute Long Address

The address of the operand is the absolute or relocatable
displacement specified. This addressing mode requires two
words of extension.

Assembler Syntax: label or displacement

Example: JSR sqrt Jump to the subroutine "sqrt" using a
32-bit address.

JSR $400300 Jump to the subroutine at hex
location 400300.

Program Counter With Displacement

The address of the operand is the sum of the address in the
program counter and the sign-extended displacement integer.
The displacement must be a 16-bit expression and is formed
by subtracting the value of the program counter from the
address of the label specified. The label specified must be
relocatable, and must be in the same segment as the current
program counter. The operand field for branch instructions
requires only a label; all other instructions wishing to use
this addressing mode must follow the syntax below, to
distinguish this addressing mode from the absolute long
addressing mode. This addressing mode requires one word of
extension.

4404 Reference Manual @ 5-19

SECTION 5
Assembler and Loader

1.

12.

5-20

Assembler Syntax: label(PC)

Example: MOVE.L table(PC),A1 Move the four bytes at the
program counter plus the
difference between the address
of "table" and the program
counter into address register 1.

Program Counter With Index

The address of the operand is the sum of the address in the
program counter, the sign-extended displacement integer, and
the contents of the index register. The displacement is
calculated by subtracting the program counter from the
address of the label specified in the instruction. This
displacement must be an 8-bit expression. The label
specified must be relocatable, and must be in the same
segment as the current program counter. Either the entire
32 bits of the index register (".L" extension), or the
sign-extended, low-order, 16 bits may be used (".W"
extension). The default is to use the low-order 16 bits.
The 'W' and 'L' may be upper- or lowercase. One word of
extension is required by this addressing mode.

Assembler Syntax: label(PC,Rn.W)
label(PC,Rn.L)

Example: MOVE.L table(PC,D1.L),A3 Move the four bytes at
the program counter plus
the difference between
the address of "table"
and the program counter,
plus the contents of data
register 1 into address
register 3.

Immediate Data

The operand is the immediate value specified. This
addressing mode requires one or two words of extension,
depending on the size of the operation.

Assembler Syntax: expression

Example: MOVE.W 4096,D2 Move 4096 into data register 2.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

The following table shows how each addressing mode falls

into

the six categories.

Category Add

Data Addressing |X| X!
Control Addressing| | X,
Alterable (XXX
Data Alterable X 1x)
Memory Alterable | | |X|
Control Alterable | | X!

THE ASSEMBLER INSTRUCTION SET

Syntax

This sections contains a brief alphabetical listing of all the

mnemonics

accepted by the assembler. The following notational

conventions will be used:

An

Dn

Rn

Re

<disp>
<disp(8)>
<disp(16)>
<disp(32)>
{ead>
<{data>
<data(8)>
<data(16)>
<data(32)>
<vector>
<quick>
<label>

Address register 'n'

Data register 'n'

Either data or address register 'n'
Control register, address or data
8-, 16— or 32-bit displacement value
8-bit displacement value

16-bit displacement value

32-bit displacement value

Effective address

8-, 16~ or 32-bit data value

8-bit data value

16-bit data value

32-bit data value

Vector number from O through 15

A data value from 1 through 8 (quick value)
A label in the source file

4404 Reference Manual @ 5-21

SECTION 5
Assembler and ILoader

<bit mask> A 16-bit mask specifying which registers to
move in a "MOVEM" instruction. Using the
pre-decrement addressing mode, the bit correspondence

is:
Bit O - Address register 7
Bit 1 - Address register 6
Bit 7 -~ Address register O
Bit 8 - Data register 7
Bit 9 - Data register 6

Bit 15 - Data register O

Using all other addressing modes, the bit
correspondence is:

Bit O - Data register O
Bit 1 - Data register 1
Bit 7 - Data register 7
Bit 8 - Address register O
Bit 15 - Address register 7

Bits are numbered with the rightmost bit being number
O and the leftmost being number 15.

{register list>
A register list is used for the "MOVEM" instruction.

Register lists can be formed two ways. Registers can be
separated by a '/' such as:

D1/D3/D5/A2/A3

to specify individual registers to be moved. Register lists
can also be specified by separating two registers with a '-'
such as:

D1-D5/A1-A3

to specify that registers D1 through D5 inclusive and
registers A1 through A3 inclusive should be moved.

5-22 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Instructions

ABCD Add decimal with extend
Assembler Syntax: ABCD Dy,Dx
ABCD -(Ay),-(Ax)
ADD Add binary
Assembler Syntax: ADD <ea>,Dn
ADD Dn,<ea>
ADD <ead>,An
ADD <data>,<ea>

Source Effective Address: Al]l addressing modes
Destination Effective Address: Data alterable addressing modes

ADDX Add extended
Assembler Syntax: ADDX Dy,Dx
ADDX -(Ay),-(Ax)

AND AND logical
Assembler Syntax: AND <ea>,Dn
AND Dn,<ea>
AND <data>,<ea>
AND <data(8)>,CCR
AND <data(16)>,9R

Source Effective Address: Data addressing modes
Destination Effective Address: Data alterable addressing modes

ASL Arithmetic shift left
Assembler Syntax: ASL Dx,Dy

ASL <quick>,Dn
ASL <ea>

Source Effective Address: Memory alterable (word only)

ASR Arithmetic shift right
Assembler Syntax: ASR Dx,Dy
ASR <quick>,Dn
ASR <ea>
Source Effective Address: Memory alterable (word only)

4404 Reference Manual @ 5-23

SECTION 5

Assembler and Loader

Bee

BCIR

BSET

BSR

BTST

CHK

5-24

Branch conditionally
Assembler Syntax: Bcc <label>
Legal Branches:

BCC Branch on carry clear

BCS Branch on carry set

BEQ Branch on equal

BGE Branch on greater or equal
BGT Branch on greater

BHI Branch on high

BHS Branch on high or same (BCC)
BLE Branch on less or equal

BLO Branch on low (BCS)

BLS Branch on low or same

BLT Branch on less than

BMI Branch on minus

BNE Branch on not equal

BPL, Branch on plus

BRA Branch always (unconditionally)
BVC Branch on overflow clear

BVS Branch on overflow set

BCHG Test a bit and change

Assembler Syntax: BCHG Dn,<ead
BCHG <data(8)>,<ead>
Destination Effective Address: Data alterable addressing modes

Test a bit and clear
Assembler Syntax: BCLR Dn,<ea>
BCLR <data(8)>,<ead>
Destination Effective Address: Data alterable addressing modes

Test a bit and set
Assembler Syntax: BSET Dn,<ead
BSET <data(8)>,<ead>
Destination Effective Address: Data alterable addressing modes

Branch to subroutine
Assembler Syntax: BSR <label>

Test a bit
Assembler Syntax: BTST Dn,<ead
BTST <data(8)>,<ead>
Destination Effective Address: Data addressing modes

Check register against bounds

Assembler Syntax: CHK <ea>,Dn
Source Effective Address: Data addressing modes

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

CIR Clear an operand

Assembler Syntax: CLR <ea’

Source Effective Address: Data alterable addressing modes
CMP Compare

Assembler Syntax: CMP <ea>,Dn

CMP <ead>,An

CMP <data>,<ea>

CMP (Ay)+, (Ax)+
Source Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

DBecec Test condition, decrement, and branch
Assembler Syntax: DBcc Dn,<label>
Legal Decrement and branches:
DBCC Decrement and branch on carry clear
DBCS Decrement and branch on carry set
DBEQ Decrement and branch on equal
DBF Decrement and branch on false (unconditionally)
DBGE Decrement and branch on greater or equal
DBGT Decrement and branch on greater
DBHI Decrement and branch on high
DBLE Decrement and branch on less or equal
DBLS Decrement and branch on low or same
DBLT Decrement and branch on less than
DBMI Decrement and branch on minus
DBNE Decrement and branch on not equal
DBPL Decrement and branch on plus
DBRA Decrement and branch always (DBF)
DBT Decrement and branch on true
DBVC Decrement and branch on overflow clear
DBVS Decrement and branch on overflow set

DIVS Signed divide

Assembler Syntax: DIVS <ea>,Dn

Source Effective Address: Data addressing modes
DIVU Unsigned divide

Assembler Syntax: DIVU <ea>,Dn

Source Effective Address: Data addressing modes
EOR Exclusive OR logical

Assembler Syntax: EOR Dn,<ead
EOR <data>,<ea>
EOR <data(8)>,CCR
EOR <data(16)>,SR
Destination Effective Address: Data alterable addressing modes

EXG Exchange registers
Assembler Syntax: EXG Rx,Ry

4404 Reference Manual @ 5-25

SECTION 5
Assembler and Loader

EXT Sign extend
Assenbler Syntax: EXT Dn

ILLEGAL 1Illegal instruction
Assembler Syntax: ILLEGAL

JMP Jump
Assembler Syntax: JMP <ead>
Source Effective Address: Control addressing modes

JSR Jump to subroutine
Assembler Syntax: JSR <ead
Source Effective Address: Control addressing modes

LEA Load effective address
Assembler Syntax: LEA <ea>,An
Source Effective Address: Control addressing modes

LINK Link and allocate
Assembler Syntax: LINK An, <disp(16)>

LSL Logical shift left
Assembler Syntax: LSL Dx,Dy
LSL <quick>,Dn
L3L <ea>
Source Effective Address: Memory alterable (word only)

LSR Logical shift right
Assembler Syntax: LSR Dx,Dy
LSR <quaick>,Dn

LSR <ea>
Source Effective Address: Memory alterable (word only)
MOVE Move data from source to destination

Assembler Syntax: MOVE <ead>,<ea

MOVE CCR,<ea>

MOVE <ea>,CCR

MOVE <ea>,SR

MOVE SR,<ea>

MOVE USP,An

MOVE An,USP
Source Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

On "MOVE TO CCR/SR":
Source Effective Address: Data addressing

MOVEC Move to/from control register

Assembler Syntax: MOVEC Rc,Rn
MOVEC Rn,Rc

5-26 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

MOVEM Move multiple registers
Assembler Syntax: MOVEM <register_ list)>,<ead
MOVEM <ea>,<register list>
MOVEM <bit mask>,<ead>
MOVEM <ea>, <bit mask>
Source Effective Address: Control addressing and postincreme
Destination Effective Address: Control alterable and predecrement

MOVEP Move peripheral data
Assembler Syntax: MOVEP Dx,(d}s
1

i (Ay)
MOVEP <disp{

16)>
>(Ax),Dy

o
&)

MOVES Move to/from address space
Assembler Syntax: MOVES Rn,<ea
MOVES <ea>,Rn
Source Effective Address: Memory alterable addressing modes
Destination Effective Address: Memory alterable addressing modes

MULS Signed multiply
Assembler Syntax: MULS <ea>,Dn
Source Effective Address: Data addressing modes

MULU Unsigned multiply
Assembler Syntax: MULU <ea>,Dn
Source Effective Address: Data addressing modes

NBCD Negate decimal with extend
Assembler Syntax: NBCD <ead>
Source Effective Address: Data alterable addressing modes

NEG Negate
Assembler Syntax: NEG <ea>
Source Effective Address: Data alterable addressing modes

NEGX Negate with extend
Assembler Syntax: NEGX <ead>
Source Effective Address: Data alterable addressing modes

NOP No operation
Assembler Syntax: NOP

NOT Logical complement

Assembler Syntax: NOT <ead>
Source Effective Address: Data alterable addressing modes

4404 Reference Manual @ 5=-27

SECTION 5
Assembler and Loader

OR Inclusive OR logical
Assembler Syntax: OR <ea>,Dn
OR Dn,<ea>

OR <data>,<ead

OR <data(8)>,CCR

OR <data(16)>,SR
Source Effective Address: Data addressing modes
Destination Effective Address: Data alterable addressing modes

PEA Pash effective address

Assembler Syntax: PEA <ea

Source Effective Address: Control addressing modes
RESET Reset external devices

Assembler Syntax: RESET

ROL Rotate left
Assembler Syntax: ROL Dx,Dy
ROL <quick>,Dn
ROL <ead>
Source Effective Address: Memory alterable (word only)

ROR Rotate right
Assembler Syntax: ROR Dx,Dy
ROR <quick>,Dn
ROR <ea>
Source Effective Address: Memory alterable (word only)

ROXL Rotate left with extend
Assembler Syntax: ROXL Dx,Dy
ROXL <quick>,Dn

ROXL <ead
Source Effective Address: Memory alterable (word only)
ROXR Rotate right with extend
Assembler Syntax: ROXR Dx,Dy
ROXR <quick>,Dn
ROXR <ea>
Source Effective Address: Memory alterable (word only)
RTD Return and deallocate parameters
Assembler Syntax: RTD <disp(16)>
RTE Return from exception
Assembler Syntax: RTE
RTR Return and restore condition codes

Assembler Syntax: RTR

5-28 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

RTS Return from subroutine
Assembler Syntax: RTS

SBCD Subtract decimal with extend
Assembler Syntax: SBCD Dy,Dx
: SBCD -(Ay),-(Ax)

Sce Set according to condition
' Assembler Syntax: Scc <ead

Legal Sets:

SCC Set on carry clear

SCS Set on carry set

SEQ Set on equal

SE Set on false

SGE Set on greater or equal
SGT Set on greater

SHI Set on high

SLE Set on less or equal
SLS Set on low or same

SLT Set on less than

SMI Set on minus

SNE Set on not equal

SPL Set on plus

ST Set on true (unconditionally)
SVC Set on overflow clear
SVS Set on overflow set

Source Effective Address: Data alterable addressing modes

STOP Load status register and stop
Assembler Syntax: STOP <data(16)>

SUB Sabtract binary
Assembler Syntax: SUB <ea>,Dn
SUB Dn,<ea>
SUB <ea>,An
SUB <data>,<ea>
Source Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

SUBX Subtract with extend
Assembler Syntax: SUBX Dy,Dx
SUBX -(Ay),-(Ax)

SWAP Swap register halves
Assembler Syntax: SWAP Dn

®

4404 Reference Manual 5-29

SECTION §5
Assembler and Loader

TAS Test and set an operand

Assembler Syntax: TAS <ead>

Source Effective Address: Data alterable addressing modes
TRAP Trap

Assembler Syntax: TRAP <vector>

TRAPV Trap on overflow
Assembler Syntax: TRAPV

TST Test an operand

Assembler Syntax: TST <ea’

Source Effective Address: Data alterable addressing modes
UNLK Unlink

Assembler Syntax: UNLK An

Convenience Mnemonics

CLC Clear carry condition code bit
CLN Clear negative condition code bit
CLV Clear overflow condition code bit
CLX Clear extend condition code bit
CLZ Clear zero condition code bit

SEC Set carry condition code bit

SEN Set negative condition code bit
SEV Set overflow condition cod

SEX Set extend condition code bit

SEZ Set zero condition code bit

STANDARD DIRECTIVES OR PSEUDO-OPS

Besides the standard machine language mnemonics, the assembler
supports several directives or pseudo-ops. These are
instructions for the assembler to perform certain operations, and
are not directly assembled into code. There are three types of
directives in this assembler: those associated with conditional
assembly, those associated with macros, and those which generally
can be used anywhere which we shall call "standard directives".

5=-30 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

The standard directives are:

de log
ds opt
equ pag
err rab
even rmb
fcb rzb
fecce set
fdb spc
fqb sttl
info sys
1ib tt1

Other types of directives are explained in other sections, but
are listed here for completeness:

Conditional Relocation

Directives Directives

if base end

ifn bss extern

else common global

endif endcom name
data struct
define text
enddef

DC

The "dc" or Define Constant directive defines one or more
constants in memory. A size specification may be postfixed to
the directive to indicate that the constant is to be stored in
bytes, words, or long words. The default is "words". If
multiple operands are specified, the effect is as though the
operands appeared in consecutive "dc" directives. The operands
may be actual values (constants or ASCII strings) or expressions.
ASCII strings must be enclosed in single quotation marks.

4404 Reference Manaal @ 5-31

SECTION 5
Assembler and Loader

The constant is aligned on the proper boundary, depending on the
size specification (byte boundary for ".b", word boundary for
".w", and long word boundary for ".1"). When ASCII strings are
specified with a word or long word sige specification, the string
will be padded on the right with zero bytes if there are not
enough characters to exactly fill the last word or long word. If
an ASCII string is specified with a byte size specification, and
the instruction or directive following the "dc.b" directive
requires word or long word alignment, then zeroes will be
appended to the character string to force such alignment. Some
examples:

labell dec.b 3,7,'String'

label2 dc.w 123, 'abe',98 The 'abc' will be padded with
a zero byte

dec.1l 'a',1%1072 The 'a' will be padded with 3 zero bytes

DS

The "ds" or Define Storage directive reserves areas of memory.
The reserved memory is not guaranteed to be initialized in any
way. A size specification may be postfixed to the directive to
indicate that bytes, words, or long words are to be reserved. If
words or long words are specified, the reserved memory will be
properly aligned. A single operand indicates how many bytes,
words, or long words are to be reserved. If a label is present,
its value will be the address of the lowest memory location
reserved. If the value of the operand is zero, no space will be
reserved; however, alignment will take place if "ds.w" or "ds.1l"
is specified. Some examples:

ds.b 20 reserve 20 bytes

ds 10 reserve 10 words

ds.1 b reserve 5 long words

ds.1 O force alignment on long word boundary

EQU

The "equ" or Equate directive equates a symbol to the expression
given in the operand. No code is generated by this statement.
Once a symbol has been equated to some value, it may not be
changed at a later time in the assembly. The form of an equate
statement is

{label> equ <nonexternal expression>

()]

5-3%2 4404 Reference Manual

SECTION 5
Assembler and ILoader

The label is strictly required in equate statements. Absolute or
relocatable expressions are allowed; external expressions are
illegal. 1If the expression is relocatable, both the value and
the attribute will be assigned to the label.

ERR

The "err" directive may be used to insert user-defined error
messages in the output listing. The error count is also
incremented by one. The format is:

err <message to be printed>

A1l text past the "err" directive (excluding leading spaces) is
printed as an error message (preceded by three asterisks) in the
output listing. Note that the "err" directive line itself is not
printed. A common use for the "err" directive is in conjunction
with conditional assembly, to report user-defined illegal
conditions.

EVEN
The "even" directive is used to force the program counter to an
even address (word boundary).
FCB
The 'fcb' or Form Constant Byte directive is used to set
associated memory bytes to some value as determined by the
operand. 'fcb' may be used to set any number of bytes, as shown
below:

[<label>] fecb <expr. 1>,<expr. 2>,...,<{expr. nd>
{expr. x> stands for some absolute, relocatable or external
expression. Each expression given (separated by commas) is

evaluated to 8 bits, and the resulting quantities are stored in
successive memory locations. The label is optional.

4404 Reference Manual @ 5-33%

SECTION 5
Assembler and Loader

FCC

The 'fcc' or Form Constant Character directive allows the
programmer to specify a string of ASCII characters delimited by
some non-alphanumeric character such as a single quote. All the
characters in the string will be converted to their respective
ASCII values and stored in memory, one byte per character. Some
examples:

labelt fcc 'This is an fcc string'
label?2 fcc .so is this.
fce /Labels are not required./

There is another method of using 'fcc' which is a deviation from
the standard Motorola definition of this directive. This method
allows you to place certain expressions on the same line as the
standard 'fcc' delimited string. The items are separated by
commas and are evaluated to 8-bit results. In some respects this
is 1like the 'fcb' directive. The difference is that in the 'fcc'
directive, expressions must begin with a letter, number or dollar
sign, whereas in the cb' directive any valid expression will
work. For example, %10101111 is a valid expression for a 'fcb'
but not for a 'fcc' since the percent-sign would look like a
delimiter and the assembler would attempt to produce 8 bytes of
data from 8 ASCII characters which follow (a 'fcc' string).

The dollar sign is an exception to allow hex values such as $0D
(carriage return) to be inserted along with strings. Some
examples:

intro fcc 'This string has CR & LF',$D, $A
fee 'string 1',0,'string 2'
fece $04,extlabel,/delimited string/

Note that more than one delimited string may be placed on a line
as in the second example.

5-34 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

FDB

The "fdb" or Form Double Byte directive is used to create 16 bit
constants in memory. It is exactly like the "fcb" directive
except that 16 bit quantities are evaluated and stored in memory
for each expression given. The form of the statement is:

label>] fdb <expr. 1>,<expr. 2>,...,<expr. nd>

Again, the label field is optional. The generated data is
guaranteed to be on a word boundary (see the "dc" directive).

FQB

The "fgb" or Form Quad Byte directive is used to create 32-bit
constants in memory. It is exactly like the "fdb" directive,
except that 32-bit quantities are evaluated and stored in memory
for each expression given. The form of the statement is:

label>] fdb <expr. 1>,<expr. 2>,...,{expr. n>

Again, the label field is optional. The generated data is
guaranteed to be on a word boundary (see the "dc" directive).

INFO

The "info" directive allows the user to store textual comments in
a binary file. A 4404 user can execute the command 'info' and
view the text the screen. The assembler's 'info' directive
places all text following the 'info' command (excluding leading
spaces) into a temporary file called '/tmp/asmbinfoxxxxx', where
xxxXxx represents the current task number. At the end of the
assembly, all text stored in this temporary file is appropriately
copied into the normal binary file, and the temporary file is
then deleted. Syntax is as follows:

info This is a comment for the binary file.
info It is a convenient way of inserting version nos.
info Version X.XX - Released XX/XX/XX

Any number of 'info' directives may be inserted at any point in

the source listing. ©No label is allowed, and no actual binary
code is produced.

4404 Reference Manual @ 5-35

SECTION 5
Assembler and Loader

LIB

The "1ib"™ or Library directive allows the user to specify an
external file for inclusion in the assembled source output.

Under normal conditions, the assembler reads all input from the
file(s) specified on the calling line. The 'lib' directive
allows the user to temporarily obtain the source lines from some
other file. When all the lines in that external file have been
read and assembled, the assembler resumes reading of the original
source file. The proper syntax is:

1lib <file spec>
where <{file spec> is a standard 4404 file specification.

The assembler first looks for the specified file in the current
directory. If the file isn't found in the current directory, the
assembler then looks for a directory named "1lib" in the current
directory. If it finds such a directory, the assembler attempts
to find the specified file in that "1ib" directory. If not found
there, the assembler makes a third and final attempt to find the
specified file by looking in the directory "/1lib". If the file
is not found in any of these three directories, the assembler
gives up and reports an error.

Any "end" statements found in the file called by the 'lib'
directive are ignored. The "1ib" directive line itself does not
appear in the output listing. Any number of "1ib" instructions
may appear in a source listing. It is also possible to nest
'1ib' files up to 4-6 levels.

LOG

The "log" directive is used to calculat 1
absolute expression. The result is 32 bits. The statement acts
like a "set" statement, in that the label specified can be

redefined with other "log" directives or "set" directives. The

form of the statement is:

late the 1o bage 2, of an
a ! L0 z, 01 an

[<label>] 1log <absolute expression>

The label field is strictly required.

5-36 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

OPT

The "opt" or Option directive allows the user to choose from
several different assembly options. These options are generally
related to the format of the output listing and object code. The
options which may be set with this command are listed below. The
proper form of this instruction is:

opt <option 1>,<option 2>,...,<option n>

Note that any number of options may be given on one line if
separated by commas. No label is allowed, and no spaces or tabs
may be embedded in the option list. The options are set during
Pass Two. If contradicting options are specified, the last one
on the command line takes precedence. If a particular option is
not specified, the default case for that option takes effect.
The default cases are signified below by an asterisk.

The allowable options are:

con print conditionally skipped code
noc* suppress conditional code printing

lis* print an assembled listing
nol suppress output of assembled listing

The "1is" and "nol" options may be used to selectively turn parts
of a program listing on or off as desired. If the "+1" command
line option is specified, however, the "lis" and "nol" options
are overridden and no listing occurs.

PAG

The "pag" directive causes a page eject in the output listing and
prints a header at the top of the new page. Note that the "pag"
option must be enabled in order for this directive to take
effect. It is possible to assign a new number to the new page by
specifying such in the operand field. If no page number is
specified, the next consecutive number will be used. No label is
allowed and no code is produced. The "pag" operator itself will
not appear in the listing unless some sort of error is
encountered. The proper form is:

pag [<expression>]

4404 Reference Manual @ 5-37

SECTION 5
Assembler and Loader

The expression is optional. The first page of a listing does not
include the header and is considered to be page O. Thus, all
options, title, and subtitle may be set up and followed by a
"pag" directive to start the assembled listing at the top of page
1 without the option, title, or subtitle instructions being in
the way.

RAB

The 'rab' or Reserve Aligned Bytes directive is used to reserve
areas of memory for data storage. The bytes are forced to a word
boundary. The number of bytes specified by the expression in the
operand are skipped during assembly. No code is produced in
those memory location and therefore the contents are undefined at
run time. The proper usage is shown here:

[<label>] rab <absolute expressiond>

The label is optional, and the absolute expression is a 32-bit quantity.
"rab" directives found in the text or data segments act like "rzb", and
produce code which is guaranteed to be on an even boundary.

RMB

The 'rmb' or Reserve Memory Bytes directive is used to reserve
areas of memory for data storage. The number of bytes specified
by the expression in the operand are skipped during assembly. No
code is produced in those memory locations and therefore the
contents are undefined at run time. The proper usage is:

[<label>] rmb <absolute expression>
The label is optional, and the absolute expression is a 3%2-bit
quantity. Any "rmb" directives found in the text or data segments
act like "rzb", and produce code.
RZB
The 'rzb' or Reserve Zeroed Bytes directive is used to initialigze
an area of memory with zeroes. 3Beginning with the current PC
location, the number of bytes specified will be set to zero. The
proper syntax is: :

[<label>] rzb <absolute expressiond

where the absolute expression is a %2-bit expression. This
directive does produce object code. Any "rzb" directives found in
the bss segment act like "rmb".

5-38 e 4404 Reference Manual

SECTION 5
Assembler and Loader

SET

The "set" directive sets a symbol to the value of some
expression, much as an "equ" directive. The difference is that a
symbol may be "set" several times within the source (to different
values), but may be "equated" only once. If a symbol is "set" to
several values within the source, the current value of the symbol
will be the value last "set". The statement form is:

{label> set <nonexternal expression>
The label is strictly required, and no code is generated.
SPC

The "spc" or Space directive inserts the specified number of
spaces (line feeds) into the output listing. The general form
is:

spc [<space count>[,<keep count>]]

The space count can be any number from O to 255. If the page
option is selected, "spc" will not cause spacing past the top of
a new page. The <keep count>, which is optional, is the number
of lines to keep together on a page. If there are not enough
lines left on the current page, a page eject is performed. If
there are <keep count> lines left on the page (after printing
{space count> spaces), output will continue on the current page.
If the page option is not selected, the <keep count> will be
ignored. If no operand is given, the assembler will default to
one blank line in the output listing.

STTL

The "sttl" or Subtitle directive is used to specify a subtitle to
be printed just below the header at the top of an output listing
page. It is specified much as the "ttl" directive:

sttl <text for the subtitled>

The subtitle may be up to 52 characters in length. If the page
option is not selected, this directive will be ignored. As with
the "tt1" option, any number of "sttl" directives may appear in a
source program. The subtitle can be disabled or turned off by an
"sttl" command with no text following.

4404 Reference Manual @ 5-39

SECTION 5
Assembler and Loader

SYS

The 'sys' or system call directive allows the programmer to
gsetup a system call.

Such a call consists of a TRAP#15 instruction followed by

a two byte function code optionally followed by 32-bit
parameter values.

This directive automatically inserts the TRAP, then obtains
the function code and any other parameters from the operand field.

sys <function>,<parameteri)>,<{parameter2>,...

The <function> and <parameter> values may be any legal absolute,
relocatable or external expression. <function> will be stored as
16 bits, all <parameters> will be stored as 32-bits.

TTL

The 'ttl' directive allows the user to specify a title or name to
the program being assembled. If the "pag" option is also
selected, this title is then printed in the header at the top of
each output listing page. If the page option is not selected,
this directive is ignored. The proper form is:

ttl <text for the title>

All the text following the 'ttl' directive (excluding leading
spaces) is placed in the title buffer. Up to 32 characters are
allowed, with any excess being ignored. It is possible to have
any number of 'ttl' directives in a source The latest one
encountered will always be the one used for printing at the top
of the following page(s).

CONDITIONAL ASSEMBLY

The assembler supports conditional assembly —-- the ability to
assemble only certain portions of your source program depending
on the conditions at assembly time. Conditional assembly is
particularly useful in situations where you might need several
versions of a program with only slight changes between versions.

As an example, suppose we required a different version of some
program for four different systems whose output routines varied.
Rather than prepare four different source files, we could prepare
one that would assemble a different set of output routines
depending on some variable which was set with an "equ" directive
near the beginning of the source. Then it would only be
necessary to change that one "equ" statement to produce any of
the four final programs.

5-40 @ 4404 Reference Manual

SECTION 5
Assembler and ILoader

THE "IF-ENDIF" CLAUSE

In its simplest form, conditional assembly is performed with two
directives: "if" and "endif". The two directives are placed in
the source listing in that order with any number of lines of
source between. The assembler evaluates the expression
associated with the "if" statement (we will discuss this
expression in a moment), and if the result is true, assembles all
the lines between the "if" and "endif" and then continues
assembling the lines after the "endif". If the result of the
expression is false, the assembler will skip all lines between
the "if" and "endif" and resume assembly of the lines after the
"endif". The syntax of these directives is:

if <expression>
conditional code goes here
enéif
The "endif" directive requires no additional information, but the
"if" directive requires an expression. This expression is

considered FALSE if the 32-bit result is equal to zero. If the
result is not equal to zero, the expression is considered TRUE.

THE "IF-ELSE-ENDIF" CONSTRUCTION

An "else" directive may be placed between the "if" and "endif"
statements. In effect, the lines of source between the "if" and
"endif" are split into two groups by the "else" statement. Those
lines before the "else" are assembled if the expression is true;
those after (up to the "endif") are ignored. If the expression
is false, the lines before the "else" are ignored while those

after it are assembled. The "if-else-endif" construct appears as
follows:

if <expression>
‘ this code is assembled if the expression is true
eise
this code is assembled if the expression is false
eﬁdif

The "else" statement does not require an operand. There may be
only one "else" between an "if-endif" pair.

4404 Reference Manual @ 5-41

SECTION 5
Assembler and Loader

It is possible to nest "if-endif" clauses (including "else"s).
That is, an "if-endif" clause