WIND RIVER

Wind River Compiler
for 68K/CPU32

USER’'S GUIDE

5.4

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Compiler for 68K/CPU32 User’s Guide, 5.4

26 Apr 06
Part #: DOC-15794-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

PART I: INTRODUCTION
1 [0 3= V=

1.1 Introduction

1.2 Overview of the Tools

Important Compiler Features and Extensionscccccoeceviiiinnnne
High Performance Optimizationsccccovvveiiiiiiiiiien
Portabilityccooviiiiiiiiiiicc

1.3 Documentation

This USEr’s GUIAEvveeeeviiieeiieeee ettt e s
Additional Documentationocoueeveuieeeieeeieeeceie et

2 Configuration and Directory Structureccccciiiiemirnicemennsssennnnnns

21 Components and Directories

2.2 Accessing Current and Other Versions of the Tools

2.3 Environment Variables

231 Environment Variables Recognized by the Compilercccceue..e.

fii

QN =

N

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Drivers and Subprogram FIOW ... e e ee e e e s e 19
Selecting a Target and Its Componentscccccceeciicccemmnnnnnsssssssnseenns 23
41 Selecting a Target 23
4.2 Selected Startup Module and Libraries 27
4.3 Alternatives for Selecting a Target Configuration 29

PART II: WIND RIVER COMPILER

5

Invoking the COMPIIETcoiiieiiiieir s 33
51 The Command Line 33
5.2 Rules for Writing Command-Line Options 34
Same Option More Than ONcecccccccvvieviiiiininniicccicccee 34
Command-Line Options are Case-sensitiveccocccoeverreicnriccnnn. 35

Spaces In Command-Line Optionsc..cccccvvvevnciniicniicciniceicnnn, 35

QuOting ValUescoooviiieiiiicc e 35

Unrecognized Options, Passing Options to the Assembler or Linker 36

Length LImitcoviiiieiieecce s 36

5.3 Compiler Command-Line Options 37
5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., -help) 38

532 Ignore Predefined Macros and Assertions (-A-)cccecevvniininnnnnes 38

5.3.3 Define Assertion (-A asSertion)c..ccceceverereerirerieeeenieriereesesensereenens 38

534 Pass Along Comments (-C)cccceiiviiininiiiniiiiiiiiinicecccccccne 38

535 Stop After Assembly, Produce Object (-C)ccoevvverrriiniicniiciciiinnens 39

53.6 Define Preprocessor Macro Name (-D name=definition) 39

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E) 39

5.3.8 Change Diagnostic Severity Level (-€)cccccooiiiiivnnniiiciiinaes 40

539 Generate Symbolic Debugger Information (-g)cccoevvvvrriruerrennnnes 41

5.3.10 Print Pathnames of Header Files (-H)cccccoveoinniinniiniicce, 42

53.11
5.3.12
5.3.13
53.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25

5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38

Contents

Specify Directory for Header Files (-I dir)ccccooeioeccvnnnicccnennes 42
Control Search for User-Defined Header Files (-I@)ccccceevruennnee 43
Modify Header File Processing (-i filel=file2)ccccccoevvrrniccncnee. 43
Specify Directory For -1 Search List (-L dir)ccccoeoveieivinniiccines 44
Specify Library or Process File (-l name)ccccccoecceiiiniccnnnnes 44
Specify Pathname of Target-Spec File (-M target-spec)ccccoc..... 44
Optimize Code (ZO) ...ccoviiiiiiiiiiiciiiiicc 44
Specify Output File (-0 file)ccccoviiiviiiiiiiiiiiiiiccc 44
Stop After Preprocessor, Produce Source (-P)cccccooovvviiiiinninnnnnn 45
Stop After Compilation, Produce Assembly (-S)cccccooviiiiiininnes 45
Select the Target Processor (-t tof:environ) ..o 45
Undefine Preprocessor Macro Name (-U name)ccccocevvvvernnnennnes 46
Display Current Version Number (-V, -VV) ... 46
Run Driver in Verbose Mode (-V) ..c.oeevieieineeiinecinieeneneenerecneeeens 46
Pass Arguments to the Assembler (-W a,arguments,

-W :1a5:,argUMENtS)oocviiiiiiiiiiiiciicc s 46
Define Configuration Variable (-W Dname=value)ccccccceeueee. 46
Pass Arguments to Linker (-W l,arguments, -W :1d:,arguments) 47
Specify Linker Command File (-W mfile)ccccccovviiiiinincnnne 47
Specify Startup Module (-W sfile) ..o 47
Substitute Program or File for Default (-W xfile)cccooviiiiiinine 48
Pass Arguments to Subprogram (-W x,arguments)cccccoceeuevunee 49
Associate Source File Extension (-W X.€Xt) ...ccccecveivenieinenienenenieneenenns 50
Suppress All Compiler Warnings (-w)cccoevvvvivinnciiicinennn 51
Set Detailed Compiler Control Options (-X option)cccceveeuruennne 51
Specify Default Header File Search Path (-Y Ldir)cccccccovvvuiinnnnaee. 51
Specify Search Directories for -1 (-Y L, -Y P, -Y U) oo 51
Specify Search Directory for crt0.0 (-Y S,dir)cccccovvvviviiiiininninnn 51
Print Subprograms With Arguments (-#, -##, -#H) ..o 51

5.4

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.3.39 Read Command-Line Options from File or Variable (-@name,
C@@INIATINE) ..ottt ettt ettt ettt sttt ettt sttt sttt be e
5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)
Compiler -X Options
541 Option Defaults ...
542 Compiler -X Options by FUNCHONc..ccccoevvvriiirniiccncccce
543 Set Addressing Mode for Sections (-Xaddr-...)ccccoevviiiniiiinnnns
544 Align Functions On n-byte Boundaries (-Xalign-functions=n)
545 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)ccccccevverinnnniinnnnnnn.
54.6 Do Not Generate .align Directive (-Xalign-off)cccccoceinniiii.
547 Pass argument in register (-Xargs-in-regs)cccocoveireiiiininnns
54.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)
5.4.9 Specify Minimum Array Alignment (-Xarray-align-min)
54.10 Disable ‘# Prefix for Assembly Numeric Constants
(-Xasm-const-Pound...)ccccoveriiiiiiiii e
5411 Specify Jump-table for Switch Statements (-Xbig-switch-table)
5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type) ...
5413 Change bit-field type to reduce structure size
(-Xbit-fields-comPress-...) ...cccoiiiiiiiiiiiiiii s
5.4.14 Accessing bit-fields (-Xbit-field-instr-...)ccccoeviiiiiiiiniiiins
5.4.15 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned)cccoooviiiiiiiii
5.4.16 Insert Profiling Code (-Xblock-count)cccocevvviviiiiinniiiniiicnnns
54.17 Set Type for Bool (-XbOOl-is-...) ...cevvriiiiiiiiiiiiiiciciiccccceces
54.18 Control Use of Bool, True, and False Keywords (-Xbool-...)
5.4.19 Parse Initial Values Bottom-up (-Xbottom-up-init)cccccceerereriencnes
5420 Control Allocation of Uninitialized Variables in “COMMON"
and bss Sections (-Xbss-off, -Xbss-common-off)cceceeveirrerieennene
5421 Use Abridged C++ Libraries (-Xc++-ab1)cccccoeviviniiiiiiiiiiccnne

Vi

65

66
66

68

5.4.22
5.4.23
5.4.24
5.4.25
5.4.26
5.4.27
5.4.28
5.4.29
5.4.30
54.31
5.4.32
5.4.33
5.4.34

5.4.35

5.4.36

5.4.37
5.4.38
5.4.39
5.4.40
5.4.41
5.4.42

5.4.43

5.4.44
5.4.45
5.4.46

Contents

Use Old C++ Compiler (-Xc++-0ld) ..ocoviiiiiiiiiiiiiiiciiiciie 69
Optimize Global Assignments in Conditionals (-Xcga-min-use) 69
Generate Code Using ASCII Character Set (-Xcharset-ascii) 70
Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned) 70
Use Old for Scope Rules (-Xclass-type-name-visible)ccccc....... 71
Disregard ANSI C Library Functions (-Xclib-optim-off) 71
Enable Cross-module Optimization (-Xcmo-...) «..cccooevviiiiviniicniiinnns 71
Use the ‘new’ Compiler Frontend (-Xcnew)cccocoevviiiiiiiinnnnnnes 72
Use Absolute Addressing for Code (-Xcode-absolute...) 72
Generate Position-independent Code (PIC) (-Xcode-relative...) 72
Mark Sections as COMDAT for Linker Collapse (-Xcomdat) 74
Maintain Project-wide COMDAT List (-Xcomdat-info-file) 74

Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-livVe)cccceererieirinenieineee e 75

Locate Constants With “text” or “data” (-Xconst-in-text,

-XCONSE-IN-AAtA) ..ovviniieiiitciece e 75
Dump Symbol Information for Macros or Assertions
(-Xepp-dump-symbOlS)cccuviiieiriciiiic e 75
Suppress Preprocessor Spacing (-Xcpp-no-space)ccccceveveuruennen 76
Use Absolute Addressing for Code (-Xdata-absolute...) 76
Generate Position-independent Data (PID) (-Xdata-relative...) 76
Align .debug Sections (-Xdebug-align=n)ccccoceovervrnirnrnnne. 77
Select DWARF Format (-Xdebug-dwarf...) ..o 77
Generate Debug Information for Inlined Functions

(-Xdebug-inline-0n)cccccoiiiiiiiiiiiii e 78
Emit Debug Information for Unused Local Variables

(-Xdebug-local-all)cccccriiiiiiiriiiiiiiiiii e 78
Generate Local CIE for Each Unit (-Xdebug-local-cie)cccc...... 78

Disable debugging information Extensions (-Xdebug-mode=mask) 78

Disable Debug Information Optimization (-Xdebug-struct-...) 79

vii

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.47
5.4.48
5.4.49
5.4.50
5.4.51
5.4.52
5.4.53
5.4.54
5.4.55
5.4.56

5.4.57
5.4.58

5.4.59

5.4.60
5.4.61
5.4.62

5.4.63
5.4.64

5.4.65
5.4.66
5.4.67
5.4.68
5.4.69
5.4.70
54.71

viii

Specify C Dialect (-Xdialect-...) c.coovuriiecierrriiccceerereccceeeeee
Disable Digraphs (-Xdigraphs-...)cccccoevvniniiiiiiiiiininee
Allow Dollar Signs in Identifiers (-Xdollar-in-ident)c.cccceeeeucece.
Control Use of Type “double” (-Xdouble...)c.ccccoeevinnniicinnnn.
Generate Initializers for Static Variables (-Xdynamic-init)
Specify enum Type (-Xenum-is-...) ...ccccoeeuiinniiceiiiiiccceeeenns
Enable Exceptions (-XeXceptions-...)ccccceeuveveuniimerninieiicnciecieenee.
Control Inlining Expansion (-Xexplicit-inline-factor)cccc.........
Force Precision of Real Arguments (-Xextend-args)cccccouevunnee.

Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic) ...

Optimize Using Profile Data (-Xfeedback=file)ccccceuvrrrrrnnnncn.

Set Optimization Parameters Used With Profile Data
(-Xteedback-frequent, -Xfeedback-seldom)cccccevcuerrnicucncnnnnes

Set Floating Point Rounding Mode (-Xfintrz-on,
-Xfintrz-is-fmove-to-fpcr, -X-fintrz-off)cccocccecinnnniicccinnes

Select Convention for Returning Floating Point Values (-Xfloats-...)
Use Old for Scope Rules (-Xfor-init-scope-...)cccocovvvveniicciricennnee.

Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes)ccccocoeveeenircciricinnnnnn

Suppress Assembler and Linker Parameters (-Xforeign-as-ld)

Convert Double and Long Double (-Xfp-long-double-off,
SXEp-float-0nly) .o.ccviviiiiiiii s

Specify Minimum Floating Point Precision (-Xfp-min-prec...)
Generate .frame_info for C functions (-Xframe-info)cccceeeeeennee
Generate Link Instruction (-Xframe-ptr)cocccceoeeevnncrcccennnenns
Include Filename Path in Debug Information (-Xfull-pathname)
Control GNU Option Translator (-Xgcc-options-...)cccoceveverernnnee.
Treat All Global Variables as Volatile (-Xglobals-volatile)
Do Not Pass #ident Strings (-Xident-off)cccccccoevvvniniiccinnenne.

79
80
80
81
81
81
83
83
84

84
85

85

86
87
87

87
88

89

5.4.72

5.4.73
5.4.74
5.4.75
5.4.76
5.4.77

5.4.78

5.4.79
5.4.80
5.4.81
5.4.82
5.4.83
5.4.84
5.4.85

5.4.86
5.4.87

5.4.88
5.4.89

5.4.90

5491

5.4.92
5.4.93

5.4.94

Contents

Enable Strict implementation of IEEE754 Floating Point Standard

(-Xieee754-pedantiC) ... 91
Control Template Instantiation (-Ximplicit-templates...) 91
Treat #include As #import (-Ximport)ccccevvvrrriceiniciiceccnes 92
Ignore Missing Include Files (-Xincfile-missing-ignore) 92
Initialize Local Variables (-Xinit-locals=mask)c.ccccccoeerrevinnencns 92
Control Generation of Initialization and Finalization Sections
(-XANTE-SECHION) vttt 93
Control Default Priority for Initialization and Finalization

Sections (-Xinit-section-default-pri)ccccooevvviiiiiiiiiin 93
Define Initial Value for -Xinit-locals (-Xinit-value=n)c..ccceceene.. 94
Inline Functions with Fewer Than n Nodes (-Xinline=n) 94

Allow Inlining of Recursive Function Calls (-Xinline-explicit-force) 94

Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20)cccececevveeernenns 95
Enable Intrinsic Functions (-Xintrinsic-mask)c.cccceeeeencinnencnns 95
Set longjmp Buffer Size (-Xjmpbuf-size=n)ccccceeeeeerrrncccnnnnes 95
Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file) ... 96
Enable Extended Keywords (-Xkeywords=mask)cccccceeeeeueunee 96
Disable Individual Optimizations (-Xkill-opt=mask,
-Xkill-reorder=mask)cccccoveirmeiniiineie e 96
Wait For License (-X1iCenSe-wait)cccovueerreinnieinieeinieeineeneneenes 97
Generate Warnings On Suspicious/Non-portable Code

(-XHNEZMASK) et e 97
Allocate Static and Global Variables to Local Data Area
(-Xlocal-data-area=n)c.ccccceererieirieneneeeree e s 99
Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)ccccoevviiiieiiiiiiiiniccccce 100
Do Not Assign Locals to Registers (-Xlocals-on-stack)ccccc...... 100
Use Macintosh Calling Conventions for Pascal Functions
(-XTMAC-CONVENTION) ..uviniiiriiiiiriiriertcieeeteseete ettt 100
Expand Macros in Pragmas (-Xmacro-in-pragma)c..cccceerueeennen 100

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.95

5.4.96
5.4.97
5.4.98
5.4.99

5.4.100
5.4.101
5.4.102
5.4.103
5.4.104
5.4.105
5.4.106
5.4.107
5.4.108
5.4.109
5.4.110
5.4.111
5.4.112
5.4.113

5.4.114
5.4.115

5.4.116
5.4.117

5.4.118
5.4.119

Warn On Undefined Macro In #if Statement
(-Xmacro-undefined-Warn)cccecceernrnneeeeecerneeeeeereenenes 100

Show Make Rules (-Xmake-dependency) ..., 101
Specify Dependency Name or Output File (-Xmake-dependency-...) 102
Set Template Instantiation Recursion Limit (-Xmax-inst-level=n) 103

Set Maximum Structure Member Alignment
(-Xmember-max-aligN=n)cccceceuririiiinniiiiiies 103

Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile) 103

Warn On Type and Argument Mismatch (-Xmismatch-warning) 104

Specify Section Name (-Xname-...)cccoooeuevviiviiieniniiceeeenns 104
Disable C++ Keywords namespace and Using (-Xnamespace-...) 106
Enable Extra Optimizations (-XO)ccccccoovvviiiiniiicne, 106
Use Old Inline Assembly Casting(-Xold-inline-asm-casting) 106
Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n) 107
Disable Most Optimizations With -g (-Xoptimized-debug-...) 107
Specify Optimization Buffer Size (-Xparse-size)cccoovvuvrcriinnnn. 107
Output Source as Comments (-Xpass-SOUICE)ccovurueuerrrecrcrnnnes 108
Use Precompiled Headers (-Xpch-...) .o, 108
Generate Position-Independent Code for Shared Libraries (-Xpic) .. 109
Treat All Pointer Accesses As Volatile (-Xpointers-volatile) 109
Control Interpretation of Multiple Section Pragmas
(-XPpragma-section-...) ... 109
Preprocess Assembly Files (-Xpreprocess-assembly)cccceeeueee. 109
Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off) ..o 110
Use Old Preprocessor (-Xpreprocessor-old)ccccccevicieiiiiininnnes 110

Generate Profiling Code for the RTA Run-Time Analysis
TOOL Suite (-XPIof-...) oo 110

Select Target Executable for Use by -Xprof-feedback (-Xprof-exec) . 111
Optimize Using RTA Profile Data (-Xprof-feedback)cccccce.c.. 111

5.4.120
5.4.121

5.4.122
5.4.123
5.4.124
5.4.125
5.4.126

5.4.127
5.4.128

5.4.129
5.4.130
5.4.131
5.4.132
5.4.133
5.4.134

5.4.135
5.4.136
5.4.137
5.4.138
5.4.139
5.4.140
5.4.141

5.4.142
5.4.143
5.4.144

Contents

Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot) 113
Select Convention for Returning Pointer Values from Functions
(-XPptr-values-in-...) ...cccccciiiiiiiiiiic e 113
Restart Optimization From Scratch (-Xrestart)cccccoevviccnnnnes 113
Generate Code for the Run-Time Error Checker (-Xrtc=mask) 114
Enable Run-time Type Information (-Xrtti, -Xrtti-off)cccccceeeeenn. 114
Pad Sections for Optimized Loading (-Xsection-pad)cccccoevueee. 114
Generate Each Function in a Separate CODE Section Class
(-XSeCHON-SPLIL) c..vovviiiiiiiiicicicic 115
Disable Generation of Priority Section Names (-Xsect-pri-...) 115
Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n)c.cccccceerriniinnniniiias 116
Print Instantiations (-XShOW-InSt)ccccceivvenienieineneieeeeeee 116
Show Target (-Xshow-target)c.cccoeevieiiiiicc 116
Optimize for Size Rather Than Speed (-Xsize-opt)cccccocovurirurinnnen 116
Set Size Limit for “small const” Variables (-Xsmall-const=n) 116
Set Size Limit for “small data” Variables (-Xsmall-data=n) 117
Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off)cccooeiirniiiniic 117
Enable Stack Checking (-Xstack-probe)c.cccccoeevviniicniiicinicininnen 118
Diagnose Static Initialization Using Address (-Xstatic-addr-...) 118
Treat All Static Variables as Volatile (-Xstatics-volatile)cccce.c.c. 118
Buffer stderr (-Xstderr-fully-buffered)ccccooovvviiiiiiin 118
Terminate Compilation on Warning (-Xstop-on-warning) 119
Compile C/C++ in Pedantic Mode (-Xstrict-ansi)ccocoveiunuennnes 119
Ignore Sign When Promoting Bit-fields

(-Xstrict-bitfield-promotions)cccccevrrcecennnnccceerreceenes 119
Align Strings on n-byte Boundaries (-Xstring-align=n) 120
Warn on Large Structure (-Xstruct-arg-warning=n)ccccccccooco.... 120

Select Convention for Returning Structures and Unions
(FXSEIUCE-AS..) wvieeieieiertec ettt 120

Xi

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.145 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...) ...ccccooviiniiiiiiii 121
5.4.146 Set Minimum Structure Member Alignment (-Xstruct-min-align=n) 122
5.4.147 Suppress Warnings (-Xsuppress-warnings)cccceeeeevereveeecreenenas 122
5.4.148 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl)ccccocoervrrrrcrrrnnnee. 122
5.4.149 Set Threshold for a Switch Statement Table (-Xswitch-table...) 122
5.4.150 Disable Certain Syntax Warnings (-Xsyntax-warning-...)cc..c..... 123
5.4.151 Select Target Processor (-Xtarget)cocooeeeveerniicernicniceeceeces 123
5.4.152 Specify Loop Test Location (-Xtest-at-...)cccooovvrriririnicniiiccciene 123
5.4.153 Truncate All Identifiers After m Characters (-Xtruncate) 123
5.4.154 Append Underscore to Identifier (-Xunderscore-...)ccccccevvriinnnes 124
5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)cccccc...... 124
5.4.156 Runtime Declarations in Standard Namespace (-Xusing-std-...) 125
5.4.157 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)ccccccoeiiiiiiniinins 125
5.4.158 Define Type for wchar (-XwWchar=n)cccccooveiinncnncienes 126
5.4.159 Control Use of wchar_t Keyword (-Xwchar_t-...) ..c.ccooeceecennnncnes 126
5.5 Examples of Processing Source Files 126
551 Compile and Link ..o 127
552 Separate Compilation ... 128
553 Assembly OULPUL ...coooviviiiiiciiccic s 128
554 Precompiled Headers ... 129
Additions to ANSI C and C++ ...eoerrrrrrrrerrre e 131
6.1 Preprocessor Predefined Macros 131
6.2 Preprocessor Directives 134
#assert and #unassert Preprocessor Directivesccceeveviiiiiininnnes 134
#error Preprocessor Directive ..., 135
#ident Preprocessor Directive (C only)ccocoeieiviiiiiiniice, 136

Xii

6.3

6.4

6.5

Contents

#Himport Preprocessor Directive ..., 136
#info, #inform, and #informing Preprocessor Directives 136
#warn and #warning Preprocessor Directivescccooeveeneininnne. 137
Pragmas 137
align Pragmacccocoevviriiiiciniccccccc s 137
€ITOT Pragmacocoovoviiiiiiici 137
global_register Pragmacccccocooeviieiiicniicicece e 138
hdrstop Pragmaccccouoieiiiiniicec s 138
ident Pragma ..o 139
INfO Pragma ..o 139
inline Pragma ..o 139
interrupt Pragma ... 140
NOo_alias Pragma ..o 140
NO_PCh Pragmaccccoevviiiiiiiiiiiiiicccccccc e 141
no_return Pragma ... 141
no_side_effects Pragma ..o 142
OPtioN Pragma ..ot 142
PACK Pragmaccoouviieiiiiicccccc e 143
pure_function Pragmacccoocevirieiiininicccece s 146
section Pragma ... 147
use_section Pragma ... 147
warning Pragma ..o 147
weak Pragma ... 148
Keywords 149
__asm and asm Keywords ..o 149
__attribute_ Keyword ..o 149
extended Keyword (C only) ..o 149
__inline__ and inline Keywordscccccoevviiiiiiiiinniiiine, 149
__interrupt__ and interrupt Keywords (C only)cccoooevrrriicrriinnnn. 150
long long Keyword ..o 151
__packed__ and packed Keywordscccccoovrniiiiiiiininiciniccnn, 151
pascal Keyword (C only) ..o 152
__typeof__ Keyword (C only)cccoooeirimniieicececce 152
Attribute Specifiers 153
absolute Attribute (C only) ..o 154
aligned(n) Attributeccccooiviiiiii 155
constructor, constructor(n) Attributecceevevveneneineeee, 155
deprecated, deprecated(string) Attribute (C only)ccccoovevevrinnnnnn 156
destructor, destructor(n) Attributecccoceceeverieininenieeee 156

Xiii

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

noreturn, NOo_return Atributeoooovvvviiiiiiieeeeceeeeeeeee 156
No_side_effects AHTIDULE ...ocvovveiieieiiceeeee e 157
packed AtrIbULec.coiiiiiiiie 157
pure, pure_function Attribute ... 157
section(name) Attributecooiiiieiinei e 157
6.6 Intrinsic Functions 158
6.7 Other Additions 159
C++ Comments Permitted ..o, 159
Dynamic Memory Allocation with allocacccooveeiiieiniiicinne. 159
Binary Representation of Datacccccocoviiiiiiiiiic, 160
Assigning Global Variables to Registers ..., 160
_ ERROR___ FUNCHON oiiiiiiiiiieieeie ettt 160
51Z€0f EXTENSION ..ottt 161
Vararg MacroS ... 162
Embedding Assembly Codeccooommmiiimmminnnsms e 165
71 Introduction 165
7.2 asm Macros 167
Comments in asm MacCIOSccccovuviriiiiiiiiiiies 170
Examples of asm Macrosccooueeirinieiiiiciiiceecci e 171
7.3 asm String Statements 172
74 Reordering in asm Code 174
7.5 Direct Functions 175
Internal Data Representationcccccvcmmmimiiniiinsmss e 177
8.1 Basic Data Types 177
8.2 Byte Ordering 179
8.3 Arrays 180
8.4 Bit-fields 180

Xiv

Contents

8.5 Classes, Structures, and Unions 181
8.6 C++ Classes 181
Pointers to Memberscccooeeirieininieiiciececreeeeeee e 184
Virtual Function Table Generation—Key Functionsccccceuun.e. 185
8.7 Linkage and Storage Allocation 186
Calling ConVeNtioNsccceviiremrrmiisnmsrnsssss s s e e 189
91 Introduction 189
9.2 Stack Layout 189
9.3 Argument Passing 190
94 C++ Argument Passing 191
Pointer to Member as Arguments and Return Typescccccceeuune 192
Member FUNCHONcooviiiiiiiiic 192
Constructors and Destructors ... 192
9.5 Returning Results 193
Class, Struct, and Union Return Typescccccoevvvvvicciicncnne, 194
9.6 Register Use 194
9.7 Pascal Functions (C Only) 195
OptimIzZationcccccccmmmririrr 197
10.1 Optimization Hints 197
What to Do From the Command Linecccccoeoiviivnniniiiiinninnn. 198
What to Do With Programs ..., 200
10.2 Cross-Module Optimization 204
10.3 Target-Independent Optimizations 206
Tail Recursion (0X2)c.cceveeeireeenineiriecirieicireeeee ettt nenens 206
INBNING (0X4) woviiiiiiiiiiii s 207

XV

1

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Argument Address Optimization (0X8) ..o, 208
Structure Members to Registers (0X10)ccccoovviiiiiiiiiiiniininnen 209
Assignment Optimization (0x80)ccccccevviniiiniiiiiiiiiiiiie, 210
Tail Call Optimization (0X100)cccccoevuririireieiiiiriicccceeeecee 210
Common Tail Optimization (0x200)ccccoeeueuririniniiiceeieeceaes 210
Variable Live Range Optimization (0x400)cccocoevimniiirrnicnnicnnnn. 211
Constant and Variable Propagation (0x800)cccccocovvriernirriercennne. 212
Complex Branch Optimization (0x1000)ccccocoerireriiierniiccieicnenne. 212
Loop strength reduction (0X2000)cocovvevrimmeimieiieceeieecee s 212
Loop Count-Down Optimization (0x4000)cccceeeviiiiiinniccnnnnn. 213
Loop Unrolling (0X8000)ccccoeimimimeiiiiiiiiiieieniiiccceeeecnes 213
Global Common Subexpression Elimination (0x10000)cc....... 213
Undefined variable propagation (0x20000)cccccoeovrvieniicerriinnnnnen. 214
Unused assignment deletion (0x40000)cccooeerininiiiinieneene, 214
Minor Transformations to Simplify Code Generation (0x80000) 214
Delayed register saving (0Xx100000)cccccevvmmemeniniriniiceeeeeeecenes 214
Register Coloring (0x200000)cccccoerrrimmerrininiceiecieeeeeeeces s 215
Interprocedural Optimizations (0x400000)cccccceveeiicceinneicnne 215
Remove Entry and Exit Code (0x800000)cccceuvuviriiucuccueuirirircnnne 216
Use Scratch Registers for Variables (0x1000000)ccccccoevivivicinnne 216
Extend Optimization (0x2000000)cccooiiimiiiinininiieiiiiccnens 216
Loop Statics Optimization (0x4000000)cccoveverricininiiciniccieicennes 217
Loop Invariant Code Motion (0x8000000)cccccovuviiimniirinieccnennn. 217
Replace Return with Branch (0x10000000)ccccoeuvviiniirinieicnennn. 218
Static Function Optimization (0x20000000)ccceeuvvrimereririrnieccnennn. 218
Live-Variable Analysis (0x40000000)ccccooovmmniinininiceeeeeecenes 218
Local Data Area Optimization (0x80000000)ccceeueuiiiciicrirunuennnee 218
Feedback Optimization ... 219
10.4 Target-Dependent Optimizations 219
Basic Reordering (0X1)ccccceeuiiiniiiieieiiiiiiceeeisseccceeeeenes 220
Delete TST (0X2) ovvviiiiiiiiieiiiiiccicieecre s 220
General Peephole Optimization (0X8)ccccoeevvviieiiiicniiiciceicnnn, 220
Find Auto-Increment / Decrement (0X10)cccoeveveevenenereninccnncennes 221
Merge Moves (0X40)ocovviiiiiiiiiiiici s 221
Simple Scheduling Optimization (0x1000)cccccoceuviviiiiiinieicnnn. 221
10.5 Example of Optimizations 221
LI L L = T 227
11.1 Introduction 227

Xvi

12

13

Contents

11.2 Examples 228
Converting Existing Codecccciimiiiismmincnn e 231
12.1 Introduction 231
12.2 Compilation Issues 231
Older C COde ..o 232
Older Versions of the Compilerc.ccccoeviriniinicniecee 232
12.3 Execution Issues 234
124 GNU Command-Line Options 236
C++ Features and Compatibilitycccccooooeemmmmmmmceeccce s 237
13.1 Header Files 237
13.2 C++ Standard Libraries 238
Nonstandard FUNCHONSc.covviueirieiiiciicceceeeeeseeccseeeseeeas 239
13.3 Migration From C to C++ 239
13.4 Implementation-Specific C++ Features 240
Construction and Destruction of C++ Static Objectscccccccvuevueen. 240
TEMPIALES ..o s 241
EXCEPHIONS oottt 242
Array New and Deleteccooeviviniicniicicecc s 242
Type Identificationccccooveieiiieiiiniicec 243
Dynamic Casts in CH+ .o 243
Namespaces
Undefined Virtual FUNCHONS ..o 243
13.5 C++ Name Mangling 243
Demangling Utility ..o 246
13.6 Avoid setjmp and longjmp 247

XVii

14

15

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

13.7 Precompiled Headers
PCH FILES ettt ettt eeraee e
Limitations and Trade-0ffScccoviieiiiiiieeeieeeeceeeeeeeeeeeeeeeee e
DiagnostiCs ...cceviviiiiiiieieieicicc e
Locating Code and Data, Addressing, ACCESScccrrursumrrrsssamsrrssans
14.1 Controlling Access to Code and Data
section and use_section Pragmasccccoevvviiiiniinnniici,
Section Classes and Their Default Attributescccccoevvevieveeivienenne.
14.2 Addressing Mode — Functions, Variables, Strings
14.3 Access Mode — Read, Write, Execute
14.4 Local Data Area (-Xlocal-data-area)
14.5 Position-Independent Code and Data (PIC and PID)
Generating Initializers for Static Variables With
Position-Independent Codeccoovreiiiiiiiiii,
Relationship Between Position-Independence and “Small” Areas ..
Use in an Embedded Environmentcccciceciirreeccecees
15.1 Introduction
15.2 Compiler Options for Embedded Development
15.3 User Modifications
15.4 Startup and Termination Code
154.1 Location of Startup and Termination Sources and Objects
15.4.2 INOLES O CIT0.S vvieeveirieeieieeete ettt ettt ettt et e eeeereereeereens
15.4.3 Notes for crtlibso.c and ctordtor.Ccocevveveevviecieceieeeeeeeeeeeeeereeein
15.4.4 INOTES fOI TNIE.C covvviiiriieieieeeeee ettt e et e eeaa e e eae e e eaaeeennes
15.4.5 Notes for Exit FUNCHONSoooovviiiiiiieiee e
15.4.6 Stack Initialization and Checkingccccocoviiiiiiiiiniiiiiicnee,

XViii

251

251
255

257

260

267

268

270
271

274

274

276

279

Contents

15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()

15.4.8 Run-time Initialization and Terminationcccccccovvevveenneee.

284

15.5 Hardware Exception Handling

15.6 Library Exception Handling

284

15.7 Linker Command File

285

15.8 Operating System Calls

15.8.1 Character I/O oot
15.8.2 FIR I/ O oot e

15.8.3 Miscellaneous FUNCHONScoveevvevvieeeiiieicieeeeeee e

159 Communicating with the Hardware

159.1 Mixing C and Assembler Functionsccccceecevininnnnnnen.
1592 Embedding Assembler Codeccccoumriiiiiiiiiiiiinicnen.
15.9.3 Accessing Variables and Functions at Specific Addresses

15.10 Reentrant and “Thread-Safe” Library Functions

292

15.11 Target Program Arguments, Environment Variables, and Predefined Files 292

294

15.12 Profiling in An Embedded Environment

15.13 Support for Multiple Object Formats

296

PART IIl: WIND RIVER ASSEMBLER

16

The WIind River ASSEMDIEEKccoveirmiireireireeiresiressrnsssesssasssens

16.1 Selecting the Target

16.2 The das Command

Xix

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

16.3 Assembler Command-Line Options 300
Show Option SUMMATY (-?) ..ccceeiiiiiiiiiiic e 301
Define Symbol Name (-Dname=value)c.cccccccoeinnnnicccennnenne 301
Generate Debugging Information (-g)c.cccoevvuvvnviiciniiciniiccinicnnne. 301
Include Header in Listing (-H)ccovoiiiiiiiiiicciiiicccccnes 301
Set Header Files Directory (-I path)cccooveiniiinicce, 302
Generate Listing File (-1, -L) ...ccooovviiiiiiiiiiciicccne, 302
Set outpUt File (-0 file)cccvviiviviiiiiiiiiiiiiiiiiccccccc, 302
Remove the Input File on Termination (-R)ccccccevvvniiiiinnnnne. 302
Specify Assembler Description (.ad) File (-T ad-file)ccccccceeuuc.. 302

Select Target (-ttof:environ) 303

Print Version Number (-V) 303
Define Configuration Variable (-WDname=value)cccccccccoeueunenee. 303
Select Object Format and Mnemonic Type
(-WDDOBJECT=0bject-format)c.cccocoeueururerrcccrereerereenees 303
Select Target Processor ((WDDTARGET=target)cccccocovrvereininnen. 303
Discard All Local Symbols (-X)cccceiieieiiiiiiriicceieeccceeececans 303
Discard All Symbols Starting With .L (-X) ..cooveviiiiiiicccccee, 304
Print Command-Line Options on Standard Output (-#)c.c......... 304
Read Command-Line Options from File or Variable (-@name,
“@@NAIMNE) ...ttt 304
Redirect Output (-@E=file, -@E+file, -@0O=file, -@0+file) 304
16.4 Assembler -X Options 305
Select Default Absolute Address Mode (-Xabs-ind-long,
-Xabs-INA-WOTd) ..ooveieiieiirieieiieiiieeseeee e 305
Specify Value to Fill Gaps Left by .align or .alignn Directive
(-Xalign-fill-EEXE) ...cvevevreriiieeieieieerrccce e 305
Interpret .align Directive (-Xalign-value, -Xalign-power2) 305
Generate Debugging Information (-Xasm-debug-...)ccooverirvnnnnne. 306

XX

Align Program Data Automatically Based on Size (-Xauto-align) 306
Allow Comments Without Comment Character

(-Xauto-COMMENT-...) c.eoirieiiirieirieicietce e 306
Select bra Instruction (-Xbra-is-rel, -Xbra-is-jra)cccccocevevirrincnce. 306
Select 68K cmp Instruction (-Xcmp-normal, -Xcmp-swap) 307
Set Instruction Type (-Xcpu-...) cooveiiiiiiiiiecis 307
Set Default Value for Section Alignment (-Xdefault-align) 307
Select Default Displacement Size (-Xdisp-...) ..ccccovvrvinviniiininninnnnn. 308
Set FPU Type (-Xfpu-...) o 309
zEnable Local GNU Labels (-Xgnu-locals-...)cccccceoveiiivinnnininnncnnne 309
Include Header in Listing (-Xheader...)ccccoeviiiiiiiniiiiniinnee 309
Set Header Format (-Xheader-format="string")ccccceccooevevrrrurnu.. 310

17

Contents

Select Default Address Register Indirect Mode (-Xind16-range-off,

-XINA16-TANZE-0MN) ...oviiiiriieiciiiiirie s 310
Select Default Index Size (-Xindex-long, -Xindex-word) 311
Set Label Definition Syntax (-Xlabel-colomn...)ccccccvvviiiccicinenenes 311
Set Format of Assembly Line in Listing (-Xline-format="string") 311
Generate a Listing File (-XList-...) ..ccccoviviiiiiiiiiiicccceiccccees 312
Specify File Extension for Assembly Listing
(-Xlist-file-extension="string")ccccceecvvrririieriircncnn. 312
Set Line Length of Listing File (-XIlen=n)ccccccccoevvienireininnnnnen. 313
Enable Blanks in Macro Arguments (-Xmacro-arg-space-...) 313
Set MMU Type (-Xmmu-68xxx, -Xmmu-all, -Xmmu-none) 313
Set Mnemonics Type (-Xmnem-all, -Xmnem-emb, -Xmnem-mit) 313
Set Output Object Format (-Xobject-format=form)c.coceeevueueueene. 314
Select Branch Size Optimizations (-Xoptim-...)ccccoeeeiiiiiicinennnnn 314
Set Page Break Margin (-Xpage-skip=n)ccccecevvvivririiiiinicncnnnnn 314
Set Lines Per Page (-Xplen=n)cccccccevvrriiiiinnniniiieiccncnes 314
Limit Length of Conditional Branch (-Xprepare-compress=n) 315
Enable Spaces Between Operands (-Xspace-...)ccoeoeueurvnnicicuennnnes 315
Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)c.cccevucee. 315
Set Subtitle (-Xsubtitle="String")ccccooiivviiiiiiiiiii 315
Set Tab Size (-Xtab-SIZE=1)ccccouruecirrieirieiiirieiirc e 316
Set Title (-Xtitle="String")ccccoovviiiiiiiiiii 316
Syntax RUIES ... 317
17.1 Format of an Assembly Language Line 317
Labels ..o 319
OPCOAE .o 319
Operand Field ..o 320
COMMENT .o 320
17.2 Symbols 320
17.3 Direct Assignment Statements 321
17.4 Reserved symbols 322
17.5 External Symbols 322
17.6 Local Symbols 324
Generic Style Localsccooviiiiiiiiiiiii 324
GNU-5tyle Localsccovvviiiiiiiiiiiiiciicccs 324

XXi

18

19

20

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

17.7 Constants 325
Integral CONStants ... 325
Floating Point CONstantsccccoveiiiiniiiiiciiiiiiecccccccenes 326
String Constants ... 327
Literals as 0perands ... 328
Sections and Location Countersccccoeercecccccccnneenneennennennnecnnnennees 329
18.1 Program Sections 329
18.2 Location Counters 330
Assembler EXPresSsionsccvieiieerrressrsssnes 333
Assembler DIireCtivesccooeccccce e e e e e e e e s e e nnnas 339
20.1 Introduction 339
20.2 List of Directives 340
SYMbOI[:] = @XPIESSIONeevviiicicicei e 340
Symbol[:] =1 @XPression ... 340
2DYEE oo 340
ADTEE oo 340
AAligN eXPTESSION ...eviiieiiiciec e 341
AligNN eXPIeSSIONvucvviiciiciiic e 341
AASCIL "SEINE" oot 341
ASCIZ "STING" oo 342
Dbalign eXPression ... 342
DIKD @XPIESSION ..o 342
DS ettt ettt 342
DISECLE ettt ettt e reereens 342
byte eXpression ;... ... 342
.comm symbol, size [,alignment]cccoooeeiiiiiininiicnces 343
de.b eXPIession ..o 343
dC.] @XPIESSION ..o 344
ACW @XPIESSION. ...oovviiiciiciec e 344
ASD SIZE ettt 344
WA Lottt ettt e aaas 344
.double float-CONSTANT ,... ..veeveeiieiiiieeeeeeeeeeeeeeee e 344
ASEEOL ettt ettt ettt et eb e beetaenreaeas 344
©JECT 1ttt s 344

XXii

Contents

LBISE et 345
lSEIf EXPIESSIONuvveieieiiiiciirrccc e 345
LBISEC et 345
EIUAL ottt ettt b e 345
EIUALC ittt ettt b e 345
EIALL et 345
EIAIMN ittt 346
LNETY SYMDOL ... e 346
symbol[:] .equ eXPression ... 346
ITOT "StIING" (oot 346
LBVETL ettt et st sa e 346
EXIEIIL Lot 347
eXtern SymMbolo 347
XPOTt SYMDOL ... oo 347
A1 "1™ et enan 347
i1l count, [Size[,value]] ...ccoeerieeeirreeeeeeee e 347
float float-CONSTANTocoiiiieeiieieeeeeeee et 347
.global Ssymbolcoviiii e 348
.globl SYMDOL ... o 348
ddent "StrNG" ..o 348
AF @XPIeSSION ..oveiiieii e 348
JFENAIAN oot 349
dfeq eXPIeSSiON ... 349
dfe "string1","String2" ..o 349
dfdef Ssymbol ..o 349
AfZ@ EXPTESSION .o 349
JfEE @XPIESSION ... 349
Afle @XPIESSION ...oviviiiiiiiiiii e 350
AfIE @XPIESSION .o 350
Afnc "string 1", "string2" ... 350
Afndef symbol ... 350
AfNe eXPIESSION ...vvecviiicic s 350
AMPOTt SYMDbOL ... e 350
.Ancbin "file"[,offset[,SiZe]] ..ccceveririireieieee e 350
ANCIUAE "fI1E" .o 351
Jent eXPression ... 351
Jcomm symbol, size [,alignment]ccccoooeviiiiii 351
JEST ettt st aeaas 351
Jlen eXPIeSSION ..o 352
JIONE eXPIESSION ... cocvvviiiiiiiiciici e 352
Jong expressiono 352
name.macro [parameter ,...] ... 352
JNIEXA wenveiieiieieeet e ettt 352

XXiii

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NAME "FIlE" .o 353
NOLISE <o 353
LOTZ @XPTESSION ..viveiiiiiiiciiietcites et 353
P2aligN EXPIESSION ...cucvvviiireiiiciicie e 353
TPAZE et 353
Pagelen eXPIESSIONccccvviruriiieiici e 353
Plen eXPIesSioNcceviiieiiieiiice e 354
PIEVIOUS oottt 354
JPSECL ot 354
.psize page-length [line-length]ccccocooiiii 354
TAAtA Lo 354
TOAALA ovii 354
.sbss [symbol, size [,alignment]]ccccccerriiiennnccceerrecnee 354
S "SEHANG" o 355
SAALA e 355
SAALAZ s 355
.section name, [alignment], [type] ..o 355
SECHOM T oottt s 356
.sectionlink seCtioN-NAMEeccocovueviiiiiininici 357
SEE OPHION ittt 357
.set SymMbol, @XPIeSSIONccccviviueiiriiiiicice e 357
symbol[:] .set eXPression ... 357
ShOTt @XPIeSSION ;... v 358
.5iZe Symbol, eXPIresSiON ..ot 358
SKIP SIZE oo
.space expression

SENG "SEING" e

SEZ "SHINE" oo
subtitle "StHNG" ..ooviii s

AEXE

Aitle "SENEG" oo

AL SEANG oo
Aype symbOl, tyPe ..o 359
half 360
ULONG v 360
USNOTT oo 360
UWOTA ot 360
Warning "String" ... 360
Weak SymbOoLo 360
Width eXPIeSSiON ... 361
WOTA @XPTESSION, ... woeeiiiiiieccie e 361

XXiv

21

22

Contents

XAEE SYMDOL ... oot
XEEf SYMDOL ... e
XOPT s

ASSEMDIEr MACKOS ..iciieirerrerresrresrresrresrrasrrassressrassrnssrassrnsssnsssnnsennsnnnss

21.1 Introduction

21.2 Macro Definition

Separating Parameter Names From Text ..o
Generating Unique Labelsc.ccccooiiiiiicce
NARG SYmDOL ..coovoiiiiiiiiiiiici s

21.3 Invoking a Macro

21.4 Macros to “Define” Structures

Example Assembler LiStingccccccvvmmmmmmiininissseemnnnnnssssssssss s ssssnnes

PART IV: WIND RIVER LINKER

23

The Wind RIVer LINKErcccovciireesirrmsirsssirsssssrssssrssssssssssssnsssssnssssnssssnns

23.1 The Linking Process

Linking EXample ...

23.2 Symbols Created By the Linker

23.3 .abs Sections

23.4 COMMON Sections

23.5 COMDAT Sections

23.6 Sorted Sections

23.7 Warning Sections

23.8 .frame_info sections

XXV

363

364
365

366

367

367

374
375

378

380

381

382

383

383

384

24

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

23.9 Branch Islands 385
The did Command ... 387
241 The dld Command 387
Linker Command Structurec.ccccoveerrieinneninieeeeeeee e 388
24.2 Defaults 390
24.3 Order on the Command Line 391
244 Linker Command-Line Options 391
Show Option Summary (-?, -2X)cccoviirniiieceecece s 392
Read Options From an Environment Variable or File (-@name,
“@@NATINE) ..ouvevieiriienieeieteret ettt sttt eb ettt st ene b nene 392
Redirect Output (-@E=file, -@E+file, -@O=file, -@0+file) 392
Link Files From an Archive (-A name, -A...) ..ccoceivernieneneereneneenens 392
Allocate Memory for Common Variables When Using -r (-a) 393
Set Address for Data and tExt (-Bd=address, -Bt=address) 393
Bind Function Calls to Shared Library (-Bsymbolic)c.c.cccceoeueee. 394
Define a Symbol At An Address (-Dsymbol=address)c........... 394
Define a Default Entry Point Address (-e symbol)ccccccccucurunee. 394
Specify “fill” Value (-f value, size, alignment)cccccocoervirriiiinnnne. 394
Specify Directory for -1 search List (-L dir)ccccocoevviiiinicniicinnnn, 395
Specify Library or File to Process (-Iname, -I:filename) 395
Generate link map (-m, -m2, -M4) ..o 395
Allocate .data Section Immediately After .text Section (-N) 396
Change the Default Output File (-0 file)cccccovviiiiiiiiiiine, 396
Perform Incremental Link (-1, -12, -r3, -14, -T5) ..cceoeeirineiiiririeieenne 396
Rename Symbols (-R symboll=symbol2)ccccccoerininiirnenreinen. 397
Search for Shared Libraries on Specified Path (-rpath)cccc.c........ 397
Do Not Output Symbol Table and Line Number Entries (-s, -ss) 397
Specify Name for Shared Library (-soname)c.cccccevvniicucununnnn. 397
Select Target Processor and Environment (-t tof:environ) 398
Define a Symbol (-1 SymboOl)ccovveviiiiiiiiicrcccc 398
Print version NuUMDbET (V) ...ccoeiviriiiniiiiiieereeeceee e 398
Print Version Number (-VS value)cccovevevrenneinncineccneenes 398
Do Not Output Some Symbols (-X)cccccoerviimriieinicicccccn, 398
Specify Search Directories for -1 (-Y L, -Y P, -Y U) .cccovvvviiiiiiinn, 398

XXVi

24.5

Contents

Linker -X options 399
Use Late Binding for Shared Libraries (-X)cccocooovviiinniniiniiccnne. 399
Enable/Disable Branch Island Generation (-Xbranch-islands...) 400
Check Input Patterns (-Xcheck-input-patterns)cc.cccccvveveirennnnes 400
Check for Overlapping Output Sections (-Xcheck-overlapping) 400
Use COFF Format for Output File (-Xcoff...)cccoevivvniiiiiiinn. 400
Align Common Symbols (-Xcommon-align=n)c.cccceeevrrrrrrnrnnen. 401
Remove Multiple Structure Definitions (-Xcompress-symbols) 401
Force Linker to Continue After Errors (-Xdont-die)c.cccecevernenns 401
Do Not Create Output File (-Xdont-link)cccccoeviiiiinnnn 401
Use Shared Libraries (-Xdynamic)cccccoevviimiiiiiicieins 401
Use ELF Format for Output File (-Xelf) ..o 402
ELF Format Relocation Information (-Xelf-rela-...) ..c.cccovvvevercrccncnnee 402
Do Not Export Symbols from Specified Libraries (-Xexclude-libs) .. 402
Do Not Export Specified Symbols (-Xexclude-symbols) 402
Write Explicit Instantiations File (-Xexpl-instantiations) 402

Generate Executable for Conversion to IEEE-695 (-Xextern-in-place) 403
Store Segment Address in Program Header (-Xgenerate-paddr) 403

Generate RTA Information (-Xgenerate-vmap)c.cccoeovveevircninennnnns 403
Limit Short Branch Island Generation (-Xmax-short-branch) 403
Do Not Align Output Section (-Xold-align)ccccccoevvveviiceiiirininnnn 403
Pad Input Sections to Match Existing Executable File

(-Xoptimized-load) ..o 404
Make Branch Islands Position-Independent (-Xpic-only) 404
Add Leading Underscore “_" to All Symbols

(-XprefiXx-underscore...) ..o 404
Remove Unused Sections (-Xremove-unused-sections)c......... 405
Re-scan Libraries (-Xrescan-libraries...)cccoceeeivenenenenenineneneenenn 405
Re-scan Libraries Restart (-Xrescan-restart...)coceoeeveerereennenecns 406
Align Sections (-Xsection-aligN=n)cccccoceerrirrrirrniieiccnicenes 406
Build Shared Libraries (-Xshared)c.cccocoveiiinienieienrecreeceeens 406
Sort .frame_info Section (-Xsort-frame-info)c.ceceeeveereneerennencns 406
Link to Static Libraries (-XStatiC)c.cocoeerrererrerenieenerereeniereneneeeas 407
Stop on Redeclaration (-Xstop-on-redeclaration)c.cccccoeuvvrrnnnnne 407
Stop on Warning (-Xstop-on-warning)c.ccceeeeeevvnicneecinnnns 407
Suppress Leading Dots “.” (-Xsuppress-dot...) ... 407
Suppress Section Names (-Xsuppress-section-names)cc.c....... 407
Suppress Paths in Symbol Table (-Xsuppress-path)ccccccoeeunnne 408
Suppress Leading Underscores ‘" (-Xsuppress-underscore-...) 408
Remove/Keep Unused Sections (-Xunused-sections...)cccc....... 408

XXVil

25

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Linker Command LaNQUAQJEcee-ceeeeeemmemmmmmmmmmmmmmeeemnssessssnssssssssssssnnne 409
251 Example “bubble.dld” 410
25.2 Syntax Notation 413
25.3 Numbers 414
254 Symbols 414
25.5 Expressions 415
25.6 Command File Structure 416
25.7 MEMORY Command 417
25.8 SECTIONS Command 418

SectioN-DefiNItioNc.ceeueueiininiriririeieciceciterre et 418

GROUP Definitionccceeueueueuiuiiininininieieieeiiceietseeeeeeeeeee e 426
259 Assignment Command 427
2510 Examples 428

PART V: WIND RIVER COMPILER UTILITIES

26

27

ULIlItIeS e 443
26.1 Common Command-Line Options 443
Show Option SUMMATY (-?) wooveveicieiecieeec e 443

Read Command-Line Options from File or Variable
(-@name, - @@NAME)coueeverveieririiieieierieieeee ettt e 443
Redirect Output (-@E=file, -@E+file, -@0O=file, -@0+file) 444
D-AR ArChIVEF ...t 445
27.1 Synopsis 445
27.2 Syntax 445

XXViii

28

29

30

27.3

27.4

D-BCNT Profiling Basic Block Counter

28.1

28.2

28.3

28.4

28.5

28.6

28.7

D-DUMP File Dumper

29.1

29.2

29.3

29.4

dmake Makefile Utility

30.1

30.2

Description

27.3.1 dar Commands

Contents

Examples

Synopsis

Syntax

Description

28.3.1 dbent Options

Files

28.4.1 Output File for Profile Data

Examples

Coverage

Notes

Synopsis

Syntax

Description

29.3.1 ddump commands

Examples

Introduction

Installation

XXIX

451

451

452
452

453
453

453

454

454

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

30.3 Using dmake 466
31 WindISS Simulator and Disassemblercccovrmimeeemennerrereeeeeensnens 467
31.1 Synopsis 467
31.2 Simulator Mode 468
3121 Compiling for the WindISS Simulator ... 469

31.2.2 Simulator Mode Command and Optionscccceceeriveiniiceinininnnnnns 469

31.3 Batch Disassembler Mode 473
31.3.1 Syntax (Disassembler Mode)ccocceiviiiiiniiiininiiiiiiciicins 473

31.3.2 DeSCIIPHON ..oouiviiiieiiiiiicicici e 473

31.4 Interactive Disassembler Mode 474
31.4.1 Syntax (Interactive Disassembler Mode)ccccovviinininiiiniinnnnns 474

31.4.2 DeSCIIPION ..cvovivieiiiciiiiieieetcccce e 474

31.5 Examples 475

PART VI: C LIBRARY

32 Library Structure, Rebuildingccccoooeeiiresseeceeeceec s 479
32.1 Introduction 479

32.2 Library Structure 480
3221 Libraries Supplied ... 480

32.2.2 Library Directory Structureccccoovviiiiiiiiiiiiiiccccccccine 483

32.2.3 TIDCA eeveiiiiiitriee ettt 485

32.2.4 Library Search Paths ..o 486

32.3 Library Sources, Rebuilding the Libraries 489
32.3.1 SOUICES ..vuiiiiiiiiiiicci s 489

XXX

33

34

Contents

32.3.2 Rebuilding the Libraries ... 490

Y RCTC I GEERE 151 0] =1 o (<1< R TR TT SO 491
== Lo [gl | =Y 493
33.1 Files 493
33.1.1 Standard Header FIlesccoooviiiiiiiiiiieeieeeeeeeeeeeeeee e 493

33.2 Defined Variables, Types, and Constants 496
L3 5 4 Lo 3N o NSRS 496

el 111 00 o TSRS 496

FLOAEIL oottt 497

LIMIES. L oot et 497

INATNLN Lo 497

INATNEN Lot e 497

SEHMP.I oo 497

SIENALI Lo 497

stdarg.h ..o 497

TS Lo <) 8 o WSS 498

17 K To YN o KSR 498

10 151 o0 o OSSR 498

SEING. N oo 498

1500 <30« OO SRRORTUTTON 498

C Library FUNCEIONScccccociiennnnnnsnssnnmenmmsnmenc e s 499
34.1 Format of Descriptions 499
34.1.1 Operating System Callscccoooiiiiiiiiiiiii 500

B4.1.2 RELEIEIICES ..vvieeieeeeceieeeeeeeeeeeeeet ettt ettt eae et e e s e eatesavesnaesseenseenaeans 500

34.2 Reentrant Versions 501
34.3 Function Listing 502
AOAL() coviieieeee ettt sttt a e raebe e saesebenes 502

ADOTE() oottt ettt tenen 502

ADS() ceeveeetenietet ettt ettt b et e bt 502

ACCESS() cveeremertetitetetert ettt et ettt sttt ettt ettt sttt benen 502

ACOS() weerrereeeterertet ettt ettt ettt ettt ettt st n e tebene 503

ACOSE() evereeeteeriet ettt ettt et ebea 503

XXXi

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

XXXii

............................ 503
AAVANCE() v o
ASCUME() v s
AN) o
S) o
ASSEILL) o o
LA) o
AL o o
AN) o
AN e
O s e
AUOIY s e
ALOI) v o
UOIL) v o
DOCAIEN() s o
COCE) o o
CO) o
QM) v B
ZCRBSIB() o B
clearerr() o
COCK() v o
COSEL) e
COMPIIE() s B
ZCOPYSIB) v B
QOS] o
S o
COS) o
COSMI() s o
CLOA) v i
CUME() v o
QIC() v o
div() i
drand48() o
dup() i
BV i
OEIl) v i
OEfI0) v i
S B
CHICH) o s
T i
R o
EXPL) o
OXPH) oo o
FADS() voveeeeerereete e

Contents

FADSE() oottt tenen 514
FCLOSE() wveneeeneeeieeee ettt ettt sttt ettt e st et ne e senens 515
FONEL() ettt 515
FOVE() ettt ettt ettt sttt 515
FAOPEN() o 515
FEOL() vttt 516
FETTOT() tevteeiiet ettt ettt 516
FEIUSI() ottt 516
FEELC() e 516
£EEEPOS() cvviiiiccee s 517
FEEES() v 517
FILENO() weverveneeteieie ettt ettt 517
FINIEE() wveieeeecte ettt 517
0101 o () USROS 518
FLOOTE() vttt ettt 518
00T Yo [() TSR PRRTR 518
FNOAL() ettt 518
FOPEII() v 519
EPTINEE() oo 519
FPULC() e 520
FPULS() o 520
FTEAA() ervevenerreieeet ettt 520
FIEE(1) wovetereeetetete ettt ettt ettt sttt ettt bbbt ns 520
fTEOPEN() v 521
FIEOXP () ceoveveieiieecce e 521
EEXPE() e 521
FSCATIE() vttt st tenen 522
FSEEK() eveuenertenereete sttt ettt ettt eene e nenens 522
£SEEPOS() v 522
FSEAL() ceevereerten ettt ettt 523
FEEIL() weneteeeeet ettt ettt ettt tenen 523
FIWTIEE() cveveneereetet ettt sttt 523
GAIMINA() cvovviiieieiieie s 523
GAMMAL() ooviiiiii s 524
GOVE() o 524
GEEC() et 524
GEEChAT() cvoviviiiciee e 525
GEEETIV() v 525
GELOPT() cvovviiiiiicic s 525
EEPIA() coviiiiiiiii s 525
EES() o 526
GEEW () o 526
SINEIMNE() v 526

XXXl

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

XXXiV

NCIEALE() o 527
RAESEIOY () v 527
RSEATCI() et 527
RYPOL() coreriieiiic e 527
RYPOLE() oo 528
ATANAAB() vttt 528
ISAINUIM() oottt 528
ISAIPRA() v 528
ISASCII() wovevereerererteteirtet ettt ettt ettt et ettt 529
ISATEY () v 529
ISCIETL() coveeteeietie ettt sttt ettt 529
ISAIGIL() wovvrercreiiieiecc s 529
ISELAPI() weviiiiiicicicc s 529
ISTOWET () wevenieeeiirieicie ettt 530
CISIAN() ettt 530
ISPIANE() oot 530
ISPUINCE() woviiiiciciccc e 530
ISSPACE() v 530
ISUPPOI() 1ottt e 531
ISXAIGIL() wovoveieieieiiiiic e 531
JOU) e 531
JOEC) e 531
JLO) e 532
JLEC) e 532
TIU) ottt 532
FOEC) e 532
JPANAAB() oo 533
KILL() cveeeeeeee ettt s e s nenan 533
KEANAAB() ceenteveeereetetiteee ettt ettt 533
IBEOL() vttt 533
LOAA() eveneeeeneieeee ettt n s 534
LADS() ettt 534
LCONEAB() oo 534
LAEXP () o 534
LAEXPE() v 534
LATV() oottt sttt sttt st 535
_lessgreater() ... 535
LETUA() vttt 535
TINK() ceeiiieieeetee ettt ettt s e nnan 535
10CAlECONV() voviieieiiieicicece et 536
LOCATHIME() teeveeiieiei ettt 536
LOG() v e 536

LOZD() o e 536

Contents

LOGE() ettt s 537
LOGLO() wvvieiiiiiiiec s 537
LOZLOE() et 537
1ONGIMP() v s 537
IPANAAB() ettt et 538
ISEATCR() vttt ettt 538
ISEEK() ettt 538
TEOIB() ettt ettt 539
MAIINTO() ceeteiiietiirtete ettt 539
IMNATTOC() +eveienirtiietetet ettt st sttt ettt sttt 539
__malloc_set_blOCK_SIZE() ..ecveririrerieiieieesieieeeseete et 540
MALlOPL() o 540
MNALRETT() weeverteeeieeet ettt ettt 540
MATNETTE() oottt enen 541
INDIEI() oottt et 541
INDSEOWES() weveviieieiieteietet ettt sttt ettt 542
INDEOWE() ettt ettt ettt ettt ettt s ne e tenens 542
MEMCCPY() crvrrrrrrrieieieteieiicce ettt 542
IMEMICAT() ettt ettt eenene 542
IMEMCINP() ovirinieiiiiiiiiicc e 543
8 TC3 0Tl o) OSSOSO 543
INEIMNINIOVE() cvevenreutrrirteteiterentetet et sttt st sttt se et st b sae st eseebesae e st sbesaens 543
INEIMSEE() -veverrenrenienietirteieeete oottt et e ettt et e st st e st e st besbe e eseebesbeneesesbebens 543
MKEEMP() cvoviiiiiiieiec s 544
INKEINE() eevirtiieiieieeteteeeet ettt bens 544
00 To T 1 () 1TSS 544
INOAIE() ettt 544
INTANAELE() ettt 545
_NEXEAFEET() tovetiieietieee et 545
NTANIAEAE() vttt ettt 545
OFFSEEOL() ceenetenieiet ettt 546
OPEIU() ettt s 546
PEITOT() vt e 546
POW () ottt 547
POWE() o 547
PINEE() oo 547
PULC() et 550
PULCRAT() o 550
PULENIV() i 551
PUES() o 551
PUEW() e 551
QSOTE() cvrvverciiiiiici s 551
TAISE() vttt ettt ettt ettt ettt ettt 552

XXXV

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

XXXVi

TANA() wveeereieeeeee ettt ettt 552
TEAA () teveueereetiteiet ettt sttt ettt s be e 552
TEALTOC() vttt sttt 552
TEIMIOVE() wevtrintenieierteteiteie st est et st e sttt sttt b e st et ea b sa et e st ebesbe e e st ebesbennene 553
TENATINE() wvevirinteiertenteteie et sttt et e st ettt eat bt st et eb b se et e bt besbe e e st e besbeeene 553
TEWITIA () weveitieteietet ettt ettt 553
SDIK() e 554

SCAID() vttt 554
SCANE() tavteteteteertet ettt ettt ettt 554
SEEAAS() veueererriienietirieietete ettt ettt ettt sttt ettt s ettt sbeaene 556
SEEDUL() tevenietirtiietetetee ettt sttt sttt s 556
SEHIMP() orrrerireieieiciii s 557
SELLOCALE() rveviieieietee et 557
SEEVDUL() vttt 558
SIENAL() oo 558
SITU() ettt 558
SITUE() oottt ettt ettt 559
ST) ettt ettt 559
SINNE() et 559
SPIINEE() oo 559
SATE() vt s 560
SATEE() oo 560
STATIA() wevvererrirenieiesteteite st et et et e st ettt st et et e sttt be e st eb et et e st ebebe s s ne 560
STANIAAE() ceveviviieiieieieteet ettt ettt sttt sttt ettt beaene 560
SSCANE() weverrerieiirteteieet ettt ettt ettt ettt sttt et sttt ettt se bt e s b naene 560
SEEP() ceeriiiriree s 561
SEECAL() vveveneertrtirtet ettt ettt ettt sttt ettt 561
SEECRT() 1ottt 561
SEECINP () oot s 561
SEECOLL() ettt ettt 562
SEECPY () vttt e 562
SEICSPII() et 562
SEEAUP() oo 562
SEEEITOT() 1ottt ettt 563
SEFEIME() ceveverenieieeteieetrt ettt ettt ettt b e 563
SEILEII() werveneerirtiietet ettt sttt sttt sttt ettt s be e 564
SEITICAL() venverirriienieterietet ettt ettt sttt sttt ettt sttt s et e e benaene 564
SENCIMP() v 564
SHNCPY () wvrrrrrerireieieinic s 565
SEPDIK() e 565
SEETCIT() ettt 565
SEESPIU() woviiiicicccc s 565
SEESET() cveeeneetertet ettt sttt ettt 566

Contents

................................ 566
i R oo
R e
SUON) s i
BEHOUIL) v i
I) By
swab() B
N o
(NI) o o
BAID() o
ANNIL) o o
OICHE) o o
tell() o
HOMPAIN() s o
MINA() v e
BIMIEL) v e
EPHIC() v el
BIPIAIIN) cr el
ROASCHI() v o
FOLOWEI() v o
IOLOWEH() v o
OUPPOIL) s
OUPPEI) o ik
SCANEI) ik
PWAIK() el
SCHL) v R
MRGEEE() v o
ML) oo o
HNOMABIRA() v o
viprintf() iy
VESCAII() o iy
vprintf() ik
VCA() o gk
YPTIN) s gk
VSSCAN() 1 b
WESLOMBS() v el
VGO) el
write() o
y0() i
YOI) o g
VIO s i
YUY v ek
yn() el
VIE() oo

XXXVii

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

PART VII: APPENDICES

A

Configuration Filesccccccmiiimmmmnissrinnes s 581
A1 Configuration Files 581
A.2 How Commands, Environment Variables, and Configuration Files Relate 582

A3

A4

A21 Configuration Variables and Precedencecccccoovinininiiiinnnnns 582
A22 SEATEUP oo 583
Standard Configuration Files 584
A.3.1 DENVIRON Configuration Variablecccccovniiicnnnncceeenne 585
A.32 UFLAGSI, UFLAGS2, DFLAGS Configuration Variables 587
A.3.3 UAFLAGS], UAFLAGS2, ULFLAGS1, ULFLAGS2

Configuration Variables ..., 588
The Configuration Language 588
A41 Statements and OPONSccccooviiiiiriiiininiiiierrccee e 589
A42 COMIMENES oottt sttt sae et 589
A43 String Constants ... 590
Add Variables ..c.coceoiiieiiiniiiiieeee e 590
A45 Assignment Statementcccocooiiiiiii 591
A6 Error Statementcocoeuerieieininieininicictcteeet ettt 592
AA47 EXit STAtemMENtc.covvveuiriiieiiiiieieccirctetct e 592
A48 Tf SEAtEIMENT veiieiiiieiiieieeee ettt 592
AA49 Include StatemMeNntccceeveerieirienieieeeesee et 593
A4 10 Print StAatemMENTcccoevveiieiriiieieieeeieeesee et 593
A4l Switch SEAtEMENT ...coveuieiieiiieieiee e 593

XXXViii

Contents

Compatibility Modes: ANSI, PCC, and K&R C ... 595
Compiler Limitsccccviiiiimiimiirsss s s 601
Compiler Implementation Defined Behaviorcccccvivemiienriianenans 603
D.1 Introduction 603
D.2 Translation 604
D.3 Environment 606
D.4 Library functions 607
Assembler Coding NOteScccceriiimrrinniss e 611
E1 Instruction Mnemonics 611
E.2 Operand Addressing Modes 613
E21 ReGISEIS oo 613

E.2.2 EXPIESSIONS ..ooucuiuiiiiiiiiiieieietcicicce ettt 613
Object and Executable File Formatsccccoeiiiiiicmmmmmnnnnssscssssseennnnnas 617
E1 Executable and Linking Format (ELF) 617
F11 OVerall STIUCTUTEcooveviiieiiiicieceeceeec e 617

F12 ELF HEAEr ..ottt 618

F1.3 Program Header ... 620

ELF Program Header Fieldsccccoooviiiininiiniiccccnce 620

F14 Section Headers ...t 621

E15 Special SECtiONScccvoveeviiiciiciiiei e 623

F1.6 ELF Relocation Informationcccceceeueiiieinnineinicecccirreenen 624

ELF Relocation Entry Fieldscccccooiiiiiiiiiiiic 625

F1.7 Line Number INformationccccoceveeciiiicininnniniiccccccciee 626

F1.8 Symbol Tableccoooiiiiiiiiiiiiiicccc s 626

XXXiX

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

ELF Symbol Table Fieldscccocviiiiiiiiiiiiiiiccccccines 626

E19 String Tablec.coiiiiiiiiicc s 627

F2 Common Object File Format (COFF) 628
E21 OVErall SEFUCEUTE ...ovviiiieiiieieeee et 628

COFEF File COMPONENScoovuevvrireeriieiiiciiice e 628

F2.2 File HEAART ..cuooiieiiiiieiieie ettt 630

COFF Header Fieldsccccveivriiniiiiiieiiinicesieeeceeeieeeeei e 630

E23 Optional Header ... 631

COFF Optional (Executable) Header Fieldsccccooiviiiiinnnnnnn. 631

F2.4 Section HEaderscccocivrieininiiiniiiiincicieeietseeeeet et 632

COFF Section Header Fieldsc.ccccoveinininnecnncinncineccneccnnes 632

F25 Raw Data SECIONSc.coccceririeinieiiinieiiiietiinieitnteieteeeteeeeet et 633

COFF SECION NAMES ...cuveuiiiinirieiiieieinieieeeieiesteieeseeteseeseses s esaeseesaenes 634

E2.6 COFF Relocation INformationccccoeeeeerieenineienieeneseeeeeeneseenens 634

COFF Relocation Entry Fieldscccccooiiiiiiniiniiiiiiiiinee, 635

E2.7 Line Number INformationc..ccecevevieirenieininenieeneieeeeseesieeeeneens 636

COFF Line Number Fieldsc.cccoiiireiniineeeeeeeeeeeee 637

E2.8 Symbol Table ..o 638

COFF Symbol Table Feldsc.ccccoovinmiiniiiiicnicccccce, 638

E29 Additional Symbolsccccooeiiiiriiiiiiic s 639

F2.10 String Table ... 640
Compiler -X Options Numeric Listccccooooeommmmmmcmmmmeecceccceecceceenceeees 641
MESSAJES ...oevririiiiirnnmmnrrrriissinnnss s nn e 645
H.1 Introduction 645
H.2 Compiler Messages 646
H21 Compiler Message Formatcccccovvniiiiiiiiiiiniiccccccnne 646

x/

Contents

H.2.2 Errors in asm Macros and asm Stringscccccceeeiciiincnnnninncnenenee 647

H23 CCompiler Message Detailccccccoeiiiiiininininiiiiciiicne, 647

H.2:4 CHt MESSAES ..oviiiiiiciiicciitii b 701

H.3 Assembler Messages 702

H.4 Linker Messages 702

H.4.1 Linker Message FOrmatcccocoooeiiiminiininicniiccnccccccceees 702

H.4.2 Linker Message Detailcccoooiiiniiiniiiiiiicccc 703

INAEX e 717

xli

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

xlii

PART |
Introduction

OVEIVIEWcoicceemenrrinissses s s e 3
Configuration and Directory Structure 9
Drivers and Subprogram Flowcccec..... 19
Selecting a Target and Its Components 23

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Overview

1.1 Introduction 3
1.2 Overview of the Tools 4

1.3 Documentation 7

1.1 Introduction

This manual describes all tools in the Wind River Compiler toolkit (formerly
known as the Diab Compiler) for the MC680x0 family of microprocessors,
including the MC68000, MC68010, MC68020, MC68030, MC68040, and MC68060,
as well as the CPU32, CPU32+, MC68EC0x0, MC683xx, and MC68LCOx0. It
includes detailed information about each tool, optimization hints, and guidelines
for porting existing code to the compilers and assembler.

For introductory information, including an example program, see the Getting
Started manual.

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1.2 Overview of the Tools

The compiler suite includes high-performance C and C++ tools designed for
professional programmers. Besides the benefits of state-of-the-art optimization,
they reduce time spent creating reliable code because the compilers and other tools
are themselves fast, and they include built-in, customizable checking features that
will help you find problems earlier.

With hundreds of command-line options and special pragmas, and a powerful
linker command language for arranging code and data in memory, the tools can be
customized to meet the needs of any device software project. Special options are
provided for compatibility with other tools and to facilitate porting of existing
code.

Important Compiler Features and Extensions

= Many compiler controls and options for greater flexibility over compiler
operation and code generation.

= Many features and extensions targeted for the device programmer. See 15. Use
in an Embedded Environment.

* Optimizations and features tailored individually for each processor type
within the 68K/CPU32 microprocessor family. See 4.3 Alternatives for Selecting
a Target Configuration, p.29 for information on how to specify the target
processor.

» Extensive compile-time checking to detect suspicious and nonportable
constructs. See 11. The Lint Facility.

» Powerful profiling capabilities to locate bottlenecks in the code. The profiling
information can also automatically be used as feedback to the compiler,
enabling even more aggressive optimizations. See 10. Optimization, and the
discussion of D-BCNT in 28. D-BCNT Profiling Basic Block Counter.

» C++ templates, exceptions, and run-time type information.

High Performance Optimizations

A wide range of optimizations, some of which are unique to the Wind River
Compiler, produce fast and compact code as measured by independent

1 Overview
1.2 Overview of the Tools

benchmarks. Special optimizations include superior interprocedural register
allocations, inlining, and reaching analysis.

Optimizations fall into three categories: local, function-level, and program-level, as
listed next. See 10. Optimization.

* Local optimizations within a block of code:

Constant folding

Delete TST

Integer divide optimization

Local common sub-expression elimination
Local strength reduction

Minor transformations

Peep-hole optimizations

Switch optimizations

= Function global optimizations within each function:

Auto increment/decrement optimizations
Automatic register allocation
Complex branch optimization
Condition code optimization
Constant propagation

Dead code elimination

Delayed branches optimization
Delayed register saving
Entry/exit code removal

Extend optimization

Global common sub-expression elimination
Global variable store delay
Lifetime analysis (coloring)

Link register optimization

Loop count-down optimization
Loop invariant code motion

Loop statics optimization

Loop strength reduction

Loop unrolling

Memory read /write optimizations
Reordering code scheduling
Restart optimization

Branch-chain optimization

Space optimization

Split optimization

Portability

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Structure and bit-field member to registers
Tail recursion

Tail jump optimization

Undefined variable propagation

Unused assignment deletion

Variable location optimization

Variable propagation

» Program global optimizations across multiple functions:

Argument address optimization
Function inlining

Glue function optimization
Interprocedural optimizations
Literal synthesis optimization
Local data area optimization
Profiling feedback optimization
Static function optimization

The compiler implements the ANSI C++ standard (ISO/IEC FDIS 14882) as
described in 13. C++ Features and Compatibility. Exceptions, templates, and
run-time type Information (RTTI) are fully implemented.

For C modules, the compiler conforms fully to the ANSI X3.159-1989 standard
(called ANSI C), with extensions for compatibility with other compilers to simplify
porting of legacy code.

Standard C programs can be compiled with a strict ANSI option that turns off the
extensions and reduces the language to the standard core. Alternatively, such
programs can be gradually upgraded by using the extensions as desired. See
BCompatibility Modes: ANSI, PCC, and K&R C, p.595 for operational details when
compiling in different modes.

Wind River tools produce identical binary output regardless of the host platform
on which they run. The only exceptions occur when symbolic debugger
information is generated (that is, when -g options are enabled), since path
information differs from one build environment to another.

1.3 Documentation

This User’s Guide

Table 1-1

1 Overview
1.3 Documentation

This guide contains all information necessary to use the tools effectively. Please see
the table of contents for a detailed overview.

User’s Guide Parts

Part

Contents

Part 1. Introduction

Part II. Wind River Compiler

Part III. Wind River Assembler

Part IV. Wind River Linker
Part V. Wind River Compiler
Ultilities

Part VI. C Library

Part VII. Appendices

Overview, configuration, directory structure,
subprograms, selecting a target for compilation.

The compilers, including invocation, options,
additions to C and C++ for device
programming, internal data representation,
calling conventions, and optimizations.

The assembler, including invocation, options,
syntax rules, expression syntax, and all
assembler directives. See manufacturer’s
manuals for details on 68K /CPU32 instructions.

The linker, including invocation, options, the
linker command language, and object module
formats.

The D-AR library archiver; the D-DUMP utility
for converting and examining object,
executable, and archive files; and others.

The structure of the C libraries provided with
the compiler for use in different environments,
and the details of the functions in the libraries.

Configuration files, limits, implementation-
defined behavior, assembler coding notes, object
modules format details, -X options by number,
and messages.

This manual does not explain the C or C++ language. SeeAdditional Documentation,
p-8 below, for references to standard works.

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Additional Documentation

Changes made for this release and information developed after publication of this
manual may be found in the release notes.

The following C++ references are recommended: the ANSI C++ standard
(ISO/IEC FDIS 14882), The C++ Programming Language by Bjarne Stroustrup, The
Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne Stroustrup, and
The C++ Standard Template Library by PJ. Plauger et al.

For C, see the ANSI C standard X3.159-1989 and The C Programming Language by
Brian Kernighan and Dennis Ritchie (K&R).

The following manuals from Freescale and Motorola may be consulted for details
about microprocessor architecture and instructions:

» MC680x0 Microprocessor User’s Manuals
» M68000 Family Programmer’s Reference Manual

When this manual lists assembler code, the mnemonics are the assembler
mnemonics used for embedded Freescale systems. The compiler tools are available
with other mnemonics.

Configuration and Directory
Structure

2.1 Components and Directories 9
2.2 Accessing Current and Other Versions of the Tools 14

2.3 Environment Variables 15

2.1 Components and Directories

All files are located in subdirectories of a single root directory. The following
terminology is used throughout this manual to refer to that root and related
subdirectories:

» install_path represents the full pathname of the root directory. The root
directory contains version_path subdirectories, each acting as a sub-root for all
files related to a single version of the compiler. This allows multiple versions
of the tools to reside on the same file system.

» version_path is the name of the complete path for a single version of the
compiler.

» host_dir is the name of a subdirectory under version_path containing directories
specific to a single type of host, e.g. Win32 or SUNS (Sun Solaris). This permits
tools for different types of systems to reside on a single networked file system

These names for a default installation depend on the host file system. The
following table assumes that the version number is 5.3.x and shows examples for

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

common installations. For other systems, see the installation procedures shipped
with the media.

Table 2-1 Example Default Installation Pathnames

System Default version_path Default with host_dir

UNIX flusr/lib/diab/5.3.x fusr/lib/diab/5.3.x/host
HP-UX fusr/lib/diab/5.3.x/HPUX
Solaris /usr/lib/diab/5.3.x/SUNS
Linux fusr/lib/diab/5.3.x/LINUX386

PCs C:\diab\5.3.x C:\diab\5.3.x\op-sys
Windows C:\diab\5.3.x\WIN32

NOTE: In this manual, instructions and examples for Windows apply to all
supported versions of Microsoft Windows.

Also, in cases where the Windows and UNIX pathnames are identical except for
the path separator character, only one pathname is shown using the UNIX
separator “/”.

The following table lists the subdirectories of version_path and important files
contained in them.

Table 2-2 Version_path Subdirectories and Important Files

Subdirectory or File Contents or Use
Programs:
host_dir/bin/ Programs intended for direct use by the user:
dcc Main driver—assumes C libraries and headers.
dplus Main driver—assumes C++ libraries and headers.
das The assembler. A separate 68K /CPU32-specific description file

controls assembly.

did The linker. Generates executable files from one or more object
files and object libraries (archives).

10

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

dar

dbcnt

dctrl

ddump

dmake

flexIm*
Im*

reorder

host_dir/lib/

ctoa
etoa, dtoa

Contents or Use

D-AR archiver. Creates an object library (archive) from one or
more object files.

D-BCNT basic block counter. Generates profiling information
from files compiled with -Xblock-count.

Utility to set default target for compiler, assembler, and linker.

D-DUMP object file utility. Examines or converts object files, e.g.
ELF to Motorola S-Records.

“make” utility; extended features are required to re-build the
libraries. Not for use with VxWorks development tools.

Programs and files for the license manager used by all Wind
River tools.

This program is started by the driver. It reschedules the
instruction sequence to avoid stalls in the processor pipeline
and does some peephole optimizations. See 10. Optimization.

Programs and files used by programs in bin.

C and C++ compilers. A separate 68K/CPU32-specific
description file directs code generation. (The preferred C++
compiler is etoa; dtoa is an older version.)

Configuration, header, and source files

conf/

dtools.conf
default.conf
user.conf

default.dld

dmake/

example/

Configuration files for compilers, assembler, and linker.

Configuration files read by the compiler drivers at startup,
primarily to supply command-line options. See A. Configuration
Files for details. Other .conf files for particular boards or
operating systems may also be present.

Default linker command file. Other sample .dld linker
command files are also found here. See 24.2 Defaults, p.390 in
the Linker section of this manual.

dmake startup files. See 30. dmake Makefile Utility.

Example files used in the Getting Started manual and elsewhere.

11

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

Contents or Use

include/

libraries/

pdf/
relhist/

src/

Standard and other header files for use in user programs, plus
HP/SGI STL library header files.

Library sources and build files. See 32.3 Library Sources, Rebuilding
the Libraries, p.489 for details.

PDF form for all manuals.
Older Release Notes.

Source code for replacement routines for system calls. These
functions must be modified before they can be used in an embedded
environment. See 15. Use in an Embedded Environment.

68K/CPU32 startup module and libraries

MCx0F/crt0.0

MCO00F/ and MC60F/

libc.a
cross/libc.a
simple/libc.a

ELF startup module; initializes environment and calls main. For
the 68K family, there is a crt0.0 startup module in subdirectory
MCO00f, MC20f, MC40f, and MC60f for each of the 68000, 68020,
68040, and 68060 sub-families respectively.

ELF libraries. There are two sets of libraries: directories beginning
with MC60 are for all members of the 68K family except the
following: 6800%*, 68EC000, 68010, 6830*, 68322, 68328, and 68356.
Directories for the latter begin with MC00.

ELF standard C libraries. Each libc.a is actually a short text file
of -1 options listing other libraries to be included. A libc.a file is
selected based on the library search path (See 4.2 Selected Startup
Module and Libraries, p.27).

MC60F/libc.a is a generic C library with no input/output
support. It includes sublibraries libi.a, libcfp.a, libimpl.a,
libimpfp.a, all described below.

MC60F/simple/libc.a includes the above four sublibraries plus
libchar.a providing basic character I/O.

MC60F/cross/libc.a includes the above four sublibraries plus
libram.a, which adds RAM-disk-based file I/O.

For details, see 32.2 Library Structure, p.480.

12

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

libchar.a

libram.a

libi.a

libimpl.a

libd.a

libg.a

windiss/libwindiss.a

Contents or Use

Basic character input/output support for stdin and stdout
(stderr and named files are not supported); an alternative to
libram.a.

Adds to libchar.a RAM-disk-based fileI/O for stdin and stdout
only; an alternative to libchar.a.

General library containing standard ANSI C functions.

Utility functions called by compiler generated or runtime code,
typically for constructs not implemented in hardware, e.g.,
low-level software floating point support, multiple register save
and restore, and 64-bit integer support.

Additional standard library functions for C++ (libc.a is also
required).

Functions to generate debug information for some debug
targets.

Support library for Wind ISS instruction-set simulator when
supplied. Note: implicitly also uses cross/libc.a.

Floating point-specific libraries and sub-libraries

MC60FN
libefp.a
libimpfp.a
libstl.a, libstlstd.a

MCG60FS/
libcfp.a
libcomplex.a
libimpfp.a

libios.a

ELF floating point stubs for floating point support of “None”.
Stubs to avoid undefined externals.
Empty file required by different versions of libc.a.

Support library for C++. Includes iostream and complex math
classes.

ELF software floating point libraries:
Floating point functions called by user code.
C++ complex math class library.
Conversions between floating point and other types.

C++ iostream class library.

13

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Table 2-2 Version_path Subdirectories and Important Files (cont'd)
Subdirectory or File Contents or Use
libm.a Math library.
libpthread.a Unsupported implementation of POSIX threads for use with
the example programs. Text file which includes sub-libraries
libdk*.a.
MC60FV/ ELF vector floating point libraries:
MC60FH/ ELF hardware floating point libraries supporting hardware
floating point built into the processor; parallel to MC60FS.
MCx0E Parallel directories for COFF components.
MC60E/
MC60EH/
MC60EN/
MC60ES

2.2 Accessing Current and Other Versions of the Tools

The driver (dcc or dplus) automatically finds the subprograms it calls (it is
modified with the directory selected during installation). Thus, running the
compiler requires only that driver be accessed in any of the usual ways:

» Add version_path/host_dir/bin to your path for UNIX or
version_path\host_dir\bin for Windows.

= Create an alias or batch file that includes the complete path directly.
» Copy dccor dplus to an existing directory in your path, e.g., /ust/bin on UNIX.

If the tools are installed on a remote server, Windows users should map a drive
letter to the remote directory where they reside and use that drive letter when
setting their path variable.

14

2 Configuration and Directory Structure
2.3 Environment Variables

You can invoke an older copy of a driver as follows:

* Rename the main driver for the older version. For example, to execute version
4.4a of the C++ driver, rename dplus in the bin directory for version 4.4a
dplus44a. Then access dplus44a in any of the usual ways described above.

= Modify your path to put the directory containing the desired version before
the directory containing any other version. The driver command will then
access the desired version.

» Create an alias or batch file that includes the complete path of the desired
version.

2.3 Environment Variables

NOTE: This section is for unusual cases. It is usually sufficient to override the
default setting by using the -t option on a command line when invoking a tool, or
to use one of the other methods, all as described under 4.3 Alternatives for Selecting
a Target Configuration, p.29.

The configuration information which controls default operation of the tools is
usually stored as configuration variables in default.conf in the conf subdirectory of
the version_path directory by the dctrl program. These configuration variables
include DTARGET, DFP, DOBJECT, and DENVIRON. However, if an environment
variable having the same name as a configuration variable is set, the value of the
environment variable will override the value stored in default.conf. (This can in
turn be overridden by using a -t or -WD option on the command line when
invoking a tool.)

The method used to set environment variables depends on the operating system as
shown in the following table.

Table 2-3 Setting Environment Variables

System Command
UNIX variable=value ; export variable
Windows set ovariable=value

15

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

2.3.1 Environment Variables Recognized by the Compiler

This section describes the environment variables recognized by the compiler.

DCONFIG

Specifies the configuration file used to define the default behavior of the tools.
documents the configuration file. If neither DCONFIG nor the -WC option is
used (see A.2.2 Startup, p.583), the drivers use:

version_path/conf /dtools .conf (UNIX)
%version_path%\conf\dtools.conf (Windows)
DTARGET
DOBJECT
DFP
DENVIRON

These four environment variables specify, respectively, the target processor,
object file format and mnemonic type, floating point method, and execution
environment. They may be used to override the values set in default.conf (and
will in turn be overridden by a -t option on the command line). DENVIRON
may also refer to an additional configuration file, for example to set options for
a particular target operating system. For details, see:

» 4.3 Alternatives for Selecting a Target Configuration, p.29.
» 4.1 Selecting a Target, p.23 for valid settings for the four variables.
»= A.3.1 DENVIRON Configuration Variable, p.585 regarding DENVIRON.

DFLAGS

Specifies extra options for the drivers and is a convenient way to specify -XO,
-O or other options with an environment variable (e.g., to avoid changing
several makefiles or to override options given in a configuration file). The
options in DFLAGS are evaluated before the options given on the command
line. See A.3 Standard Configuration Files, p.584, especially Figure A-2 for
details.

DIABLIB

16

Formerly used to tell the compiler and drivers where to look for the tools. If
DIABLIB is defined, it should be set to the version_path selected during
installation. If DIABLIB is not defined, the compiler and drivers are found on
the user’s path variable or from an absolute directory path specified on the
command line.

NOTE: DIABLIB is deprecated and is maintained for backward compatibility
only.

2 Configuration and Directory Structure
2.3 Environment Variables

DIABTMPDIR
Specifies the directory for all temporary files generated by all tools in the tool
suite.

DCXXOLD
If set to YES, tells the compiler to use the old C++ parser (-Xc++-old option) by
default.

17

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

18

Drivers and Subprogram Flow

The Wind River tools are most easily invoked using the dcc and dplus driver
programs. Depending on the input files and options on the command line, the
driver may run up to five subprograms: the C preprocessor, either or both
compilers, the assembler, and the linker.

The following figure shows the subprogram flow graphically for a C file. A C++
file is processed similarly except dplus invokes the C++ etoa compiler instead of
ctoa. The subprograms and the stopping options are described following the figure.

19

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Figure 3-1 Subprogram Flow and Intermediate Files

Stopping
C sources Preprocessor Option
file.c cpp
. \J P
C Compiler A/
ctoa
_) -S
Assembler "\ Assembler A/
sources
\/ das
i
Libraries \ Linker
aa |~ &

Driver command lines are described in detail in 5. Invoking the Compiler. The
general form is:

dce [options] [input-files] Assumes Wind River C libraries.

dplus [options] [input-files] Assumes Wind River C++ libraries.

The driver determines the starting subprogram to be applied to each input-file
based on the file’s extension suffix; for example, by default a file with extension .s
is assembled and linked but not preprocessed or compiled. Command-line options
may be used to stop processing early. The subprograms and stopping options are
as follows.

20

3 Drivers and Subprogram Flow

Table 3-1 Driver Subprograms, Default Input and Output Extensions, and Stopping Options

Default Default
Sub- Input Stopping Output
program Extension Option Extension Function and Stopping Option
cpp -P . The preprocessor; takes a C or C++
module as input and processes all #
directives. This program is included in
the main compiler program. The -P
option halts the driver after this phase,
producing a file with the .i suffix. (The
. file is not produced unless -P is used.)
ctoa .c -s .s The C-to-assembly compiler; consists of
several internal stages (parser,
optimizer, and code generator), and
generates assembly source from
preprocessed C source.
etoa -cpp -s -s The C++-to-assembly compiler;
z’c‘x generates assembly source from
.c (capital, UNIX) preprocessed C++ source.
das .s -c .0 The assembler; generates linkable
object code from assembly source.
did -0 (object) a.out The linker; generates an executable file
. from one or more object files and object
. h (default) M C _) d obj
: (archive) libraries, as directed by a .dld linker
command file (obsolete: .Ink). The
"]i_zll: (commands) default output name is a.out if the -o

outputfile option is not given.

21

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

22

Selecting a Target and Its
Components

4.1 Selecting a Target 23
4.2 Selected Startup Module and Libraries 27
4.3 Alternatives for Selecting a Target Configuration 29

4.1 Selecting a Target

The compiler, assembler, and linker all require specification of a target configuration.

A complete target configuration specifies the target processor, the type of floating
point support, the object module format (ELF or COFF), and the execution
environment (default libraries for input/output and target operating system
support). To determine the current default, execute the command:

dcc -Xshow-target

or print the file default.conf in the version_path/conf subdirectory.

The easiest methods for selecting a target configuration are as follows. The first
method is preferred. For special cases or more details, see 4.3 Alternatives for
Selecting a Target Configuration, p.29.

23

Table 4-1

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

= Use the -ttof or -ttof:environ option when invoking the compiler, assembler, or
linker. The table below describes this option.

» Invoke the dctrl command with the -t option to set the defaults used when no
-t option is present on the compiler, assembler, or linker command line. Note
that this sets the default for all users.

The tof:environ string given with the -t option has four parts, as follows. See
4.2 Selected Startup Module and Libraries, p.27 for examples.

-t Option Values

t Target processor, a several-character code — see the Notes following the
table (sets DTARGET):

MC6800* MC68000 and other processors based on its core
= MC6830*
= MC68322
= MC68328
= MC68356

MC68EC000 MC68EC000
MC68008 MC68008
MC68010 MC68010
MC68020 MC68020
MC68EC020 MC680EC020
MC68030 MC68030
MC68030X MC68030X
MC68EC030 MC68EC030
MC68040 MC68040

MC68LC040
MC68EC040 MC68040 core instructions

24

4 Selecting a Target and Its Components
4.1 Selecting a Target

Table 4-1 -t Option Values (cont'd)

MC68060 MC68060

MC68EC060

MC68LC060
MC68349 MC68349
MC68360 MC68360

CPU32+ CPU32+
= MC68349
= MC68360

CPU32 CPU32
= MC683*

Object format — one character (sets DOBJECT):
F for ELF using embedded mnemonics
E for COFF using embedded mnemonics

N GNU/VxWorks object format. This option uses the GNU
assembler/linker/libraries for object and assembly code
compatibility.

f Floating point support — one character (sets DFP):

H for Hardware floating point — default on targets that have a
floating point unit. S for Software floating point emulation
provided with the compiler — default on targets without internal
floating point.

N for No floating point support (minimizes the required runtime).

25

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Table 4-1 -t Option Values (cont'd)

environ Execution environment (sets DENVIRON). Determines paths searched

for libraries (see 4.2 Selected Startup Module and Libraries, p.27). Two
standard values used with the libraries delivered with the tools are:

cross to include libram.a for RAM-disk input/output
simple to include libchar.a for basic character input/output

environ may also be the name of a target operating system supported
by Wind River. In this case, in addition to specifying the library search
path, the value will be used to include a special configuration file,
environ.conf in the conf subdirectory, to set options required by the
target operating system. For further details, see A.3.1 DENVIRON
Configuration Variable, p.585, VxWorks Application Development, p.27,
and the release notes and available application notes for particular
target operating systems.

environ is optional. If not given by -t, a -WDDENVIRON option, or a
DENVIRON environment variable, the value set by dctrl is used.

Notes for the Target Processor Component of the -t Option

26

”t”

In the -tfof option, “t” is the part not including the final two parts, each of
which is always a single character (the o0 and f parts).

“__r

Each target in the table which is not preceded by an sign causes the
invoked tool to operate in a manner unique to that target. The unique
operating characteristics are selected via the options used to invoke the tool
plus the options which the tool extracts from the built-in configuration files.

To see the options associated with a particular -t option, invoke a compiler
driver with the -t option, the -# option (causes the driver to show the
command line used to invoke each tool), and the -Wa, -# option (causes the
assembler, when invoked by the driver, to show options which it extracts from
the configuration files).

“u__r

In each row of the table, values preceded by an equal sign “="" are equivalent to the first
value in the row and are treated alike by the tools in all respects (internally, the value
without the “=’ sign is substituted for the given target value).

“ t” VEY

may end with a “*” character. This matches any string of zero or more
characters, and is intended to provide generic support for new processors in a
family.

4 Selecting a Target and Its Components
4.2 Selected Startup Module and Libraries

The order in the table is significant: the first “t” matching that is given on the
command line will be selected. When entering a target processor name on the command
line with the -t option, use the actual processor name, not a “*”. Then, if the tools have
special support specifically for that processor, it will be selected; if not, the first
matching “generic” processor will be used.

= This table may not be up-to-date. Invoke dctrl -t to construct any valid -t
option supported by the tools as installed, or look in MC60.conf for a complete
list of target processor codes.

VxWorks Application Development

To build VxWorks applications, specify the appropriate execution environment
with the -t option. Usually this will be :rtp for user (real-time process) mode or
:vxworksx.x for kernel mode. For example, -tMC6800*EN:rtp selects user mode,
while -tMC6800*EN:vxworks6.2 selects VxWorks 6.2 kernel mode. For more
information, see the documentation that accompanied your VxWorks
development tools.

NOTE: If you specify a VxWorks execution environment (:rtp or :vxworksx.x), the
standard C libraries linked to your application will be different from the
compiler’s native C libraries documented in this manual.

Specifying a VxWorks execution environment turns on -Xieee754-pedantic by
default.

4.2 Selected Startup Module and Libraries

The parts of -ttof:environ option (or its equivalents as described in 4.1 Selecting a
Target, p.23) are used to construct a directory name and to select the desired startup
module and libraries per Table 4-1.

27

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Examples:

-t Option Startup Module, Libraries
-tMC68060FN: simple MC60F/crt0.0

MC60F/simple/libc.a with MC60FN/libcfp.a and
MC60F/libchar.a

68K/CPU32, ELF objects, no floating point, character
input/output

-tMC68060FS:cross MC60F/crt0.0

MC60F/cross/libc.a with MC60FS/libcfp.a and
MC60F/libram.a

68K/CPU32, ELF objects, software floating point,
RAM-disk input/output

The library archive files themselves, and the detailed mechanics for selection of the
appropriate subdirectories and libraries, are fully described in 32.2 Library
Structure, p.480.

Briefly, the main driver programs select the startup module and libraries by
invoking the linker with the following partial command line, using UNIX path
notation, written on multiple lines and spaced for readability, and where 0 and f are
as described above:
dld -Y P,uversion_path/MCx0of/environ : version_path/MCx0of :

version_path/MC600of :

version_path/MCx0o/environ : version_path/MCx00 :

version_path /MCx00

-l:crt0.o0 ... -lc

The -Y P option sets a list of directories. Then the -l:crt0.0 option causes the linker
to look in those directories for file crt0.0, the startup file, without modification,
while the -1c option causes the linker to construct filename libc.a and look in those
directories for it.

28

4 Selecting a Target and Its Components
4.3 Alternatives for Selecting a Target Configuration

4.3 Alternatives for Selecting a Target Configuration

There are five ways to change the target configuration. As noted at the beginning of
this chapter, the first method is preferred, especially when multiple engineers work with
multiple targets. This section is provided for backward compatibility and special
cases.

Using -t sets four configuration variables: DTARGET for the processor, DOBJECT for
the object module format, DFP for the type of floating point support, and
DENVIRON for the target execution environment.

These configuration variables are stored in version_path/conf/default.conf. A
configuration variable may be overridden by an environment variable of the same
name, or by a -t or -WD variable option on the command used to invoke the
compiler, assembler, or linker. The environment variable is checked first and then
the command line; the last instance found is used.

Change the target for a single invocation of a tool by using the -t option on the
command line; this applies to dcc, dplus, das, and dld. The -t option takes one of
the tof or tof:environ codes described in 4.1 Selecting a Target, p.23 and displayed by
the dctrl -t program (see below).

Example:
dplus -tfof -c¢ file.cpp

Other methods involve changing or overriding four configuration variables stored
in the configuration file default.conf. (See A.3 Standard Configuration Files, p.584.)

» The default target configuration is set and may be changed any time by using
the dctrl program with the -t option:

dectrl -t

This interactive program prompts you for the desired target processor, object
format, floating point support, and target execution environment. If you
already know the exact target configuration you want, you can skip the
interactive program by specifying the target after -t on the command line:

dctrl -ttofenviron

Upon success, dctrl displays the new default target and modifies default.conf.

* Manually edit the default.conf configuration file to change the default settings
for any of the DTARGET (the processor), DOBJECT (object module format),
DFP (floating point support), and DENVIRON (target execution environment)
configuration variables.

29

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

* Set any of the DTARGET, DFP, DOBJECT, and DENVIRON environment
variables. This overrides the values of the configuration variables having these
names in default.conf.

» Use the command-line option -WD environment_uvariable (see 5.3.26 Define
Configuration Variable (-W Dname=value), p.46). This overrides both the values
of the variables in default.conf and any environment variables. Example:

dplus -WDDTARGET=newtarget -c file.cpp

NOTE: For additional explanation, and order of precedence when more than one
of these methods is used, See A. Configuration Files, and especially
A.2.1 Configuration Variables and Precedence, p.582.

30

10

11

12

13

14

15

PART Il

Wind River Compiler

Invoking the Compilerccccovoemriiiiiiccennninne 33
Additions to ANSI C and C++cccocmeriiiinenennnns 131
Embedding Assembly Codeccoocmrrriiiinnnnes 165
Internal Data Representationcccc.cuuuue. 177
Calling Conventionscccccviiiiemmmenrnnsssnnennnns 189
Optimization ... 197
The Lint Facility ... 227
Converting Existing Codeccooccmmrriiiiineennnne 231
C++ Features and Compatibility 237

Locating Code and Data, Addressing, Access 251

Use in an Embedded Environment 273

31

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

32

Invoking the Compiler

5.1 The Command Line 33

5.2 Rules for Writing Command-Line Options 34
5.3 Compiler Command-Line Options 37

5.4 Compiler -X Options 52

5.5 [Examples of Processing Source Files 126

5.1 The Command Line

Asnoted in 3. Drivers and Subprogram Flow, the compiler is best executed via one of
the driver programs as follows:

decc [options] [input-files] Assumes Wind River C libraries.
dplus [options] [input-files] Assumes Wind River C++ libraries.
where:

dcc

dplus

Invokes the main driver program for the compiler suite. See 2.2 Accessing
Current and Other Versions of the Tools, p.14 for details on how the driver
program is found.

33

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Both the dcc and dplus drivers are used in examples this manual. Please
substitute dcc for dplus if you are using only the C compiler.

options
Command-line options which change the behavior of the tools. See the
remainder of this chapter for details. Options and filenames may occur in any
order.

input-files
A list of pathnames, each specifying a file, separated by whitespace. The suffix
of each filename indicates to the driver which actions to take. See Table 3-1 for
details.

For example, process a single C++ file, stopping after compilation, with standard
optimization:
dplus -0 -c file.cpp

The form -@name can also be used for either options or input-files. The name must
be that of an environment variable or file (a path is allowed), the contents of which
replace -@name. See A.2 How Commands, Environment Variables, and Configuration
Files Relate, p.582 for details.

5.2 Rules for Writing Command-Line Options

Same Option More Than Once

Options can come from several sources: the command line, environment variables,
configuration files, and so forth as described in A.2 How Commands, Environment
Variables, and Configuration Files Relate, p.582.

If an option appears more than once from whatever source, the final instance is
taken unless noted otherwise in the individual option descriptions in the next
sections.

34

5 Invoking the Compiler
5.2 Rules for Writing Command-Line Options

Command-Line Options are Case-sensitive

Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. This is true even on Windows; however filenames on Windows
remain case-insensitive as usual.

Spaces In Command-Line Options

Quoting Values

For easier reading, command-line options may be shown with embedded spaces
in documentation, although they are not typically written this way in use. In
writing options on the command line, space is allowed only following the option
letter, not elsewhere. For example:

-D DEBUG=2

is valid, and is exactly equivalent to:
-DDEBUG=2

However,
-D DEBUG = 2

“_n

is not valid because of the spaces around the “=

When a command-line option can take a string as a value, it does not require
quotes. For example:

-prof-feedback=rta-db -Xname-code=.code
Enclosing the value in quotes has no effect. Thus,
-DSTRING="test"
is equivalent to:
-DSTRING=test

Using “\” to escape the quotes will pass the quotes into the compiler. Given file
test.c containing:

void main() {
printf (STRING) ;
}

compiling with:

dcc test.c -DSTRING="test"

35

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

the printf statement becomes:
printf(test);

(and will fail because test is undefined). But compiled with:
dcc test.c -DSTRING=\"test\"

the printf statement becomes:

printf("test");

Unrecognized Options, Passing Options to the Assembler or Linker

Length Limit

Ordinary options beginning with a letter other than “X” and which are not listed
in this section are automatically passed by the driver to the linker. All -X options
are processed first by the compiler.

When invoking the dcc or dplus driver program, it is sometimes important to pass
an option explicitly to the assembler or linker—for example, a -X option or an
option identified by the same letter as a driver or compiler option. The driver
options -W a,arguments and -W Larquments pass arguments to the assembler and
linker respectively.

The length of the command line is limited by the drivers’ 1000-byte internal buffer.
To pass longer commands to the tools, see 5.3.39 Read Command-Line Options from
File or Variable (-@name, -@@name), p.52.

The following example is written on several lines for clarity. The individual
options shown are fully documented in this chapter or in the 16.4 Assembler -X
Options, p.305 and in 24.5 Linker -X options, p.399.

dcc -D DEBUG=2 -XO
-Wa , -DDEBUG=3
-Wl, -Xdont-die
-Llibs
-WA.asm
f.c a.asm

-D DEBUG=2 -XO
The driver invokes the compiler with these options. A space is allowed after
the option letter -D.

36

5 Invoking the Compiler
5.3 Compiler Command-Line Options

-Wa., ~DDEBUG=3
The driver invokes the assembler with the option -DDEBUG=3, perhaps for use
in the a.asm file. Without the -Wa, the driver would have passed this option to
the compiler, resetting DEBUG to 3.

No space is allowed after the -D because it would have ended the -Wa option;
-W a, -DDEBUG=3 would also have been valid.
-Wl, -Xdont-die
The driver invokes the linker with the option -Xdont-die. Without the -W1, the
driver would have passed this linker option -Xdont-die to the compiler.

-Llibs
This option is not recognized by the driver as a driver or compiler option, so it
is passed to the linker.

-WA.asm
Instructs the driver that files having the extension .asm are to be preprocessed
and then assembled. If this extension is a project standard, it can more
conveniently be set in user configuration file user.conf as follows (see
A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.587):

UFLAGS1=-WA.asm

f.c a.asm
An input file to be compiled (f.c) and, because of the -WaA.asm option, an

input file to be preprocessed and assembled (a.asm).

The next sections document the command-line options recognized by the driver
and compiler.

5.3 Compiler Command-Line Options

This section shows all general command-line options. New options added after
publication may also be in the most recent release notes.

37

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)

-h

--help
Show synopsis of commonly used compiler options. Available for other tools
(assembler, linker) as well.

n?
Show synopsis of less frequently used options.

-?W
-hw

Show synopsis of -W options (see 5.3.25 Pass Arguments to the Assembler
(-W a,arquments, -W :as:,arquments), p.46).

-?X

-hx
Show synopsis of -X options (see 5.4 Compiler -X Options, p.52).

-?Xstring
Show synopsis of -X options whose names contain the specified string. For
example, entering dcc -?Xbss returns information about -Xbss-off and
-Xbss-common-off.

5.3.2 Ignore Predefined Macros and Assertions (-A-)
-A-
Cause the preprocessor to ignore all predefined macros and assertions.
5.3.3 Define Assertion (-A assertion)
-A pred (ident1) (ident2)
Cause the assertion pred(ident) to be defined. See #assert and #unassert
Preprocessor Directives, p.134.
5.3.4 Pass Along Comments (-C)
-c

Cause the C processor to pass along all comments. Useful only in conjunction
with -E or -P.

38

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: The preprocessor may be used with any language supported by Wind
River.

-C is not necessary when -Xpass-source is used to output source as comments
when generating assembly output because in that case the source code is taken

before preprocessing.

5.3.5 Stop After Assembly, Produce Object (-c)

-C
Stop after the assembly step and produce an object file with default file
extension .o (unless modified by -o, see 5.3.18 Specify Output File (-o file), p.44).

5.3.6 Define Preprocessor Macro Name (-D name=definition)

-D name [=definition]
Define the preprocessor macro name as if by the #define directive. If no
definition is given, the value 1 is used.

Macros may be either function-like macros or object-like macros. Function-like
macros take arguments; this sample macro converts inches to centimeters:

dcc -DIN_TO_CM(x)=((x)*2.54) foo.c

Note that, to prevent unexpected results, both the argument and the entire
macro expression should be enclosed in parentheses.

Object macros do not take arguments:
dcc -DYEAR_LENGTH=366 bar.c

See 5.2 Rules for Writing Command-Line Options, p.34, for rules about using
spaces, quotations, and the like on the command line.

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)

-E
Run only the preprocessor on the named files and send the output to the
standard output. All preprocessor directives are removed except for
line-number directives used by the compiler to generate line-number
information. (To suppress line-number information, use

39

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xpreprocessor-lineno-off.) The source files do not require any particular
suffix.

When -E is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.27 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-71.

See also 5.3.19 Stop After Preprocessor, Produce Source (-P), p.45.

5.3.8 Change Diagnostic Severity Level (-e)

-esn[n...]
For each of one or more diagnostic message numbers 7 in the
comma-separated list, change the severity level of the message to s where s is
one of:

i
Information, equivalent to ignore.
Warning.

Error (continue compilation).

Fatal error (terminate immediately).
Each diagnostic message has the form:
“filer, line #: severity-level (compiler:error#) : message
Example:
"errl.c", line 2: warning (dcc:1025): division by zero

To raise the severity level of this message from “warning” to “error”, invoke the
compiler with the option -ee1025. To reduce the level to “ignore”, use -ei1025.

NOTE: Some messages have a minimum severity level. The severity level of a
message may be raised above its minimum but not lowered below it. Attempting
to do so will generate warning 1641.

40

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.4.101 Warn On Type and Arqument Mismatch (-Xmismatch-warning), p.104.

5.3.9 Generate Symbolic Debugger Information (-g)

The several -gn options enable generation of varying levels of debugging
information. If optimization options are also present (-O or -X0O), optimization will
be affected as described.

-g

-g0

Same as -g2.

Do not generate symbolic debugger information. This is the default. No effect
on optimization.

Generate symbolic debugger information, but leave out line number
information. No effect on optimization.

Generate symbolic debugger information. The format, ELF/DWAREF or COFF,
depends on the DOBJECT variable, normally set using the -t option. See
4. Selecting a Target and Its Components.

Do most target-independent optimizations, but do not do the following
optimizations, since most object formats have no way to describe them.
Hexadecimal numbers indicate the mask for -Xkill-opt (5.4.87 Disable
Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask), p.96).

= Function inlining (Inlining (0x4), p.207)

» Structure member optimization (Structure Members to Registers (0x10),
p-209)

= Split optimization (Variable Live Range Optimization (0x400), p.211)

» Complex Branch Optimization (0x1000), p.212

» Loop Count-Down Optimization (0x4000), p.213

» Minor Transformations to Simplify Code Generation (0x80000), p.214

» Static function optimization (0x20000000) (Static Function Optimization
(0x20000000), p.218)

» Live-Variable Analysis (0x40000000), p.218

41

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

g3

Also, disable most target-dependent optimizations: option -g2 also disables
basic reordering and all peephole optimizations (see 220).

See 10. Optimization for details on these optimizations (the optimizations are
ordered by the hex values in that chapter).

See also -Xoptimized-debug-off (5.4.107 Disable Most Optimizations With -g
(-Xoptimized-debug-...), p.107) on how to disable optimizations which interfere
with debugging.

Generate symbolic debugger information and do all optimizations. Highly
optimized code can be difficult to debug. For example, there is no way to break
on inlined functions (except at the assembly level). Hence, when debugging is
required, -g2 is usually a better choice.

NOTE: The -gn options may also be specified at the beginning of a source files
using:

#pragma option -gn

5.3.10 Print Pathnames of Header Files (-H)

-H

Print the pathnames of all header files to the standard error output.

5.3.11 Specify Directory for Header Files (-1 dir)

-I dir

42

Add dir to the list of directories to be searched for header files. A full pathname
is allowed. More than one -I option can be given.

For an #include “file” directive, search for the file in the following locations:

» First, the directory of the file containing the include directive. Thus, if an
#include directive includes a path, that path defines the current directory
for #include directives in the included file. Example (using UNIX
notation):

Assume file f1.c contains:

#include "pl/hl.h"
#include "h3.h"

5 Invoking the Compiler
5.3 Compiler Command-Line Options

and file h1.h contains:
#include "h2.h"

The search for h2.h will begin in directory p1; the search for h3.h will begin
in the directory containing f1.c.

» Second, directories given by the -I dir option, in the order encountered.
» Third, the directory given by either:
any -Y I option appearing prior to the -I option

version_path/include (uwtx)
version_path\include (Windows)

(The -Y I option effectively replaces the version_path directory.)

For an #include <file> directive, search only the second and third locations.

5.3.12 Control Search for User-Defined Header Files (-1@)

-1e
C only. Search for user-defined header files (those enclosed in double quotes
(") in the order specified only by -I options (modified by -Y I options if any).
That is, do not search the current directory by default; search the current
directory only when an -I@ option is encountered. Example:
dcc -Iabc -I@ -Idef file.c

will result in a search order of:

the directory abc
the current directory
the directory def

5.3.13 Modify Header File Processing (-i file1=file2)
-i filel=file2
Substitute file2 for filel in an #include directive.

-i filel=
Ignore any #include directive for filel.

-i =file2
Include file2 before processing any other source file.

43

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The -i option is disabled by -P.

5.3.14 Specify Directory For -l Search List (-L dir)

This is a linker option. See Specify Directory for -l search List (-L dir), p.395.

5.3.15 Specify Library or Process File (- name)

This is a linker option. See Specify Library or File to Process (-Iname, -I:filename), p.395.

5.3.16 Specify Pathname of Target-Spec File (-M target-spec)

-M target-spec

NOTE: This option is primarily for use by Wind River.

Specify the pathname of the farget-spec file to the compiler (see target.cd in
Table 2-2). This file contains the target description and is read by the compiler
at startup. If the -M option is set more than once, the final setting is used.

5.3.17 Optimize Code (-O)

-0
Optimize code. Either this or -XO must be present to enable optimization and
to invoke the reorder program. See the -XO option in 5.4.104 Enable Extra
Optimizations (-XO), p.106 for the difference between these options and
10. Optimization for more information about optimizations.

This option can also be specified at the beginning of a source file using:

#pragma option -0

5.3.18 Specify Output File (-o file)

-o file
Output to the given file instead of the default. This option works with the -P,
-S and -c options as well as when none of these are specified. When compiling
file.ext the following filenames are used by default if the -0 option is not given:

44

5 Invoking the Compiler
5.3 Compiler Command-Line Options

-P file.i
-s file.s
-c file.o
not -P, -S, or -c¢ a.out

5.3.19 Stop After Preprocessor, Produce Source (-P)

-P

Stop after the preprocessor step and produce a source file with default file
extension .i (unless modified by -o).

Unlike with the -E option, the output will not contain any preprocessing
directives, and the output does not go to standard out (see -o for the output
filename). The source files do not require any particular suffix.

When this option is used, the compiler driver does not invoke the assembler
or linker. Thus, any switches intended for the assembler or linker must be
given separately on command lines which invoke them. The -P option also
disables -i.

When -P is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.27 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-71.

5.3.20 Stop After Compilation, Produce Assembly (-S)

-S

Stop after the compilation step and produce an assembly source code file with
the default file extension .s (unless modified by -o). If
-Xshow-configuration=1 is enabled, the assembly file contains a list of options
in effect during compilation.

5.3.21 Select the Target Processor (-t tof:environ)

-t tofienviron

Select the target processor with ¢ (a several character code), the object format
with o (a one letter code), the floating point support with f (H for hardware, S
for software, and N for none), and libraries suitable for the target environment
with environ.

45

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

To determine the proper tof, execute dctrl -t to interactively display all valid
combinations. See also 4.2 Selected Startup Module and Libraries, p.27.

5.3.22 Undefine Preprocessor Macro Name (-U name)

-U name
Undefine the preprocessor macro name as if by the #undef directive.

5.3.23 Display Current Version Number (-V, -VV)
-v
Display the current version number of the driver.

-vv
Display the current version number of the driver and the version number of all
subprograms. Do not complete the compilation.

5.3.24 Run Driver in Verbose Mode (-v)

-V
Run the main drive program in verbose mode, printing a message as each
subprogram is started.

5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)

-W a,argl[,arg2...]
-W :as:, argl[, argZ...]
Pass the arguments to the assembler. Example:

-Wa,-1 or -W:as:,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.26 Define Configuration Variable (-W Dname=value)
-W Dname=value

Set a configuration variable equal to a value for use during configuration file
processing.

46

5 Invoking the Compiler
5.3 Compiler Command-Line Options

More than one -WD option can be used to set several variables. The effect is as
if an assignment statement for each such -WD variable had been added to the
beginning of the main configuration file.

5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)

-W 1,arg1[,arg2...]

-W :1d4:, argl[,argz...]
Pass the arguments to the linker.

Any option which is not recognized by the driver or compiler is automatically
passed to the linker. -W1 may be used to pass options to third-party linkers in
cases where such an option resembles a driver or compiler option. See

5.4.63 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.88. Example:

-Wl,-m or -W:1d:,-m

Pass the option -m to the linker to get a link map.

5.3.28 Specify Linker Command File (-W mfile)

-W nfile

Use the given linker command file instead of the default
version_path/conf/default.dld.

NOTE: To suppress use of the default.Ink file, specify just -Wm with no file on
the command line.

5.3.29 Specify Startup Module (-W sfile)

-W sfile
Use the given object file instead of the default startup file (crt0.0). Additional
object files to be loaded along with the startup file and before any other files
can be given separated by commas.

NOTE: To provide a crt0.s file or substitute to be assembled on the command
line, or to use an existing non-default crt0.o file or substitute, specify just -Ws
with no name to suppress use of the default.

47

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.3.30 Substitute Program or File for Default (-W xfile)

NOTE: Except for the common cases -W m and -W s documented above, this
option is primarily for use by Wind River.

-W xfile
Use the given program or file instead of the default program or file for the case
indicated by x. Some cases take the form -W xname=value. x is one of the
following:

:as:, a
The assembler.

The configuration file to be used. The default is dtools.conf
(DTOOLS.CON for Windows) in the version_path/conf subdirectory.

:cpp:, P
The C preprocessor. The preprocessor is incorporated in the compiler, so
this becomes a synonym for 0.

H =
The C compiler.
tC++:

The C++ compiler.

Pass the string following the -Wc exactly as is as an option to the linker.
More than one option can be given following -Wc, separated by commas.
For example, -We-Ic,-1proj would cause the linker to search for missing
symbols in libraries libc.a and libproj.a.

The linker -1 option is the more usual way to specify libraries.
See 5.3.26 Define Configuration Variable (-W Dname=value), p.46.
The C++ library. The default is -1d. See “c” for the meaning of -1d and
additional rules.
:1d:, 1
The linker.

The object converter; will execute after the linker.

See 5.3.28 Specify Linker Command File (-W mfile), p.47.

48

5 Invoking the Compiler
5.3 Compiler Command-Line Options

See 5.3.29 Specify Startup Module (-W sfile), p.47.
The compiler implied by the extension of the source file.

The reorder program. Specifying -W1 with no substitute program name
will disable the reorder program.

6

Other filter programs. -W1 and -W2 execute if -O or -XO is given and
process the output from the compiler. -W3 and -W4 also process the output
from the compiler. -W5 and -W6 process the input to the assembler.
Example:

-W:1d:/usr/1lib/dcc/3.6e/bin/dld

Use an old version of the linker.

5.3.31 Pass Arguments to Subprogram (-W x,arguments)

-W x,argl[,arg2...]
Pass the arguments to the subprogram designated by x. x is one of the

following:

:Cpp: p

:C

tCH+:

The preprocessor. The preprocessor is incorporated in the compiler, so this
becomes a synonym for 0.

The compiler implied by the extension of the source file.
" TheC compiler.
The C++ compiler.
tas:

The assembler. See 5.3.25 Pass Arguments to the Assembler (-W a,arguments,
-W was:,arguments), p.46.

:1ld:
The linker. See 5.3.27 Pass Arguments to Linker (-W Larquments, -W
:Ad:,arquments), p.47.

The object converter. Usually not implemented. If given, it will execute
after the linker.

49

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The reorder program.

2 -6
Other filter programs; usually not implemented. -W1 and -W2 are only
executed if -O or -XO is given. They process the output from the compiler.
-W3 and -W4 are always executed if given and process the output from the
compiler. -W5 and -Wé process the input to the assembler.

Example:
-W:as:,-1 or -Wa,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.32 Associate Source File Extension (-W x.ext)

-W x.ext
Associate a source file extension with a tool; that is, indicate to the main driver

program dcc or dplus which tool should be invoked for an input file with a
particular extension. ext specifies the extension and x specifies a tool, as
follows:

0
The compiler implied by the extension of the source file.

:C

" TheC compiler.

1CH+:
The C++ compiler.

tas: a
The assembler.

tpas:, A
Preprocessor and assembler: both the preprocessor and assembler will be

applied to the source. Allows use of preprocessor directives with assembly
language.

Example:

-W:as:.asm

Specify that file.asm is an assembly source file.

50

5 Invoking the Compiler
5.3 Compiler Command-Line Options

5.3.33 Suppress All Compiler Warnings (-w)

Suppress all compiler warnings. (Does not apply to assembler or linker.)

5.3.34 Set Detailed Compiler Control Options (-X option)

See 5.4 Compiler -X Options, p.52.

5.3.35 Specify Default Header File Search Path (-Y I,dir)

-Y I, dir

Use dir as the default directory to search for header files specified with the -1

option. A full pathname is allowed. Must occur prior to a -I option to be
effective for that option.

5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)

These are linker options. See Specify Search Directories for -1 (-Y L, -Y P, -Y U), p.398.

5.3.37 Specify Search Directory for crt0.o (-Y S,dir)

Use dir as the default directory to search for crt0.0. This option is provided as a
convenience for older makefiles; users should use the -W sfile option instead, as it
enables you to specify both the search directory and the name of the startup file.

See 5.3.29 Specify Startup Module (-W sfile), p.47.

5.3.38 Print Subprograms With Arguments (-#, -##, -###)

-
Print subprogram command lines with arguments as executed.

-##

Print subprogram command line with arguments without actually executing

them.

51

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

—#ik#
Print subprogram command lines with arguments inside quotes without
executing them.

5.3.39 Read Command-Line Options from File or Variable (-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the driver first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then the driver tries to open a file with
given name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the driver
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

5.3.40 Redirect Output (-@E-=file, -@E-+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@o=file
Redirect any output to standard output to the given file.
Use of “+” instead of “=" will append the output to the file.

5.4 Compiler -X Options

Compiler command-line -X options provide fine control over many aspects of the
compilation process when behavior other than the default is needed.

Most -X options can be set either by name (-Xname) or by number (-Xn). Options
can be set to a value m, given in decimal, octal (leading 0), or hexadecimal (leading
0x), by using an equal sign: -Xname=m or -Xn=m. Some options can be set to an
unquoted string, e.g. -Xfeedback=file.

52

5 Invoking the Compiler
5.4 Compiler -X Options

Many options have multiple names corresponding to different values. For
example, -Xchar-signed is equivalent to -X23=0, and -Xchar-unsigned is
equivalent to -X23=1. Please note that if a value is provided, it is always dominant,
regardless of which name is used. Thus, -Xchar-signed=1 is equivalent -X23=1,
which is equivalent to -Xchar-unsigned. Internally, the name is translated to its
number (23 in this case), and then the value is assigned regardless of which name

was used.

5.4.1 Option Defaults

If an option is not provided, it defaults to a value of 0 unless otherwise stated. If an
option which takes a value is provided without one, then the value 1 is used unless
otherwise stated. Therefore, the following three forms are all equivalent:

-Xtest-at-top -X6 -X6=1

However, if neither option -Xtest-at-top nor -X6 had been given, the value of option
-X6 would default to 0, which is equivalent to -Xtest-at-bottom.

To turn off an option which is on by default, or which was set using an
environment variable or -@ option, and for which there is no name for the “=0"
case, set it to zero: -Xname=0.

To determine the default for an option, compile a test module without the option
using the -S and -Xshow-configuration=1 options and examine the resulting .s
assembly language file. All -X options used are given in numeric form near the
beginning of the file. An option not present defaults to 0.

G. Compiler -X Options Numeric List lists all options having numeric equivalents in
numeric order.
-X options can also be specified at the beginning of a source file using:

#pragma option -X...
The remainder of this section shows all general -X options in both forms (name and
number).

As noted above, the -X options used for a compilation are given as comments in
the assembly listing in numeric form. These include both options specified by the
user and also some options generated by the compiler. Some of the latter may be
undocumented and are present for use by Customer Support.

53

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

5.4.2 Compiler -X Options by Function

Below is a list of functional groups of -X options. This is followed by the -X options
in each functional group.

C++, p.6l

Checking and Profiling, p.54
Debugging, p.54

Diagnostic and Lint, p.55
Driver, p.55

Instruction, p.56

Memory, p.56

Optimization, p.57

Output, p.58
Position-independent Code and Data, p.58
Precompiled Headers, p.58
Sections, p.59

Syntax, p.59

Type, p.60

Checking and Profiling

Debugging

54

5.4.16 Insert Profiling Code (-Xblock-count), p.67
5.4.57 Optimize Using Profile Data (-Xfeedback=file), p.85

5.4.58 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom), p.85

5.4.123 Generate Code for the Run-Time Error Checker (-Xrtc=mask), p.114

5.4.40 Align .debug Sections (-Xdebug-align=n), p.77

5.4.41 Select DWARF Format (-Xdebug-dwatf...), p.77

5.4.42 Generate Debug Information for Inlined Functions (-Xdebug-inline-on), p.78
5.4.43 Emit Debug Information for Unused Local Variables (-Xdebug-local-all), p.78
5.4.44 Generate Local CIE for Each Unit (-Xdebug-local-cie), p.78

5.4.45 Disable debugging information Extensions (-Xdebug-mode=mask), p.78
5.4.46 Disable Debug Information Optimization (-Xdebug-struct-...), p.79

5.4.68 Include Filename Path in Debug Information (-Xfull-pathname), p.90

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.76 Initialize Local Variables (-Xinit-locals=mask), p.92

5.4.79 Define Initial Value for -Xinit-locals (-Xinit-value=n), p.94

5.4.107 Disable Most Optimizations With -g (-Xoptimized-debug-...), p.107
5.4.135 Enable Stack Checking (-Xstack-probe), p.118

Diagnostic and Lint

Driver

5.4.50 Control Use of Type “double” (-Xdouble...), p.81

5.4.62 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes), p.87

5.4.89 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask), p.97

5.4.95 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn),
p.100

5.4.101 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.104
5.4.136 Diagnose Static Initialization Using Address (-Xstatic-addr-...), p.118
5.4.138 Buffer stderr (-Xstderr-fully-buffered), p.118

5.4.139 Terminate Compilation on Warning (-Xstop-on-warning), p.119
5.4.143 Warn on Large Structure (-Xstruct-arg-warning=n), p.120

5.4.147 Suppress Warnings (-Xsuppress-warnings), p.122

5.4.22 Use Old C++ Compiler (-Xc++-old), p.69

5.4.63 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.88
5.4.69 Control GNU Option Translator (-Xgcc-options-...), p.90

5.4.75 Ignore Missing Include Files (-Xincfile-missing-ignore), p.92

5.4.85 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file), p.96

5.4.96 Show Make Rules (-Xmake-dependency), p.101

5.4.97 Specify Dependency Name or Output File (-Xmake-dependency-...), p.102
5.4.109 Output Source as Comments (-Xpass-source), p.108

5.4.114 Preprocess Assembly Files (-Xpreprocess-assembly), p.109

55

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

= 5.4.116 Use Old Preprocessor (-Xpreprocessor-old), p.110
= 5.4.130 Show Target (-Xshow-target), p.116

Instruction
= 5.4.11 Specify Jump-table for Switch Statements (-Xbig-switch-table), p.65
» 5.4.14 Accessing bit-fields (-Xbit-field-instr-...), p. 66

= 5.4.59 Set Floating Point Rounding Mode (-Xfintrz-on, -Xfintrz-is-fmove-to-fpcr,
-X-fintrz-off), p.86

= 5.4.60 Select Convention for Returning Floating Point Values (-Xfloats-...), p.87
= 5.4.67 Generate Link Instruction (-Xframe-ptr), p.90

= 5.4.82 Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20), p.95

= 5.4.83 Enable Intrinsic Functions (-Xintrinsic-mask), p.95

= 5.4.121 Select Convention for Returning Pointer Values from Functions
(-Xptr-values-in-...), p.113

= 5.4.134 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off), p.117

= 5.4.144 Select Convention for Returning Structures and Unions (-Xstruct-as-...),
p-120
Memory
= 5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n), p.62

= 5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n), p.63

= 5.4.6 Do Not Generate .align Directive (-Xalign-off), p.64

= 5.4.9 Specify Minimum Array Alignment (-Xarray-align-min), p.65

= 5.4.40 Align .debug Sections (-Xdebug-align=n), p.77

= 5.4.51 Generate Initializers for Static Variables (-Xdynamic-init), p.81
= 5.4.70 Treat All Global Variables as Volatile (-Xglobals-volatile), p.90

= 5.4.77 Control Generation of Initialization and Finalization Sections (-Xinit-section),
p-93

= 5.4.78 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri), p.93

56

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.99 Set Maximum Structure Member Alignment (-Xmember-max-align=n),
p-103

5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.103
5.4.137 Treat All Static Variables as Volatile (-Xstatics-volatile), p.118

5.4.112 Treat All Pointer Accesses As Volatile (-Xpointers-volatile), p.109

5.4.142 Align Strings on n-byte Boundaries (-Xstring-align=n), p.120

5.4.146 Set Minimum Structure Member Alignment (-Xstruct-min-align=n), p.122

Optimization

5.4.7 Pass argument in register (-Xargs-in-regs), p.64
5.4.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased), p.64

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type), p.65

5.4.23 Optimize Global Assignments in Conditionals (-Xcga-min-use), p.69
5.4.27 Disregard ANSI C Library Functions (-Xclib-optim-off), p.71

5.4.28 Enable Cross-module Optimization (-Xcmo-...), p.71

5.4.54 Control Inlining Expansion (-Xexplicit-inline-factor), p.83

5.4.80 Inline Functions with Fewer Than n Nodes (-Xinline=n), p.94

5.4.81 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.94

5.4.87 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask),
p-96

5.4.92 Do Not Assign Locals to Registers (-Xlocals-on-stack), p.100

5.4.104 Enable Extra Optimizations (-XO), p.106

5.4.106 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n), p.107
5.4.108 Specify Optimization Buffer Size (-Xparse-size), p.107

5.4.122 Restart Optimization From Scratch (-Xrestart), p.113

5.4.131 Optimize for Size Rather Than Speed (-Xsize-opt), p.116

5.4.134 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off), p.117

57

Output

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.145 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...), p.121

5.4.152 Specify Loop Test Location (-Xtest-at-...), p.123
5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.124

5.4.20 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.69

5.4.36 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols),
p-75

5.4.66 Generate .frame_info for C functions (-Xframe-info), p.89

5.4.71 Do Not Pass #ident Strings (-Xident-off), p.91

5.4.75 Ignore Missing Include Files (-Xincfile-missing-ignore), p.92

5.4.96 Show Make Rules (-Xmake-dependency), p.101

5.4.97 Specify Dependency Name or Output File (-Xmake-dependency-...), p.102
5.4.109 Output Source as Comments (-Xpass-source), p.108

5.4.115 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off),
p-110

5.4.127 Disable Generation of Priority Section Names (-Xsect-pri-...), p.115

5.4.126 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p-115

5.4.128 Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n), p.116

5.4.154 Append Underscore to Identifier (-Xunderscore-...), p.124

Position-independent Code and Data

5.4.31 Generate Position-independent Code (PIC) (-Xcode-relative...), p.72
5.4.39 Generate Position-independent Data (PID) (-Xdata-relative...), p.76
5.4.111 Generate Position-Independent Code for Shared Libraries (-Xpic), p.109

Precompiled Headers

5.4.110 Use Precompiled Headers (-Xpch-...), p.108

Sections

Syntax

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.3 Set Addressing Mode for Sections (-Xaddr-...), p.62
5.4.7 Pass argument in register (-Xargs-in-regs), p.64

5.4.20 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.69

5.4.30 Use Absolute Addressing for Code (-Xcode-absolute...), p.72

5.4.35 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data),
p-75

5.4.38 Use Absolute Addressing for Code (-Xdata-absolute...), p.76
5.4.40 Align .debug Sections (-Xdebug-align=n), p.77

5.4.90 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n),
p-99

5.4.91 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only), p.100

5.4.102 Specify Section Name (-Xname-...), p.104

5.4.113 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...),
p-109

5.4.125 Pad Sections for Optimized Loading (-Xsection-pad), p.114
5.4.132 Set Size Limit for “small const” Variables (-Xsmall-const=n), p.116
5.4.133 Set Size Limit for “small data” Variables (-Xsmall-data=n), p.117

5.4.19 Parse Initial Values Bottom-up (-Xbottom-up-init), p.68
5.4.37 Suppress Preprocessor Spacing (-Xcpp-no-space), p.76
5.4.29 Use the ‘new’ Compiler Frontend (-Xcnew), p.72

5.4.47 Specify C Dialect (-Xdialect-...), p.79

5.4.48 Disable Digraphs (-Xdigraphs-...), p.80

5.4.49 Allow Dollar Signs in Identifiers (-Xdollar-in-ident), p.80
5.4.74 Treat #include As #import (-Ximport), p.92

5.4.83 Enable Intrinsic Functions (-Xintrinsic-mask), p.95

59

Type

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

60

5.4.86 Enable Extended Keywords (-Xkeywords=mask), p.96

5.4.94 Expand Macros in Pragmas (-Xmacro-in-pragma), p.100
5.4.116 Use Old Preprocessor (-Xpreprocessor-old), p.110

5.4.140 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.119
5.4.148 Swap “\n’ and ‘\r” in Constants (-Xswap-cr-nl), p.122
5.4.153 Truncate All Identifiers After m Characters (-Xtruncate), p.123
5.4.157 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok), p.125

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type), p.65

5.4.13 Change bit-field type to reduce structure size (-Xbit-fields-compress-...), p.66

5.4.15 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned),
p-67

5.4.25 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.70
5.4.24 Generate Code Using ASCII Character Set (-Xcharset-ascii), p.70
5.4.50 Control Use of Type “double” (-Xdouble...), p.81

5.4.52 Specify enum Type (-Xenum-is-...), p.81

5.4.55 Force Precision of Real Arguments (-Xextend-args), p.84

5.4.56 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic), p.84

5.4.105 Use Old Inline Assembly Casting(-Xold-inline-asm-casting), p.106
5.4.64 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only), p.88
5.4.65 Specify Minimum Floating Point Precision (-Xfp-min-prec...), p.89

5.4.72 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic), p.91

5.4.141 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions), p.119
5.4.158 Define Type for wchar (-Xwchar=n), p.126
5.4.159 Control Use of wchar_t Keyword (-Xwchar_t-...), p.126

C++

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.17 Set Type for Bool (-Xbool-is-...), p.68

5.4.18 Control Use of Bool, True, and False Keywords (-Xbool-...), p.68
5.4.21 Use Abridged C++ Libraries (-Xc++-abr), p.69

5.4.22 Use Old C++ Compiler (-Xc++-old), p.69

5.4.26 Use Old for Scope Rules (-Xclass-type-name-visible), p.71

5.4.32 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.74
5.4.33 Maintain Project-wide COMDAT List (-Xcomdat-info-file), p.74
5.4.48 Disable Digraphs (-Xdigraphs-...), p.80

5.4.53 Enable Exceptions (-Xexceptions-...), p.83

5.4.61 Use Old for Scope Rules (-Xfor-init-scope-...), p.87

5.4.66 Generate .frame_info for C functions (-Xframe-info), p.89

5.4.73 Control Template Instantiation (-Ximplicit-templates...), p.91
5.4.84 Set longjmp Buffer Size (-Xjmpbuf-size=n), p.95

5.4.98 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n), p.103
5.4.103 Disable C++ Keywords namespace and Using (-Xnamespace-...), p.106

5.4.110 Use Precompiled Headers (-Xpch-...), p.108

5.4.124 Enable Run-time Type Information (-Xrtti, -Xrtti-off), p.114
5.4.129 Print Instantiations (-Xshow-inst), p.116

5.4.140 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.119

5.4.150 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.123

5.4.156 Runtime Declarations in Standard Namespace (-Xusing-std-...), p.125

5.4.158 Define Type for wchar (-Xwchar=n), p.126
5.4.159 Control Use of wchar_t Keyword (-Xwchar_t-...), p.126

The sections that follow present -X options in alphabetic order.

61

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.3 Set Addressing Mode for Sections (-Xaddr-...)

-Xaddr-code=n
-X105=n
Specify addressing for code.

-Xaddr-const=n
-X102=n
Specify addressing for constant static and global variables.
-Xaddr-data=n
-X100=n
Specify addressing for non-constant static and global variables.

-Xaddr-sconst=n

-X103=n
Specify addressing for constant static and global variables with size less than
or equal to -Xsmall-const.

-Xaddr-sdata=n

-X101=n
Specify addressing for non-constant static and global variables with size less
than or equal to -Xsmall-data in size.

-Xaddr-string=n

-X104=n
Specify addressing for strings.

-Xaddr-user=n

-X106=n
Specify addressing for user-defined sections.

See the discussion of addr-mode in 14.2 Addressing Mode — Functions, Variables,
Strings, p.257 for more information.

5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n)

-Xalign-functions=n

-X54=n
Align each function on an address boundary divisible by n (which must be
greater than or equal to the default alignment for the target microprocessor). If
n is absent, the option has no effect. This option is designed for targets having
some type of burst-mode memory access, for example a target that can fetch
multiple instructions if aligned on a 32-byte boundary.

62

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)

-Xalign-min=n

-X93=n
Set the minimum alignment required by the target processor to access a
multi-byte value (e.g., short, long) in memory as an atomic unit, that is, in a
single memory access. This option is set automatically by the compiler based
on the target processor and should seldom be set by the user.

NOTE: This option does not change how data is aligned; it changes the
instructions which the compiler generates to access multi-byte unaligned
objects.

Technical details: if the target processor can access objects at any alignment
with a single instruction, 7 is set to 1. For a processor which requires that
multi-byte objects be aligned on even-byte boundaries for direct access, 7 is set
to 2. Unaligned objects on such a processor must be accessed byte-by-byte. For
a processor that requires 4-byte objects be on a 4-byte boundary, is set to 4
(2-byte objects aligned on 2-byte boundaries can still be accessed with a single
instruction).

The default value of n equals the maximum alignment restriction as given in
the manufacturer’s documentation for the processor. Note that it may differ
among processors in a family. As of this writing, the default is 2 for 68000,
68EC000, 68010, 6830x, 68322, 68328, 68356, and 1 for 68020, 68EC020, 68030,
68EC030, 68349, 68360, any other 683xx, CPU32 and CPU32+, 68040, 68EC040,
68L.C040, 68060, 68EC060, and 68LCO60.

NOTE: If -Xalign-min is > 1, in a packed structure (a) bit-fields members are
not allowed, (b) volatile members will not be accessed atomically, and (c)
compound operators (for example, “+=") cannot be used with volatile
members. See Restrictions and Additional Information, p.144 for details.

Synonym: -Xmin-align=n.

63

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.6 Do Not Generate .align Directive (-Xalign-off)

-Xalign-off
-x37
Do not generate the .align directive (some assemblers do not support it). Use

the .even directive instead.

The assembler -Xdefault-align option (Set Default Value for Section Alignment
(-Xdefault-align), p.307) controls the alignment used by .even but not .align.
Thus, alignment can be controlled by using -Xalign-off to the compiler and
-Xdefault-align to the assembler or -Xalign-functions=4 to the compiler (to
align code).

5.4.7 Pass argument in register (-Xargs-in-regs)

-Xargs-in-regs

-X61
For a function with a prototype declaring an argument with the register
keyword, try to pass the variable in a register. -Xargs-in-regs is not supported
with PIC (position-independent code). This is supported only on 68000 (not
68020 and up, or CPU32).

5.4.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)

-Xargs-not-aliased

-X65
Assume that pointer arguments to a function are not aliased with each other,
nor with any global data. This enables greater optimization. Example:

int g;
func (int* al, int* a2);

{

void main

int i 1;
int j 2;
func (&i,&3) ; /* OK */
func (&i,&i) ; /* not OK */
func (&1, &g) ; /* not OK */

}
See also no_alias Pragma, p.140.

64

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.9 Specify Minimum Array Alignment (-Xarray-align-min)

-Xarray-align-min=n

-X161=n
Align arrays on the larger of n or the default alignment for the type of the array
elements. nn should be a power of 2. When this option is used, values given for

-Xstring-align are ignored. -
5

5.4.10 Disable ‘# Prefix for Assembly Numeric Constants (-Xasm-const-pound...)

-Xasm-const-pound
-x45=1
Prefix each generated numeric constant in the assembly output with a “#”

character. This is the default.

-Xasm-const-pound-off
-X45=0
Generate each numeric constant in the assembly output without a “#” prefix.
y

5.4.11 Specify Jump-table for Switch Statements (-Xbig-switch-table)

-Xbig-switch-table

-X35=1

Use a 32-bit absolute jump-table. The code is larger but faster than with

-Xbig-switch-table=0. This is the default on the

h4(268040/60.-xbig—switch-tab1e=0

-X35=0
Use a 16-bit relative jump table for switch statements. The code will be smaller
but somewhat slower than with option -Xbig-switch-table [=1]. This may
create difficulties with switch statements larger than 32KB. This is the default
on the MC68000/10/20/30/CPU32.

5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte,
-Xbit-fields-access-as-type)

-Xbit-fields-access-as-byte

-X118=0
Enable use of faster byte instructions to access a small non-volatile bit-field
even though that bit-field is declared with an underlying type other than char.

This is the default.

65

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xbit-fields-access-as-type

-X118=1
Force the compiler to always access bit-fields with load and store instructions
of the same size as the bit-field declaration.

Synonym: -Xbitfield-no-optim.

5.4.13 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)

-Xbit-fields-compress
-X135=1
-Xbit-fields-compress-off
-X135=0
C only. Change the type of a bit-field if possible to generate more compact

storage. The default is off.

The algorithm is as follows:

Examine all structure members before assigning offsets. Record:
BitFieldMaxAlign = maximum alignment of any bit-field.
NonBitFieldMaxAlign = maximum alignment of any non bit-field.
WidthMaxBitField = number bits in largest bit-field.

IF BitFieldMaxAlign > NonBitFieldMaxAlign THEN

NewType = unsigned integer type having the same alignment as that of
the NonBitFieldMaxAlign.

IF WidthMaxBitField <= bits in NewType THEN

Change the type of each unsigned bit-field larger than NewType to
NewType and each signed bit-field larger than NewType to signed
NewType.

This option is intended for legacy code. The same effect may be achieved in
new code by using the smallest types having the required alignments.

Synonym: -Xbitfield-compress.
5.4.14 Accessing bit-fields (-Xbit-field-instr-...)

-Xbit-field-instr
-X38=1

66

5 Invoking the Compiler
5.4 Compiler -X Options

-Xbit-field-instr-off

-X38=0
When accessing a bit-field, generate either bit-field instructions
(-Xbit-field-instr) or multiple shift/and/or instructions
(-Xbit-field-instr-off).

The default is -Xbit-field-instr for the 68020 and -Xbit-field-instr-off for all
other 68K processors (because the bit-field instructions are slower).

Synonyms: -Xbitfield-instr and -Xno-bitfield-instr.

NOTE: Do not use this option unless bit-field instructions are definitely
supported by the hardware.

5.4.15 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)

-Xbit-fields-signed

-X12=0
C only. Handle bit-fields without the signed or unsigned keyword as signed
integers.

Synonym: -Xsigned-bitfields.
-Xbit-fields-unsigned
-x12

C only. Treat bit-fields without the signed or unsigned keyword as unsigned
integers. This is the default setting.

Synonym: -Xunsigned-bitfields.

See also 5.4.141 Ignore Sign When Promoting Bit-fields
(-Xstrict-bitfield-promotions), p.119.

5.4.16 Insert Profiling Code (-Xblock-count)

-Xblock-count

-x24
Insert code in the compiled program to keep track of the number of times each
basic block (the code between labels and branches) is executed. See
28. D-BCNT Profiling Basic Block Counter for details, and also 5.4.57 Optimize
Using Profile Data (-Xfeedback=file), p.85.

67

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.17 Set Type for Bool (-Xbool-is-...)

-Xbool-is-char

-X119=44
Implement type bool as a plain char. This is the default.

-Xbool-is-int

-X119=4
C++ only. Implement type bool as a signed int. This may produce less code on
some architectures but will require more data space.

5.4.18 Control Use of Bool, True, and False Keywords (-Xbool-...)

-Xbool-on
-X213=0
Enable the bool, true, and false keywords. This is the default.

-Xbool-off
-X213

C++ only. Disable the bool, true, and false keywords.

Synonym: -Xno-bool.

5.4.19 Parse Initial Values Bottom-up (-Xbottom-up-init)

-Xbottom-up-init
-x21
C only. Both K&R and ANSI C specify that structure and array initializations
with missing braces should be parsed top-down, however some C compilers
parse these bottom-up instead. Example:
struct z { int a, b; };
struct x {
struct z z1[2];

struct z z2[2];
}x = { {1,2},{(3,4} };

Should be parsed according to ANSI & K&R as:
{{(1,2),00,03 ¥, { {3,4),{0,0} } };
-Xbottom-up-init causes bottom-up parsing:
{ {1,2}3,43,4y + , { {0,0},{0,0} } };

This option is set when -Xdialect-pcc is set.

68

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.20 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections
(-Xbss-off, -Xbss-common-off)

-Xbss-common-off

-X83=3
Disable use of the “COMMON” feature so that the compiler or assembler will
allocate each uninitialized public variable in the .bss section for the module
defining it, and the linker will require exactly one definition of each public
variable. See 23.4 COMMON Sections, p.381.

Synonym: -Xno-common.

-Xbss-off

-x83=1
Put all variables in the .data section instead of allocating uninitialized
variables in the .bss section.

Synonym: -Xno-bss.

5.4.21 Use Abridged C++ Libraries (-Xc++-abr)

-Xc++-abr
Link to the abridged C++ libraries. Automatically disables exception-handling
(-Xexceptions=off). See 13.2 C++ Standard Libraries, p.238.

5.4.22 Use Old C++ Compiler (-Xc++-old)

-Xc++-old
Invoke the older C++ compiler that preceded version 5.0. Useful for compiling
legacy code that is not ANSI-compliant. See Older Versions of the Compiler,
p-232.

5.4.23 Optimize Global Assignments in Conditionals (-Xcga-min-use)

-Xcga-min-use=n
When a global variable is accessed repeatedly within a conditional statement,
the compiler can replace the global variable with a temporary local copy
(which can be stored in a register), then reassign the local variable to the global
variable when the conditional finishes execution.

69

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

If conditional global assignment is enabled, the compiler determines whether
to copy a global variable by estimating the number of times the global variable
is accessed within the conditional block at runtime. (The exact number of
accesses may depend on factors, such as the value of a loop counter, that
cannot be known at compile time.) If the global variable is accessed n or more
times, the compiler performs the optimization. The default value of n is 20.

Conditional global assignment is enabled by default (-Xcga-min-use=20)
whenever optimizations are enabled (-O or -X0O). To disable conditional global
assignment, set 7 to 0 (-Xcga-min-use=0). Conditional global assignment is
never performed on variables declared or treated as volatile (see 5.4.100 Treat
All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.103) and should
be used with caution in multi threaded environments.

5.4.24 Generate Code Using ASCII Character Set (-Xcharset-ascii)

-Xcharset-ascii
-X60=1

Generate code using the ASCII character set. All strings and character
constants are converted to ASCIIL The default is to use the same character
system as the host machine.

Synonym: -Xascii-charset.

5.4.25 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)

-Xchar-signed
-X23=0

Treat variables declared char without either of the keywords signed or
unsigned as signed characters.

Synonym: -Xsigned-char.

-Xchar-unsigned
-X23

70

Treat variables declared char without either of the keywords signed or
unsigned as unsigned characters.

Synonym: -Xunsigned-char.

The default setting is signed. See also Table 8-1 and _ SIGNED_CHARS__ in
6.1 Preprocessor Predefined Macros, p.131.

5 Invoking the Compiler
5.4 Compiler -X Options

In C++, plain char, signed char and unsigned char are always treated as
different types, but this option defines how arithmetic with plain char is done.

5.4.26 Use Old for Scope Rules (-Xclass-type-name-visible)

-Xclass-type-name-visible

-X218=1
C only. Direct the compiler not to hide struct or union names when other
identifiers with the same names are declared in the same scope. For example,
consider the following statement:

struct S {...} S[10];

With or without this option, the form struct S may always be used later to
declare additional variables of type struct S. However, without the option,
sizeof(S) will refer to the size of the array, while with this option, sizeof(S) will
refer to the size of the structure.

5.4.27 Disregard ANSI C Library Functions (-Xclib-optim-off)

-Xclib-optim-off
-X66
Direct the compiler to disregard all knowledge of ANSI C library functions.

By default, the compiler automatically includes, before all other header files,
the file Ipragma.h, which contains pure_function, no_return, and
no_side_effects pragmas and other statements that allow optimization of calls
to C library functions. (If the default include directory version_path/include
exists, the compiler looks for Ipragma.h only in this directory. If
version_path/include does not exist, the compiler searches for lpragma.h in
other user-specified directories.)

The option disables use of Ipragma.h.

Synonym: -Xno-recognize-lib.
5.4.28 Enable Cross-module Optimization (-Xcmo-...)

-Xcmo-gen=name
Generate a database, in file name, for cross-module optimization.

71

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xcmo-use=name
Compile with cross-module optimization using information in database name;
update database.

-Xcmo-exclude-inline=list
Combined with -Xcmo-use, tells the compiler not to inline specified functions.
list is a comma-delimited list of functions which should not be inlined across
modules. For C++, use mangled function names.

-Xcmo-verbose
Combined with -Xcmo-gen or -Xcmo-use, lists all functions that are inlined

across modules. Useful for tracking dependencies.

These options enable cross-module optimization, which allows the compiler to
optimize calls between functions in different source files. See 10.2 Cross-Module
Optimization, p.204 for details. Cross-module optimization is disabled by default.

5.4.29 Use the ‘new’ Compiler Frontend (-Xcnew)

-Xcnew
Compile using a compiler frontend derived from one produced by the Edison

Design Groupd. By default, invoking -Xcnew also invokes -Xdialect-c99.
Supported only with the :rtp execution environment.

5.4.30 Use Absolute Addressing for Code (-Xcode-absolute...)

-Xcode-absolute-far
-X58=6
Use 32-bit absolute addressing for code.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.257.

-Xcode-absolute-near
-X58=5
Use 16-bit absolute addressing for code.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.257.

5.4.31 Generate Position-independent Code (PIC) (-Xcode-relative...)

-Xcode-relative-far
-X58=2
Generate position-independent code (PIC) as follows:

72

5 Invoking the Compiler
5.4 Compiler -X Options

= Branches and function calls use 32-bit offsets from the PC, relative to PC.

= By default, global const or static const variables and string constants are
included in the code section and are referenced relative to the PC using
32-bit offsets. The default may be changed using option -Xconst-in-text
which controls whether const variables and string constants are in “text”
(code) or “data” sections. See it (75) and Moving initialized Data From “text”
to “data”, p.266, for details and refinements.

Option -Xconst-in-text=0 should usually be used with -Xcode-relative-far
because it will usually be faster to access const variables and string
constants through register a5 than via the PC.

References to the small const area, if any, still use a 16-bit offset (see
Table 14-5 and following).

For global or static pointers to be position-independent, they must be
initialized dynamically and are therefore always stored in a “data” section
even if declared const. See option 5.4.51 Generate Initializers for Static
Variables (-Xdynamic-init), p.81).

This option produces larger and slower code, especially on older MC68000
processors that do not have 32-bit PC relative branches.

Synonyms: -Xfar-code-relative, -Xlong-pc-relative.

-Xcode-relative-far-all

-xs8=4Equivalent to -Xcode-relative-far except that all global and static
variables are by default placed in the code section, not just those which are
const, and references to the small const area, if any, use a 32-bit offset rather
than the more efficient 16-bit offset, and for this reason this option is
deprecated.

Synonyms: -Xall-far-code-relative, -Xall-long-pc-relative.

-Xcode-relative-near
-xs8=1Like -Xcode-relative-far except that offsets are 16-bit rather than 32-bit.
See it for details.

NOTE: Because offsets are 16-bit PC-relative, a string or const variable must be
within 32KB of the instruction referencing it.

Synonyms: -Xnear-code-relative, -Xshort-pc-relative.

73

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

-Xcode-relative-near-all
-x58=3Extends -Xcode-relative-near to all global and static variables, not just
those declared const. See it for details.

Synonyms: -Xall-near-code-relative, -Xall-short-pc-relative.

5.4.32 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)

-Xcomdat
-X120

C++ only. Mark all generated sections as COMDAT. The linker automatically
collapses identical COMDAT sections to a single section in memory. This is the
default.

By default, the compiler automatically generates a section for each
instantiation of each member function or static class variable in a template in
each module where the member function or variable is used. Given -Xcomdat,
the compiler marks all implicit template instantiations as COMDAT and the
linker collapses identical instances.

-Xcomdat-off

Generate all template instantiations and inline functions required as static
entities in the resulting object file. If a template is used in more than one
module, -Xcomdat-off results in multiple instances of static member function
variables or static class variables, instead of a single instance as is likely
intended; to avoid this, enable -Ximplicit-templates-off.

See 5.4.73 Control Template Instantiation (-Ximplicit-templates...), p.91 and
Templates, p.241 for details.

If a section is present in both COMDAT and non-COMDAT forms, the linker
will treat symbols in the COMDAT section as weak. See weak Pragma, p.148 for
details on weak symbols.

5.4.33 Maintain Project-wide COMDAT List (-Xcomdat-info-file)

-Xcomdat -info-£ile=filename

74

C++ only. When -Xcomdat is enabled, generate and maintain (in filename) a list
of COMDAT entries across modules. The list is automatically updated and
checked for consistency with each build. This option speeds up builds and
reduces object-file size in projects that make extensive use of templates. Since
COMDAT sections are ultimately collapsed by the linker, this option has no
effect on the final executable file.

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.34 Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-live)

-Xconservative-static-live
-x139
Make optimizations of static and global variable accessing less aggressive; for
example, do not delete assignments to such variables in infinite loops from
which there is no apparent return.

5.4.35 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)

-Xconst-in-text=mask
-X74=mask

-Xconst-in-data

-X74=0
Locate data in the CONST (mask bit 0x1), SCONST (mask bit 0x2), and STRING
(mask bit 0x4) section classes according to the given mask bit: if 1, locate in a
“text” section (the default), else if 0, locate in a “data” section.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xconst-in-text=0x5. Undefined mask bits are ignored.

The default value of this option is given in Moving initialized Data From “text”
to “data”, p.266.

-Xconst-in-data and -Xstrings-in-text are historical shortcuts for locating all
“constants” (CONST, SCONST, and STRING classes, not just “const” or string
data) in “data” sections (mask=0) or “text” sections (mask=0x{f) respectively.

The exact name of the “text” and “data” sections depends on the target. See the
discussion in 14. Locating Code and Data, Addressing, Access for exact section
names and examples, as well as Moving initialized Data From “text” to “data”,
p-266.

When STRING is in a text section, identical string constants will be stored only
once. This is the default in version 3.6 and later.

5.4.36 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)

-Xcpp-dump-symbols=muask
-X158=mask
Dump symbol information for macros, assertions, or both. To show macros, set

bit 0 (the LSB) of mask to 1. To show assertions, set bit 1 to 1. To show line

75

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

numbers, set bit 2 to 0. The default mask is 7 (show macros and assertions, no
line numbers).

5.4.37 Suppress Preprocessor Spacing (-Xcpp-no-space)

-Xcpp-no-space
-X117

C only. Do not insert spaces around macro names and arguments during
preprocessing.

5.4.38 Use Absolute Addressing for Code (-Xdata-absolute...)

-Xdata-absolute-far
-X59=6

Use 32-bit absolute addressing for data.
See 14.2 Addressing Mode — Functions, Variables, Strings, p.257.

-Xdata-absolute-near
-X59=5

Use 16-bit absolute addressing for data.
See 14.2 Addressing Mode — Functions, Variables, Strings, p.257.

5.4.39 Generate Position-independent Data (PID) (-Xdata-relative...)

76

-Xdata-relative-far

-x59=2Generate position-independent data (PID) references to all global or
static variables (except strings and const variables if the -Xconst-in-text=0xf
option is used).

Use 32-bit offsets from register a5 except for those global or static variables in
the Small Data Area (SDA), which will be accessed through fast 16-bit offsets
from a5, which means the SDA is limited to 64KB (to facilitate certain
optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.194 for further
details).

Because a5 is used as a base pointer, all files must be compiled with either this
or the companion option -Xdata-relative-near.

Synonyms: -Xfar-data-relative, -Xlong-a5-relative.

5 Invoking the Compiler
5.4 Compiler -X Options

-Xdata-relative-near

-x59=1Generate position-independent data (PID) references to all global or
static variables (except strings and const variables if the -Xconst-in-text=0
option is used).

All references use a 16-bit offset from register a5, which means the combined

size of all sections to which this attribute applies is limited to 64KB (to facilitate

certain optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.194 for
further details).

Because a5 is used as a base pointer, all files must be compiled with either this
or the companion option -Xdata-relative-far.

Synonyms: -Xnear-data-relative, -Xshort-a5-relative.

NOTE: If option -Xconst-in-text=0xf (equivalent to older option
-Xstrings-in-text), strings and const variables will be placed in “text” sections
and addressed as code rather than as position-independent data. See Moving
initialized Data From “text” to “data”, p.266 for details.

5.4.40 Align .debug Sections (-Xdebug-align=n)

-xdebug-align[=n]
Align .debug sections on specified boundaries. # is a power of 2; e.g.,
-Xdebug-align=3 aligns .debug sections on 8-byte boundaries. If 7 is omitted,
alignment defaults to 4-byte boundaries.

Without this option, .debug sections are aligned on byte boundaries.

5.4.41 Select DWARF Format (-Xdebug-dwarf...)

-Xdebug-dwarfl
-X153=1
Generate DWAREF 1.1 debug information.

-Xdebug-dwar£f2
-X153=2
Generate DWARF 2 debug information. This is the default.

-Xdebug-dwar£f3
-X153=3
Generate DWARF 3 debug information.

77

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xdebug-dwarf2-extensions-off
Suppress vendor-specific extensions in DWARF 2 and DWARF 3 debug
information.

5.4.42 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)

-Xdebug-inline-on
Generate debugging information for all inlined functions. Works with DWARF
2 and DWAREF 3 only. Can result in very large executables. This option is
disabled by default.

5.4.43 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)

-Xdebug-local-all
Emit debugging information for all local variables, even variables that are
never used. This option is disabled by default.

5.4.44 Generate Local CIE for Each Unit (-Xdebug-local-cie)

-Xdebug-local-cie
Generate a local Common Information Entry (CIE) for each unit. This option,
which eliminates the dependency on the debug library libg.a, is applicable
only with DWARF 2 or DWARF 3 debug information.

5.4.45 Disable debugging information Extensions (-Xdebug-mode=mask)

-Xdebug-mode=rask
-X99=mask

Disable extensions to debugging information per bits in mask. May be
necessary for other vendors’ assemblers or for debuggers which cannot
process the extensions.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xdebug-mode=0x6. Undefined mask bits are ignored.

0x2
Information regarding executable code in a header file (DWARF1, ELF).

0x4
Use of .d1line assembler directive (DWARF]1, ELF).

78

5 Invoking the Compiler
5.4 Compiler -X Options

0x8
Forward references to structures in generated assembler code (COFF

only).

0x10
Line number information for asm statements (DWARF1, DWARF2,
DWARE3).

Use of .d1_line_start and .d1_line_end assembler directives (DWARF1).

0x100
Column information (DWARF 2 and DWARF 3, C++).

5.4.46 Disable Debug Information Optimization (-Xdebug-struct-...)

-Xdebug-struct-all

-X116=1
Force generation of type information for typedef, struct, and union, and class
types, even when such types are not referenced in a file.

-Xdebug-struct-compact

-X116=0
Do not output types which are not used in debug information. This is the
default, and it generates more compact but still complete version of debug

information.

5.4.47 Specify C Dialect (-Xdialect-...)

-Xdialect-c89
-X230=0
Follow the C89 standard for C. See Table B-1 for details.

-Xdialect-c99
-X230=1
Follow the C99 standard for C. See Table B-1 for details.

Only a subset of the C99 standard is supported.

-Xdialect-k-and-r

-X7=0
Follow the “C standard” as defined by the original K&R C reference manual,
but with all the new ANSI C features added. Where K&R and ANSI differ,
-Xdialect-k-and-r follows K&R. See Table B-2 for details.

Synonyms: -Xk-and-r, -Xt.

79

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xdialect-ansi

-x7=1
Follow the ANSI C standard with some additions. See Table B-2 for details.
This is the default.

Synonyms: -Xansi, -Xa.

-Xdialect-strict-ansi

-X7=2
Strictly follow the ANSI C and C++ standards. See Table B-2 for details. For
C++, see 5.4.140 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.119.

Synonym: -Xstrict-ansi, -Xc.

-Xdialect-pcc

-X7=3
Follow the C standard as defined by the UNIX System V.3 C compiler. See
Table B-1 for details.

Synonym: -Xpcc.

5.4.48 Disable Digraphs (-Xdigraphs-...)

-Xdigraphs-on

-X202=0
C++ only. Enable digraphs. If digraphs are enabled, the compiler recognizes
the following keywords as digraphs: bitand, and, bitor, or, xor, compl,
and_eq, or_eq, xor_eq, not, and not_eq. This is the default.

-Xdigraphs-off
-X202
Disable digraphs.

Synonym: -Xno-digraphs.

5.4.49 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)

-Xdollar-in-ident
-X67
Allow dollar sign characters, “$”, in identifiers.

80

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.50 Control Use of Type “double” (-Xdouble...)

-Xdouble-avoid

-X96=3
C only. Force all double constants to single precision and generation of only
single precision instructions.

-Xdouble-error
-X96=1
Generate an error if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.
-Xdouble-warning
-X96=2
Generate a warning if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

5.4.51 Generate Initializers for Static Variables (-Xdynamic-init)

-Xdynamic-init=1

-x121=1
Cause the compiler to generate code in the initialization section to initialize
addresses in static initializers. This option can be applied to any code, but is
required for position-independent code and for C++ virtual tables. Example:

static int * address_p = & static_var;

Without this option, the above initializer would generate an error message if
the code is compiled to be position-independent.

-Xdynamic-init=2

-X121=2
Extends the -Xdynamic-init=1 option to generate code in the initialization
section for all initializers, not just addresses.

5.4.52 Specify enum Type (-Xenum-is-...)

-Xenum-is-best

-x8=2
Use the smallest signed or unsigned integer type permitted by the range of
values for an enumeration, that is, the first of signed char, unsigned char,
short, unsigned short, int, unsigned int, long, or unsigned long sufficient to

81

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

represent the values of the enumeration constants. (long long is not available
for enumerated types.) Thus, an enumeration with values from 1 through 128
will have base type unsigned char and require one byte. (Using the packed
keyword on an enumerated type yields the same result as -Xenum-is-best.)

-Xenum-is-int

-x8
This is the default. For C modules, the enum type is always equivalent to int.
For C++, each enum type is equivalent to int if the range will fit, or unsigned
int if it will not; if the range will not fit into either, a warning is issued and
unsigned int is used.

-Xenum-is-short

-X8=3
Each enum type is always equivalent to signed short if the range will fit, or
unsigned short if it will not. If the range will not fit into either, a warning is
issued and unsigned short is used.

-Xenum-is-small

-X8=0
Use the smallest signed integer type permitted by the range of values for an
enumeration, that is, the first of signed char, short, int, or long sufficient to
represent the values of the enumeration constants. Thus, an enumeration with
values from 1 through 128 will have base type short and require two bytes.

-Xenum-is-unsigned

-x8=4
Use the smallest unsigned integer type permitted by the range of values for an
enumeration, that is, the first of unsigned char, unsigned short, unsigned int,
or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte.

NOTE: If modules compiled with different -Xenum-is-... options are mixed in a
program, compatibility problems may result.

When an enumerated type occurs within a packed structure, the default behavior
is to use the smallest possible integer type for the enumeration constants
(-Xenum-is-best). To override this behavior, specify -Xenum-is-short or
-Xenum-is-unsigned.

82

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.53 Enable Exceptions (-Xexceptions-...)

-Xexceptions-off
-X200=0
C++ only. Disable exceptions. Compiling a program with any of the keywords
try, catch, or throw will cause a compilation error. (But throw() is still allowed
in function declarations to indicate that new or delete will not throw
exceptions.) Compiling with this option will reduce stack space and increase
execution speed when classes with destructors are used.

Synonym: -Xno-exception.
-Xexceptions

-X200
C++ only. Enable exceptions. This is the default.

For mixed C/C++ programs, see also 5.4.66 Generate .frame_info for C functions
(-Xframe-info), p.89.

Synonym: -Xexception.

5.4.54 Control Inlining Expansion (-Xexplicit-inline-factor)

-Xexplicit-inline-factor

-Xexplicit-inline-factor=n

-X136=n
Limits the inlining in a function (explicit and implicit) to an expansion of n
times (measured in nodes where, roughly, each operator or operand counts as
one node).

Given a function f, the compiler first inlines all functions explicitly declared
inline which f calls, as well as any other small functions which can be inlined
based on the other inlining optimization controls. It then divides the new size
of the function (number of nodes) by the size with no inlining. If the result is
<=1, it looks for new inlining opportunities in the resulting code and repeats
the cycle. Once an expansion of n times is exceeded, inlining stops.

If -Xexplicit-inline-factor is specified with no value, n defaults to 3. If
-Xexplicit-inline-factor is not specified, the default value is 0 (which means no
limit) for C and 3 for C++.

See also 5.4.81 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force),
p-94.

83

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.55 Force Precision of Real Arguments (-Xextend-args)

-Xextend-args
-X77

Make all floating point arguments use the precision given by whichever of
-Xfp-min-prec-double, -Xfp-min-prec-long-double, or -Xfp-min-prec-float is
in force (all are settings of -X3), even if prototypes are used. (If none of the -X3
options are also given, the default is -Xfp-min-prec-double as that is
equivalent to -X3=0).

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid
missing any such functions.

5.4.56 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic)

-Xfp-fast

-X82=2
Favor floating-point performance over conformance to the IEEE754
floating-point standard.

-Xfp-normal

-X82=0
Use normal (relaxed) conformance to the IEEE754 floating-point standard.
This is the default.

-Xfp-pedantic

-x82=1
Use strict conformance to the IEEE754 floating-point standard. This option is
equivalent to using -Xieee754-pendatic. (See 5.4.72 Enable Strict implementation
of IEEE754 Floating Point Standard (-Xieee754-pedantic), p.91.)

The -Xfp-fast option allows floating-point division by a constant to be optimized
into a multiply by the reciprocal of the constant. This optimization is inhibited for
-Xpf-normal and -Xfp-pedantic unless the constant is a power of two.

84

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.57 Optimize Using Profile Data (-Xfeedback=file)

-Xfeedback

-Xfeedback=file

(no numeric equivalent)
Use profiling information generated by the -Xblock-count (see 5.4.16 Insert
Profiling Code (-Xblock-count), p.67) option to optimize for faster code. file is the
name of the profiling file. The default is dbcent.out.

To use this option:
» Compile a program with -Xblock-count.

* Run the program, which now creates dbent.out with profiling
information. (See 15.8.2 File 1/O, p.288 for file I/O in an embedded
environment.)

* Recompile, now with the -XO and -Xfeedback options to produce
high-level speed optimized code. Use -Xfeedback-frequent and
-Xfeedback-seldom described below to control how the feedback data
affects optimization.

5.4.58 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom)

-Xfeedback-frequent

-X68=n

-Xfeedback-seldom

-X69=n
Change the parameters used to control optimization of basic blocks when
using profile data, for example, the amount of inlining, loop unrolling, and
reorganization to reduce branches actually taken, all to increase speed
(sometimes at the expense of space).

When using -Xprof-feedback (5.4.119 Optimize Using RTA Profile Data
(-Xprof-feedback), p.111) and -Xfeedback (5.4.57 Optimize Using Profile Data
(-Xfeedback=file), p.85), the compiler divides the basic blocks into three
categories: code executed “frequently”, “sometimes”, and “seldom”. More of
the above optimizations are done for “frequent” code, while less or none is

done for code executed “seldom”.

The higher the thresholds, the more often code must be executed to get into the
“frequent” category.

85

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The defaults are -Xfeedback-seldom=10 and -Xfeedback-frequent=50 and are
used as follows: each execution of a basic block recorded in the profile counts
as one “tick”. The low-mark and high-mark values are normalized on a basis
of 1,000 ticks, which means that the options have units of a tenth of a percent.
That is, the default values mean that, if exactly 1,000 ticks are recorded, blocks
executed fewer than 10 times (up to 1%) are marked “seldom”, those executed
from 10 to 50 times (1% to 5%) are marked “sometimes”, and those executed
50 or more times (5% of more) are marked “frequent”. Example:

-Xfeedback-frequent=30

means that blocks accounting for 3% or more of all ticks will go into the
“frequent” category, and the compiler will do more inlining of functions called
within these blocks, more loop unrolling, etc., to decrease their execution time.

Synonyms: -Xhi-mark for -Xfeedback-frequent, -Xlo-mark for
-Xfeedback-seldom.

5.4.59 Set Floating Point Rounding Mode (-Xfintrz-on, -Xfintrz-is-fmove-to-fpcr,
-X-fintrz-off)

-Xfintrz-is-fmove-to-£fpcr

-X34=1
Set the floating point rounding mode to “round-to-zero” before every
float-to-integer conversion and reset it afterwards. This prevents the kernel
trap that the fintrz instruction creates on the MC68040. This option is the
default on the MC68040.

For backwards compatibility, this option is also the default on the MC68060,
even though the MC68060 implements the fintrz instruction.

-Xfintrz-off

-X34=2
This code generated with this option is considerably faster than that generated
with the related options -Xfintrz-on or -Xfintrz-is-fmove-to-fpcr. However, if
the processor rounding mode is not set in advance to “round-to-zero”, then the
resulting program is invalid.

-Xfintrz-on

-X34=0
Use the fintrz instruction, even on processors such as the MC68040 where the
instruction is not implemented in hardware and thus will cause a kernel trap
and must be emulated.

86

5 Invoking the Compiler
5.4 Compiler -X Options

The MC68020/30 with the MC68881/2 floating point co-processor uses the
fintrz instruction to truncate a floating point value before converting it to a
32-bit integer. This option is the default on the MC68020/30.

5.4.60 Select Convention for Returning Floating Point Values (-Xfloats-...)

5
-Xfloats-as-gnu -

-X43
Use GNU calling conventions and function names for software floating point
emulation. GNU libraries are required in order to get a clean link.
-Xfloats-in-do0
-X42
Return floating point values both in register fp0, as well as registers d0/d1,
when using hardware floating point.

5.4.61 Use Old for Scope Rules (-Xfor-init-scope-...)

-Xfor-init-scope-for

-X217=0
Use “new” scope rules for variables declared in the initialization part of a for
statement. With this option, the scope of a variable declared in the
initialization part extends to the end of the for statement.

-Xfor-init-scope-outer

-x217
C++ only. Use “old” scoping rules for variables declared in the initialization
part of a for statement. With this option, the scope extends to the end of the
scope enclosing the for statement.

Synonym: -Xold-scoping.

5.4.62 Generate Warnings on Undeclared Functions

(-Xforce-declarations, -Xforce-prototypes)

-Xforce-declarations
-X9
Generate warnings if a function is used without a previous declaration.

87

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xforce-prototypes

-x9=3
Generate warnings if a function is used without a previous prototype
declaration.

These options are useful to make C a more strongly typed language. This
option is ignored when compiling C++ modules.

5.4.63 Suppress Assembler and Linker Parameters (-Xforeign-as-id)

-Xforeign-as-14
(no numeric equivalent)
Cause the driver to call an assembler and linker without any implicit

parameters.

This allows third-party assemblers and linkers to be used with the Wind River
compiler. The -W xfile option may be used to specify a foreign assembler or
linker (5.3.30 Substitute Program or File for Default (-W xfile), p.48), the -W a
option to pass parameters to the assembler (5.3.25 Pass Arquments to the
Assembler (-W a,arquments, -W :as:,arguments), p.46), and the -W 1 option to pass
parameters to the linker (5.3.27 Pass Arguments to Linker (-W larquments, -W
:Ad:,arquments), p.47).

5.4.64 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)

-Xfp-float-only
-X70=2
Force double and long double to be the same as float.

Synonym: -Xno-double.

-Xfp-long-double-off
-X70
Force long double to be the same as double on machines where they differ.

Synonym: -Xno-long-double.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

88

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.65 Specify Minimum Floating Point Precision (-Xfp-min-prec...)

-Xfp-min-prec-double
-X3=0
Use double as the minimum precision in expressions and for floating point
arguments. Lesser precisions are used in expressions if the -Xdialect-ansi
option is used. If prototypes are used, use the declared precision for
arguments, unless the -Xextend-args option is used.

Synonym: -Xuse-double.

-Xfp-min-prec-£float
-x3=1
Use float as the minimum precision in expressions and for floating point

arguments.
Synonym: -Xuse-float.

-Xfp-min-prec-long-double

-X3=2
Use long double as the minimum precision in expressions and for floating
point arguments. Lesser precisions are used in expressions if the

-Xdialect-ansi option is used.

If prototypes are used, use the declared precision for arguments, unless the
-Xextend-args option is also given.

Synonym: -Xuse-long-double.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5.4.66 Generate .frame_info for C functions (-Xframe-info)

-Xframe-info

Force the compiler to generate .frame_info sections for C funtions. Use this option
when compiling mixed C/C++ programs in which C++ exceptions may propagate
back through C functions. For more information, see 23.8 .frame_info sections, p.384.

89

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.67 Generate Link Instruction (-Xframe-ptr)

-Xframe-ptr
-X36
Generate a link instruction at the beginning of every function, and preserve

saved registers with moveml as the second instruction if necessary. This makes
it easy to backtrack to calling functions and to see what registers are saved. See
9.2 Stack Layout, p.189 for details.

This option is not on by default, and the link instruction is not generated
(unless there are local variables on the stack) when the -XO option is used. Use
-Xframe-ptr to force the compiler to generate the link instruction and preserve
the registers in all cases.

5.4.68 Include Filename Path in Debug Information (-Xfull-pathname)

-Xfull-pathname
-X125
Include the path prefix in filenames in debug information (specifically, in the

file assembler directive). Without this option, only the filename is included.

5.4.69 Control GNU Option Translator (-Xgcc-options-...)

-Xgcc-options-on
Enable automatic translation of GNU compiler (GCC) options. This is the
default.

-Xgcc-options-off
Disable automatic translation of GCC options.

-Xgcc-options-verbose
Display all translations. Valid only if translation is enabled (-Xgcc-options-on).

When -Xgcc-options-on is enabled, GCC option flags from the command line or
makefile are parsed and, if possible, translated to equivalent Wind River Compiler
options. Translations are determined by the tables in the file gcc_parser.conf.

5.4.70 Treat All Global Variables as Volatile (-Xglobals-volatile)

See 5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.103.

90

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.71 Do Not Pass #ident Strings (-Xident-off)

-Xident-on
-X63=0
Pass #ident strings to the assembler. This is the default.

-Xident-off

-X63
Do not pass #ident strings to the assembler.

Synonym: -Xno-ident.

5.4.72 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic)

-Xieee754-pedantic

-x82=1
Enable strict implementation of the IEEE754 floating point standard at some
cost in performance. Specifically,

* Do not optimize a divide by a constant to a multiply of its reciprocal.

* Donot use floating multiply-add instructions on architectures where more
bits are kept in intermediate results than is defined by the standard.

* Do not optimize x-x to zero so that possible NaN values are preserved.

* Do less equal and greater equal comparisons with behavior for NaN
values as defined by the standard.

This option is equivalent to -Xfp-pedantic. (See 5.4.56 Specify Degree of
Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic),
p-84.)

5.4.73 Control Template Instantiation (-Ximplicit-templates...)

-Ximplicit-templates

-X207=0
Instantiate each template in each module where it is used or referenced. This
is the default.

-Ximplicit-templates-off
-X207=1
Instantiate templates only where explicit instantiation syntax is used.

91

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Synonym: -Xno-implicit-template.

For further discussion, see 5.4.32 Mark Sections as COMDAT for Linker Collapse
(-Xcomdat), p.74 and Templates, p.241.

C++ only.

5.4.74 Treat #include As #import (-Ximport)

-Ximport

-X75
Treat all #include directives as if they are #import directives. This means that
any include file is included only once.

5.4.75 Ignore Missing Include Files (-Xincfile-missing-ignore)

-Xincfile-missing-ignore

-X172
This option, which suppresses error reporting, is effective only when used
with -Xmake-dependency (5.4.96 Show Make Rules (-Xmake-dependency),
p-101). It causes preprocessing to continue even when a required header is not
found. If -Xincfile-missing-ignore is used with -Xmake-dependency=2 or
-Xmake-dependency=6, the preprocessor issues a warning (but not an error)
when a required system file (#include <filename>) is not found.

5.4.76 Initialize Local Variables (-Xinit-locals=mask)

-Xinit-locals=mask

-X87=mask
Initialize all local variables to zero or the value specified with -Xinit-value at
every function entry. mask is a bit mask specifying the kind of variables to be
initialized.
mask may be given in hex, e.g., -Xinit-locals=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x1 integers
0x2 pointers
0x4 floats

0x8 aggregates

If n is not given, all local variables will be initialized.

92

5 Invoking the Compiler
5.4 Compiler -X Options

This option is useful in finding “memory dependent” bugs.

5.4.77 Control Generation of Initialization and Finalization Sections (-Xinit-section)

This option controls generation of sections for run-time initialization and
finalization invocation, including constructor and destructor functions and global
class objects in C++. For more information, see 15.4.8 Run-time Initialization and
Termination, p.282.
-Xinit-section=0
-X91=0
Suppress generation of initialization and finalization sections. This option is
not recommended and may result in incorrect run-time behavior.
-Xinit-section
-Xinit-section=1
-x91
-x91=1
Create .ctors and .dtors sections containing pointers to initialization and
finalization functions, sorted by priority. This is the default.

Initialization and finalization functions are designated with attribute
specifiers. See constructor, constructor(n) Attribute, p.155 and destructor,
destructor(n) Attribute, p.156.

-Xinit-section=2

-X91=2
Create .init$nn and .fini$nn code sections containing calls to initialization and
finalization functions, sorted by priority. Provides compatibility with previous
versions of the compiler, including recognition of old-style function prefix
designations for initialization and finalization functions.

Synonym: -Xuse-.init.

5.4.78 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri)

-Xinit-section-default-pri=n

-X175=n
Assign the default priority for constructor and destructor functions and for
C++ global class objects. The specified priority n applies to functions
referenced in .ctors, .dtors, .init, and .fini sections. Functions with lower
priority numbers execute first.

93

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

5.4.79 Define Initial Value for -Xinit-locals (-Xinit-value=n)

-Xinit-value=n
-X90=n

Define the initial value used by the -Xinit-locals option. This option can be
useful to identify uninitialized variables, since it can be used to initialize
variables to some invalid or recognizable value that might produce a memory
access error.

The value n is 32-bits, right-justified, zero-filled and may be specified as a
decimal or hexadecimal number (0x...).

5.4.80 Inline Functions with Fewer Than n Nodes (-Xinline=n)

-Xinline=n
-X19=n

Set the limit on the number of nodes for automatic inlining. Because the
compiler collects functions until -Xparse-size KBytes of memory is used, the
inlined function does not need to be defined before the function using it. See
__inline__ and inline Keywords, p.149 and Inlining (0x4), p.207 for a discussion
of inlining.

See 5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.124 for a
definition of node count. (Assembly files saved with -S show the number of
nodes for each function.) For purposes of automatic inlining, nodes that do not
correspond to an operator or operand are not counted. Hence setting -Xinline
to 0 inlines no functions automatically, and setting -Xinline to 1 inlines only
“dummy” functions containing no code.

Defaults: -Xinline is 10 by default. -XO sets -Xinline to 40 by default.

NOTE: Inlining occurs only if optimization is selected by using the -XO or -O
option.

5.4.81 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)

-Xinline-explicit-force
-Xinline-explicit-£force=n

94

5 Invoking the Compiler
5.4 Compiler -X Options

-X163
-X163=n
Inline recursive function calls up to n times. The default is 50. If this option is
not used, the compiler inlines a function at most once.

If this option is combined with -Xinline=0, the compiler inlines only functions
declared within a C++ class or with inline, __inline__, or #pragma inline.

This option is overridden by -Xexplicit-inline-factor. (See 5.4.54 Control
Inlining Expansion (-Xexplicit-inline-factor), p.83.) By default,
-Xexplicit-inline-factor=3 is in effect for C++ programs; C++ programmers
who want to use -Xinline-explicit-force should therefore specify
-Xexplicit-inline-factor=0.

5.4.82 Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20)

-Xinstr-00

-X44=0
Limit code generation to that which can be executed on a plain 68000. This is
the default when the target is MC68000.

-Xinstr-20

-X44=1
Allow the compiler to generate code requiring a 68020 or later processor. This
is the default when the target a MC68xxx but not MC68000.

5.4.83 Enable Intrinsic Functions (-Xintrinsic-mask)

-Xintrinsic-mask=n

-X154=n
Enable specified intrinsic functions. See 6.6 Intrinsic Functions, p.158 for
details.

5.4.84 Set longjmp Buffer Size (-Xjmpbuf-size=n)

-Xjmpbuf-size=n

-X201=n
C++ only. Set the size in bytes of the buffer allocated for setjmp and longjmp
when using exceptions. The default size as determined by the compiler should
usually be sufficient.

95

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.85 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file)

-Xkeep-assembly-file

(no numeric equivalent)
Always create and keep a .s file without the need for a separate compilation
with the -S option. This option can be used with the -c option to create both
assembly and object files at once.

-Xkeep-object-file

(no numeric equivalent)
Always create and keep a .o file without the need for a separate compilation
with the -c option. This is needed only when a single file is compiled,
assembled, and linked in one step, because in this case the driver deletes
intermediate assembly and object files automatically.

5.4.86 Enable Extended Keywords (-Xkeywords=mask)

-Xkeywords=mask
-X78=mask

Recognize new keywords according to mask, a bit mask specifying which
keywords to add.

mask may be given in hex, e.g., -Xkeywords=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x01 extended (C only)

0x02 pascal (C only)

0x04 inline (this keyword always available in C++)
0x08 packed

0x10 interrupt (C only)

See 6. Additions to ANSI C and C++ for more information on these keywords.

5.4.87 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)

NOTE: These options are deprecated and should be used only on the advice
Customer Support.

-Xkill-opt=mask
-X27=mask
Disable individual target-independent optimizations.

96

5.4.88

5.4.89

5 Invoking the Compiler
5.4 Compiler -X Options

-Xkill-reorder=mask
-X28=muask
Disable individual target-dependent optimizations in the reorder program.

mask is a bit mask with one bit for each optimization type. mask may be given
in hex, e.g., -Xkill-opt=0x12. Multiple optimizations can be disabled by
OR-ing their mask bits. Undefined mask bits are ignored.

Both target-independent and target-dependent optimizations are described in
10. Optimization. The name of each optimization is followed by its mask bit in
parentheses, e.g. Tail recursion (0x2).

For mask bit values for -Xkill-opt, see 10.3 Target-Independent Optimizations,
p-206, and for -Xkill-reorder, 10.4 Target-Dependent Optimizations, p.219. mask
bit values are given in parentheses after the name of each optimization.

Either the -O or -XO option must be given to enable optimization before either
of these -Xkill-... options can be used. To compile with almost no optimization,
do not specify -O or -XO.

Two minor optimizations required by the code generation algorithms cannot
be disabled: local strength reduction (e.g., multiply by power of 2 becomes
shift or add) and simple branch optimization (e.g., branches to branches).

Wait For License (-Xlicense-wait)

-Xlicense-wait

-X138
If a license is not available, request that the compiler wait and retry once a
minute, rather than returning with an error.

Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)

-X1int[=mask]|

-x84[=mask]|
Generate warnings when suspicious and non-portable C code is encountered.
For C++ modules, see note below. The two usual cases are:

-Xlint enables all warnings (equivalent to -Xlint=1).

-Xlint=0xffffffff disables all present and future warnings (equivalent to
-Xlint=0 or the default of not using the option at all).

97

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

98

Individual warnings can be disabled by OR-ing the following values. In effect,
-Xlint=1is assumed, enabling all warnings, and then individual warnings are
disabled. mask may be given in hex, e.g., -Xlint=0x1a. Undefined bits are
ignored.

0x02
Variable used before being set.

0x04
Label not used.

0x08
Condition always true/false, for example, i==i.

0x10
Variable/function not used.

020
Missing return expression.

0x40
Variable set but not used.

0x80
Statement not reached.

0x100
Conversion problems.

0x200
In non-ANSI mode, warn when the compiler selects an unsigned integral
type for an expression which would be signed under ANSI mode. For
example:
"a.c", line 3: warning (1671):
non-portable behavior: type of

‘>' operator is unsigned only
in non-ANSI mode

0x400
Possibly assignment (=) should be comparison (==).

0x1000
Missing function declaration (equivalent to -Xforce-declarations).

0x2000
Possible redundant expression. (Examples: x=x, x&x, x | x, x/x.)

11. The Lint Facility gives an example of a program which generates most of the
-Xlint warnings.

See also the __lint macro in 6.1 Preprocessor Predefined Macros, p.131 to avoid
use of non-ANSI extensions in header files.

5 Invoking the Compiler
5.4 Compiler -X Options

NOTE: For C++, -Xlint is equivalent to -Xsyntax-warning-on. (See
5.4.150 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.123.)

5.4.90 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)

-Xlocal-data-area=n

-X115=n
Allocate the static and global variables which are defined in a module and
referenced as least once in a contiguous block of memory, called the local data
area (LDA), and make fast, efficient references to those variables via a
temporary base register selected by the compiler.

n specifies the maximum of the LDA, and defaults to 32,767 bytes. (If n is
greater than the default, references to variables in the LDA will be less
efficient.)

The optimization does not apply to unreferenced variables or to variables
smaller than -Xsmall-data, which go in the .sdata or .sbss sections.
-Xlocal-data-area should be used with caution in multithreaded
environments. To restrict the optimization to static variables, use
-Xlocal-data-area-static-only; VxWorks developers are strongly advised to use
this option.

See 14.4 Local Data Area (-Xlocal-data-area), p.267 for additional information.

Synonym: -Xlocal-struct.

NOTE: If at least one variable in the LDA has an initial value, the LDA is in the
.data section; otherwise it is in the .bss section. Because -Xlocal-data-area is
nonzero by default, uninitialized static and global variables larger than
-Xsmall-data bytes in size which are referenced at least once are not stored in
a .bss section. To store such variables in .bss, use -Xlocal-data-area=0.

99

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.91 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)

-Xlocal-data-area-static-only
-X166

Apply the local data area optimization only to static variables; do not optimize
global variables. See 14.4 Local Data Area (-Xlocal-data-area), p.267 for
information about this optimization.

5.4.92 Do Not Assign Locals to Registers (-Xlocals-on-stack)

-Xlocals-on-stack

-X5
By default, the compiler attempts to assign all local variables to registers. If
-Xlocals-on-stack is given, only variables declared with the register keyword
are assigned to registers.

5.4.93 Use Macintosh Calling Conventions for Pascal Functions
(-Xmac-convention)

-Xmac-conventions
-X79

Use Macintosh calling conventions for pascal functions instead of standard
68K calling conventions. See 9.3 Argument Passing, p.190 for additional details.

5.4.94 Expand Macros in Pragmas (-Xmacro-in-pragma)

-Xmacro-in-pragma
-X157
Expand preprocessor macros in #pragma directives.

5.4.95 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)

-Xmacro-undefined-warn
-X171

Generate a warning when an undefined macro name occurs in a #if
preprocessor directive.

100

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.96 Show Make Rules (-Xmake-dependency)

-Xmake-dependency
-Xmake-dependency=nask
-X156, -X156=mask
Generate a list of include files required to build each object file. Example:

main.o: main.c stdio.h
command list 5
This output means that main.c and stdio.h are required to build the target
main.o. A list of make commands follows the dependency.

mask, which defaults to 1, is a bit mask—always interpreted as
hexadecimal—of which the four least significant bits are meaningful: the
fourth (least significant) bit, if set to 1, means that all required files are shown;
this is the default. The third bit means that only files enclosed in double
quotation marks (#include "filename") are shown. (If both the third and the
fourth bits are set, the fourth overrides the third.) The second bit means that
compilation continues after the dependency list is generated (if this bit is 0, no
output is emitted other than the list of dependencies) and that the dependency
list is sent to a file (instead of the standard output). The first bit creates a
“phony target” for each dependency other than the main file; this is a
work-around for errors caused by missing header files and is provided for
GNU compatibility. The -o option can be used to specify the output file, the
target name, or both. Hence:

-Xmake-dependency=1
Same as -Xmake-dependency. Show all required include files. If -0 is used, the
target is the name specified with -o. Results go to the standard output unless
-Xmake-dependency-savefile=filename is specified. No further output is
emitted.

-Xmake-dependency=2
Same as -Xmake-dependency=1, but show only files enclosed in double
quotation marks (#include "filename").

-Xmake-dependency=4
Same as -Xmake-dependency=1, but write the dependency list to a file and
then continue with normal compilation. The output file can be specified with
either -o or -Xmake-dependency-savefile=filename (which overrides -o);
otherwise it is called filename.d, where filename is the name of the main source
file, and is created in the directory where the compiler was invoked. If -o is
used without -Xmake-dependency-savefile, the output file is the basename
specified by -0 with .d appended.

101

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xmake-dependency=8
Same as -Xmake-dependency=1, but output a phony target for each
dependency other than the main file.

The bits can be OR-ed to combine options. Example:

-Xmake-dependency=6
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
write output to a file, then continue with normal compilation
(-Xmake-dependency=4).

-Xmake-dependency=a
Show only files in double quotation marks (-Xmake-dependency=2) and
output phony targets (-Xmake-dependency=8).

-Xmake-dependency=c
Output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

-Xmake-dependency=e
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

Ordinarily, the preprocessor returns an error and stops when a required file is not
found. To continue preprocessing when files are missing, use -Xmake-dependency
with -Xincfile-missing-ignore (5.4.75 Ignore Missing Include Files
(-Xincfile-missing-ignore), p.92).

5.4.97 Specify Dependency Name or Output File (-Xmake-dependency-...)

This option is valid only when used with -Xmake-dependency.

-Xmake-dependency-target:string
Change the target name in the rule emitted by -Xmake-dependency to string
(instead of using the name of the object file). To specify multiple target names,
repeat the -Xmake-dependency-target option on the command line.

-Xmake-dependency-savefile=filename

Specify the output file for -Xmake-dependency.

102

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.98 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)

-Xmax-inst-level[:n]
-x216[=n]
C++ only. Set the maximum level for recursive instantiation of templates.
Without this option, an error is emitted when a default level of 50 is reached.
With this option, but without a value 7, the limit is 100.

5.4.99 Set Maximum Structure Member Alignment (-Xmember-max-alignh=n)

-Xmember-max-align=n

-X88=n
Set the maximum byte boundary to which structure members will be aligned.
If the natural alighment of a member is less than #, the natural alignment is
used for it. See pack Pragma, p.143 and the __packed__ and packed Keywords,
p-151 for details. See also 5.4.146 Set Minimum Structure Member Alignment
(-Xstruct-min-align=n), p.122.

The default value of is dependent on the processor as described in 8. Internal
Data Representation.

Synonym: -Xstruct-max-align.

5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)

-Xmemory-is-volatile
-x4
-x4=7
Treat all variables as volatile.

-Xglobals-volatile
-x4=1
Treat all global variables as volatile.

-Xstatics-volatile
-X4=2
Treat all static variables as volatile.

-Xpointers-volatile
-x4=4
Treat all pointer accesses as volatile.

These options tell the compiler not to perform optimizations that can cause device
drivers or other systems to fail. By default, the compiler keeps data in registers as
long as possible whenever it is safe. Difficulties can arise if a memory location

103

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

changes because it is mapped to an external hardware device and the compiler,
unaware of the change, continues to use the old value stored in a register. While
these situations can now be handled with the volatile keyword, the -X4 options
allow compilation of older programs.

To combine these options, use the sum of their values with a single occurrence of
the option flag. For example, use -X4=3 to treat all global and static variables as
volatile. -X4=7, equivalent to -X4 or -Xmemory-is-volatile, combines all of the
options.

5.4.101 Warn On Type and Argument Mismatch (-Xmismatch-warning)

-Xmismatch-warning

-x2

-Xmismatch-warning=2

-x2=2
Generate a warning only (instead of a fatal error) when either pointers of
different types, or pointers and integers, are mixed in expressions. Example:

long i1, i2 = &il;
is invalid in ANSI C but is allowed in some non-ANSI dialects. This option is
set implicitly by -Xdialect-pcc (-X7=3).

If the option -Xmismatch-warning=2 is given, the compiler also generates a
warning instead of an error when identifiers are redeclared and when a
function call has the wrong number of arguments.

This option is ignored when compiling C++ modules.

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.3.8 Change Diagnostic Severity Level (-e), p.40.

5.4.102 Specify Section Name (-Xname-...)

Use the following options to specify the name of a default section.

-Xname-code=nare
Set the section name for code.

104

5 Invoking the Compiler
5.4 Compiler -X Options

-Xname-const=name
Set the section name for initialized constants.

-Xname-data=narme
Set the section name for initialized data.

-Xname-eh=name

C++ only.

Set the section name for all exception-handling tables.

-Xname-rtti=name
C++ only.
Set the section name for all RTTI tables.

-Xname-sconst=name
Set the section name for initialized small const.

-Xname-sdata=name
Set the section name for initialized small data.

-Xname-string=name
Set the section name for strings.

-Xname-uconst=name
Set the section name for uninitialized constants.

-Xname-udata=name
Set the section name for uninitialized data.

-Xname-usconst=name
Set the section name for uninitialized small const.

-Xname-usdata=name
Set the section name for uninitialized small data.

-Xname-vtbl=name
C++ only.
Set the section name for all virtual-function tables.

Section names can also be specified using the section pragma. For example, setting

-Xname-code=.code has the same effect as:
#pragma section CODE ".code"

For more information, see section Pragma, p.147.

105

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.103 Disable C++ Keywords namespace and Using (-Xnamespace-...)

-Xnamespace-on
-X219=0
Recognize the namespace and using keywords or constructs.

-Xnamespace-off
-X219

C++ only. Do not recognize the namespace and using keywords or constructs.

5.4.104 Enable Extra Optimizations (-XO)

-X0
-X26
Enable all standard optimizations plus the following:

-0
(5.3.17 Optimize Code (-O), p.44)

-Xinline=40

(10 with -0; 5.4.80 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p-94)

-Xopt-count=2
(1 with -O; 5.4.106 Execute the Compiler’s Optimizing Stage n Times
(-Xopt-count=n), p.107)

-Xparse-size=6000

(3000 with -O; 5.4.108 Specify Optimization Buffer Size (-Xparse-size), p.107)

-Xrestart

(off with -O; 5.4.122 Restart Optimization From Scratch (-Xrestart), p.113)

-Xtest-at-both
(-Xtest-at-bottom with -O; 5.4.152 Specify Loop Test Location (-Xtest-at-...),

p-123)

5.4.105 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)

-Xold-inline-asm-casting

-X137
This option affects small arguments to asm macros (arguments with size less
than int).

By default, the compiler does not extend such arguments to int. Prior to
version 4.2, the compiler did extend such arguments to int. Use this option to

106

5 Invoking the Compiler
5.4 Compiler -X Options

force the old behavior for compatibility with existing asm macros which
depend on it.

5.4.106 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)

-Xopt-count=n

-X25=n
Execute the compiler’s optimizing stage n times. The default is once. In most
cases this is enough. In rare instances, one stage of the optimizer will generate
an opportunity for a previous stage. Setting -Xopt-count=2 or more will cause
a somewhat longer compilation time but may produce slightly better code.
This option is set to 2 by -XO.

5.4.107 Disable Most Optimizations With -g (-Xoptimized-debug-...)

-Xoptimized-debug-on
-X89=0
Do not disable optimizations when using -g. This is the default.

-Xoptimized-debug-off

-X89
When using the -g option to generate debug information, disable most
optimizations and force line numbers in debug information to be in increasing
order — assists with debuggers that cannot handle optimized code. See also
5.4.45 Disable debugging information Extensions (-Xdebug-mode=mask), p.78, and
5.4.46 Disable Debug Information Optimization (-Xdebug-struct-...), p.79.

Synonym: -Xno-optimized-debug.

5.4.108 Specify Optimization Buffer Size (-Xparse-size)

-Xparse-size=n

-X20=n
Delay code generation of functions until 7 KBytes of main memory is used for
internal tables. By delaying generation, the compiler can perform
interprocedural optimizations such as inlining and register tracking.

The default is 3000 KB (6000 KB if option -XO is used). The highest useful value
for a module depends on many factors; it is not practical to calculate it (see the
discussion of “limitations related to memory size” in C. Compiler Limits for
some of the factors).

107

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

For very large and complex modules, experiment with larger values, e.g.
-Xparse-size=8000, to see if code size or execution time is reduced.

NOTE: That using a value larger than available physical memory will cause
excessive swapping and slow compilation.

5.4.109 Output Source as Comments (-Xpass-source)

-Xpass-source
-X11

Output the source as comments in the generated assembly language code.

5.4.110 Use Precompiled Headers (-Xpch-...)

C++ only. These options are disabled by default. At most one of -Xpch-automatic,
-Xpch-create, and -Xpch-use can be enabled; if more than one is specified, all but
the first are ignored. For more information, see 13.7 Precompiled Headers, p.247.

-Xpch-automatic
Generate and use precompiled headers.

-Xpch-create=filename
Generate a precompiled header (PCH) file with specified name.

-Xpch-diagnostics
Generate an explanatory message for each PCH file that the compiler locates
but is unable to use.

-Xpch-directory=directory
Look for PCH file in specified directory.

-Xpch-messages
Generate a message each time a PCH file is created or used.

-Xpch-use=filename

Use specified PCH file.

108

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.111 Generate Position-Independent Code for Shared Libraries (-Xpic)

-Xpic

-X62
For VxWorks RTP application development. Allows a single copy of a shared
library, loaded in a single memory location, to be called by different programs.
RTP shared-library code must be compiled with this option.

5.4.112 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)

See 5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.103.

5.4.113 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)

These options control the compiler’s behavior when multiple #pragma section
directives are used with different parameters for the same section class. The default
is -Xpragma-section-first.

For more information, see section and use_section Pragmas, p.251.

-Xpragma-section-first
If this option is in effect when a variable or function is defined, the compiler
uses the earliest currently-valid section pragma that specifies a non-default
location for the variable or function.

-Xpragma-section-last
If this option is in effect when a variable or function is defined, the compiler
uses the last currently-valid section pragma that specifies a non-default
location for the variable or function.

5.4.114 Preprocess Assembly Files (-Xpreprocess-assembly)

-Xpreprocess-assembly
Invoke C preprocessor on assembly files before running the assembler.

109

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.115 Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off)

-Xpreprocessor-lineno-off
-X165

Suppress line-number information in the preprocessor output. Use this with
the -E option (send preprocessor output to standard output) when
line-number information is not needed.

5.4.116 Use Old Preprocessor (-Xpreprocessor-old)

-Xpreprocessor-old
-X155

Use the preprocessor from release 4.3. When -Xpreprocessor-old is specified,
vararg macros are not supported and the following options are not available:
-Xmake-dependency, -Xmake-dependency-..., -Xmacro-in-pragma, and
-Xcpp-dump-symbols.

This option is valid only when compiling C modules or when compiling C++
modules with the -Xc++-old option.

5.4.117 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...)

-Xprof-all
-X123=3
Collect count and time data.

-Xprof-all-fast

-X123=6
Collect count and time data for each function, but not for pairs of functions, so
no hierarchical profile will be available.

-Xprof-count

-X123=2
Collect count data only, incrementing a counter for line of code executed
(actually, for each basic block).

-Xprof-coverage

-X123=8
Like -Xprof-count, except just set the counter to one for each basic block
executed instead of counting the number of executions.

110

5 Invoking the Compiler
5.4 Compiler -X Options

-Xprof-time
-X123=1
Collect time data only.
-Xprof-time-£fast
-X123=4
Collect time data for each function, but not for pairs of functions, so no
hierarchical profile will be available.

These options cause the compiler to generate profiling code for the RTA. To be
profiled, a function must be instrumented. The compiler inserts instrumentation
code based on the following options. Every module to be profiled must be
compiled with one of these options.

NOTE: In addition to an -Xprof-type option, you must use the -g option to generate
debug information.

Besides interactively analyzing the profile information generated by these options
using the RTA, you may feed the collected data back to the compiler to improve
optimization based on the actual execution of the target program. See

5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback), p.111.

Do not use these options with the older pair of profiling options -Xblock-count
(5.4.16 Insert Profiling Code (-Xblock-count), p.67) and -Xfeedback (5.4.57 Optimize
Using Profile Data (-Xfeedback=file), p.85).

A function, its parent, and its children must all be compiled with the same
-Xprof-type option or the results are undefined.

5.4.118 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)

-Xprof -exec=pathname

(no numeric equivalent)
pathname must be the full pathname of a target executable for which profile
data is present in the RTA database directory specified with -Xprof-feedback.
See 5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback), p.111 for details.

5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback)

-Xprof -feedback=pathname

(no numeric equivalent)
pathname must specify an RTA database directory (not a file). Use the profiling
information in that database (the latest “snapshot”) to optimize for faster code.

111

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

See the 5.4.58 Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom), p.85, to control how the profile data
affects optimization.

The snapshot selected depends on -Xprof-snapshot (5.4.120 Select Snapshot for
Use by -Xprof-feedback (-Xprof-snapshot), p.113) and -Xprof-exec (5.4.118 Select
Target Executable for Use by -Xprof-feedback (-Xprof-exec), p.111) as follows:

-Xprof-exec -Xprof- snapshot Snapshot Selected

No No Use latest snapshot in the database.

No Yes Use snapshot named by -Xprof-snapshot. If a
snapshot with the given name is present for
more than one executable, use the latest.

Yes No Use latest snapshot for the executable
specified by -Xprof-exec.

Yes Yes Use snapshot named by -Xprof-snapshot.
Report an error if no snapshot with the given
name is present for the executable specified by
-Xprof-exec.

112

NOTE: This option is used in conjunction with the -Xprof-... options
(5.4.117 Generate Profiling Code for the RTA Run-Time Analysis

Tool Suite (-Xprof-...), p.110). Do not use this option with the older pair of
profiling options -Xblock-count (5.4.16 Insert Profiling Code (-Xblock-count),
p-67) and -Xfeedback (5.4.57 Optimize Using Profile Data (-Xfeedback=file),
p-85).

Also, the selected snapshot must include basic block count data, that is, the
executed code must have been compiled with -Xprof-all, -Xprof-all, or
-Xprof-count. The options -Xprof-time, -Xprof-time-fast, and
-Xprof-coverage do not produce the data required for feedback-driven
optimization.

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.120 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)

5.4.121

-Xprof-snapshot=string
(no numeric equivalent)

string must name a snapshot in the RTA database directory specified with
-Xprof-feedback. See -Xprof-feedback (5.4.119 Optimize Using RTA Profile
Data (-Xprof-feedback), p.111) for details.

Select Convention for Returning Pointer Values from Functions
(-Xptr-values-in-...)

-Xptr-values-in-a0
-X32=1

Return pointer values from functions in both register d0 and register a0. The
value in a0 is used by the caller.

NOTE: This option is provided for compatibility with third-party tools and
libraries. The Wind River libraries are compiled with the default,
-Xptr-values-in-d0, and will not work with modules compiled with
-Xptr-values-in-a0 unless recompiled with that option.

-Xptr-values-in-do
-X32=0

Return pointer values from functions in register d0. This is the default.

5.4.122 Restart Optimization From Scratch (-Xrestart)

-Xrestart
-X29

Restart optimization from scratch if too many optimistic predictions were
made.

Compilers may have difficulty predicting the best way to perform specific
optimizations when the information needed is not available until a later
compiler stage. For example, better code may be produced by moving a loop
invariant expression outside the loop if the result can be placed in a register.
However, the compiler does not know if any register is available until after
register allocation, which is performed later in the compilation.

The compiler uses an optimistic approach which generates optimal code when
registers are available but not when all registers are taken. The -Xrestart option

113

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

will restart optimization and code generation if any optimistic prediction is
false. This will typically slow the compilation of large functions by a factor of
almost two while generating better code. This option is turned on by -XO.

5.4.123 Generate Code for the Run-Time Error Checker (-Xrtc=mask)

-Xrte=mask

-X64=mask
With no mask, this option directs the compiler to insert checking code for all
checks made by the Run-Time Error Checker. Use the mask to select specific
checks rather than all.

5.4.124 Enable Run-time Type Information (-Xrtti, -Xrtti-off)

-Xrtti
-X205=1
Enable run-time type information. This is the default.

There are two approaches to generating run-time type information for a class:

* Compile all modules with -Xrtti and also with -Xcomdat (5.4.32 Mark
Sections as COMDAT for Linker Collapse (-Xcomdat), p.74): the run-time type
information will be emitted for every module but will be marked
COMDAT and collapsed to a single instance by the linker. This is the
preferred method.

= For a class declaring one or more virtual functions, compile only the
module defining the key function for the class with -Xrtti. Key functions are
described in Virtual Function Table Generation—Key Functions, p.185.

-Xrtti-off

-X205=0
C++ only. Disable run-time type information. Using this option will save space
because the compiler does not need to create type tables.

Synonym: -Xno-rtti.

5.4.125 Pad Sections for Optimized Loading (-Xsection-pad)

-Xsection-pad
-X152

Allow the linker to pad loadable sections for optimized loading.

114

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.126 Generate Each Function in a Separate CODE Section Class (-Xsection-split)

-Xsection-split
-x129
-Xsection-split-off
-X129=0
Generate a separate CODE section class for each function in the module. The
default is -Xsection-split-off; a single module generates only one CODE

section class containing the code for all functions for that module.

By default, with -Xsection-split enabled, the multiple CODE section classes
will all still be named .text (absent the use of .section pragmas). While linking,
a specific .text section for a given function may be singled out using the linker
command language syntax:

object-filespec (input-section-name[symbol] , ...)

(where the “[” and “]” characters are required and do not mean “optional” in
this case).

Example: if object file test.o contains functions f1 and £2, then the .text section
for f1 may be specified by:

test.o(. text[fl])

NOTE: This option is especially useful in combination with
-Xremove-unused-sections to reduce code size. See Remove Unused Sections
(-Xremove-unused-sections), p.405.

5.4.127 Disable Generation of Priority Section Names (-Xsect-pri-...)

-Xsect-pri-on

-X122=0
Enable section names of the form “..$n”. See 23.6 Sorted Sections, p.383 for use
of this form. This is the default.

-Xsect-pri-off
-X122

Disable generation of section names of the form “...$n” for use by third-party
assemblers or linkers unable to process this form of name.

115

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.128 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)

-Xshow-configuration=0
Compiler-generated assembly listings (saved with the -S option) do not show
-X options. This is the default.

-Xshow-configuration=1
Assembly listings contain -X options, but only user-configurable options are
shown; internal compiler flags are suppressed.

5.4.129 Print Instantiations (-Xshow-inst)

-Xshow-inst

-x212
C++ only. Print to stderr a list of all template instantiations made during
compilation. See also 5.4.73 Control Template Instantiation
(-Ximplicit-templates...), p.91 and Templates, p.241.

5.4.130 Show Target (-Xshow-target)

-Xshow-target
dcc C and dplus C++ driver option. Display the target processor “-t option” on
standard output, but do not compile any file.

5.4.131 Optimize for Size Rather Than Speed (-Xsize-opt)

-Xsize-opt

-X73
Optimize for size rather than speed when there is a choice. Optimizations
affected include inlining, loop unrolling, and branch to small code. For
character arrays, -Xstring-align=value will override -Xsize-opt. See the
description of array alignment in 8.3 Arrays, p.180.

5.4.132 Set Size Limit for “small const” Variables (-Xsmall-const=n)

-Xsmall-const=n
-X98=n
This option applies only to chips supporting SCONST.

116

5 Invoking the Compiler
5.4 Compiler -X Options

Place small const static and global variables with a size in bytes less than or
equal to n in the SCONST section class. See the description of #pragma section
in section and use_section Pragmas, p.251 for more information.

5.4.133 Set Size Limit for “small data” Variables (-Xsmall-data=n)

-Xsmall-data=n

-X97=n
Place small non-constant static and global variables with a size in bytes less
than or equal to 7 in the SDATA section class. See the description of #pragma
section in section Pragma, p.147 for more information.

5.4.134 Delay Popping Stack After Function Call (-Xstack-delay=n,
-Xstack-delay-off)

-Xstack-delay=n
-X127=n

-Xstack-delay-off

-x127=1
When a function calls another function, do not pop the arguments pushed on
the stack for the called function after it returns until n bytes have been used for
such arguments. The default value of n is 32,767.

For example, if function f calls only function g requiring that 8 argument bytes
be pushed, and then function / requiring that 4 more argument bytes be
pushed, and if -Xstack-delay is greater than 12, do not remove the argument
bytes from the stack on return from g or h. Clean off the stack only when fitself
returns.

This option produces more efficient code but note that because the default is
32,767, a function calling many other functions with many arguments may
require a larger stack than otherwise.

Setting -Xstack-delay-off, or -Xstack-delay=0, ensures that no extra stack
space is used by this optimization.

117

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.135 Enable Stack Checking (-Xstack-probe)

-Xstack-probe

-X10
Enable stack checking (probing). For users of the Run-Time Error Checker, this
option is equivalent to -Xrtc=4.

NOTE: -Xstack-probe cannot be used with “interrupt” functions, that is, with
a function named in an interrupt pragma or declared using the interrupt or
__interrupt__ keywords

5.4.136 Diagnose Static Initialization Using Address (-Xstatic-addr-...)

-Xstatic-addr-error

-X81=2
Generate an error if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC).

-Xstatic-addr-warning

-x81=1
Generate a warning if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC). This option is on by default.

5.4.137 Treat All Static Variables as Volatile (-Xstatics-volatile)

See 5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.103.

5.4.138 Buffer stderr (-Xstderr-fully-buffered)

-Xstderr-fully-buffered

-X173
Buffer stderr using 10KB buffer. Use this option to reduce network traffic;
stderr is unbuffered by default.

118

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.139 Terminate Compilation on Warning (-Xstop-on-warning)

-Xstop-on-warning
-X85
Terminate compilation on any warning. Without this option, only errors
terminate compilation. (For both errors and warnings, compilation terminates
after a small number of errors are output.)

5.4.140 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)

-Xstrict-ansi
Compile in “pedantic” mode. This option is equivalent to -Xdialect-strict-ansi.
For C, see 5.4.47 Specify C Dialect (-Xdialect-...), p.79. For C++, -Xstrict-ansi
generates diagnostic messages when nonstandard features are used and
disables features that conflict with ANSI/ISO C++, including -Xusing-std-on
and -Xdollar-in-ident.

Disabled by default.

5.4.141 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions)

-Xstrict-bitfield-promotions
Conform to the ANSI standard when promoting bit-fields. When a bit-field
occurs in an expression where an int is expected, the compiler promotes the
bit-field to a larger integral type. Unless this option is enabled, such
promotions preserve sign as well as value. If -Xstrict-bitfield-promotions is
specified, however, an object of an integral type all of whose values are
representable by an int (that is, an object smaller than 4 bytes) is promoted to
an int, even if the original type is unsigned.

-Xstrict-ansi or -Xdialect-strict-ansi implicitly enables
-Xstrict-bitfield-promotions by default, but can be overridden with
-Xstrict-bitfield-promotions=0.

See also 5.4.15 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned), p.67.

119

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.142 Align Strings on n-byte Boundaries (-Xstring-align=n)

-Xstring-align=n

-X18=n
Align each string on an address boundary divisible by . The default value is
4. See also 5.4.9 Specify Minimum Array Alignment (-Xarray-align-min), p.65.

5.4.143 Warn on Large Structure (-Xstruct-arg-warning=n)

-Xstruct-arg-warning=n
-X92=n
C only. Emit a warning if the size of a structure argument is larger than or equal

to n bytes.

5.4.144 Select Convention for Returning Structures and Unions (-Xstruct-as-...)

-Xstruct-as-arg
-X80
Rewrite functions returning C structures and unions as if the first argument is

a pointer to the return area. Example:
struct a { int i, j; }

struct a fna(int i) {
struct a ret;
ret.i = i;
return ret;

}

m() {
struct a z = fna(l);

}
is effectively rewritten as:

void fna(struct a *retval, int i) {
struct a ret;
ret.i = 1i;
*retval = ret;

}

m() {
struct a z;
fna(&z,1);
}
This option is the default. See Class, Struct, and Union Return Types, p.194 for

additional details.

120

5 Invoking the Compiler
5.4 Compiler -X Options

-Xstruct-as-gnu

-X80=10
Return structures from functions like the GNU C compiler. This method will
cause small structures (up to a maximum of 8 bytes) to be returned in d0 and
d1, and larger structures to be returned by setting register al to point to the
return area.

This calling convention is required when interfacing with the GNU tool set.

-Xstruct-as-static

-X80=2
Cause functions returning C structures and unions to allocate static memory
for the structure or union to be returned, and return a pointer to this area. This
method is not reentrant.

5.4.145 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...)

-Xstruct-assign-split-diff=n

-X147=n

-Xstruct-assign-split-max=n

-X146=n
These options control optimization of assignments of local struct variables.
The compiler uses a number of techniques to optimize structure members (it
uses registers, etc.). A structure can be assigned as a one or more blocks
(depending on a number of factors) or member-by-member. However, block
structure assignment disables member optimization, so options are available
to control the type of structures that will assigned as a block.

By default, the assignment is member-by-member if the structure has 6 or
fewer members and if the increase in assighments (over block assignments) is
3 or fewer. Otherwise, the structure is assigned as a block.

Use -Xstruct-assign-split-max to set the maximum number of members in a
struct that may be assigned member-by-member.

Use -Xstruct-assign-split-diff to set the maximum number of additional
assignments allowed. If member-to-member assignment involves a higher
number of additional assignments than the number set by
-Xstruct-assign-split-diff, a block assignment is performed.

121

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.146 Set Minimum Structure Member Alignment (-Xstruct-min-aligh=n)

-Xstruct-min-align=n

-X76=n
Force structures to begin on at least an n byte boundary. If any member in a
structure has a greater alignment, the structure will be aligned on a boundary
divisible by the size in bytes of the largest member.

See pack Pragma, p.143 and __packed__ and packed Keywords, p.151 for details.
See also 5.4.99 Set Maximum Structure Member Alignment
(-Xmember-max-align=n), p.103.

The default value of n is dependent on the processor as described in 8. Internal
Data Representation.

5.4.147 Suppress Warnings (-Xsuppress-warnings)

-Xsuppress-warnings
-X14
Suppress compiler warnings. Same as the -w option.

5.4.148 Swap “\n’ and ‘\r’ in Constants (-Xswap-cr-nl)

-Xswap-cr-nl

-X13
C only. Swap '"\n' and "\r' in character and string constants. Used on systems
where carriage return and line feed are reversed.

5.4.149 Set Threshold for a Switch Statement Table (-Xswitch-table...)

-Xswitch-table=n

-X143=n
Implement a switch statement using compares if there are fewer than n case
labels in the switch, use a jump table if there are n or greater. This option is on
by default with a value of 7.

-Xswitch-table-off
Do not use a jump table to implement a switch statement under any
conditions.

122

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.150 Disable Certain Syntax Warnings (-Xsyntax-warning-...)

-Xsyntax-warning-on

-X215=0
Enable certain syntax warnings, for example, warning on a comma after the
last enumerator. This is the default.

-Xsyntax-warning-off
-X215

C++ only. Disable these warnings.

5.4.151 Select Target Processor (-Xtarget)

-Xtarget
-x39=nThis option is for internal use should usually not be set by the user. See
4. Selecting a Target and Its Components.

5.4.152 Specify Loop Test Location (-Xtest-at-...)

-Xtest-at-both

-X6=2
Force the compiler to always test loops both before the loop is started and at
the bottom of the loop. This option produces the fastest possible code but uses
more space. Even if -Xtest-at-both is not set, other optimizations may cause the
compiler to generate double tests. This option is turned on by -XO.

-Xtest-at-bottom
-X6=0
Use one loop test at the bottom of a loop.

-Xtest-at-top
-X6=1
Use one loop test at the top of a loop.

5.4.153 Truncate All Identifiers After m Characters (-Xtruncate)

-Xtruncate=m
-X22=m
Truncate all identifiers after m characters. If m is zero, no truncation is done.

This is the default.

123

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.154 Append Underscore to Identifier (-Xunderscore-...)

-Xunderscore-leading

-X71=1
Prefix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xleading-underscore.This is the default.

-Xunderscore-trailing

-X71=2
Suffix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xtrailing-underscore.

-Xunderscore-surround

-X71=3
Prefix and suffix every externally visible identifier with an underscore in the
symbol table.

Synonym: -Xsurround-underscore.

NOTE: The -Xunderscore... options are provided for use in linking code generated
by the compiler with third-party libraries or with other tools requiring generated
underscores.

The default value of this option is -Xunderscore-leading.

Because Wind River libraries are compiled with the default setting, setting this option to
anything but the default will require recompiling every library used.

5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)

-Xunroll=n

-X15=n
Unroll small loops 7 times. Set to 2 by default. # must be a power of two. See
Loop Unrolling (0x8000), p.213.

NOTE: Some sufficiently small loops may be unrolled more than # times if total
code size and speed is better.

124

5 Invoking the Compiler
5.4 Compiler -X Options

-Xunroll-size=n
-X16=n

Specify the maximum number of nodes a loop can contain to be considered for

loop unrolling. Each operator and each operand counts as one node, so the
expression

a=>b - c;

contains 5 nodes. (There is also a small number of additional nodes for each
function.) n is set to 20 by default. Assembly files saved with -S show the
number of nodes for each function.

NOTE: Unrolling is done only if option -O or -XO is given to enable optimization

5.4.156 Runtime Declarations in Standard Namespace (-Xusing-std-...)

-Xusing-std-on
C++ only. Automatically search for runtime library declarations in the std
namespace (as if “using namespace std;” had been specified in the source
code), not in global scope. This is the default behavior, but it is disabled by
-Xstrict-ansi; use -Xusing-std-on on the command line to override
-Xstrict-ansi.

This option allows you to use the newer C++ libraries, which are in the std
namespace, without adding using namespace std; to legacy code.

-Xusing-std-off
Search for runtime library declarations in global scope unless an explicit using
namespace std; is given.

5.4.157 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)

-Xvoid-ptr-arith-ok
-X167

Treat void pointers as char * for the purpose of arithmetic. For example:

some_void_ptr += 1; /* adds 1 to some_void_ptr */

125

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.158 Define Type for wchar (-Xwchar=n)

-Xwchar=n

-X86=n
Define the type to which wchar will correspond. The desired tfype is given by
specifying a value 1 equal to a value returned by the operator sizeof(type, 2).
See sizeof Extension, p.161. The default type is long integer (32 bits), that is,
-Xwchar=4.

5.4.159 Control Use of wchar_t Keyword (-Xwchar_t-...)

-Xwchar t-on
-X214=0
Enable the wchar_t keyword.

-Xwchar_ t-off
-X214

C++ only. Disable the wchar_t keyword.

Synonym: -Xno-wchar.

5.5 Examples of Processing Source Files

The following examples show typical ways of compiling.
The two files, filel.c and file2.cpp, contain the source code:

/* filel.c */

void outarg(char *);

int main(int argc, char **argv)

{
while(--argc) outarg (*++argv) ;
return 0;

126

5 Invoking the Compiler
5.5 Examples of Processing Source Files

/* file2.cpp */
#include <stdio.h>

extern "C" void outarg(char *arg)

{

static int count;

printf ("arg #%d: %s\n",++count, arg) ;

5.5.1 Compile and Link

When compiling small programs such as this, the driver can be invoked to execute
all four stages of compilation in one command. For example:

dplus filel.c file2.cpp

The driver preprocesses, compiles, and assembles the two files (one C and one
C++), and links them together with the appropriate libraries to create a single
executable file, by default called a.out. When more than one file is compiled to
completion, object files are created and kept, in this case, filel.o and file2.0. When
only one file is compiled, assembled, and linked, the intermediate assembly and
object files are deleted automatically (see 5.4.85 Create and Keep Assembly or Object
File (-Xkeep-assembly-file, - Xkeep-object-file), p.96 to change this).

If the target system supports command-line execution, to execute this program
enter a.out with some arguments:

a.out abc def ghi

This will print:
arg #1: abc
arg #2: def
arg #3: ghi

(See 15. Use in an Embedded Environment for comments on executing programs in
embedded environments.)

To execute the program on the host system using the WindISS simulator, compile
the program with windiss specified on the command line—for example:

dplus -tMC68060FS:windiss filel.c file2.cpp
Then run the program with WindISS:
windiss a.out abc def ghi
To give the generated program a name other than a.out, use the -o option:

dplus filel.c file2.cpp -o progl

127

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

To also enable optimization, use the -O option:
dplus -0 filel.c file2.cpp -o progl
To convert the linked output to S records:

ddump -Rv a.out

will produce file srec.out by default. See 29. D-DUMP File Dumper for additional
options and details.

5.5.2 Separate Compilation

When compiling programs consisting of many source files, it is time-consuming
and impractical to recompile the whole program whenever a file is changed.
Separate compilation is a time-saving solution when recompiling larger programs.
The -c option creates an object file which corresponds to every source file, but does
not call the linker. These object files can then be linked together later into the final
executable program. When a change has been made, only the altered files need to
be recompiled. To create object files and then stop, use the following command:

dplus -0 -c filel.c file2.cpp

The files filel.o and file2.0 will be created.

Create the executable program as follows. Note that the driver is used to invoke
the linker; this is convenient because defaults will be supplied as required based
on the current target, for example, for libraries and crt0.o.

dplus filel.o file2.o -o prog2
If file2.cpp is altered, prog2 can be rebuilt with:

dplus -0 -c file2.cpp
dplus filel.o file2.o0 -o prog2

Usually, the compilation process is automated with utilities similar to make, which
finds the minimum command sequence to create an updated executable.

5.5.3 Assembly Output
It is frequently desirable to look at the generated assembly code. Two options are
available for this purpose:

» The -S option stops compilation after generating the assembly and
automatically names the file basename.s, filel.s in this case:

dplus -0 -S filel.cpp

128

5 Invoking the Compiler
5.5 Examples of Processing Source Files

* When using a command which generates an object file, the
-Xkeep-assembly-file option will preserve the assembly file in addition to the
object, naming it basename.s.

The option -Xpass-source outputs the compiled source as comments in the
generated file and makes it easier to see which assembly instructions correspond
to each line of source:

dplus -0 -S -Xpass-source file2.cpp

5.5.4 Precompiled Headers

In C++ projects with many header files, you can often speed up compilation by
using precompiled headers, enabled with the -Xpch-... options. See
13.7 Precompiled Headers, p.247.

129

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

130

Additions to ANSI C and C++

6.1 Preprocessor Predefined Macros 131
6.2 Preprocessor Directives 134

6.3 Pragmas 137

6.4 Keywords 149

6.5 Attribute Specifiers 153

6.6 Intrinsic Functions 158

6.7 Other Additions 159

6.1 Preprocessor Predefined Macros

The following preprocessor macros are predefined. The macros that do not start
with two underscores (“__") are not defined if option -Xdialect-strict-ansi is given.

_ _bool
The constant 1 if type bool is defined when compiling C++ code, otherwise
undefined. Option -Xbool-off disables the bool, true, and false keywords.
C++ only.

__CHAR_UNSIGNED__
Indicates that plain char characters are unsigned.

131

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

__cplusplus
The constant 199711 when compiling C++ code, otherwise undefined.

_ _DATE_
The current date in “mm dd yyyy” format; it cannot be undefined.

__pcc__
The constant 1.

__DCPLUSPLUS__
The constant 1 when compiling C++ code, otherwise undefined.

_DIAB TOOL
Indicates the Wind River Compiler is being used.

__ETOA__
Indicates that full ANSI C++ is supported. Not defined when compiling C
code or when an older version of the compiler is invoked.

__ETOA_TMPLICIT USING_STD
Defined if -Xusing-std-on is enabled. Indicates that runtime library
declarations are automatically searched for in the std namespace (not in global
scope), regardless of whether using namespace std; is specified.

__ ETOA_NAMESPACES
Defined if the runtime library uses namespaces.

__EXCEPTIONS
Exceptions are enabled. C++ only.

__FILE_
The current filename; it cannot be undefined.

__FUNCTION__
__FUNCTION__ is not really a preprocessor macro, but a special predefined
identifier that returns the name of the current function (that is, the function in
which the identifier occurs).

_ _hardfp
Hardware floating point support.

__ LITTLE ENDIAN
Little-endian implementation.

__LDBL__
The constant 1 if the type long double is different from double.

__LINE_ _
The current source line; it cannot be undefined.

132

6 Additions to ANSI C and C++
6.1 Preprocessor Predefined Macros

__lint
This macro is not predefined; instead, define this when compiling to select
pure-ANSI code in Wind River header files, avoiding use of any non-ANSI
extensions.

m68k
Target flag used by various tools.

mc68k
Target flag used by various tools.

_ _m68k
Target flag used by various tools.

__nofp
No floating point support.

__PRETTY_FUNCTION _
_ PRETTY_FUNCTION__ is not really a preprocessor macro, but a special
predefined identifier that returns the name of the current function (that is, the
function in which the identifier occurs). In C modules,
__PRETTY_FUNCTION__ always returns the same value as _ FUNCTION__.
For C++, _ PRETTY_FUNCTION__may return additional information, such as
the class in which a method is defined.

__RTTI
C++ only. Run-time type information is enabled.

__SIGNED_CHARS_
C++ only. Defined as 1 if plain char is signed. See 5.4.25 Specify Sign of Plain
Char (-Xchar-signed, -Xchar-unsigned), p.70.

_ softfp
Software floating point support.

STDC_
The constant 0 if -Xdialect-ansi and the constant 1 if -Xdialect-strict-ansi is
given. It cannot be undefined if -Xdialect-strict-ansi is set. For C++ modules it
is defined as 0 in all other cases.

__STRICT ANSI_
The constant 1 if -Xdialect-strict-ansi or -Xstrict-ansi is enabled.

__TIME
The current time in “hh:mm:ss” format; it cannot be undefined.

__VERSION__
The version number of the compiler and tools, represented as a string.

133

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

__VERSION_ NUMBER
The version number of the compiler and tools, represented as an integer.

__wchar_ t
The constant 1 if type wchar_tis defined when compiling C++ code, otherwise
undefined. Option -X-wchar-off disables the wchar_t keyword.

6.2 Preprocessor Directives

The preprocessor recognizes the following additional directives.

#assert and #unassert Preprocessor Directives

The #assert and #unassert directives allow definition of preprocessor variables
that do not conflict with names in the program namespace. These variables can be
used to direct conditional compilation. The C and C++ preprocessors recognize
slightly different syntax for #assert and #unassert.

Assertions can also be made on the command line through the -A option.

To display information about assertions at compile time, see 5.4.36 Dump Symbol
Information for Macros or Assertions (-Xcpp-dump-symbols), p.75.

To make an assertion with a preprocessor directive, use the syntax:

#assert name (value) C or C++

#assert name C++ only

In the first form, name is given the value value. In the second form, name is defined
but not given a value. Whitespace is allowed only where shown.

Examples:

#assert system(unix)
#assert system

To make an assertion on the command line, use:

-A name (value)

134

6 Additions to ANSI C and C++
6.2 Preprocessor Directives

Examples:
dcc -A "system (unix)" test.c UNIX
dcc -A system\ (unix\) test.c UNIX
dcc -A system (unix) test.c Windows

Assertions can be tested in an #if or #elif preprocessor directive with the syntax:

#if #name (value) C or C++

#if #name Conly

A statement of the first form evaluates to true if an assertion of that name with that
value has appeared and has not been removed. (A name can have more than one
value at the same time.) A statement of the second form evaluates to true if an
assertion of that name with any value has appeared.

Examples:

#if #system(unix)
#if #system

An assertion can be removed with the #unassert directive:

#unassert name C++ only
#unassert name (value) C++ only
#unassert #name (value) C only

The first form removes all definitions of name. The other forms remove only the
specified definition.

Examples:
#unassert system

#unassert system(unix)
#unassert #system(unix)

#error Preprocessor Directive

The #error preprocessor directive displays a string on standard error and halts
compilation. Its syntax is:

#error string

Example:

135

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#error "Feature not yet implemented."

See also #info, #inform, and #informing Preprocessor Directives, p.136 and #warn and
#warning Preprocessor Directives, p.137.

#ident Preprocessor Directive (C only)

The #ident preprocessor directive inserts a comment into the generated object file.
The syntax is:

#ident string
Example:

#ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#import Preprocessor Directive

The #import preprocessor directive is equivalent to the #include directive, except
that if a file has already been included, it is not included again. The same effect can
be achieved by wrapping all header files with protective #ifdefs, but using
#import is much more efficient since the compiler does not have to open the file.
Using the -Ximport command-line option will cause all #include directives to
behave like #import.

#info, #inform, and #informing Preprocessor Directives

The #info, #inform, and #informing preprocessor directives display a string on
standard error and continue compilation. Their syntax is:

#info string
#inform string
#informing string

Example:
#info "Feature not yet implemented."

See also #error Preprocessor Directive, p.135 and #warn and #warning Preprocessor
Directives, p.137.

136

6 Additions to ANSI C and C++
6.3 Pragmas

#warn and #warning Preprocessor Directives

The #warn and #warning preprocessor directives display a string on standard
error and continue compilation. Their syntax is:

#warn string
#warning string

Example:
#warn "Feature not yet implemented."

See also #error Preprocessor Directive, p.135 and #info, #inform, and #informing
Preprocessor Directives, p.136.

6.3 Pragmas

align Pragma

error Pragma

This section describes the pragmas supported by the compiler. A warning is issued
for unrecognized pragmas.

Pragma directives are not preprocessed. Comments are allowed on pragmas.

In C++ modules, a pragma naming a function affects all functions with the same
name, independently of the types and number of parameters—that is,
independently of overloading.

#pragma align [([[max_member_alignment]|, [min_structure_alignment] [, byte-swap]])]

The align pragma, provided for portability, is a synonym for pack Pragma, p.143.

#pragma error string

Display string on standard error as an error and halt compilation. See also info
Pragma, p.139 and warning Pragma, p.147.

137

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

global_register Pragma

hdrstop Pragma

#pragma global_ register identifier=register , ...

This pragma forces a global or static variable to be allocated to a specific register.
This can increase execution speed considerably when a global variable is used
frequently, for example, the “program counter” variable in an interpreter.

identifier gives the name of a variable. register gives the name of the selected register
in the target processor. See 9.6 Register Use, p.194 for a list of valid register names.

The following rules apply:

* Only registers which are preserved across function calls may be assigned to
global variables.

* When assigning several variables to registers, start by using the lowest
preserved register available. Some targets cannot use lower preserved
registers for automatic and register variables.

* Do not mix modules using global registers with modules not using them.
Never call a function using global registers from a module compiled without
them.

» #pragma global_register can be used to force the compiler to avoid specific
registers in code generation by defining dummy variables as global registers
in all modules.

* The pragma must appear before the first definition or declaration of the
variable being assigned to a register.

NOTE: A convenient method of ensuring that all modules are compiled with the

same global register assignments is to put all #pragma global_register directives

in a header file, e.g. globregs.h, and then include that file with every compilation
from the command line with the -i option, e.g. -i=globregs.h.

Examples:

#pragma global_register counter:register—name
char *counter; /* allocated to the named register */

/* Force the compiler to avoid a named register. */
#pragma global_register __ dummy=register-name

#pragma hdrstop

138

ident Pragma

info Pragma

inline Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

C++ only. Suppress generation of precompiled headers. Headers included after
#pragma hdrstop are not saved in a parsed state. See 13.7 Precompiled Headers,
p-247 for more information.

#pragma ident string
Insert a comment into the generated object file.
Example:

#pragma ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#pragma info string

Display string on standard error and continue compilation. See also error Pragma,
p-137 and warning Pragma, p.147.

#pragma inline func ,...

Inline the given function whenever possible. The pragma must appear before the
definition of the function. Unless cross-module optimization is enabled (-Xcmo-...),
a function can be inlined only in the module in which it is defined.

In C++ modules, the inline function specifier is normally used instead. This
specifier, however, also makes the function local to the file, without external
linkage. Conversely, the #pragma inline directive provides a hint to inline the code
directly to the code optimizer, without any effect on the linkage scope.

NOTE: The inline pragma has no effect unless optimization is selected (with the
-XO or -O options).

139

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Example:

interrupt Pragma

#pragma inline swap

void swap (int *a, int *b) {
int tmp;
tmp = *a; *a = *b; *b = tmp;

#pragma interrupt function ,...

Designate function as an interrupt function. Code is generated to save all general
purpose scratch registers and to use a different return instruction.

Important interrupt Pragma Notes

no_alias Pragma

Floating point and other special registers, if present on the target, are not saved
because interrupt functions usually do not modify them. If such registers must
be saved in order to handle nested interrupts, use an asm macro to do so (see
7. Embedding Assembly Code). To determine which registers are saved for a
particular target, compile the program with the -S option and examine the
resulting assembler file (it will have a .s extension by default).

The compiler does not generate instructions to re-enable interrupts. If this is
required to allow for nested interrupts, use an asm macro.

See 5.4.135 Enable Stack Checking (-Xstack-probe), p.118 for when this option
cannot be used with interrupt functions.

This pragma must appear before the definition of the function. A convenient
method is to put it with a prototype declaration for the function, perhaps in a
header file.

Example:
#pragma interrupt trap
void trap () {

/* this is an interrupt function */

}

#pragma no_alias { varl | *var2 } yone

140

no_pch Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

Promise that the variable var1 is not accessed in any manner (through pointers etc.)
other than through the variable name; promise that the data at *var2 is only
accessed through the pointer var2. This allows the compiler to better optimize
references to such variables.

The pragma must appear after the definition of the variable and before its first use.

Example:

add (double *d, double *sl, double *s2, int n)
#pragma no_alias *d, *sl, *s2

{

int i;

for (1 = 0; 1 < n; i++) {
/* "sl + s2" will move outside the loop */
d[i] = *sl + *s2;

}

Without the pragma, either s1 or s2 might point into d and the assignment might
then set s1 or s2. See also 5.4.8 Assume No Aliasing of Pointer Arguments
(-Xargs-not-aliased), p.64.

#pragma no_pch

Suppress all generation of precompiled headers from the file where #pragma
no_pch occurs. See 13.7 Precompiled Headers, p.247, for more information.

no_return Pragma

#pragma no_return function s

Promise that each function never returns. Helps the compiler generate better code.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma no_return exit, abort, longjmp

141

no_side_effects

option Pragma

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Pragma

#pragma no_side_effects descriptor , ...
Where each descriptor has one of the following forms and meanings:

function
Promises that function does not modify any global variables (it may use global
variables).

function ({ global | n} ,...)
Promises that function does not modify any global variables except those
named or the data addressed by its nth parameter. At least one global or
parameter number must be given, and there may be more than one of either
kind in any order.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, for example, in a header
file.

Contrast with pure_function Pragma, p.146, which also promises that a function
does not use any global or static variables.

Example:

#pragma no_side_effects strcmp(l), sin(errno), \
my_func(l, 2, my_global)

#pragma option option [option ...]

Where option is any of the -g, -O, or -X options (including the leading ’-” character).
This option makes it possible to set these options from within a source file.

These options must be at the beginning of the source file before any other source
lines. The effect of other placement is undefined.

Note that some -X options are consumed by driver or compiler command-line
processing before a source file is read. If an -X option does not appear to hve the
intended effect, try it on the command line. If effective there, that option can not be
used as a pragma.

142

6 Additions to ANSI C and C++
6.3 Pragmas

pack Pragma

#pragma pack [([[max_member_alignment], [min_structure_alignment][, byte-swap]])]

The pack directive specifies that all subsequent structures are to use the alignments
given by max_member_alignment and min_structure_alignment where:

max_member_alignment
Specifies the maximum alignment of any member in a structure. If the
natural alignment of a member is less than or equal to
max_member_alignment, the natural alignment is used. If the natural
alignment of a member is greater than max_member_alignment,
max_member_alignment will be used.

Thus, if max_member_alignment is 8, a 4-byte integer will be aligned on a
4-byte boundary.
While if max_member_alignment is 2, a 4-byte integer will be aligned on a
2-byte boundary.

min_structure_alignment
Specifies the minimum alignment of the entire structure itself, even if all
members have an alignment that is less than min_structure_alignment.

byte-swap
If 0 or absent, bytes are taken as is. If 1, bytes are swapped when the data
is transferred between byte-swapped members and registers or
non-byte-swapped memory. This enables access to little-endian data on a
big-endian machine and vice-versa.

It is not possible to take the address of a byte-swapped member.

If neither max_member_alignment nor min_structure_alignment are given, they are
both set to 1. If either max_member_alignment or min_structure_alignment is zero, the
corresponding default alignment is used. If max_member_alignment is non-zero and
min_structure_alignment is not given it will default to 1.

The form #pragma pack is equivalent to #pragma pack(1,1,0). The form
#pragma pack() is equivalent to #pragma pack(0,0,0).

The align pragma, provided for portability, is an exact synonym for pack.

An alternative method of specifying structure padding is by using __packed__ and
packed Keywords, p.151.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

143

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Restrictions

and Additional Information

Note that if a structure is not packed, the compiler will insert extra padding to assure
that no alignment exception occurs when accessing multi-byte members if
required by the selected processor. See 5.4.5 Specify Minimum Alignment for Single
Memory Access to Multi-byte Values (-Xalign-min=n), p.63.

When a structure is packed, if the processor requires that multi-byte values be
aligned (-Xalign-min > 1), the following restrictions apply:

Access to multi-byte members will require multiple instructions. (This is so
even if a member is aligned as would be required within the structure because
the structure may itself be placed in memory at a location such that the
member would be unaligned, and this cannot be determined at compile time.)

volatile members cannot be accessed atomically. The compiler will warn and
generate multiple instructions to access the volatile member. Also,
“compound” assignment operators to volatile members, such as +=, | =, etc.,
are not supported. For example, assuming i is a volatile member of packed
structure structl, then the statement:

structl.i += 3;
must be recoded as:

structl.i = structl.i + 3;

In addition, for packed structures, an enum member will use the smallest type
sufficient to represent the range, see 5.4.52 Specify enum Type (-Xenum-is-...), p.81.

Examples

Later examples depend on earlier examples in some cases.

144

#pragma pack (2,2)

struct sO0 {

char a; 1 byte at offset 0, 1 byte padding
short b; 2 bytes at offset 2
char c; 1 byte at offset 4
char d; 1 byte at offset 5
int e; 4 bytes at offset 6
char £; 1 byte at offset 10
b total size 11, alignment 2

6 Additions to ANSI C and C++
6.3 Pragmas

If two such structures are in a section beginning at offset 0xF000, the layout would
be:

F000 a
FOO1 padding
F002 b
F004 c
F005 d
F006
- —_—— — e _____
FOOA f
FOOB padding
FooC a
FOOD paddlng
FOOE b
F010 ¢
FO11 d
FO12 |
e
FO16 f
FO17
#pragma pack (1) Same as #pragma pack(1,1), no padding.
struct S1 {
char cl 1 byte at offset 0
long il; 4 bytes at offset 1

145

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

char di;

#pragma pack (8)
struct S2 {
char c2

long i2;
char d2;

#pragma pack (2,2)
struct S3 {
char c3;
long 1i3;
char d3;

struct S4 {
char c4;

#pragma pack (8)
struct S {
char el;
struct S1 sl;
struct S2 s2;
char e2;
struct S3 s3;

#pragma pack (0)

pure_function Pragma

#pragma pure_function function ,...

1 byte at offset 5
total size 6, alignment 1

Use “natural” packing for largest member.

1 byte at offset 0, 3 bytes padding
4 bytes at offset 4

1 byte at offset 8, 3 bytes padding
total size 12, alignment 4

Typical packing on machines which cannot
access multi-byte values on odd-bytes.

1 byte at offset 0, 1 byte padding

4 bytes at offset 2

1 byte at offset 6, byte padding

total size 8, alignment 2

Using pragma from prior example.

1 byte at offset 0, 1 byte padding

total size 2, alignment 2 since
min_member_alignment is 2 above

“Natural” packing since S3 is 8 bytes long.

1 byte at offset 0

6 bytes at offset 1, 1 byte padding
12 bytes at offset 8

1 byte at offset 20, 1 byte padding

8 bytes, at offset 22, 2 bytes padding
alignment 2

total size 32, alignment 4

Set to default packing.

Promises that each function does not modify or use any global or static data. Helps
the compiler generate better code, for example, in optimization of common
sub-expressions containing identical function calls. Contrast with no_side_effects

146

section Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

Pragma, p.142, which only promises that a function does not modify global
variables.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma pure_function sum
int sum(int a, int b) {
return a+b;

}

#pragma section class_name [istring [ustring]] [addr_mode] [acc_mode] [address=x]

The #pragma section directive defines sections into which variables and code can
be placed. It also defines how objects in sections are addressed and accessed.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The section pragma is discussed in detail in 14. Locating Code and Data, Addressing,
Access.

use_section Pragma

#pragma use_section class_name variable , ...
Selects the section class into which a variable or function is placed. A section class
is defined by #pragma section.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The use_section pragma is discussed in detail in 14. Locating Code and Data,
Addressing, Access.

warning Pragma

#pragma warning string

Display string on standard error as a warning and continue compilation. See also
ervor Pragma, p.137, and info Pragma, p.139.

147

weak Pragma

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#pragma weak symbol
Mark symbol as weak.

When a #pragma weak for a symbol is given in the module defining the symbol, it
is a weak definition. When the #pragma weak is in a module using but not defining
it, it is a weak reference.

Because this pragma is ultimately processed by the assembler, it may appear
anywhere in the source file.

A weak symbol resembles a global symbol with two differences:

* When linking, a weak definition with the same name as a global or common
symbol is not considered a duplicate definition; the weak symbol is ignored.

» Ifnomodule is present to define a symbol, unresolved weak references to the
symbol have a value of zero and remain undefined in the symbol table after
linking, and no error is reported.

Note while a symbol may be defined in more than one module as long as at most
one of the definitions is global or common while the rest (or all) are weak, the
linker resolves references to the first instance of the symbol it encounters. Consider
the following scenario. Function foo() uses x, which is declared weak in library 1
and global in library 2. If library 1 is searched first, the weak version of x will be
used. On the other hand, if library 2 is subsequently linked (because, for example,
another function uses it), then the global version of x will replace the weak version.

#pragma weak is incompatible with local data area (LDA) allocation; using
#pragma weak with -Xlocal-data-area or -Xlocal-data-area-static-only enabled
will produce a warning and temporarily disable LDA. See 5.4.90 Allocate Static and
Global Variables to Local Data Area (-Xlocal-data-area=n), p.99, and 14.4 Local Data
Area (-Xlocal-data-area), p.267.

148

6 Additions to ANSI C and C++
6.4 Keywords

6.4 Keywords

The following additional keywords are recognized by the compiler.

__asm and asm Keywords

Used to embed assembly language (see 7. Embedding Assembly Code) and use the
information found in Assigning Global Variables to Registers, p.160.

__attribute__ Keyword

See 6.5 Attribute Specifiers, p.153.

extended Keyword (C only)

If the option -Xkeywords=x is used with the least significant bit set in x (e.g.,
-Xkeywords=0x1), the compiler recognizes the keyword extended as a synonym
for long double.

Example:

extended e; /* the same as long double e; */

__inline__ and inline Keywords

The __inline__ and inline keywords provide a way to replace a function call with
an inlined copy of the function body. The __inline__ keyword is intended for use
in C modules but is disabled in strict-ANSI mode. The inline keyword is normally
used in C++ modules but can also be used in C if the option -Xkeywords=0x4 is
given (5.4.86 Enable Extended Keywords (-Xkeywords=mask), p.96).

__inline__ and inline make the function local (static) to the file by default.
Conversely, the #pragma inline directive provides a hint to inline the code directly
to the code optimizer, without any effect on the linkage scope. Use extern to make
an inline function public.

149

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: Functions are not inlined, even with an explicit #pragma inline, or
__inline__ or inline keyword unless optimization is selected with the -XO or -O
options.

Note that using -O will automatically inline functions of up to 10 nodes (including
“empty” functions), and -XO will automatically inline functions of up to 40 nodes.
See how these values are controlled in 5.4.80 Inline Functions with Fewer Than n
Nodes (-Xinline=n), p.94. An explicit pragma or keyword can be used to force
inlining of a function larger than the value set with implicitly or explicitly with
-Xinline.

See Inlining (0x4), p.207, for a complete discussion of all inlining methods.

Example:
__inline_ void inc(int *p) {
*p = *p+l;
}
inc (&x) ;

The function call will be replaced with

X = x+1;

__interrupt__ and interrupt Keywords (C only)

The __interrupt__ keyword provides a way to define a function as an interrupt
function. The difference between an interrupt function and a normal function is
that all registers are saved, not just the those which are volatile, and a special return
instruction is used. __interrupt__ works like the interrupt Pragma, p.140. The
keyword interrupt can also be used; see 5.4.86 Enable Extended Keywords
(-Xkeywords=mask), p.96.

NOTE: See why this cannot be used with interrupt functions, 5.4.135 Enable Stack
Checking (-Xstack-probe), p.118).

Example:

__interrupt__ void trap() {
/* this is an interrupt function */

}

150

6 Additions to ANSI C and C++
6.4 Keywords

long long Keyword

The compiler supports 64-bit integers for all 68K/CPU32 microprocessors. A
variable declared long long or unsigned long long is an 8 byte integer. To specify
a long long constant, use the LL or ULL suffix. A suffix is required because
constants are of type int by default.

Example:

long long mask _nibbles (long long x)
{

return (x & OxfO0fO0f0f0f0f0f0£f0LL) ;
}

NOTE: Bit-fields are not permitted in variables of type long long.

__packed__ and packed Keywords

__packed__ ([[max_member_alignment], [min_structure_alignment] [, byte-swap]])

The __packed__ keyword defines how a structure should be padded between
members and at the end. The keyword packed can also be used if the option
-Xkeywords=0x8 is given. See pack Pragma, p.143 for treatment of 0 values,
defaults, and restrictions.

The max_member_alignment value specifies the maximum alignment of any
member in the structure. If the natural alignment of a member is less than
max_member_alignment, the natural alignment is used. See 8. Internal Data
Representation for more information about alignments and padding.

The min_structure_alignment value specifies the minimum alignment of the
structure. If any member has a greater alignment, the highest value is used.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

The byte-swapped option enables swapping of bytes in structure members as they
are accessed. If 0 or absent, bytes are taken as is; if 1, bytes are swapped as they are
transferred between byte-swapped structure members and registers or
non-byte-swapped memory.

See pack Pragma, p.143 for defaults for missing parameters and for additional
examples.

151

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Examples:
__packed__ struct sl { no padding between members
char c;
int i starts at offset 1
)i total size 5 bytes

_ packed__ (2,2) struct s2 { maximum alignment 2

char c;
int i; starts at offset 2
)i total size 6 bytes
_ packed__ (4) struct s3 { maximum alignment 4
char c;
int i; starts at offset 4
)i total size 8 bytes

packed__ (4,2) struct s4 { minimum alignmentZ
char c;

)i total size 2 bytes

For the C compiler only, constant expressions (in addition to simple constants) can
be specified as arguments to the __packed__ or packed keyword.

pascal Keyword (C only)

If the option -Xkeywords=x is used with bit 1 set in x (e.g., -Xkeywords=0x2), the
compiler recognizes the keyword pascal. This keyword is a type modifier that
affects functions in the following way:

» The argument list is reversed and the first argument is pushed first.

» On CISC processors (for example, MC68000), the called function clears the
argument stack space instead of the caller.

__typeof__ Keyword (C only)

__typeof__(arg), where arg is either an expression or a type, behaves like a defined
type. Examples:

__typeof_ (int *) x;
__typeof (x) vy:

152

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

The first statement declares a variable x whose type is the type of pointers to
integers, while the second declares a variable y of the same type as x. Note that
typeof (without underscores) is not supported.

6.5 Attribute Specifiers

Attribute specifiers, formed with the __attribute__ keyword, assign extra-language
properties to variables, functions, and types. They can specify packing, alignment,
memory placement, and execution options. When you have a choice between an
attribute specifier and an equivalent pragma, it is preferable to use the attribute
specifier.

Attribute specifiers have the form __attribute__((attribute-list)), where
attribute-list is a comma-delimited list of attributes. Supported attributes, some of
which include parameters in parentheses, are described in the sections that follow.

An attribute specifier can appear in a variable or function declaration, function
definition, or type definition; or following any variable within a list of variable
declarations. Multiple attribute specifiers should be separated by whitespace.

When an attribute specifier modifies a function, it can appear before or after the
return type. Examples:

__attribute_ ((pure)) int foo(int a, b);
int __attribute__ ((no_side_effects)) bar(int x);

When an attribute specifier modifies a struct, union, or enum, it can appear
immediately before or after the keyword, or after the closing brace. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2))) stril;

For non-structure fields, the specifier can be placed anywhere before or
immediately following the identifier name:

__attribute_ ((aligned(2))) int foo;
int __attribute_ ((aligned(4))) bar;
int foobar __attribute_ ((aligned(8)));

Placement of a specifier determines how the attribute is applied. Example:

153

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

// align a and b on 4-byte boundaries
__attribute_ ((aligned(4))) char a='a', b='b';

// force alignment only for c
char __attribute__ ((aligned(4))) c='c', 4 ='d"';

// force alignment only for f

char e='e', £ _ attribute_ ((aligned(4))) ='f';
If an attribute specifier modifies a typedef, it applies to all variables declared using
the new type:

typedef __attribute__ ((aligned(4))) char AlignedChar;

// a and b are aligned on 4-byte boundaries

AlignedChar a='a', b='b';
To eliminate naming conflicts between attributes and preprocessor macros, any
attribute name can be surrounded by double underscores. For example, aligned
and __aligned__ are synonyms; __attribute__((aligned(2))) is equivalent to
__attribute__((__aligned__(2))).

NOTE: The placement of attribute specifiers can be misleading. For example:
int last_func() {
i.;_attribute__((noreturn)) // modifies foo, not last_func
int foo() {

}

This example is confusing because in type definitions, the attribute specifier can
follow the closing brace. But in function definitions, the attribute specifier must
appear directly before or after the return type.

When an attribute takes a numeric parameter, the parameter can be a simple
constant or a constant expression. Example:

__attribute_ ((aligned(sizeof (double)))) int x[32];

In this example, the constant expression sizeof(double) is used as a parameter to
the aligned attribute.

absolute Attribute (C only)

__attribute__((absolute)) indicates that a const integer variable is an absolute
symbol. Example:

const int foo __attribute__ ((absolute)) = 7;

154

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

This declaration means that foo appears in the symbol table and always represents
the value 7; no memory is allocated to store foo.

aligned(n) Attribute

To specify byte alignment for a variable or data structure, use:
__attribute_ ((aligned(n)))
where 1 is a power of two. Example:

// align structure on 8-byte boundary
__attribute_ ((aligned(8))) struct a {
char b;
int a;
} strl;

This is often combined with the packed Attribute, p.157. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2), packed)) str2;

You can force alignment for a specific element within a structure:
struct c {
int k;
__attribute__ ((aligned(8))) char m; // align m on 8 bytes
} str3;
But special alignment for members of a packed structure is ignored:

struct c {

int k;
__attribute_ ((aligned (8))) char m; // alignment ignored
} __attribute_ ((packed)) str4;

Nested alignment attributes are preserved within a struct or union.

constructor, constructor(n) Attribute

A constructor, or initialization, function is executed before the entry point of your
application—that is, before main(). To designate a function as a constructor with
default priority, use:

__attribute__ ((comnstructor))

155

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

To designate a function as a constructor with a specified priority, use:
__attribute__ ((constructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which initialization functions execute; the lower the value of n,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.282.

deprecated, deprecated(string) Attribute (C only)

Causes the compiler to issue a warning when the marked function, variable, or
type is referenced.

__attribute__ ((deprecated))
__attribute_ ((deprecated(string)))

The optional string is included with the warning message.

destructor, destructor(n) Attribute

A destructor, or finalization, function is executed after the entry point of your
application or after exit(). To designate a function as a destructor with default
priority, use:

__attribute__ ((destructor))
To designate a function as a destructor with a specified priority, use:
__attribute__ ((destructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which finalization functions execute; the lower the value of 1,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.282.

noreturn, no_return Attribute

To indicate that a function will never return to the caller, use:
__attribute__ ((noreturn))

This allows the compiler to remove unnecessary code intended for returning
execution to the caller on exit. The no_return attribute is equivalent to no return.

156

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

no_side_effects Attribute

This attribute is a less restrictive version of pure (see pure, pure_function Attribute,
p-157). __attribute__((no_side_effects)) indicates that a function does not modify
any global data.

packed Attribute

This attribute specifies alignment for types and data structures.
__attribute__((packed)) tells the compiler to use the smallest space possible for the
data to which it is applied. Example:

struct b {
char b;
int a ;
} __attribute__ ((packed)) strl;

When used with aligned, the packed attribute takes precedence as discussed in
aligned(n) Attribute, p.155.

pure, pure_function Attribute

This attribute indicates that a function does not modify or use any global or static
data and that it accesses only data passed to it as parameters. Using
__attribute__((pure)) allows the compiler to perform optimizations such as global
common subexpression elimination. The pure_function attribute is equivalent to
pure. If this attribute is applied to a function that has side effects, run-time
behavior may be indeterminate.

See also no_side_effects Attribute, p.157.

section(name) Attribute

To specify a linker section in which to place a function or variable, use:
__attribute_ ((section("name")))
This creates a section called name and places the designated code in it. Example:

// place funcl in a section called foo
void funcl(void) _ _attribute_ ((section("foo")));

For variables, the section is created as a read-write data segment. For functions, the
section is created as a read-execute code segment. There are no options to change

157

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

the properties of the section. For greater control over sections, use #pragma section
(see 14. Locating Code and Data, Addressing, Access).

An attempt to mix types of information in a single section (for example, constant
data in a section reserved for code or variables) produces an error (dcc1793). In this
example, the compiler assumes from the first statement that the section .mydata is
intended to be of the DATA section class, whereas the second statement assumes
that .mydata will be a CONST section class:

) int var = 1;
) const int const_var = 2;

__attribute__ ((section(".mydata")
__attribute_ ((section(".mydata")

)
)

NOTE: In some cases, the compiler may not honor an attempt to use the section
attribute to place initialized data into a section intended for uninitialized data, and
vice-versa. For example, in the following code:

__attribute__ ((section(“.bss”))) int x = 3;

x will be assignedto the .data section, not .bss.

See Table 14-1 on page 256 for a list of sections and section classes.

There is no cross-module verification that section names are used consistently.
Incorrect usage, including typographical errors, cannot be detected until link time.

6.6 Intrinsic Functions

The compiler implements the following intrinsic functions to give access to specific
68K/CPU32 instructions. See the processor manufacturer’s documentation for
details on machine instructions.

Intrinsic functions can be selectively disabled with the -Xintrinsic-mask=n
(-X154=n) option, where 7 is a bit mask that can be given in hex. n defaults to Oxf.

158

6 Additions to ANSI C and C++
6.7 Other Additions

Function Mask Description

alloca (integral) 0x800000 Allocates temporary local stack space for
an object of size integral. Returns a pointer
to the start of the object. The allocated
memory is released at return from the
current function.

__alloca (integral) Same as alloca(), but cannot be disabled.

6.7 Other Additions

C++ Comments Permitted

C++ style comments beginning with // are allowed by default. To disable this
feature, use -Xdialect-strict-ansi. Example:
int numberlbits (int i) // Count the number of 1 bits

{ // in "i".
int n = 0;

while (1 != 0) {
i&= (1 -1);
n ++;

}

return n;

Dynamic Memory Allocation with alloca

The alloca(size) and __alloca(size) functions are provided to dynamically allocate
temporary stack space inside a function. Example:

char *alloca();
char *p;

p = alloca(1000) ;

The pointer p points to an allocated area of 1000 bytes on the stack. This area is
valid only until the current function returns. The use of alloca() typically increases

159

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

the entry/exit code needed in the function and turns off some optimizations such
as tail recursion.

See 6.6 Intrinsic Functions, p.158 for additional details.

Binary Representation of Data

The compiler recognizes variables and constants that are given in binary format.
For example, it will accept the following:

unsigned int x = 0b00001010;
Note that the compiler does not recognize the following format:
unsigned int x = 00001010b;

Use of binary representation in C may make your code non-portable.

Assigning Global Variables to Registers

You can assign a global variable to a preserved register by placing
asm(""register-name") or __asm("register-name") immediately after the variable name
in the declaration. Example:

int some_global_var asm("d7");

This assigns the variable some_global_var to d7. Local variables cannot be
assigned in this way.

_ _ERROR__ Function

The _ ERROR__() function produces a compile-time error or warning if it is seen
by the code generator. This is useful for making compile-time checks beyond those
possible with the preprocessor—e.g. ensuring that the sizes of two structures are
the same, as shown in the example below. If the _ ERROR__ () function is placed
after an if statement that is not executed unless the assertion fails, the optimizer
removes the _ ERROR__() function and no error is generated. (The optimizer must
be enabled (at any level) for this technique to work.)

The syntax of the _ ERROR__() function:

_ _ERROR__ (error-string [, value])

160

6 Additions to ANSI C and C++
6.7 Other Additions

where error-string is the error message to be generated and the optional value
defines whether the error should be:

0 warning - compilation will continue

1 error - compilation will continue but will stop after the entire file has been
processed

2 fatal error - compilation is aborted

If no value is given, the default value of 1 is used. Example:
extern void __ERROR__ (char *, ...);

#define CASSERT (test) \
if (! (test)) __ERROR__ ("C assertion failed: " #test)

éASSERT(sizeof(struct a) == sizeof (struct b));
When __ERROR__ () is used in C++ code, it must be declared like this:

extern "C" void __ERROR__ (char *, ...);

sizeof Extension

The sizeof operator has been extended to incorporate the following syntax:
sizeof (type, int-const)

where int-const is an integer constant between 0 and 2 with the following

semantics:

0 standard sizeof, returns size of type

1 returns alignment of type

2 returns an int constant depending on type as follows:

signed char 0
unsigned char 1
char C: 0 (char is signed by default)
C++:44
signed short 2
unsigned short 3
signed int 4
unsigned int 5

161

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

signed long 6
unsigned long 7
long long 8
unsigned long long 9
float 14
double 15
long double 16
void 18

pointer to any type 19
array of any type 22

struct, union C:23
C++: same as class, 32
function 25
class C++:32
reference C++:33
enum C++:34
Examples:
i = sizeof(long ,2) /* type of long: i = 6
j = sizeof (short,1) /* alignment of short:

vararg Macros

*/
j=2 %/

The preprocessor supports several styles of variadic macro, including ANSI C

draft, C99, and GNU. Use of vararg macros is illustrated below:
va_arg.c:
// C draft
#define debug(...) fprintf (stderr, _ VA _ARGS_)
#define showlist(...) puts(#__VA_ARGS_)
#define report(test, ...) ((test)?puts(#test):\
printf (__VA_ARGS_))
// C99
#define foo(stringl, ...) printf(stringl, ## __VA_ARGS__, ":end")
// GNU
#define bar (string2, args...) printf(string2, ## args, ":end")

debug ("Flag") ;

debug ("X = %d\n", x);

showlist (The first, second, and third items.);
report (x>y, "x is %d but y is %d", x, Vy);
foo("start");

bar ("begin") ;

> dcc -E va_arg.c
1 "va_arg.c" 0

162

6 Additions to ANSI C and C++
6.7 Other Additions

fprintf (stderr, "Flag")
fprintf (stderr, "X = %d\n", x) ;
puts ("The first, second, and third items.")

((x>y) ?puts ("x>y") : printf("x is %d but y is %d", x, v)) ;
printf ("start", ":end") ;

printf ("begin", ":end") ;

>

163

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

164

Embedding Assembly Code

7.1 Introduction 165

7.2 asm Macros 167

7.3 asm String Statements 172
7.4 Reordering in asm Code 174
7.5 Direct Functions 175

7.1 Introduction

There are three approaches to embedding assembly code in source files: flexible
asm macros, simple but less flexible asm strings, and direct functions for embedding
machine code.

A WARNING: When embedding assembly code with any method, you must use only
scratch registers. See 9.6 Register Use, p.194 to determine the scratch registers.

If optimization is enabled, even hand-inserted assembly language may be
optimized. See 7.4 Reordering in asm Code, p.174

165

Table 7-1

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: The compiler recognizes extended GNU inline syntax (e.g. register usage
specification) but does not translate it. When extended syntax is encountered, the
compiler issues an error message.

The asm and __asm keywords provide a way to embed assembly code within a
compiled program. Either keyword may be used to introduce an assembly string
or assembly macro as defined below, but asm is not defined in C modules if the
-Xdialect-strict-ansi option is used. In the text below, whenever asm is used,
__asm can be used instead.

There are two ways of using the asm keyword. The first is a simple way to pass a
string to the assembler, an asm string. The second is to define an asm macro that
inlines different assembly code sections, depending on the types of arguments
given. The following two sections discuss both methods. 7.5 Direct Functions, p.175
provide a third way to embed code by using integer values. The following table
contrasts the three method.

Methods for Embedding Assembly Code

Method Implementation Calling Conventions, Parameters
asm string Expanded inline where None — difficult to access
encountered. Functions source variables.
containing asm strings with
labels may not be inlined more
than once per function.
asm macro Expanded inline where called. ~ Parameters matched by type
Functions containing asm per storage mode lines.
macros may be inlined without Parameters do not use scratch
restriction. registers. May return a value.
Direct Always inlined where called. All normal calling conventions
function are followed. May return a

value.

To confirm that embedded assembly code has been included as desired, compile
with the -S option and examine the resulting .s file.

The examples in this chapter apply to both C and C++.

166

7 Embedding Assembly Code
7.2 asm Macros

7.2 asm Macros

While asm strings (described in 7.3 asm String Statements, p.172) can be useful for
embedding simple assembly fragments, they are difficult to use with variables
inside the assembly code. asm macros provide a more flexible way to embed
assembly code in compiled programs.

asm Macro Syntax

An asm macro definition looks much like a function definition, including a return
type and parameter list, and function body. Inside the function body, there may be
none, one, or several sequences of assembly code, each beginning with a special
storage mode line.

The syntax is:

asm [volat:i.le] [retum—type] macro-name ([parameter-list])

% storage-mode-list (must start in column 1)

! ister-li i i
! register-list (“!” must be first non-whitespace)
asm-code

% storage-mode-list2 (must start in column 1)

! ister-li P . .

! register-list (“1” must be first non-whitespace)
asm-code2

} (must start in column 1)

where:

volatile prevents instructions from being interspersed or moved before or
after the ones in the macro.

return-type is as in a standard C function. For a macro to return a value of the given
type, the assembly code must put the return value in an appropriate register as

determined by the calling conventions. See 9.5 Returning Results, p.193 for details.

macro-name is a standard C identifier.

parameter-list is as in a standard C function, using either old style C with just
names followed by separate type declarations, or prototype-style with both a
type and a name for each parameter. Parameters should not be modified
because the compiler has no way to detect this and some optimizations will fail
if a parameter is modified.

167

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

» storage mode line begins with a “%” which must start in column 1. The
storage-mode-list is used mainly to describe parameters and is described below.
A macro with no parameters and no labels does not require a storage mode
line.

= register-list is an optional list of scratch registers, each specified as a
double-quoted string, separated by commas. Specifying this list enables the
compiler to generate more efficient code by invalidating only the named
registers. Without a register-list, the compiler assumes that all scratch registers
are used by the asm macro. See Register-List Line, p.170 for details.

= asm-code is the code to be generated by the macro.
= final right “}”closes the body; it must start in column 1.

The compiler treats an asm macro much like an ordinary function with unknown

properties:

= All scratch registers can be used by the function. The compiler ensures that
parameters never use any scratch registers to avoid collisions.

* Any global or static variable can be modified.

» #pragma directives can be used to tell the compiler if the function has any side
effects, etc.

However, because the asm macro is by definition inlined, it is not possible to take
the address of an asm macro.

The compiler discards any invocation of an empty asm macro (one with no storage
mode line and no assembler code). This may be useful for macros used for
debugging purposes.

NOTE: An asm macro must be defined in the module where it is to be used before
its use. Otherwise the compiler will treat it as an external function and, assuming
no such function is defined elsewhere, the linker will issue an unresolved external
error.

In C++, forward declarations of asm macros are not permitted. Hence, while static
member functions can be asm macros, the asm keyword must occur in the function
definition, not in the class declaration.

Storage Mode Line — Describing Parameters and Labels

The storage mode line is not required if a macro has no parameters and no labels.

168

7 Embedding Assembly Code
7.2 asm Macros

For a macro with parameters, a storage mode line is required to describe the
methods used to pass the parameters to the macro. A storage mode line is also
required if the macro includes a label.

Every parameter name in the parameter-list must occur exactly once in a storage
mode line. The form of the storage-mode-line is:

%[reg | con | mem | lab] name,.“;[reg | con | mem | lab]nume,." S
where:

reg or ureg
The parameter is in a non-scratch register. ureg is a synonym for reg.

con
The parameter is a constant.

mem
The parameter is any allowed addressing mode, including reg and con.

lab name
A new label is generated. lab is not a storage mode — the name following lab

is not a parameter (a lab identifier is not allowed as a parameter). It is a label
used in the assembly code body.

For each use of the macro, the compiler will generate a unique label to
substitute for the uses of the name in the macro.

(Storage modes error, which does not take a parameter name, and treg, both
included for compatibility, are never matched.)

. Names of long long parameters must be appended with !H or !L—e.g.
someParameter!H. This replaces the parameter with a register holding the most
('H) or least ('L) significant 32 bits. The register is chosen based on the
compilation’s endian mode.

Multiple-Body asm Macro

The %storage-mode-line / register-list line / asm-code part of an asm macro is referred
to as the macro’s body. An asm macro with multiple bodies overloads the macro
definition in a manner similar to that of an overloaded C++ function (this is valid
whether in a C or C++ module).

The compiler chooses one of the bodies based on the types of arguments provided
when invoking the asm macro. For each invocation of the macro, the compiler
searches all storage-mode-lines in order. It selects the first body for which there is an
exact match between the storage of the actual arguments passed to the macro in
that invocation, and the description given by the storage-mode-line for that body.

169

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

If no matching storage-mode-line can be found, the compiler reports an error.

“No Matching asm Pattern Exists”

The compiler error message “no matching asm pattern exists” indicates that no
suitable storage mode was found for some parameter, or that a label was used in
the macro but no lab storage mode parameter was present. For example, it would
be an error to pass a variable to a macro containing only a con storage mode
parameter.

Register-List Line

An asm macro body may optionally contain a register-list line, consisting of the
character “!” in column 1 and an optional register-list. The register-list if present , is
a list of scratch registers, each specified as a double-quoted string, separated by
commas. Specifying this list enables the compiler to generate more efficient code
by invalidating only the named registers. Without a register-list, the compiler
assumes that all scratch registers are used by the asm macro.

g

The register-list line must begin with a “!” character, which must be the first
non-whitespace character on a line. The specification can occur anywhere in the
macro body, and any number of times, however it is recommended that a single
line be used at the beginning of the macro for clarity.

Supported scratch registers are a0, al, d0, and d1. See 9.6 Register Use, p.194 for
more information about registers.

If the “1” is present without any list, the compiler assumes that no scratch registers
are used by the macro.

NOTE: If supplied, the register-list must be complete, that is, must name all scratch
registers used by the macro. Otherwise, the compiler will assume that registers
which may in fact be used by the macro contain the same value as before the macro.

Also, as noted below, any comment on the register-list line must be a C-style
comment (“/* ... */”) because this line is processed by the compiler, not the
assembler.

Comments in asm Macros

Any comment on the non-assembly language lines—that is, the asm macro
function-style header, the “{” or “}” lines, or a storage-mode or register-list line—

170

7 Embedding Assembly Code
7.2 asm Macros

must be a C-style comment (“/* ... */”") because this line is processed by the
compiler, not the assembler.

Comments on the assembly language line may be either C style or assembler style.
If C style, they are discarded by the compiler and are not preserved in the
generated .s assembly-language file. If assembler style, they are visible in the .s file
on every instance of the expanded macro.

Assembler-style comments in asm macros are read by the preprocessor when the
source file is processed. For this reason, apostrophes and quotation marks in
assembler-style comments may generate warning messages.

Examples of asm Macros

In this example, a test-and-set instruction is used to wait on and then seize a
semaphore when it becomes free. Two storage mode lines and associated code are
used to pass the semaphore in either a register or in memory.

asm void semaphore_seize (char *semaphore)

{

; For register semaphores:

% reg semaphore; lab loop

loop: ; label replaced by compiler
tas (semaphore) ; semaphore is in register
bne loop

; For memory semaphores:

% mem semaphore; lab loop

1 rag" /* scratch register used */
move.l semaphore,al ; semaphore is in memory

loop:
tas (a0)
bne loop

}

void seize (char *reg_semaphore)

{
extern char *mem_semaphore;
semaphore_seize (reg_semaphore) ;
semaphore_seize (mem_semaphore) ;

}
The above code was compiled with:
dcc -tMC68060FN -S -XO -Xpass-source targ4d_asm_macro.c
Extracts from the generated assembly code for the two macro calls follow.

; void seize (char *reg_semaphore)
FRt

move.l 8(a7),ab

171

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

; semaphore_seize (reg_semaphore) ;

.L3: ; label replaced by compiler
tas (a5) ; a5 1s in register
bne L3
; semaphore_seize (mem_semaphore) ;
move.l _mem_semaphore,al ; _mem_semaphore is in memory
L4
tas (a0)
bne L4
NOTE:

» Theselection of the assembly code body is based on the argument type and the
substitution of the actual argument for the formal parameter in the asm bodies.

* The uniquely generated loop labels.

» The reg_semaphore parameter was moved to a5 by the optimizer.

» Theselection of the assembly code body is based on the argument type and the
substitution of the actual argument for the formal parameter in the asm bodies.

= The uniquely generated loop labels.

* The reg_semaphore parameter was moved to a5 by the optimizer.

7.3 asm String Statements

NOTE: asm string statements are primarily useful for manipulating data in static
variables and special registers, changing processor status, etc., and are subject to
several restrictions: no assumption can be made about register usage, non-scratch
registers must be preserved, values may not be returned, some optimizations are
disabled, and more. asm macro functions described above are recommended
instead. See Notes and Restrictions, p.173 below.

An asm string statement provides a simple way to embed instructions in the
assembly code generated by the compiler. Its syntax is:

asm[volatile] ("string"[1 register-ist]) ;

where string is an ordinary string constant following the usual rules (adjacent
strings are pasted together, a “\” at the end of the line is removed, and the next line

172

7 Embedding Assembly Code
7.3 asm String Statements

is concatenated) and register-list is a list of scratch registers (see Register-List Line,
p-170). The optional volatile keyword prevents instructions from being moved
before or after the string statement.

An asm string statement can be used wherever a statement or an external
declaration is allowed. string will be output as a line in the assembly code at the
point in a function at which the statement is encountered, and so must be a valid
assembly language statement.

If several assembly language statements are to be generated, they may either be
written as successive asm string statements, or by using “\n” within the string to
end each embedded assembly language statement. The compiler will not insert
any code between successive asm string statements.

If an asm string statement contains a label, and the function containing the asm
string is inlined more than once in some other function, a duplicate label error will
occur. Use an asm macro with a storage mode line containing a lab clause for this
case. See 7.2 asm Macros, p.167.

Notes and Restrictions

asm string statements are primarily useful for tasks like changing processor status
(as in the example above) and manipulating data in static variables and special
registers. When using asm string statements, consider the following notes and
restrictions:

* No assumptions may be made regarding register values before and after an
asm string statement. For example, do not assume that parameters passed in
registers will still be there for an asm string statement.

» The compiler does not expect an asm string statement to “return” a value.
Thus, using an asm string statement as the last line of a function to place a
value in a return register does not ensure that the function will return that
value.

* The compiler assumes that non-scratch registers are preserved by asm string
statements. If used, these registers must be saved and restored by the asm
string statements.

* The compiler assumes that scratch registers are changed by asm string
statements and so need not be preserved.

* Some optimizations are turned off when an asm string statement is
encountered.

= A function containing an asm string statement is never inlined.

173

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

* Because the string contained in quotation marks is passed to the assembler
exactly as is (after any pasting of continued lines), it must be in the format
required for an assembly language line. Specifically, an instruction line must
begin with a space, a tab, or a label. Assembler directives may start in column
one but only if the assembler -Xlabel-colon option is enabled (see Set Label
Definition Syntax (-Xlabel-colon...), p.311).

* When an asm string statement appears in global scope, the compiler adds it to
the output assembly module after all of the function definitions. For this
reason, global asm string statements should not use assembler directives—
such as .set symbol—on which other asm statements (appearing in functions)
depend.

Example 7-1 Disable Interrupts

The following sequence of asm string statements disables hardware interrupts.
Note that a scratch register is used in the example.

get the status register");

clear bit 15");

set bit 13 and int. priority to 7");
set the status register");

(" move sr,d0
(" eori #0x8000,d0
asm(" ori #0x2700,d0
(" move dO,sr

7
7
7
7

7.4 Reordering in asm Code

If optimization is requested (options -O or -X0), after generating an assembly file,
the driver will run the reorder optimization program. reorder runs peephole
optimizations and schedules the assembly file before the assembler assembles it,
and does not distinguish assembly code generated by the compiler from assembly
code inserted by asm macros or asm strings. Thus, explicit assembly instructions
written in a particular order by the user may still be reordered by reorder.

In general this may improve even hand-coded assembly language. If it is necessary
to prevent this, write a .set noreorder directive in the asm string or asm macro at
the point at which such re-ordering should be disabled, and a .set reorder directive
where re-ordering can be re-enabled. Alternatively, define the string or macro as
volatile.

174

7 Embedding Assembly Code
7.5 Direct Functions

7.5 Direct Functions

Direct functions, available in C modules only, provide a way to inline machine
code in a function. In a direct function definition, the body of the function is a list
of integer constant expressions which represent the machine code. The form is:

returnﬁtype] function_name ([parameter_type parameter_name , ...]) =

integer-constant-expression ,
integer-constant-expression ,

}; B /* ;' required */
Rules:
» A direct function is signaled by the presence of an “=" character between the

parameter list and the body of the function.

» The expressions in the body are separated by commas and may be written one
or more per line (with a comma after the final expression on a line if additional
expression lines follow).

» The final “}” closing the function body must be followed by a “;”.

A direct function is always inlined when called. When called, what would be the
branch to the function is replaced by a DC.W assembler directive having as
operands the value of each expression as a hex constant. Otherwise, normal calling
conventions are followed (e.g., any parameters are set up in the usual manner).

Direct functions are supported primarily for compatibility reasons. asm macros
provide a more flexible method to do nearly the same thing. See Table 7-1 which
contrasts the differences.

175

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

176

Internal Data Representation

8.1 Basic Data Types 177

8.2 Byte Ordering 179

8.3 Arrays 180

8.4 Bit-fields 180

8.5 Classes, Structures, and Unions 181
8.6 C++ Classes 181

8.7 Linkage and Storage Allocation 186

This chapter describes the alignments, sizes, and ranges of the C and C++ data
types for 68K/CPU32 microprocessors.

8.1 Basic Data Types

By default, the type plain char—that is, char without the keyword signed or
unsigned—is treated as signed.

The following table describes the basic C and C++ data types available in the
compiler. All sizes and alignments are given in bytes. An alignment of 2, for
example, means that data of this type must be allocated on an address divisible by
2.

177

Table 8-1

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

C/C++ Data Types, Sizes, and Alignments

Data Type Bytes Align Notes

char 1 1 range (-128, 127), or (0, 255) with
-Xchar-unsigned (Note 1)

signed char 1 1 range (-128, 127)

unsigned char 1 1 range (0, 255)

short 2 2 range (-32768, 32767)

unsigned short 2 2 range (0, 65535)

int 4 4 range (-2147483648, 2147483647)

unsigned int 4 4 range (0, 4294967295)

long 4 4 range (-2147483648, 2147483647)

unsigned long 4 4 range (0, 4294967295)

long long 8 8 range (-2%%,2%3.1)

unsigned long long 8 8 range (0,2%4-1)

enum (Note 2) 4 4 sameas int

1 1 with-Xenum-is-small and fits in signed char
or -Xenum-is-best and fits in unsigned char
2 2 with -Xenum-is-small and fits in short or

-Xenum-is-best and fits in unsigned short

pointers 4 4 all pointer types; the NULL pointer has the
value zero

float 4 4 IEEE 754-1985 single precision

double 8 8 IEEE 754-1985 double precision

long double 8 8 IEEE 754-1985 double precision when
software floating point is used

long double 16 16 IEEE 754-1985 extended precision when

hardware floating point is used

178

8 Internal Data Representation
8.2 Byte Ordering

Table 8-1 C/C++ Data Types, Sizes, and Alignments (cont'd)

Data Type Bytes Align Notes

reference 4 4 C++:same as pointer (Note 3)
ptr-to-member 8 4 C++: pointer to member
ptr-to-member-fn 12 4 C++: pointer to member function
Notes:

1. If the option -Xchar-unsigned is given, the plain char type is unsigned. If the
option -Xchar-signed is given, the plain char type is signed.

2. If the option -Xenum-is-int is given, enumerations take four bytes. This is the
default for C.

If the option -Xenum-is-small is given, the smallest signed integer type
permitted by the range of values for the enumeration is used, that is, the first
of signed char, short, int, or long sufficient to represent the values of the
enumeration constants. Thus, an enumeration with values from 1 through 128
will have base type short and require two bytes.

If the option -Xenum-is-best is given, the smallest signed or unsigned integer
type permitted by the range of values for an enumeration is used, that is, the
first of signed char, unsigned char, short, unsigned short, int, unsigned int,
long, or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte. This is the default for C++.

3. Areference is implemented as a pointer to the variable to which it is initialized.

8.2 Byte Ordering

All data is stored in big-endian order. That is, with the most significant byte of any
multi-byte type at the lowest address. To access data in little-endian order, see the
byte-swapped parameter for the #pragma pack in pack Pragma, p.143 and __packed__
and packed Keywords, p.151.

179

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

8.3 Arrays

Arrays, excluding character arrays, have the same alignment as their element type.
The size of an array is equal to the size of the data type multiplied by the number
of elements. Character arrays have a default alignment of 4. -Xsize-opt sets the
alignment of character arrays to 1, and -Xstring-align overrides -Xsize-opt.
-Xarray-align-min, which overrides -Xstring-align, specifies a minimum
alignment for all arrays.

8.4 Bit-fields

Bit-fields can be of type char, short, int, long, or enum. Plain bit-fields are
unsigned by default. By using the -Xbit-fields-signed option (C only) or by using
the signed keyword, bit-fields become signed. The following rules apply to
bit-fields:

180

Allocation is from most significant bit to least.

A bit-field never crosses its type boundary. Thus a char bit-field is never
allocated across a byte boundary and can never be wider than 8 bits.

Bit-fields are allocated as closely as possible to the previous struct member
without crossing a type boundary.

A zero-length bit-field pads the structure to the next boundary specified by its
type.
Bit-fields may not be type long long.

The compiler accesses a bit-field by loads and stores appropriate to the
bit-field’s type. For example, an int bit-field is accessed using a word load or
store (or an equivalent set of smaller load/stores in the unaligned case), even
if the bit-field spans only one byte. To ensure that a bit-field is accessed using
byte (or half-word) load/stores, make the bit-field char or short, or use the
-Xcompress-bitfields option.

When a bit-field is promoted to a larger integral type, the comiler preserves
sign as well as value unless -Xstrict-bitfield-promotions, -Xdialect-strict-ansi,
or -Xstrict-ansi is enabled.

8 Internal Data Representation
8.5 Classes, Structures, and Unions

8.5 Classes, Structures, and Unions

MC68000 targets using COFF use an alignment of two for classes, structures, and
unions. For other targets, or if the -Xstruct-best-align option is used, the alignment
of these aggregates is the same as that of the member with the largest alignment.

The size of a structure is the sum of the size of all its members plus any necessary
padding. Padding is added so that all members are aligned to a boundary given by
their alignment and to make sure that the total size of the structure is divisible by
its alignment.

The size of a union is the size of its largest member plus any padding necessary to
make the total size divisible by the alignment.

To minimize the necessary padding, structure members can be declared in
descending order by alignment.

See pack Pragma, p.143 and __packed__ and packed Keywords, p.151 for more
information.

8.6 C++ Classes

C++ objects of type class, struct, or union can be divided into two groups,
aggregates and non-aggregates. An aggregate is a class, struct, or union with no
constructors, no private or protected members, no base classes, and no virtual
functions. All other classes are non-aggregates.

The internal data representation for aggregates is exactly the same as it is for C
structures and unions.

Static member functions and static class members, as well as non-virtual member
functions do not affect the representation of classes. Their relation to the classes are
only encoded in their names (name mangling). Pointers to static member functions
and static class members are ordinary pointers. Pointers to member functions are
of the type pointer-to-member-function as described later.

The internal data representation for non-aggregates has the following properties:

» The rules for alignment are equal to the rules of aggregates.

181

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The order that members appear in the object is the same as the order in the
declaration.

Non-virtual base classes are inserted before any members, in the order that
they are declared.

A pointer to the virtual function table is added after the bases and members.

For virtual base classes, a pointer to the base class is added after non-virtual
bases, members, or the virtual function table. The virtual base class pointers
are added in the order that they are declared.

The storage for the virtual bases are placed last in the object, in the order they
are declared, that is, depth first, left to right.

Virtual base classes that declare virtual functions are preceded by a “magic”
integer used during construction and destruction of objects of the class.

Example:

struct V1 {};
struct V2 {};
struct V3 : virtual V2 {};
struct Bl : virtual V1 {};
struct B2 : virtual V3 {};
struct D : Bl, private virtual V2, protected B2 {
int di;
private:
int d2;
public:
virtual ~D() {};
int d3;
}i

The class hierarchy for this example is:

182

D is derived from B1, B1 is derived from V1
D is derived from B2, B2 is derived from V3, V3 is derived from V2

D is derived from V2 (which is virtual, thus there is only one copy of V2)

8 Internal Data Representation
8.6 C++ Classes

The internal data representation for D is as follows:

B1

B2

Body of D:
d1
d2
d3

Virtual function table pointer

Pointer to virtual base class V1

Pointer to virtual base class V2

Pointer to virtual base class V3

Vi1

V2

magic for V3

V3

Note:
= When the class D is used as a base class to another class, for example:
class E : D {};

only the base part of D will be inserted before the body of class E. The virtual
bases V1, V2, and V3 will be placed last in class E, in the fashion described
above. Class E would be laid out as follows:

183

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Base part of D

Body of E:

Vi

V2

magic for V3

V3

Pointers to Members

The virtual function table pointer is only added to the first base class that
declares virtual functions. A derived class will use the virtual function table
pointer of its base classes when possible. A virtual function table will be added
to a derived class when new virtual functions are declared, and none of its
non-virtual base classes has a virtual function table.

The virtual function table is an array of pointers to functions. The virtual
function table has one entry per virtual function, plus one entry for the null
pointer.

Virtual base class pointers are added to a derived class when none of its
non-virtual base classes have a virtual base class pointer for the corresponding
virtual base class.

Each virtual base class with virtual functions are preceded by an integer called
magic. This integer is used when virtual functions are called during
construction and destruction of objects of the class.

The pointer-to-member type (non-static) is represented by two objects. One for
pointers to member functions, and one for all other pointers to member types. The
offsets below are relative to the class instance origin.

184

8 Internal Data Representation
8.6 C++ Classes

An object for a pointer to non-virtual or virtual member functions has three parts:

voffset

index

vtbl-offset
or
Function Pointer

The voffset field is an integer that is used when the virtual function table is located
in a virtual base class. In this case it contains the offset to the virtual base class
pointer + 1. Otherwise it has a value of 0.

The index field is an integer with two meanings.

1. index <=0
The index field is a negative offset to the base class in which the non-virtual
function is declared. The third field is used as a function pointer

2. index >0
The index field is an index in the virtual function table. The third field,
vtbl-offset, is used as an offset to the virtual function table pointer of type
integer

A null pointer-to-member function has zero for the second and third fields.

An object for a pointer-to-member of a non-function type has two parts:

voffset
moffset

The voffset field is used in the same way as for pointer-to-member functions. The
moffset field is an integer that is the offset to the actual member + 1. A null pointer
to member has zero for the moffset field.

Virtual Function Table Generation—Key Functions

The virtual function table for a class will be generated only in the module which
defines (not declares) its key virtual function (and does not inline it). The key virtual
function is the virtual function declared lexically first in the class (or the only
virtual function in the class if there is only one).

185

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Consider, for example:

class C {
public:
virtual void f1(...);
virtual void £2(...);
}
Because f1 is the first virtual function declared in the class, it is the key virtual

function.

Then, the virtual function table will be emitted for the module which provides the
non-inlined definition of f1.

8.7 Linkage and Storage Allocation

Depending on whether a definition or declaration is performed inside or outside
the scope of a function, different storage classes are allowed and have slightly
different meanings. Notes are at the end of the section.

Outside Any Function and Outside Any Class

Specifier Linkage Allocation
none external linkage, Static allocation (Note 1).
program
static file linkage Static allocation (Note 1).
extern external linkage, None, if the object is not initialized in the
program current file, otherwise same as “none”
above.

Inside a function, but outside any class

Specifier Linkage Allocation

none current block In a register or on the stack (Note 2).
register current block In a register or on the stack (Note 2).
auto current block In a register or on the stack (Note 2).

186

8 Internal Data Representation

8.7 Linkage and Storage Allocation

Specifier Linkage
static current block
extern current block

Allocation
Static allocation (Note 1).

None, this is not a definition (Note 3).

Outside any function, but inside a C++ class definition

Outside the class, a class member name must be qualified with the :: operator, the
. operator or the -> operator to be accessed. The private, protected, and public
keywords, class inheritance and friend declaration will affect the access rights.

Specifier Linkage

none external linkage,
(data) program

static external linkage,
(data) program

none external linkage,
(function) program

static external linkage,
(function) program

Within a Local C++ Class, Inside a Function

Notes

Allocation

None, this is only a declaration of the
member. Allocation depends on how the
object is defined.

None, this is not a definition. A static
member must be defined outside the class
definition.

(uses a this pointer.)

(no this pointer)

Alocal class cannot have static data members. The class is local to the current block
as described above and access to its members is through the class. All member

functions will have internal linkage.

1. Allocation of static variables is as per Table 14-1.

The compiler attempts to assign as many variables as possible to registers,

with variables declared with the register keyword having priority. Variables
which have their address taken are allocated on the stack. If the
-Xlocals-on-stack option is given, only register variables are allocated to

registers

Although an extern variable has a local scope, an error will be given if it is

redefined with a different storage class in a different scope.

187

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

188

Calling Conventions

9.1 Introduction 189

9.2 Stack Layout 189

9.3 Argument Passing 190

9.4 C++ Argument Passing 191
9.5 Returning Results 193

9.6 Register Use 194

9.7 Pascal Functions (C Only) 195

9.1 Introduction

This chapter describes the interface between a function caller and the called
function. Stack layout, argument passing, returning results, and register use are all
described in detail.

9.2 Stack Layout

189

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The compiler uses two different stack layouts depending on how the current
function uses preserved registers and stack space, and what compiler options are
specified. When local variables are not allocated on the stack and the -Xframe-ptr
option is not set, the compiler does not use the frame pointer (FP, register a6).
Otherwise, the old frame pointer is saved with the link instruction.

The following shows the stack layout assuming that SP, the stack pointer, is in a7,
and FP, the frame pointer, is in a6. In the diagram, SP is shown after the prolog in
the called function is complete.

high address

argument area

arguments to the current function
Old SP —p

return address

old frame pointer (FP)

FP — ,
local variables

local variables that cannot be
allocated to a register

SP —p -
preserved registers

preserved registers used
by the function

argument area
arguments to any function
to be called

low address

9.3 Argument Passing

When a function is to be called, the compiler pushes all arguments on the stack,
decrementing the stack pointer (SP register a7) for each. Arguments are pushed

190

9 Calling Conventions
9.4 C++ Argument Passing

from right to left. Character and short arguments are extended and pushed as
32-bit values. If a prototype is present, no extension is made.

The stack is aligned on each argument’s natural alignment before pushing. All
pushed arguments are rounded to a size that is a multiple of 4. Following a
function call, the stack pointer is restored to its old value.

With the -Xargs-in-regs option, function arguments can be passed in registers. If
function prototypes are used and the register keyword is specified for an
argument to a function, the compiler puts the first arguments in registers instead
of pushing them. The following scheme is used:

= The first integer argument is put in d1.

» The second integer argument is put in d0.

» The first pointer argument is put in al.

* The second pointer argument is put in a0.

= The first float argument is put in fp1 (if hardware floating point).

* The second float argument is put in fp0 (if hardware floating point).

Note that prototypes with register parameters must be visible to all functions using
them. This feature is turned off when using the -Xdialect-strict-ansi option.

9.4 C++ Argument Passing

In C++, the same lower-level conventions are used as in C, with the following
additions:

» References are passed as pointers.

* Function names are encoded (mangled) with the types of all arguments. A
member function has also the class name encoded in its name. See 13.5 C++
Name Mangling, p.243.

* Anargument of class, struct, or union type may, depending on the target
architecture and the size of the actual parameter, be passed as a pointer to the
object. (But this does not happen if the function is declared with extern "c".)
For this reason, when a C++ function with class, struct, or union parameters
is called from a C module, it should always be assumed that the C++ compiler

191

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

expects a pointer argument. For example, suppose the following function is
defined in a C++ module:

int ff(struct S s);
To call this function from a C module, use code like this:

struct S xyz;

int 1 = ffmangledname (&xyz) ;
where ffmangledname is the mangled form of ff. To find the mangled name of a
C++ function, see 13.5 C++ Name Mangling, p.243 and 29. D-DUMP File
Dumper.

Pointer to Member as Arguments and Return Types

Pointers to members are internally converted to structures. Therefore argument
passing and returning of pointer to members will follow the rules of class, struct,
and union.

Member Function

Non-static member functions have an extra argument for the this pointer. This
argument is passed as a pointer to the class in which the function is declared. The
argument is passed as the first argument, unless the function returns an object that
needs the hidden return argument pointer, in which case the return argument
pointer is the first argument and the this pointer is the second argument.

Constructors and Destructors

Constructors and destructors are treated like any other member function, with
some minor exceptions as follows.

Constructors for objects with one or more virtual base classes have one extra
argument added for each virtual base class. These arguments are added just after
the this pointer argument. The extra arguments are pointers to their respective
base classes.

Calling a constructor with the virtual base class pointers equal to the null pointer
indicates that the virtual base classes are not yet constructed. Calling a constructor
with the virtual base class pointers pointing to their respective virtual bases
indicates that they are already constructed.

192

9 Calling Conventions
9.5 Returning Results

All destructors have one extra integer argument added, after the this pointer. This
integer is used as a bit mask to control the behavior of the destructor. The definition
of each bit is as follows (bit 0 is the least significant bit of the extra integer
argument):

Bit 0
When this bit is set, the destructor will call the destructor of all sub-objects
except for virtual base classes. Otherwise, the destructor will call the
destructor for all sub-objects.

Bit 1
When this bit is set, the destructor will call the operator delete for the
object.

All other bits are reserved and should be cleared.

9.5 Returning Results

All integers are returned in register d0.

If hardware floating point is used, both single and double precision values are
returned in fp0. If software floating point is used, single precision values are
returned in d0, double precision values in d0/d1.

Pointers are returned differently for different targets:
» Most targets return pointers in register d0, including all embedded targets.

» If the -Xptr-values-in-a0 option is used, pointers are returned in both registers
a0 and dO0; the value in a0 is used.

Return of structures and unions is also target-dependent:

» Embedded system targets use the -Xstruct-as-args option as default and return
structures as if an extra first argument points to the return area. This scheme is
both very efficient and reentrant. See the -Xstruct-as-args option for more
information.

» If the -Xstruct-as-gnu option is used, structures <= 8 bytes are returned in
d0/d1, others on the stack. See -Xstruct-as-gnu for more information.

193

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

If the -Xstruct-as-static option is used, structures and unions are returned in a
static area pointed to by either register d0 or a0, depending on how pointers
are returned.

Class, Struct, and Union Return Types

With the exceptions mentioned above, a function with a return type of class, struct,
or union is called with a hidden argument of type pointer to function return type. The
called function copies the return argument to the object pointed at by the hidden
argument; the ordinary arguments are “bumped” one place to the right. See the
-Xstruct-as-args option for more information (120).

9.6 Register Use

The following describes how registers are used by the compiler:

do-d1

Scratch data registers. Not preserved by functions. Hold variables whenever
possible.

d2-d7

a0 -

a2 -

a5

194

Preserved data registers. Saved when used by functions. Hold variables which
can not be put in d0 - d1. The data registers hold integral data mainly, but are
used for pointer variables whenever suitable.

al
Scratch address registers. Not preserved by functions. Hold variables
whenever possible.

a4

Preserved address registers. Saved when used by functions. Hold variables
which cannot be put in a0 - al. The address registers hold pointer data mainly,
but are used for integral variables whenever suitable.

If either of the -Xdata-relative-near or the -Xdata-relative-far options is used,
a5 is used as a pointer to the .data section and all references to variables are
made through a5.

9 Calling Conventions
9.7 Pascal Functions (C Only)

a5 is also used if _SDA_BASE_ is defined for access to the Small Data Area. See
23.2 Symbols Created By the Linker, p.378 regarding _SDA_BASE_.

Wind River libraries are compiled with the default options (-Xsmall-data=0
and -Xsmall-const=0) and so do not make use of the Small Data Area.

Otherwise a5 is a preserved address register and behaves just like registers a2
-a4.

If a5 is used for small data access, the default.dld linker command file causes

the linker to load .sdata and .sbss contiguously. The linker then defines the

symbol _SDA_BASE_ as the address of .sdata plus 0x7f0, and the startup code

in crt0.s loads register a5 with this value. This permits any variable in either

section to accessed with a single instruction using a 16-bit offset from the a5

register. Note that this limits the combined size of the two sections to 64KB - n
0x10 (the 0x10 facilitates certain optimizations).

a6
Frame pointer (FP). Points to current stack frame. Not used in functions with
all variables in registers.

a7 (sp)
Stack pointer (SP). Points to the current stack location where arguments are to
be pushed.

9.7 Pascal Functions (C Only)

If the pascal keyword is enabled with the -Xkeywords=0x2 option (the pascal bit),
a function declared pascal has the following properties:

» The argument list is reversed and the first argument is pushed first.
» The callee clears the stack space instead of the caller.

See 5.4.86 Enable Extended Keywords (-Xkeywords=mask), p.96 for additional
information on this option.

195

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

196

10

Optimization

10.1 Optimization Hints 197

10.2 Cross-Module Optimization 204

10.3 Target-Independent Optimizations 206
10.4 Target-Dependent Optimizations 219
10.5 Example of Optimizations 221

Optimizations have two purposes: to improve execution speed and to reduce the
size of the compiled program.

Most optimizations are activated by the -O option (5.3.17 Optimize Code (-O), p.44).
A few, such as inlining, are activated by the -XO option (5.4.104 Enable Extra
Optimizations (-XO), p.106). See also the discussion of optimization and debugging
under the -g option (5.3.9 Generate Symbolic Debugger Information (-g), p.41).

10.1 Optimization Hints

The compilers attempt to produce code as compact and efficient as possible.
However, some information about characteristics of the program only the user has.
This section describes various ways the user can enable the compiler to generate
the most optimal code.

197

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

What to Do From the Command Line

The usual purpose of optimizations is to make a program run as fast as possible.
Most optimizations also make the program smaller; however the following
optimizations will increase program size, exchanging space for speed:

» Inlining: replaces a function call with its actual code.
» Loop unrolling: expands a loop with several copies of the loop body.

When a program expands it may have a negative effect on speed due to increased
cache-miss rate and extra paging in systems with virtual memory.

Because the compiler does not have enough information to balance these concerns,
several options are provided to let the user control the above mentioned
optimizations:

= -Xinline=n

Controls the maximum size of functions to be considered for inlining. 7 is the
number of internal nodes. See 5.4.80 Inline Functions with Fewer Than n Nodes
(-Xinline=n), p.94, for more details and 5.4.155 Control Loop Unrolling
(-Xunroll=n, -Xunroll-size=n), p.124, for a definition of internal nodes. Other
options that control inlining include -Xexplicit-inline-factor (5.4.54 Control
Inlining Expansion (-Xexplicit-inline-factor), p.83) and -Xinline-explicit-force
(56.4.81 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.94).

= -Xunroll-size=n

Controls the maximum size of a loop body to be unrolled. See also
5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.124, for more
details.

There is also a trade-off between optimization and compilation speed. More
optimization requires more compile-time. The amount of main memory is also a
factor. In order to execute interprocedural optimizations (optimizations across
functions) the compiler keeps internal structures of every function in main
memory. This can slow compilation if not enough physical memory is available
and the process has to swap pages to disk. The -Xparse-size=m option, where m is
memory space in KByte, is set to suggest to the compiler how much memory it
should use for this optimization. (See 5.4.108 Specify Optimization Buffer Size
(-Xparse-size), p.107.)

With all the different optimization options, it is sometimes difficult to decide
which options will produce the best result. The -Xblock-count and -Xfeedback
options (5.4.16 Insert Profiling Code (-Xblock-count), p.67, 5.4.57 Optimize Using
Profile Data (-Xfeedback=file), p.85), which produce and use profiling information,

198

10 Optimization
10.1 Optimization Hints

provide powerful mechanisms to help with this. With profiling information
available, the compiler can make most optimization decisions by itself.

The following guidelines summarize which optimizations to use in varying
situations. The options used are found in 5. Invoking the Compiler.

» If execution speed is not important, but compilation speed is crucial (for
example while developing the program), do not use any optimizations at all:

dplus file.cpp -o file

» The-O option is a good compromise between compilation time and execution
speed:

dplus -0 file.cpp -o file

» Toproduce highly optimized code, without using the profiling feature, use the
-XO option:

dplus -XO file.cpp -o file

» To obtain the fastest code possible, use the profiling features referred to above.

» To produce the most compact code, use the -Xsize-opt option:
dplus -XO -Xsize-opt file.cpp -o file
= If the compiler complains about “end of memory” (usually only on systems

without virtual memory), try to recompile without using -O.

= When compiling large files on a host system with large memory, increase the
amount of memory the compiler can use to retain functions. This allows the
compiler to perform more interprocedural optimizations. Use the following
option to increase the available memory to 8,000 KByte:

-Xparse-size=8000

» If speed is very important and the resulting code is small compared to the
cache size of the target system, increase the values controlling inlining and
loop-unrolling:

-X0 -Xinline=80 -Xunroll-size=80

*= When it is difficult to change scripts and makefiles to add an option, set the
environment variable DFLAGS. Examples:

DFLAGS="-X0O -Xparse-size=8000 -Xinline=50" (UNIX)
export DFLAGS
set DFLAGS=-XO -Xparse-size=8000 -Xinline=50 (VVhldOVVS)

» If possible, disable exceptions and run-time type information
(-Xexceptions-off, -Xrtti-off). This can reduce code size significantly.

199

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

What to Do With Programs

The following list describes coding techniques which will help the compiler
produce optimized code.

» Use local variables. The compiler can keep these variables in registers for
longer periods than global and static variables, since it can trace all possible
uses of local variables.

» Use plain int variables when size does not matter. Local variables of shorter
types must often be sign-extended on specific architectures before compares,
etc.

= Use the unsigned keyword for variables known to be positive.

* Ina structure, put larger members first. This minimizes padding between
members, saving space, and ensures optimal alignment, saving both space and
time. For example, change:

struct _pack {
char flag;

int number ;
char version;
int op;

to
struct good_pack {
int number ;
int op;
char flag;
char version;

}

» For target architectures which include a cache, declare variables which are
frequently used together, near each other to reduce cache misses. For example,

change:
struct bad {
int type;
struct bad *next;

}i
to
struct good {

int type;
struct good *next;

200

10 Optimization
10.1 Optimization Hints

Then both type and next will likely be in the cache together in constructs such
as:

while (p->type != 0) {

p = p->next;

}
Allocate variables to the small data and small const areas. See the descriptions
of the -Xsmall-data and -Xsmall-const options and the description of #pragma
section, all in 14. Locating Code and Data, Addressing, Access.

Use the const keyword to help the optimizer find common sub-expressions.
For example, *p can be kept in a register in the following:

void func(const int *p) {
f1(*p);
£2(*p);
}
Use the static keyword on functions and module-level variables that are not
used by any other file. Optimization can be much more effective if it is known
that no other module is using a function or variable. Example:

static int si;

void func (int *p) {
int i;
int j;

The compiler knows that *p = 0 does not modify variable si and so can order
the assignments optimally.

Use of the static keyword also allows for faster calling conventions on some
processors.

Use the volatile keyword only when necessary because it disables many
optimizations.

Avoid taking the address of variables. When the address of a variable is taken,
the compiler usually assumes that the variable is modified whenever a
function is called or a value is stored through a pointer. Also, such variables
cannot be assigned to registers. Use function return values instead of passing
addresses.

201

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

202

Example: change

int func (int var) {
far_awayl (&var) ;
far_away?2 (var) ;
return var;

to

int func (int var) {
var = new_far_awayl (var) ;
far_away?2 (var) ;
return var;

}

Use the #pragma inline directive and the inline keyword for small, frequently
used functions. inline eliminates call overhead for small functions and
increases scheduling opportunities.

Use the #pragma no_alias directive to inform the compiler about aliases in
time critical loops. Example:

void add(double d[100][100], double s1[100], double s2[100])
#pragma no_alias *d, *sl, *s2
{

int i;

int j;

for (i = 0; 1 < 100; i++) {

for (3 = 0; j < 100; 3 ++) {

dlil[j] += s1[i] * s2[i];

}

}
}

Because it is known that there is no overlap between d and each of s1 and s2,
the expression s1[i]*s2[i] can be moved outside of the innermost loop.

Use #pragma no_side_effects and #pragma no_return on appropriate
functions. Example:
comm.h:

#pragma no_side_effects busy_wait (1)
#pragma no_return comm_err

file.c:

#include "comm.h"

a = *p;

busy_wait (&sem) ;

if (error) {

comm_err ("fatal error");
}
b = *p;

10 Optimization
10.1 Optimization Hints

Because busy_wait is known to have no side effects and comm_err is known
not to return, the compiler can assign *p to a register.

Use asm macros rather than separate assembly functions because it eliminates
call overhead. See 7. Embedding Assembly Code.

Avoid setjmp() and longjmp(). When the compiler finds setjmp() in a
function, a number of optimizations are turned off. For example, when the
-Xdialect-pcc option is specified, no variables declared without the register
keyword will be allocated to registers. This is done to be compatible with older
compilers that always allocate variables not declared register on the stack,
which means that if they are changed between the call to setjmp() and the call
to longjmp(), they will keep the changed value after the longjmp(). If the
variables were allocated to registers, they would have the values valid at the
time of the setjmp().

The following example demonstrates this difference:

#include <setjmp.h>
static jmp_buf label;

£1() {
int 1 = 0;
if (setjmp(label) != 0) {
/* returned from a longjmp() */
if (1 == 0) {

printf ("i has first value: allocated to "
"register.\n");
} else {
printf ("i has new value: allocated on stack\n");
}
return;

}

/* setjmp () returned 0: does not come from a longjmp*/
i=1;
£2();

}

£2() {
/* jump to the setjmp call, returning 1 */
longjmp (label, 1);

}

Note that both ways are valid according to ANSL

If possible, eliminate C++ exception-handling code (try, catch, or throw). This
allows you to compile with exceptions disabled (-Xexceptions-off), which
reduces stack space and increases execution speed.

203

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

10.2 Cross-Module Optimization

Cross-module optimization, controlled with the -Xcmo-... options (see

5.4.28 Enable Cross-module Optimization (-Xcmo-...), p.71), allows the compiler to
optimize calls between functions in different source files. This feature can improve
execution efficiency but requires the developer to track intermodule dependencies
with care.

Currently, function inlining is the only implemented cross-module optimization.

The compiler implements cross-module optimization by constructing a database
of information about functions and variables. To use cross-module optimization,
compile your project twice—first with -Xcmo-gen to create a database, then with
-Xcmo-use to optimize using information from the database. You must specify a

name and location for the database file. Examples:

dcc -Xcmo-gen=C:\projects\MyProject\MyProject.db main.c (VVhidOVVS)
dcc -Xcmo-use=C:\projects\MyProject\MyProject.db main.c
dcc -Xcmo-gen=/projects/MyProject/MyProject.db main.c GJPJ[X)

dcc -Xcmo-use=/projects/MyProject/MyProject.db main.c

The -Xcmo-gen compiler pass is used only for building the database. All object
files created by this pass should be regenerated during the next build.

NOTE: Do not use the -Xcmo-... options to compile a project that contains two or
more source files (in different directories) with the same base name.

If there are functions that you do not want to have inlined across modules, you can
specify them by adding -Xcmo-exclude-inline to the command line with
-Xcmo-use. For example:

dcc -Xcmo-use=...\MyProject.db -Xcmo-exclude-inline=f1,f2 main.c

tells the compiler not to inline f1 or £2 across modules. Names of C++ functions
must be given in mangled form (see 13.5 C++ Name Mangling, p.243); to find the
mangled form of a function name, use the ddump utility (see 29. D-DUMP File
Dumper).

-Xcmo-verbose, combined with -Xcmo-use or -Xcmo-gen, outputs a list of inlined
(or inlinable) functions.

Before using cross-module optimization, please read the following additional
notes.

204

10 Optimization
10.2 Cross-Module Optimization

Database Location and Use

The database name should be specified with a full directory path. Otherwise, the
compiler uses the current working directory, which could result in fragmented
databases residing in multiple locations.

It is preferable to use a non-network directory for the database. Never share a
database among compiler installations, even when building from the same source
files.

Use With Other Optimizations and Build Options

The -Xcmo-... switches are affected by other build options. In general, you should
turn compiler optimizations off when building with -Xcmo-gen and on when
building with -Xcmo-use. More specifically:

» To save time, disable optimizations and skip the linking step when building
with -Xcmo-gen. (Executable output from the -Xcmo-gen compilation is
ultimately discarded.)

» -Xcmo-use is ignored unless other optimizations are enabled (-O or -XO).

» Optimization-related compiler switches, including -Xinline, apply to
cross-module optimization as well. If -Xinline is set to a very low value,
cross-module optimization is unlikely to be useful. (-Xinline has no effect on
the construction of the database itself.)

= If-Xinline is set to a high value, cross-module optimization can result in large
executables and long compilation time. You may want to compile specific
source files with cross-module optimization disabled.

Database Maintenance

Every time you compile with -Xcmo-use, the compiler updates the existing
database by adding to the list of functions that are candidates for inlining—but it
does not perform dependency analysis. Hence the database can easily become
unsynchronized after repeated incremental builds. (This occurs, for example,
when a source file containing a called function has changed, but the source file
containing the calling function is unchanged.) It is important to track
dependencies and recompile periodically with -Xcmo-gen. When in doubt,
manually delete the database file before recompiling.

After moving or copying files, always delete the database file and regenerate it
with -Xcmo-gen.

205

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Special Name Mangling

To enable cross-module optimization, the compiler assigns a unique mangled
name to each function and static variable. Mangled function names begin with
__STF followed by a line number, function name, mangled filename, and other
information. Mangled variable names begin with __ STV followed by a line
number, variable name, mangled filename, and other information. The
demangling utility does not demangle these names.

10.3 Target-Independent Optimizations

The following optimizations are performed by the compiler on all targets.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-opt option. Optimizations can be selectively disabled by specifying
-Xkill-opt=mask, where mask can be given in hex (e.g. -Xkill-opt=0x12). Multiple
optimizations can be disabled by OR-ing their bits; undefined mask bits are
ignored. -Xkill-opt=0xffffffff has the same effect as not using the -O option at all.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-opt is deprecated and should be used only on the advice of Customer
Support.

Tail Recursion (0x2)

This optimization replaces calls to the current function, if located at the end of the
function, with a branch. Example:

NODEP find(NODEP ptr, int value)
{
if (ptr == NULL) return NULL;
if (value < ptr->val) {
ptr = find(ptr->left,value);

206

Inlining (0x4)

}

10 Optimization
10.3 Target-Independent Optimizations

} else if (value > ptr->val) {
ptr = find(ptr->right,value);
}

return ptr;

will be approximately translated to:

NODEP find(NODEP ptr, int value)

{
top:

if (ptr == NULL) return NULL;
if (value < ptr->val) {
ptr = ptr->left;
goto top;
} else if (value > ptr->val) {
ptr = ptr->right;
goto top;
}

return ptr;

Inlining optimization replaces calls to functions with fewer than the number of
nodes set by -Xinline with the actual code from the same functions to avoid
call-overhead and generate more opportunities for further optimizations. See
5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.124, for the definition

of node; assembly files saved with -S show the number of nodes for each function.

To be inlined, the called function must be in the same file as the calling function.

Inlining can be triggered in three ways:

1.

In C++ use the inline keyword when defining the function, and in C use the
__inline__ keyword or the inline keyword if enabled by -Xkeywords=4.
Functions inlined by the use of keywords are local (static) by default, but can
be made public with extern. See __inline__ and inline Keywords, p.149.

Use

the #pragma inline function-name directive. The #pragma directive can be

used in C++ code to avoid the local static linkage forced by the __inline__ or
inline keywords. See inline Pragma, p.139.

Use

option -XO to automatically inline functions of up to the number of nodes

set by -Xinline (see 5.4.80 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p-94). Option -XO sets this value to 40 nodes by default.

In addition to -Xinline, the options -Xexplicit-inline-factor,
-Xinline-explicit-force, and -Xcmo-... also control inlining of functions.

207

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: Code must be optimized by use of the -XO or -O option for inlining to occur.

Example:

#pragma inline swap
swap (int *pl, int *p2)
{

int tmp;
tmp = *pl;
*pl = *p2;
*p2 = tmp;
}
func ({

swap (&1,&3) ;

will be translated to:

func () {

Argument Address Optimization (0x8)

If the address of a local variable is used only when passing it to a function which
does not store that address, the variable can be allocated to a register and only
temporarily placed on the stack during the call to the function. Example:

extern int x;

int check(int *x)
{
if (*x > 569) {
return(999) ;
} else {
return(100) ;
}

208

10 Optimization
10.3 Target-Independent Optimizations

int foo(int y)
{

int 1, 3; // can be placed in registers

i=x*y;
3j check (&1i) ;
if (3 > 1) {
i = check(&3);
} else {
i = 365;

}

return j*i;

Structure Members to Registers (0x10)

This optimization places members of local structures and unions in registers
whenever it is possible. It also optimizes assignments to structure and union
members. Example:

int fpp(int);
int bar (int, int);
struct x{
int a;
int b;
}i
void goo();

foo ()
{

struct x X;

X.a = fpp(3);

X.b = fpp(5);

if (bar(X.a, X.b)) {
goo () ;

}

}

If the optimization is enabled, the compiler attempts place X.a and X.b in registers
rather than allocating memory for X.

209

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Assignment Optimization (0x80)

Multiple increments of the same variable are merged:

D++; ->
pl0] = 0; pll] = 0;
pH+; pl2] = 1;
pll] = 1; p += 2;

Pre- and post-increment/decrement addressing modes are used when available on
the target processor:

Dt++; ->
p[0] = 0; *++p = 0;
pt+;

pll] = 1; *++4p = 1;

Increments are moved from the end of a loop to the beginning in order to use
incrementing addressing modes when available on the target processor:

while(*s++) ; -> s--; while(*++s) ;

Tail Call Optimization (0x100)

In the following case, the call to printf is converted to a branch to printf and the
stack frame is undone before the branch.

int _myfunc(char *fmt, int wval)

{

return printf (fmt,val);

}

This optimization is performed even if no -O or -XO switch is used.

NOTE: In earlier releases (prior to version 4.3), the 0x100 mask was used to disable
simple branch optimization.

Common Tail Optimization (0x200)

Different paths with equal tails are rewritten. This optimization is most effective
when many case statements end the same way:

void bar(), foo(), gfoo(), hfool();

210

10 Optimization
10.3 Target-Independent Optimizations

lucky ()
{
switch (a) {
case 1:
foo(); bar();
break;
case 2:
gfoo(); bar();
break;
case 3:
hfoo(); bar();
break;
case 4:
foo(); bar();
break;
default:
bar () ;
break;

}

The call to bar() is removed from the individual case statements and executed
separately at the end of the switch statement.

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),
p-48).

Variable Live Range Optimization (0x400)

Variables with more than one live range are rewritten to make it possible to allocate
them to different registers/stack locations:

m(int i, int j) { -> m(int i$1, int j) {
int k = £(i,3); int k = £(i$1,3);
i=£(k,3); is2 = £(k,J);
return i+k; return i$2+k;

} }

In the above example, only two registers are needed to hold the three variables
after split optimization, since i$1 and k can share one register and i$2 and j can
share the other one.

211

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Constant and Variable Propagation (0x800)

Constants and variables assigned to a variable are propagated to later references of
that variable. Lifetime analysis might later remove the variable:

a=1; b =2; -> a=1; b =2;
..; k(a+b); e kK(142);

Complex Branch Optimization (0x1000)

Branches and code that falls through to conditional branches where the outcome
can be computed are rewritten. This typically occurs after a loop with multiple
exits.

extern int x;
extern int bar (int x);

int foo(int a, int b)
{

int i, y, z = 0;

x = bar(a);

if (x > 44)
{
y = a + b;
if (x < 22) { // always false when evaluated

z = a * 365; // never executed

return (x + y + z);

Loop strength reduction (0x2000)

Multiplications with constants in loops are rewritten to use additions. Instead of
multiplying i with the size every time, the size is added to a pointer (arp++ in the
example below). The array reference

ar[il
is actually treated as

*(ar_type *) ((char *)ar + i*sizeof(ar[0]))

212

10 Optimization
10.3 Target-Independent Optimizations

Example:
for (i=0; 1i<10; i++){ -> arp = ar;
sum +=var[i]; for (i=0; i<10; i++){
} sum += *arp; arp++;

Loop Count-Down Optimization (0x4000)

Loop variable increments are reversed to decrement towards zero:

for (i=0; 1i<10; i++){ -> for (i=10; i>0; i--){
sum = *arp; arp++; sum += *arp; arp++;

} }

Also, empty loops are removed.

Loop Unrolling (0x8000)

Small loops are unrolled to reduce the loop overhead and increase opportunities

for rescheduling. Option -Xunroll option sets the number of times the loop should
be unrolled. Option -Xunroll-size defines the maximum size of loops allowed to

be unrolled (see 5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.124
for both options).

Note: some sufficiently small loops may be unrolled more than n times if total code
size and speed is better. Example:
for (i=10; 1i>0; i--){ -> for (i=10; 1i>0; 1-=2){
sum += *arp; sum += *arp;

arp++; sum += *(arp+l);
arp += 2;

Global Common Subexpression Elimination (0x10000)

Subexpressions, once computed, are held in registers and not re-computed the next
time the subexpressions occur. Memory references are also held in registers.
if (p->op == A) -> tmp = p->op;
A if (tmp == A)
else if (p->op == B) R
else if (tmp == B)

213

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Undefined variable propagation (0x20000)

Expressions containing undefined variables are removed.
int bar(int);

int foo()

{

int x, a, b, y;

X 365 * (a + b);
y = bar(x);
return y;

}
No memory is allocated for a or b. The operation a + b is not performed.

Unused assignment deletion (0x40000)

Assignments to variables that are not used are removed.

int foo(int x, int y)
{

int a, b;

a =x + 365; // removed
b=x-y;
return b;

}

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),

p-48).

Minor Transformations to Simplify Code Generation (0x80000)

Some minor transformations are performed to ease recognition in the code
generator:

if (a) return 1; -> return a ? 1 : 0;
return 0;

Delayed register saving (0x100000)

Preserved registers that must be saved on the stack are stored when needed instead
of at function start.

214

10 Optimization
10.3 Target-Independent Optimizations

func () {
if (z == 0) return;
}
move.l d7,-(a7) -> tst.l _z
tst.1 _z jeq L1
beag Ll move.l d7,-(a7)
Ll move.l (a7)+,d7
move.l (a7)+,d7 Ll
rts rts

Register Coloring (0x200000)

This optimization locates variables that can share a register.
extern int a[100], b[100];

foo ()
{

int i, a, j, b;

for (1 = 0; 1 < 10; 1i++) {
a += bar(i) + 1i;

}

for (3 = 0; j < 80; j-=6) {
b += bar(i) - i;
}
}

a and j use the same register.

Interprocedural Optimizations (0x400000)

Registers are allocated across functions. Inlining and argument address

optimizations are performed.

static int foo(int a, int b)
{
return ((a > b)? a: b);

}

bar (int i, int j)
{
printf ("larger value = %d\n", foo(i,j));

}

The foo function is inlined into bar.

215

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Remove Entry and Exit Code (0x800000)

The prolog and epilog code at the beginning and end of a function which sets up
the stack-frame is not generated whenever possible.
add(int a, int b) {

return a+b;

}

link a6, #-0 ->

move.l 12 (a6),do0 move.l 8(a7),do0
add.1l 8(a6),do0 add.1l 4(a7),do
unlk a6 rts

rts

Use Scratch Registers for Variables (0x1000000)

When allocating registers, the compiler attempts to put as many variables as
possible in scratch registers (registers not preserved by the function).

NOTE: When this optimization is disabled, the compiler may still use registers to
store variables. To control register use, use #pragma global_register (global_register
Pragma, p.138).

Extend Optimization (0x2000000)

Sometimes the compiler must generate many extend instructions to extend smaller
integers to a larger one. The compiler attempts to avoid this by changing the type
of the variable. For example:

int c;

char *s;

c = *s;

if (¢ ==2) ¢ =0;
On some targets, the ¢ = *s statement has an extend instruction. By changing int ¢
to char c this instruction is avoided.

216

10 Optimization
10.3 Target-Independent Optimizations

Loop Statics Optimization (0x4000000)

Memory references that are updated inside loops are allocated to registers.
Example:

int ar[100], sum;

sum_ar () {
int i;
sum = 0;
for (i = 0; 1 < 100; i++) {
sum += ar[i];

}
}

will be translated to:

sum_ar () {
int i;
register int tmp_sum

tmp_sum = 0;

for (i = 0; 1 < 100; i++) {
tmp_sum += ar[i];

}

sum = tmp_sum;

Loop Invariant Code Motion (0x8000000)

Expressions within loops that are not changed between iterations are moved
outside the loop.

int sum;
int c[10];
int bar(int);
foo(int a, int b)
{
int i;
for(i = 0; 1 < 10; i++) {
sum += a * b;

c[i] = bar(i);

}

The operation a*b is performed outside of the loop statement.

217

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Replace Return with Branch (0x10000000)

On the MC68060 the slow return instruction rts is avoided whenever possible by
replacing the rts instruction with:

addqgl #4,sp
bra

This is done whenever the linker detects that a function is only called from one
place and the return address therefore is predetermined.

Static Function Optimization (0x20000000)
A static function that does not have its address taken can be optimized in various
ways, including:
» [If the function is not used, it can be removed.

= The compiler will use registers to pass arguments to static functions whenever
possible.

Live-Variable Analysis (0x40000000)

Live variable analysis is done for global and static variables. This means that global
and static variables can be allocated into registers and any stores into them can be
postponed until the last store in a live range.

Local Data Area Optimization (0x80000000)

This optimization creates a Local Data Area (LDA) into which variables may be
placed for fast, efficient base-offset addressing. See 14.4 Local Data Area
(-Xlocal-data-area), p.267 for details.

This optimization can be disabled by setting -Xlocal-data-area=0 or restricted to
static variables by setting -Xlocal-data-area-static-only.

218

10 Optimization
10.4 Target-Dependent Optimizations

Feedback Optimization

By utilizing profiling information from an actual execution of the target program,
the optimizer can make more intelligent decisions in various cases, including the
following:

» Register allocation can be based on the real number of times a variable is used.
» if-else clauses are swapped if first part is executed more often.

* Inlining and loop unrolling is not done on code seldom executed.

= More inlining and loop unrolling is done on code often executed.

= DPartial inlining is done on functions beginning with if (expr) return;

» Branch prediction is performed.

The -Xblock-count and -Xfeedback options are available to collect and use
profiling data. See 15.12 Profiling in An Embedded Environment, p.294.

10.4 Target-Dependent Optimizations

The following target-dependent optimizations are specific to the 68K/CPU32
family and are done by the reorder program.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-reorder option. Optimizations can be selectively disabled by specifying
-Xkill-reorder=mask, where mask can be given in hex (e.g. -Xkill-reorder=0x9).
Multiple optimizations can be disabled by OR-ing their bits; undefined mask bits
are ignored.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-reorder is deprecated and should be used only on the advice of Customer
Support.

219

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: The reorder program, which does target-dependent optimization, parses
the assembler output of the compiler. Because this output is assumed to be correct,
reorder may abort on assembly code errors, including errors in hand-written asm
macros and strings. If an error in reorder appears to be persistent, confirm that any
handwritten assembly code is correct, perhaps by removing it temporarily, before
reporting the difficulty to Customer Support.

Basic Reordering (0x1)

Instructions are reorganized to avoid stalls in the processor pipeline. For example,
when moving a data register to an address register (move.l d0,a0) on a MC68040,
the processor has to stall for one cycle if the next instruction uses that address
register. The compiler rearranges the code so the processor can execute at full

speed.
move.l d0,a0 -> move.l d0,a0
move.l (a0),dl add.1l dz2,do
add.1l d2,do move.l (a0),dl
Delete TST (0x2)

When the condition codes obtained by the tst instruction are present from another
instruction, the tst is removed:

subg.l #1,d0 -> subg.l #1,d0
tst.1l do beg .L1
begq .L1

General Peephole Optimization (0x8)

Peephole optimization makes final improvements within basic blocks, especially
to remove inefficiencies caused by interactions among other optimizations which
would be uneconomical to detect otherwise. Examples:

* A branch to a single instruction followed by another branch is rewritten by
inlining the instruction at the current address.

» Certain instructions which do not change any register are removed.
» Elimination of redundant load and stores.

= Register coalescing to eliminate moves.

220

10 Optimization
10.5 Example of Optimizations

Find Auto-Increment / Decrement (0x10)

A register indirect addressing mode followed by an increment/decrement to the

same register is rewritten to use the auto-increment/decrement addressing mode:

move.l #1, (a0) -> move.l #1, (a0)+
move.l #2,4(a0) move.l #2, (a0)+
addg.l #8,a0

Merge Moves (0x40)

Byte and word moves to consecutive memory addresses are merged together on
those 68K /CPU32 processors which can handle unaligned accesses:

move.b #0x1, (a0)+ -> move.w #0x102, (a0)+
move.b #0x2, (a0)+

Simple Scheduling Optimization (0x1000)

Attempt to optimize load instructions.

10.5 Example of Optimizations

The following C program demonstrates several of the optimizations available in
the compiler and how they interact with each other.

The numbers in parentheses are used to identify the optimizations in the generated code for
the example, shown following the table.

The target is the MC68060. The optimizations shown are:

(1) remove entry and exit code

(2) use scratch registers for variables
3) unused assignment deletion

4) complex branch optimization

)] peephole optimization

221

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

(6) loop strength reduction

(7) loop count-down optimization

8) global common subexpression elimination
9) inlining of functions

(10) register coloring

(11) constant and variable propagation

bubble.c implements sorting of an array in ascending order.

swap2 (int *ip) /* swap two ints */
{

int tmp = ip[0];

ip[0] = ip[1];

ip[1] tmp;

}

/* "bubble" sorts the array pointed to by "base", containing
"count" elements, and returns the number of tests done */

int bubble(int *base, int count)
{

int change = 1;

int i;

int test_count = 0;

while (change) {
change = 0;
count--;
for (1 = 0; i1 < count; i++) {
test_count++;
if (basel[i] > basel[i+1]) {
swap?2 (&base[il]) ;
change = 1;

}
}
return test_count;

}
When bubble.c is compiled with the following line,
dcc -tMC68060FN -S -Xpass-source -XO bubble.c

the file bubble.s is generated as shown below (option -Xpass-source conveniently
causes the source to be included intermixed as comments with the generated
assembly code in bubble.s).

Only the bubble() function is shown; code will also be present for the swap()
function in bubble.s because it is not static and may therefore be called from

222

10 Optimization

10.5 Example of Optimizations

another module. Comments have been added below to explain the optimizations

performed.
Table 10-1 lllustration of Optimizations for 68K/CPU32
C Code Generated Assembly Code Explanation

int change = 1;
int i;
int test_count = 0;

while (change) {
change = 0;

count--;

for (i = 0;
i < count;
i++) {

test_count++;

_bubble:

.L5:

.L9:

PSECT

XDEF _bubble

movem.l d5/d6/d7,-(a7)

move.l 20(a7),dl
moveq #0,d0
move.l 16 (a7),a0l
moveq #0,d7
subg.1l #1,d1

jle .L20
move.l al0,al
move.1l dl,dé
addg.l #1,d0

Start of function bubble. No link instruction is
needed (1). As many variables as possible are
put in scratch registers (2) to minimize entry/exit
code.

Preserved registers are saved.

count is loaded to d1.

test_count = 0;

base is loaded to a0. The assignment

change =1 is eliminated (3) since it is used only
in the first while test, which is known to be true
and removed (4).

Top of while (change) loop.

change = 0;

count--;
sub.l sets condition codes. No tst.1 necessary

(5).

Top test of for. Loop strength reduction (6) has
replaced all references to base[i] with a created
pointer, $$2, placed in register al. Since no
more references are made to i, loop count-down
optimization (7) decrements i from count to 0.
Temporary pointer $$2 is set to base.

iis set to count.

Top label of for loop.

test_count++;

223

User’s Guide, 5.4

Table 10-1

Wind River Compiler for 68K/CPU32

lllustration of Optimizations for 68K/CPU32 (cont'd)

C Code

Generated Assembly Code

Explanation

if (basel[i] >
base[i+1] {

swap2 ...

change = 1

~

return test_count;

move.1l

cmp. 1
jge

move.1l
move.1l
moveq
move.1l
.L8: addg.l
subg. 1l
jgt
tst.1l
jne

.L20

rts

; Allocations for

DSECT

movem. 1

4(al),d5

(al),d5
.L8

(al),d7
d7,4(al)
#1,d7
d5, (al)
#4,al
#1,d6
.L9

a7

L5

(a7)+,d5/d6/d7

_bubble

base

count
change
test_count
i

$52

$$3

$$2[1] is loaded to d5. Since this value is used
later on, it is remembered in $$3 (8).

if. See if a swap must take place.

If not, branch to .L8. The function swap2 is
inlined (9). Variable propagation (11) removes
the use of ip.

tmp = $$2[0];

ip[1] = tmp;

change =1;

ipl0] = ip[1] (= $$3);

$$2++ temporary pointer is removed.

iis decremented (7).

i tested with 0 (5). Bottom of for.

Bottom test of while (change).

Registers are restored. No unlk instruction
needed (1).

Return to caller.

Variable allocations are always given in
comments to ease debugging.

Variables are put in scratch registers to
minimize entry/exit code (2).

Loop strength reduction (6) variable.

Global common subexpression elimination (8)
for variable base[i+1].

224

10 Optimization
10.5 Example of Optimizations

Table 10-1 lllustration of Optimizations for 68K/CPU32 (cont'd)
C Code Generated Assembly Code Explanation
; a7z tmp tmp and change use same register (10).
; not allocated ip Variable deleted by variable propagation (11).

225

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

226

11

The Lint Facility

11.1 Introduction 227
11.2 Examples 228

11.1 Introduction

The lint facility is a powerful tool to find common C programming mistakes at
compile time. (For C++, see -Xsyntax-warning-on on 5.4.150 Disable Certain Syntax
Warnings (-Xsyntax-warning-...), p.123.) Lint has the following features:

It is activated through command-line option -Xlint.

-Xlint does all checking while compiling. Since it does not interfere with
optimizations, it can always be enabled.

-Xlint gives warnings when a suspicious construct is encountered. To stop the
compilation after a small number of warnings, use the -Xstop-on-warning
option to treat all warnings like errors.

Each individual check that -Xlint performs can be turned off by using a bit
mask. See the -Xlint option on 5.4.89 Generate Warnings On
Suspicious/Non-portable Code (-Xlint=mask), p.97 for details.

-Xlint can be used with the -Xforce-prototypes option to warn of a function
used before its prototype.

227

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The comments in the following C program demonstrate probable defects that will
be detected by using -Xlint and -Xforce-prototypes. There are three types of errors
marked by different comment forms:

» Comments containing the form “(0xXX)” are on lines with suspicious
constructs detected by -Xlint; the hex value is the -Xlint bit mask which
disables the test.

» Comments of the form /* warning: ... */and /* error: ... */ are used on lines for
which the compiler reports a warning or error with or without -Xlint.

* Two lines are a result of option -Xforce-prototypes as noted.

Actual warnings from the compiler follow the code. Note that warnings are not
necessarily in line number order because the compiler detects the errors during
different internal passes.

11.2 Examples

Example 11-1 Program for -Xlint Demonstration

1: void f1(int);

2: void f£2();

3: /* (-Xlint mask bit disables) */

4: static int f4(int i) /* function never used (0x10) */
5: {

6: if (1 == 0)

7 return; /* missing return expression (0x20) */
8: return i+4;

9: }

10:

11: static int f5(int 1); /* error: function not found */
12

13: static int 1i1; /* variable never used (0x10) */
14:

15: int m(char j, int zl) /* parameter never used (0x10) */
16: {

17: int i, int4;

18: char cl;

19: unsigned u = 1; /* variable set but not used (0x40) */
20: int z2; /* variable never used (0x10) */
21:

22: cl = int4; /* narrowing type conversion (0x100) */
23:

24: if () {

25: u = 4294967295;

228

26:

27:

28:

29:
30:

31:

32:

33:
34:
35:
36:
37:
38:
39:
40:

11 The Lint Facility
11.2 Examples

i=20;
} else {
u = 4294967296; /* warning: constant out of range */
}
£1(1); /* variable might be used
before being set (0x02) */
switch(i) {
j = 2; /* statement not reached (0x80) */
break;
case 0: /* -X force prototype, not lint, warns: */
f2(1); /* function has no prototype */
£3(1); /* function not declared */
£5(1);
break;
Example 11-2 -Xlint example output

"lint.c", line 7: warning (dcc:1521): missing return expression
"lint.c", line 22: warning (dcc:1643): narrowing or signed-to-unsigned type
conversion found: int to unsigned char

"lint.c", line 28: warning (dcc:1243): constant out of range

"lint.c", line 37: warning (dcc:1500): function f2 has no prototype
"lint.c", line 38: warning (dcc:1500): function f3 has no prototype
"lint.c", line 42: warning (dcc:1583): overflow in constant expression
"lint.c", line 48: warning (dcc:1643): narrowing or signed-to-unsigned type

conversion found: short to unsigned char
"lint.c", line 48: warning (dcc:1244): constant out of range (=)
"lint.c", line 47: warning (dcc:1251): label deflaut not used

(

(
"lint.c", line 15: warning (dcc:1516): parameter zl is never used
"lint.c", line 20: warning (dcc:1518): variable z2 is never used
"lint.c", line 33: warning (dcc:1522): statement not reached
"lint.c", line 50: warning (dcc:1522): statement not reached
"lint.c", line 62: warning (dcc:1521): missing return expression
"lint.c", line 19: warning (dcc:1604): Useless assignment to variable u.

Assigned value not used.

"lint.c", line 22: warning (dcc:1604): Useless assignment to variable cl.
Assigned value not used.

"lint.c", line 43: warning (dcc:1604): Useless assignment to variable j.
Assigned value not used.

"lint.c", line 22: warning (dcc:1608): variable int4 might be used before set
"lint.c", line 30: warning (dcc:1608): variable i might be used before set
"lint.c", line 54: warning (dcc:1606): condition is always true/false
"lint.c", line 58: warning (dcc:1606): condition is always true/false
"lint.c", line 4: warning (dcc:1517): function f4 is never used

"lint.c", line 11: error (dcc:1378): function f5 is not found

"lint.c", line 13: warning (dcc:1518): variable il is never used

229

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

230

12

Converting Existing Code

12.1 Introduction 231
12.2 Compilation Issues 231
12.3 Execution Issues 234

12.4 GNU Command-Line Options 236

12.1 Introduction

Compiling code originally developed for a different system or toolkit is usually
straightforward, especially given the extensive compatibility options supported by
the tools. This chapter gives pointers on working around the most common
differences among systems and compilers.

12.2 Compilation Issues

The following list includes hints on what to do when a program fails to compile
and you want to avoid changing the source code.

231

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Look for Missing Standard Header Files

Different systems have different standard header files and the declarations within
the header files may be different. Use the -i filel=file2 option to change the name of
a missing header file (see 5.3.13 Modify Header File Processing (-i filel=file2), p.43 for
details).

Older C Code

Look for Code Using Loose Typing Control

Some older C code is written for compilers that do not check the types of identifiers
thoroughly. Use the -Xmismatch-warning=2 option if you get error messages like
“illegal types: ...”.

Look for Code Written for PCC

C code written for older UNIX compilers, such as PCC (Portable C Compiler), may
not be compatible with the C standard. Use the -Xdialect-pcc option to enable
some older language constructs. See B. Compatibility Modes: ANSI, PCC, and K&R C
for more information.

Older Versions of the Compiler

C++ Coding Conventions

When exceptions and run-time type information are enabled (-Xrtti and
-Xexceptions), the current compiler supports the C++ standard. Source code
written for earlier versions of the Wind River (Diab) C++ compiler may require
modification before it can be compiled with version 5.0 or later. We strongly
recommend bringing all source code into compliance with the ANSI standard, but
if time does not permit this, you can use the -Xc++-old option to invoke the older
compiler.

232

12 Converting Existing Code
12.2 Compilation Issues

C++ Libraries

Older (pre-5.0) versions of the compiler require different C++ libraries:

Default library Old library

libd.a libdold.a

libstl.a libios.a, libcomplex.a
libstlstd.a libios.a, libcomplex.a
libstlabr.a (none)

See 32.2.1 Libraries Supplied, p.480 for more information.

When -Xc++-0ld is specified, the dplus driver automatically selects the
appropriate standard C++ library—that is, it invokes -ldold instead of -1d to link
libdold.a instead of libd.a. However, to link the older iostream and complex
libraries, you must use the -1 option (see Specify Library or File to Process (-Iname,
-Lifilename), p.395) explicitly. If you use the dcc driver or invoke dld directly, all the
old libraries must be specified explicitly. Examples:

dplus -Xc++-0ld hello.cpp
dplus -Xc++-0ld -lios -lcomplex hello.cpp
dcc -Xc++-0ld -1ldold -lios -lcomplex hello.cpp
dld -YP,search-path -1:windiss/crt0.o hello.o
-0 hello -1dold -lios -1lc wversion-path/conf/default.dld

In the first two examples, -1dold is invoked automatically because of -Xc++-old. In
the second two examples, all the older C++ libraries must be specified explicitly.

NOTE: The -Xc++-old option cannot be used selectively within a project. If this
option is used, all files must be compiled and linked with -Xc++-old to make the
output binary-compatible. Selective use of -Xc++-o0ld should produce linking
errors; if it does not, the resulting executable is still likely to be unstable.

VxWorks developers should not use -Xc++-old.

To select the old compiler and libraries by default (eliminating the need for
-Xc++-o0ld), create a user.conf file in which DCXXOLD is set to YES and ULFLAGS2
invokes the old libraries. For example:

Select old compiler

DCXXOLD=YES

Add these as default C++ libraries
ULFLAGS2="-1dold -liosold”

For more information, see A. Configuration Files and 2.3 Environment Variables, p.15.

233

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Startup and Termination Code

If you are compiling legacy projects that used old-style .init$nn and .fini$nn code
sections to invoke initialization and finalization functions, or if your code
designates initialization and finalization functions with old-style _STI__nn_and
_STD__nn_ prefixes, you may get compiler or linker errors. The -Xinit-section=2
option (see 5.4.77 Control Generation of Initialization and Finalization Sections
(-Xinit-section), p.93) allows you to continue using old-style startup and
termination. The recommended practice, however, is to adopt the new method of
creating startup and termination code—that is, using attributes to designate
initialization and finalization functions, and .ctors and .dtors sections to invoke
them at run-time. See 15.4.8 Run-time Initialization and Termination, p.282 for more
information.

12.3 Execution Issues

The following list includes hints on what to do when a program fails to execute
properly:
Compile With -Xlint
The -Xlint option enables compile-time checking that will detect many
non-portable and suspicious programming constructs. See 11. The Lint Facility.
Recompile Without -O

If a program executes correctly when compiling without optimizations it does not
necessarily mean something is wrong with the optimizer. Possible causes include:

» Use of memory references mapped to external hardware. Add the volatile
keyword or compile using the -Xmemory-is-volatile option. Note: option
-Xmemory-is-volatile disables some optimizations which may produce
slower code.

= Use of uninitialized variables exposed by the optimizer.
» Use of expressions with undefined order of evaluation.

Uninitialized local variables will behave differently on dissimilar systems,
depending how memory is initialized by the system. The compiler generates a

234

12 Converting Existing Code
12.3 Execution Issues

warning in many instances, but in certain cases it is impossible to detect these
discrepancies at compile time.
Look for Code Allocating Dynamic Memory in Invalid Ways

The following invalid uses of operator new() or malloc() may go undetected on
some systems:

* Assuming the allocated area is initialized with zeroes.
» Writing past the end of the allocated area.
» Freeing the same allocated area more than once.

Look for Expressions with Undefined Order of Execution
The evaluation order in expressions like x + inc(&x) is not well defined. Compilers
may choose to call inc(&x) before or after evaluating the first x.
Look for NULL Pointer Dereferences
On some machines the expression if (*p) will work even if p is the zero pointer.
Replace these expressions with a statement like if (p != NULL && *p).
Look for Code Which Makes Assumptions About Implementation Specific Issues

Some programs make assumptions about the following implementation specific
details:

» Alignment. Look for code like:
char *cp; double d; *(double *)cp = d;
» Size of data types.

» Byte ordering. See _ packed__ and packed Keywords, p.151 on methods for
accessing byte-swapped data.

» Floating point format.

» Sign of plain chars (those declared without either the signed or unsigned
keyword). By default plain charis signed. To force a convention opposite to the
default, see 5.4.25 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned),
p-70.

» Sign of plain int bit-fields. bit-fields of type int are unsigned by default. Use
the option -Xbit-fields-signed (C only) to be compatible with systems that
treat plain int bit-fields as signed.

235

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

12.4 GNU Command-Line Options

By default, GCC option flags from the command line or makefile are parsed and,
if possible, translated to equivalent Wind River options. Translations are
determined by the tables in the file gcc_parser.conf. Use -Xgcc-options-off to
disable this feature. -Xgcc-options-verbose outputs a list of translated options.

236

13

C++ Features and Compatibility

13.1 Header Files 237

13.2 C++ Standard Libraries 238

13.3 Migration From C to C++ 239

13.4 Implementation-Specific C++ Features 240
13.5 C++ Name Mangling 243

13.6 Avoid setjmp and longjmp 247

13.7 Precompiled Headers 247

This chapter describes compiler’s implementation of the ANSI C++ standard. For
more information, see the references cited in Additional Documentation, p.8.

13.1 Header Files

The C++ compiler supports all ANSI-specified header files. Generally C++ uses
the same header files as C (see 33. Header Files), but the C++ standard imposes
additional requirements on standard C header files and the declarations need to be
adjusted to work in both environments. See 13.3 Migration From C to C++, p.239
below.

237

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

13.2 C++ Standard Libraries

The Wind River Compiler includes two versions of the standard C++ library. The
complete version provides full support for exceptions. The abridged version does
not provide exception-handling functions, the type_info class for RTTI support, or
complete STL functionality.

The abridged version produces smaller, faster executables than the complete
version, but the difference in size and speed varies from project to project. In
general, the more an application uses the Standard Template Library, the greater
the benefit from switching to the abridged version.

To use the standard library, include one of the following linker options in your
project makefile:

Option Library

-Istl Link to the complete standard library.
-Istlstd Same as -1stl.

-Istlabr Link to the abridged standard library.

Projects that use any part of the standard library (including iostreams) must
specify one of these linker options. For more information about library modules,
see 32. Library Structure, Rebuilding.

NOTE: VxWorks developers should not specify any of the -Istl... options listed
above. To select a C++ library for VxWorks projects, see the documentation that
accompanied your VxWorks development tools.

To use the abridged library, you must also specify the -Xc++-abr compiler option.
For example:

dplus -Xc++-abr filel.cpp

-Xc++-abr automatically disables exception-handling (-Xexceptions=off).

For projects that use the complete C++ library, exception-handling must be enabled
(-Xexceptions, the default). For projects that use the abridged version,
exception-handling may be enabled as long as no exception propagates through
the library.

While the compiler supports the wchar_t type, in most environments the libraries
do not support locales, wide- or multibyte-character functions, or the long double
type. (Some VxWorks files may include stubs for unsupported wide-character

238

13 C++ Features and Compatibility
13.3 Migration From C to C++

functions.) For user-mode (RTP) VxWorks projects, the libraries support
wide-character functions.

Nonstandard Functions

The C++ libraries include definitions for certain traditional but nonstandard
Standard Template Library and iostream functions. You can omit these definitions
by editing the file version_path/include/cpp/yvals.h.

To omit the Standard Template Library extensions, change the definition of
_HAS_TRADITIONAL_STL to:

#define _HAS_TRADITIONAL_STL 0

To omit the iostream extensions, change the definition of
_HAS_TRADITIONAL_IOSTREAMS to:

#define _HAS TRADITIONAL_IOSTREAMS 0

To see which functions are nonstandard, look for the _"HAS_TRADITIONAL_STL
and _HAS_TRADITIONAL_IOSTREAMS macros in the library header files.

13.3 Migration From C to C++

When C functions are converted to C++ or called from a C++ program, minor
differences between the languages must be observed and the header files must be
written in C++ style. The standard predefined macro __cplusplus can be used with
#ifdef directives in the program and header files for code that will be used in both
C and C++ modules.

To call a C function from a C++ program, declare the prototype with extern "C" (to
avoid name mangling) and declare the arguments in C++-compatible format. The
extern "C" specification may apply to the single declaration that follows or to all
declarations in a block. For example:

extern "C" int f (char c);

extern "C"

{

#include "my c_lib.h"
}

239

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

For information about calling C++ functions from C modules, see 9.4 C++
Arqument Passing, p.191.

A few general differences between C and C++ are listed below. For more
information, see Additional Documentation, p.8.

= A function declared func() has no argument in C++, but has any number of
arguments in C. Use the void keyword for compatibility, e.g. func(void), to
indicate a function with no arguments.

» A character constant in C++ has the size of a char, but in C has the size of an int.
= Anenum always has the size of an int in C, but can have another size in C++.
= The name scope of a struct or typedef differs slightly between C and C++.

* There are additional keywords in C++ (such as catch, class, delete, friend,
inline, new, operator, private, protected, public, template, throw, try, this,
and virtual) that could make it necessary to modify C programs in which these
keywords occur as declared identifiers.

= InC, a global const has external linkage by default. In C++, static or extern
must be used explicitly.

13.4 Implementation-Specific C++ Features

This subsection describes features of C++ that may behave differently in other
implementations of the language.

Construction and Destruction of C++ Static Objects

Before the first statement of the main() function in a C++ program can be
executed, all global and static variables must be constructed. Also, before the
program terminates, all global and static objects must be destructed.

These special constructor and destructor operations are carried out by code in the
initialization and finalization sections as described under 15.4 Startup and
Termination Code, p.276.

240

13 C++ Features and Compatibility
13.4 Implementation-Specific C++ Features

Templates
Function and class templates are implemented according to the standard.

Template Instantiation

There are two ways to control instantiation of templates. By default, templates are
instantiated implicitly—that is, they are instantiated by the compiler whenever a
template is used. For greater control of template instantiation, the
-Ximplicit-templates-off option tells the compiler to instantiate templates only
where explicitly called for in source code—for example:

template class A<int>; // Instantiate A<int> and all
// member functions.
template int f1(int); // Instantiate function int fl{int).

The compiler options summarized below control multiple instantiation of
templates.

Options Related to Template Instantiation in C++

-Ximplicit-templates (5.4.73 Control Template Instantiation (-Ximplicit-templates...),

p-91)
Instantiate each template wherever used. This is the default.

-Ximplicit-templates-off (5.4.73 Control Template Instantiation
(-Ximplicit-templates...), p.91)
Instantiate templates only when explicitly instantiated in code.

-Xcomdat (5.4.32 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.74)
When templates are instantiated implicitly, mark each generated code or data
section as “comdat”. The linker collapses identical instances so marked into a
single instance in memory. This is the default.

-Xcomdat-off (5.4.32 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.74)
Generate template instantiations and inline functions as static entities in the
resulting object file. Can result in multiple instances of static member-function
or class variables. This requires that -Ximplicit-templates-off be enabled.

-Xcomdat-info-file (5.4.33 Maintain Project-wide COMDAT List (-Xcomdat-info-file),
p.74)
Maintain a list of COMDAT entries across modules. Speeds up builds and
reduces object-file size, but has no effect on final executables.

241

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xexpl-instantiations (Write Explicit Instantiations File (-Xexpl-instantiations),
p-402)
This linker option writes a file of all instantiations to stdout. Can be used with
-Xcomdat-off to generate a complete list of template instantiations; source
code can then be edited to explicitly instantiate templates where needed and
then recompiled with -Ximplicit-templates-off.

This option is deprecated.

Using Export With Templates
There are two constraints on the use of the export keyword:

* An exported template must be declared exported in any translation unit in
which it is instantiated (not just in the translation unit in which it is defined).
In practice, this means that an exported template should be declared with
export in a header file.

= A translation unit containing the definition of an exported template must be
compiled before any translation unit which instantiates that template.
Exceptions

Exception handling provides a mechanism for responding to software-generated
errors and other exceptional events. It is implemented according to the standard.

NOTE: See 15. Use in an Embedded Environment for a notes on implementing
exceptions in a multitasking environment.

The generation of exception-handling code can be disabled using the
-Xexceptions=0 compiler option. When this option is enabled, the compiler also
flags the keywords try, catch, and throw as errors.

Array New and Delete

The two memory allocation/deallocation operators operator new[]() and
operator delete[]() are implemented as defined in the standard.

242

13 C++ Features and Compatibility
13.5 C++ Name Mangling

Type ldentification

The typeid expression returns an expression of type typeinfo&. The type_info
class definition can be found in the header file typeinfo.h.

Dynamic Casts in C++

Namespaces

Dynamic casts are made with dynamic_cast(expression) as described in the
standard.

Namespaces are implemented according to the standard. The compiler option
-Xnamespaces-off disables namespaces; -Xnamespaces-on (the default) enables
them.

Undefined Virtual Functions

The C++ standard requires that each virtual function, unless it is declared with the
pure-specifier (=0), be defined somewhere in the program; this rule applies even if
the function is never called. However, no diagnostic is required for programs that
violate the rule. Programs with undefined non-pure virtual functions compile and
run correctly in some cases, but in others generate “undefined symbol” linker
errors.

13.5 C++ Name Mangling

NOTE: To interpret a mangled name, see Demangling utility, p.246.

The compiler encodes every function name in a C++ program with information
about the types of its arguments and (if appropriate) its class or namespace. This
process, called name mangling, resolves scope conflicts, enables overloading,

243

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

standardizes non-alphanumeric operator names, and helps the linker detect errors.
Some variable names are also mangled.

When C code is linked with C++ code, the C functions must be declared with the
extern "C" linkage specification, which tells the C++ compiler not to mangle their
names. (The main function, however, is never mangled.) See 13.3 Migration From C
to C++, p.239 for examples.

The scheme used for mangling follows the suggestions in The Annotated C++
Reference Manual (by Ellis and Stroustrup), which should be consulted for details.
In a mangled name, two underscore characters separate the original name from the
other encoded information. For this reason, the user should avoid double
underscores in class or function names.

A function name is encoded with the types of its arguments. A member function
also has the class name or namespace encoded with it. The names of classes and
other user-defined types are encoded as the length of the name in decimal followed
by the name itself; nested class names contain the names of all classes in the
hierarchy using the Q modifier (see the table below), and template class names
include the arguments of the template. When necessary, local class names and
other identifiers are encoded as the name itself followed by __L followed by an
arbitrary number. Simple type indicators are single characters.

A global function has a double underscore appended to its name, followed by the
indicator F and the types of its arguments. For example, void myFunc(int, float)
would be mangled as myFunc__Fif.

A member function has the encoded class name or namespace inserted before the
F indicator—for example, myFunc__7MyClassFif. An S preceding the F indicates
a static member function.

Static data members and variables that are members of namespaces are also
mangled. Their mangled form consists of a double underscore appended to the
variable name, followed by the encoded class name or namespace—for example,
myNumber__7MyClass.

Functions that instantiate or specialize templates have a template signature.
Template parameters are encoded as ZnZ, where n is the parameter’s position
(starting with 1); if a parameter’s depth is greater than 1, it is encoded as Zn_mZ,
where m is parameter depth. The return type is also included in the mangled name.
An__S after a template name indicates that the template is specialized; an __S after
the argument list indicates that the instance is specialized. The __S indicator is
similarly placed in the encoded names of parent classes of functions and static data
members generated from templates.

244

13 C++ Features and Compatibility
13.5 C++ Name Mangling

For constructors, destructors, operator class members, and certain other
constructs, a special string beginning with two underscores is prefixed to the class
name. For example, _ ct indicates a constructor and __pl indicates the + operator.
See The Annotated C++ Reference Manual for details.

Argument types are encoded as follows:

Type Encodings for Name Mangling in C++

An_
Array (followed by the simple type name), where 7 is the array size.
b
bool
a
double
c
char
e
Ellipses parameter (...)
Ftype-list
Function with parameters of types specified by the type-list.
£
float
i
int
L
long long
1
long
MTypelType2
Pointer to member in Typel of Type2. Typel is always of the form n name.
Mmn
Repeat m arguments with the same type as argument number 7. m is limited
to a single digit.
nName
User-defined type, with n giving the length of Name and Name giving the type
name.
Ptype

Pointer to type.

245

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Qm_nlnamel
n2name2...

Nested class name or namespace: m user-defined type names after Qm.
Rtype

Reference to type.

long double

short

T n
Same type as argument number 7.

void

wchar t

The following modifiers are inserted before the type indicator. If more than one
modifier is used, they appear in alphabetical order.

Modifiers for Type Encodings

c
const type
s
signed type
U
unsigned type
v
volatile type

Demangling utility

To interpret a mangled name, enter
ddump -F

and then interactively enter mangled names one per line. ddump displays the
demangled meaning of the name after each entry. If the entry is not a valid
mangled name, there will be no output.

246

13 C++ Features and Compatibility
13.6 Avoid setjmp and longjmp

Table 13-1 Examples of ddump -F

Entry to ddump Interpreted result
myfunc__Fv myfunc (void)
mymain__ FiPPc mymain (int , char *¥*)

13.6 Avoid setjmp and longjmp

It is difficult to safely use setjmp() and longjmp() in C++ code because jumps out
of a block may miss calls to destructors and jumps into a block may miss calls to
constructors.

Note that in addition to visible user-defined objects, the compiler may have created
temporary objects not visible in the source for use in optimized code.

Consider instead C++ exception handling in situations which might have used
setjmp and longjmp. It will still be necessary to account for allocations and
deallocations not performed through contructors and destructors of automatic
objects.

13.7 Precompiled Headers

In projects with many header files, a large part of the compilation time is spent
opening and parsing included headers. (To see how many header files are opened
during compilation, use the -H option.) You can speed up compilation by using
precompiled headers, enabled with the -Xpch-... options. The easiest option to use
is -Xpch-automatic. For example:

dplus -Xpch-automatic filel.cpp

compiles filel.cpp using precompiled headers. This means that a set of header files
is saved in a preparsed state and reused each time filel.cpp is compiled. The first

247

PCH Files

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

time you compile a project with -Xpch-automatic you will probably not notice an
improvement in speed, but subsequent compilations should be faster.

Within a header file, use #pragma no_pch to suppress all generation of
precompiled headers from that file. To selectively suppress generation of
precompiled headers, use #pragma hdrstop; headers included after #pragma
hdrstop are not saved in a parsed state.

Precompiled headers are supported by the C++ compiler only.

Parsed headers are saved in PCH (precompiled header) files. The compiler
processes PCH files only if one of the following options is enabled:
-Xpch-automatic, -Xpch-create=filename, or -Xpch-use=filename. If more than one
of these options is given, only the first is considered.

When -Xpch-automatic is enabled, the compiler looks for a PCH file in the current
working directory (unless you use -Xpch-directory=directory to specify a different
location) and, if possible, uses the preparsed headers in that file. Otherwise a PCH
file is generated with the default name sourcefile.pch, where sourcefile is the name
of the primary source-code file. When the source file is recompiled, or when
another file is compiled in the same directory, sourcefile.pch is checked for
suitability and used if possible.

Before using a PCH file, the compiler always verifies that it was created in the
correct directory using the same compiler version, command-line options, and
header-file versions as the current compilation; this information is stored in each
PCH file. If more than one PCH file is applicable to a compilation, the compiler
uses the largest file available.

If you want to specify a name for the generated PCH file, use
-Xpch-create=filename instead of -Xpch-automatic:

dplus -Xpch-create=myPCH filel.cpp

Later, you can reuse myPCH—when compiling the same file or a different file—by
specifying -Xpch-use=filename:

dplus -Xpch-use=myPCH file2.cpp

The filename specified with -Xpch-create or -Xpch-use can include a full directory
path, or the option can be combined with -Xpch-directory:

dplus -Xpch-use=myPCH -Xpch-directory=/source/headers somefile.cpp

248

13 C++ Features and Compatibility
13.7 Precompiled Headers

Limitations and Trade-offs

Diagnostics

A generated PCH file includes a snapshot of all the code preceding the header stop
point—that is, #pragma hdrstop or the first token in the primary source file that
does not belong to a preprocessor directive. If the header stop point appears within
an #if block, the PCH file stops at the outermost enclosing #if.

A PCH file is not generated if the header stop point appears within:
» An #if block or #define started within a header file.

* A declaration started within a header file.

» Alinkage specification’s declaration list.

* Anunclosed scope, such as a class declaration, established by a header file. (In
other words, the header stop point must appear at file scope.)

Further, a PCH file is not generated if the header stop point is preceded by:
» A reference to the predefined macro _ DATE__or _ TIME__.
» The #line preprocessing directive.

A PCH file is generated only if the code preceding the header stop point has
produced no errors and has introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. Finally, a PCH file is
generated only if sufficient memory is available.

Efficient use of precompiled headers requires experimentation and, in most cases,
minor changes to source code. PCH files can become bulky; included files must be
organized so that headers are preparsed to as few shared PCH files as possible.

The -Xpch-messages option generates a message each time a PCH file is created or
used. The -Xpch-diagnostics option generates an explanatory message for each
PCH file that the compiler locates but is unable to use.

249

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

250

14

Locating Code and Data,
Addressing, Access

14.1 Controlling Access to Code and Data 251

14.2 Addressing Mode — Functions, Variables, Strings 257
14.3 Access Mode — Read, Write, Execute 260

14.4 Local Data Area (-Xlocal-data-area) 267

14.5 Position-Independent Code and Data (PIC and PID) 268

14.1 Controlling Access to Code and Data

By default, the compiler generates architecture-specific code for locating and
accessing code and data in memory which will be suitable for many cases. In
addition, a number of options are available for exercising fine control over the
process, for locating code and data at specific locations in memory, and for
generating position-independent code. All are described in detail in this chapter.

section and use_section Pragmas
Code and data are generated in sections in an object file, combined by the linker into
an executable file, and ultimately located in target memory at specific locations.

Default sections are predefined and have certain attributes. To change the name of
a default section, use the -Xname-... option (see 5.4.102 Specify Section Name

251

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

(-Xname-...), p.104). The section and use_section pragmas may be used to change
the default attributes, to define new sections, and to control the assignment of code
and variables to particular sections and, along with the linker command file, their
locations.

#pragma section class_name [istring [ustring] [addr-mode] [acc-mode] [address=x]
#pragma use_section class_name |variable function] S

class_name
Required. Symbolic name for a predefined or user-defined section class to
hold objects of a particular class, e.g., code, initialized variables, or
uninitialized variables.

istring
Name of the actual section to contain initialized data. For variables, this
means those declared with an initializer (e.g., int x=1;). Use empty quotes if
this section is not needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this

means those declared with no initializer (e.g., int x;). This name may be
omitted if not needed (the default value is used).

addr-mode
Form of addressing mode for access to variables or functions in the
section. See 14.2 Addressing Mode — Functions, Variables, Strings, p.257 for
details.

acc-mode

Accessibility to the section. See 14.3 Access Mode — Read, Write, Execute,
p-260 for details.

#pragma section defines a section class and, optionally, one or two sections in the
class. A section class controls the addressing and accessibility of variables and code
placed in an instance of the class.

For C++, #pragma section declarations apply to all global and namepace scope
variables, class static member variables, global and namespace scope functions,
and class member functions that follow the pragma.

#pragma use_section selects a section class for specific variables or functions after
the section class has been defined by #pragma section.
Notes for #pragma section and #pragma use_section

The C++ compiler has the following limitations for #pragma section and
#pragma use_section:

252

14 Locating Code and Data, Addressing, Access
14.1 Controlling Access to Code and Data

» Templates are not affected by #pragma section or #pragma use_section.
However, you can alter the placement of all the data or code in a file
(including templates) by using the command-line options -Xname-data
(and related options, such as -Xname-sdata or -Xname-const) or
-Xname-code. See 5.4.102 Specify Section Name (-Xname-...), p.104 for more
information on these options.

» #pragmasection STRING cannot be used to alter the placement of strings.
Instead, use the command-line option -Xname-string,.

» #pragma use_section must be followed by at least one declaration or
definition of an entity for it to apply to that entity, as in:
#pragma section MYCODE “.mycode”
void my_func ()
{
}
A section class_name (e.g., DATA) is the symbolic name of a section class and it
is used only in writing #pragma section and #pragma use_section directives.

At any given point in the source, there may be up to two physical sections
associated with a section class—an initialized section and an uninitialized
section as named by the istring and ustring attributes to #pragma section
respectively (e.g., “.data”). It is these physical sections which will appear in the
object file and which may be manipulated during linking.

istring is an optional quoted string giving a name for a particular section of the
given class which is to contain initialized data. The name is used in the
assembler .section directive to switch to the desired section for initialized data.
An empty string or no string at all indicates that the default value should be
used. Note that a section to contain code is “initialized” with the code.
Examples:

".text", ".data", ". init"

ustring is an optional quoted string giving a name for a particular section of the
given class which is to contain uninitialized data. The name is used in the
assembly .section directive to switch to the desired section for uninitialized
data. An empty string, or no string at all, indicates that the default value
should be used. The string “COMM” indicates that the .comm/.Icomm
assembler directives should be used. See 23.4 COMMON Sections, p.381
regarding allocation of common variables for full details; generally however,
COMM sections are gathered together by the linker an placed at the end of the
.bss output section. Examples:

".bss", ".data", "COMM"

253

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

254

Predefined section classes: Except when a user-defined section class has been
specified, all variables and functions are categorized by default into one of
several predefined section classes depending on how they are defined and
how large they are. Each predefined section class is defined by default values
for all of its attributes. Table 14-1 gives the names and attributes of all
predefined section classes.

By using the #pragma use_section directive, any variable and function can be
individually assigned to any of the predefined section classes, or to a
user-defined section class.

If a section pragma for some class is given with no values for one or more of
the attributes, those attributes are always restored to their default values as
given in Table 14-1. This is true even for a user-defined class_name (the table
shows the default attributes in this case as well).

Multiple #pragma section directives with different attributes can be given for
the same class_name. Variables and functions use the earliest non-default
directive that is valid at the point of definition. (This behavior can be changed
with the -Xpragma-section-last directive; see 5.4.113 Control Interpretation of
Multiple Section Pragmas (-Xpragma-section-...), p.109.)

Pragmas are not seen across modules unless a common header file is included.

The compiler associates each function with a storage space at the pointin a
module where it is first declared or defined. Subsequent attempts within the
same module to assign a function to a storage space are ignored.

For functions that are declared multiple times, the first section binding applies,
unless the -Xpragma-section-last option has been specified. For example:

void my_func () ; /* binds to “text” */
#pragma section CODE “.mycode”

void my_func () /* does not override previous binding unless
-Xpragma_section-last has been used */

In this example, to force my_func to go into .mycode, you need to do one of
the following:

* Move the #pragma section before the initial declaration of my_func.
» Specify -Xpragma-section-last on the command line.

» Use #pragma use_section:

14 Locating Code and Data, Addressing, Access
14.1 Controlling Access to Code and Data

void my_func () ;

#pragma section CODE “.mycode”
#pragma use_section CODE my_func

void my func()

{
}

Section Classes and Their Default Attributes

Table 14-1 below gives the predefined section classes and their default attributes,
and also the defaults for a user-defined section class.

255

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Notes for Table 14-1:

Table 14-1 Section Classes and Their Default Attributes
Default
section
class_name Description and Example istring ustring addr-mode acc-mode
CODE code generated in functions text n/a standard RX
and global asm statements:
int cube(int n)
{ return n*n*n; }
DATA static and global variables , .data COMM far-absolute RW
size in bytes > -Xsmall-data:
static int a[l0];
SDATA Variables, size in .sdata .sbss near-data RW
bytes <= -Xsmall-data: (a5-relative)
static int 1i;
CONST const variables, size in text text far-absolute R
bytes > -Xsmall-const:
const int a[lO] = {1, ..};
SCONST const variables, size in .sdata .sbss near-code R
bytes <= -Xsmall-const: (PC-relative)
const int ic = 53;
STRING string constants: text n/a far-absolute R
"hello\n"
user-defined #pragma section USERdata COMM far-absolute RW

* Small data and const: Because the 68K/CPU32 ABIs traditionally do not
support the concept of small data or small constant, the -Xsmall-const and the
-Xsmall-data options are set to zero as a default. Thus, as noted above, “small”
scalar variables may be located in a “local data area” — see 14.4 Local Data Area
(-Xlocal-data-area), p.267 for details.

If the -Xsmall-data option is set to a non-zero value, register a5 will be used to
address data in this section. This will typically create faster and more compact

256

14 Locating Code and Data, Addressing, Access
14.2 Addressing Mode — Functions, Variables, Strings

code. Be careful not to mix code generated with different settings for
-Xsmall-data. Because the PC register is used for code relative addressing, it
does not make sense to use the SCONST section class. Therefore the
-Xconst-in-text=5 option is set as a default. This means that small const
variables will go into the SDATA section class.

* Local data area optimization: if -Xsmall-data or -Xsmall-const is zero, global
and static scalar variables may be placed in a local data area if -Xlocal-data-area,
which has a default value of 32,767 bytes, is non-zero and optimization is in
effect (either -O or -XO is present). The local data area will be placed in the .data
section for the module if any such variable in it has an initial value, or in the
.bss section for the module if none do. When uninitialized variables are placed
in the .data section in this way, it overrides the default COMM (common)
section name as given above. See 14.4 Local Data Area (-Xlocal-data-area), p.267
for further details and restrictions.

» The section names shown in the table assume the default value for option
-Xconst-in-text. See Moving initialized Data From “text” to “data”, p.266 if
-Xconst-in-text is set to a non-default value.

= Dynamically initialized C++ const variables are treated like uninitialized
non-const variables. For example:

int £();
const int x = £();

By default, x is placed in the .bss section.

14.2 Addressing Mode — Functions, Variables, Strings

The addr-mode for a section is the addressing mode to be used when referencing a
variable, function, or string in the section. It is one of the hex numbers given in the
“Code” column of the following table. For the relative addressing modes
constructed from a base register and offset, the table also shows the base register
and the number of bits in the offset. Notes follow the table. See Implementation,
p-264 for examples of code generated for each addressing mode.

257

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Notes:

Table 14-2 addr-mode Definitions

addr-mode
Name Code Description Bits Base Register
standard 0x01 See Notes below.
near-absolute 0x10 abslolute 16 not applicable
far-absolute 0x11 absolute 32 not applicable
near-data 0x20 data relative 16 a5
far-data 0x21 data relative 32 a5
near-code 0x40 code relative 16 PC
far-code 0x41 code relative 32 PC

* The “code” hexadecimal number is used for command-line options described
below.

» The addr-mode standard for the CODE section class means that a processor
specific method is being used, usually defined to minimize access time.

» Branches can be either PC-relative or absolute depending on processor
and branch distance.Function pointers are always absolute.

The addr-mode standard for data sections is equivalent to far-absolute.

» Position-independent Code (PIC) can be achieved by using the code relative
addressing modes.

» Position-independent Data (PID) can be achieved by using the data relative
addressing modes.

See Generating Initializers for Static Variables With Position-Independent Code, p.270
for further discussion of PIC and PID code, especially regarding constraints and
limitations.

Default addr-mode values for the predefined section classes are shown in Table 14-1.
The following options change the default addr-mode:

-Xaddr-data=mode

-Xaddr-string=mode

258

Table 14-3

14 Locating Code and Data, Addressing, Access
14.2 Addressing Mode — Functions, Variables, Strings

-Xaddr-sdata=mode
-Xaddr-code=mode
-Xaddr-const=mode
-Xaddr-user=mode
-Xaddr-sconst=mode

These options direct that the named section class, DATA, CONST, etc., be addressed
with the given addressing mode. mode is a hexadecimal number as given in the
“code” column in Table 14-2.

Example: address all variables in the DATA section class with far-data addressing:

-Xaddr-data=0x21

Example: address variables in the STRING section class with near-code relative
addressing:

-Xaddr-string=0x40

This is very useful for the 68K /CPU32 family if a module is less than 32KB because
strings are placed in the .text section by default. This produces smaller code than
the default absolute 32-bit addressing.

The following table describes other command-line options that will affect the
default addr-mode:

-X Option Settings Implied by Other -X Options

Option Sets All of

-Xcode-absolute-near

-Xaddr-const=0x10
-Xaddr-string=0x10

-Xaddr-sconst=0x10
-Xaddr-code=0x10

-Xcode-absolute-far

-Xaddr-const=0x11
-Xaddr-string=0x11

-Xaddr-sconst=0x10
-Xaddr-code=0x11

-Xcode-relative-near

-Xaddr-const=0x40
-Xaddr-string=0x40

-Xaddr-sconst=0x40
-Xaddr-code=0x40

-Xcode-relative-near-all

-Xaddr-const=0x40
-Xaddr-string=0x40
-Xaddr-data=0x40
-Xaddr-user=0x40

-Xaddr-sconst=0x40
-Xaddr-code=0x40
-Xaddr-sdata=0x40

259

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Table 14-3 -X Option Settings Implied by Other -X Options (cont'd)

Option Sets All of

-Xcode-relative-far -Xaddr-const=0x41
-Xaddr-string=0x41

-Xaddr-sconst=0x40
-Xaddr-code=0x41

-Xcode-relative-far-all -Xaddr-const=0x41
-Xaddr-string=0x41
-Xaddr-data=0x41
-Xaddr-user=0x41

-Xaddr-sconst=0x40
-Xaddr-code=0x41
-Xaddr-sdata=0x41

-Xdata-absolute-near -Xaddr-data=0x10
-Xaddr-user=0x10

-Xaddr-sdata=0x10

-Xdata-absolute-far -Xaddr-data=0x11
-Xaddr-user=0x11

Xaddr-sdata=0x10

-Xdata-relative-near -Xaddr-data=0x20
-Xaddr-user=0x20

-Xaddr-sdata=0x20

-Xdata-relative-far -Xaddr-data=0x21
-Xaddr-user=0x21

-Xaddr-sdata=0x20

NOTE: The -Xcode-relative-far and -Xdata-relative-far options still use 16-bit
offsets for data in the small const area (called SDA2 in EABI) and small data area

(SDA) respectively.

14.3 Access Mode — Read, Write, Execute

acc-mode defines how the section can be accessed and is any combination of:

R
Read permission.
w
Write permission.
X

Execute permission.

260

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

COMDAT — when the linker encounters multiple identical sections marked as
“comdat”, it collapses the sections into a single section to which all references
are made and deletes the remaining instances of the section.

This is used, for example, with templates in C++. If COMDAT sections are
disabled (-Xcomdat-off), the compiler generates a template instance for each
module that uses a template, which can result in duplicate template
instantiations. With the -Xcomdat option, the compiler uses “O” to mark
sections generated for templates as COMDAT; the linker then collapses
identical instantiations into a single instance. See 5.4.32 Mark Sections as
COMDAT for Linker Collapse (-Xcomdat), p.74.

“not allocatable” —the section is not to occupy space in target memory. This is
used, for example, with debug information sections such as .debug in ELF. N
must be used by itself; it is ignored when it is combined with other flags.

acc-mode is used by the assembler and loader. It does not affect type-checking
during compilation.

Default acc-mode values for the predefined section classes are shown in Table 14-1.
If -Xconst-in-text=0 then the CONST, SCONST, and STRING section classes have

will have access mode RW (read /write) rather than the default R (read only). See
Moving initialized Data From “text” to “data”, p.266 for further details.

Multiple instances of a constant allocated to a section with no write access (W) may
be collapsed by the compiler to a single instance.

Using #pragma section and #pragma use_section to Locate Variables and Functions at
Absolute Addresses

There are two ways to put a variable or function in a specific section.

= A variable or function can be placed in a specific section by redefining the
default section into which the variable or function would normally be placed.
Examples:

- Using the defaults, arl is placed in the DATA section class (.data) and
referenced using far-absolute addressing;:

int arl[100] = { 0 };

— ar2is placed in section .absdata and referenced using near-absolute
addressing:

#pragma section DATA ".absdata" near-absolute
int ar2[100] = { 0 };

261

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

— ar3isagain placed in the default DATA section class (.data) —because no
istring, ustring, addr-mode, or acc-mode is given, the default values for these
attributes as given in Table 14-1 are used.

#pragma section DATA
int ar3[100] = { 0 };

— Avvariable or function can be placed by specifying a specific section in a

#pragma use_section. Example:

— ardis placed in section .absdata and referenced using near-absolute
addressing (see the next heading regarding the empty quotes in this
example):

#pragma section VECTOR "" ".absdata" near-absolute RW

#pragma use_section VECTOR ard
int ar4[100L

Placing Initialized vs. Uninitialized Variables

When defining a data section class to hold variables, the section pragma can name
two sections: one for initialized variables and one for uninitialized variables, or
either section by itself. Repeating from the definition above (section and use_section
Pragmas, p.251):

#pragma section class_name [istring] [ustring]

class_name
Required. Predefined or user-defined name to hold objects of a particular class,
e.g., code, initialized variables, or uninitialized variables.

istring
Name of actual section to contain initialized data. For variables, this means those
declared with an initializer (e.g., int x=1;). Use empty quotes if this section is not
needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this means
those declared with no initializer (e.g., int x;). This section may be omitted if not
needed (which will assign the default value).

Consider these examples:

#pragma section DATA ".inits" ".uninits"
int init=1;
int uninit;
Assuming no earlier pragmas for class DATA, the pragma changes the section for
initialized variables from .data to .inits, and changes the section for uninitialized
variables from COMMON (which the linker adds to .bss) to .uninits. As a result,

262

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

variable init will be placed in the .inits section (because init has an initial value),
while variable uninit will be placed in the .uninits section because it has no initial
value.

The following shows a common error:

#pragma section DATA ".special" /* probably error */
init special;
The user presumably intends for variable special to be placed in section .special.
But the pragma defines .special as the section for initialized variables. Because
variable special is uninitialized, it will be placed in the default COMMON section.
Changing the above to
#pragma section DATA "" ".special"
int special;
achieves the intended result because .special is now the section for uninitialized
variables.

Using the Address Clause to Locate Variables and Functions at Absolute Addresses

The address=n clause provides a way to place variables and functions at a specific
absolute address in memory. With this form, the linker will put the designated
code or data in an absolute section named “.abs.nnnnnnnn” where nnnnnnnn is the
value in hexadecimal, zero-filled to eight digits, of the address given in the
address=n clause.

NOTE: When using the address=n clause, any section name given by istring or
ustring will be ignored.

Advantages of using absolute sections (see 15.9.3 Accessing Variables and Functions
at Specific Addresses, p.290):

» I/Oregisters, global system variables, and interrupt handlers, etc., can be
placed at the correct address from the compiled program without the need to
write a complex linker command file.

That is, if you know the address of an object at compile-time, the address
clause of the #pragma section directive can be used in your source. If the
location of the object is best left to link-time, use a #pragma section directive
with a named section which can then by located via a linker command file.

» A symbolic debugger will have all information necessary for full access to
absolute variables, including types. Variables defined in a linker command file
cannot be debugged at a high level. Examples:

263

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

// define IOSECT:
// a user defined section containing I/0 registers

#pragma section IOSECT near-absolute RW address=0xffffff00
#pragma use_section IOSECT ioregl, ioreg2

// place ioregl at Oxffffff00 and ioreg2 at Oxffffff04
int ioregl, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt ProgramException

#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect ProgramException

void ProgramException() {
//
}

Prototypes and the Placement of Sections

If function prototypes are present, the compiler and linker select sections and their
attributes for functions and, in C++, static class variables, based on where the
prototypes of the functions appear in the source, rather than where the function
definitions appear.

The following example shows the wrong way to request the compiler and linker to
place the function fun() in the .myTEXT section.

int fun(); // Prototype determines "fun" section

#pragma section CODE ".myTEXT" // #pragma before definition has no
int fun() { // effect on placement of "fun"
}
In this example, the initial declaration of fun() determines where it will appear in

the executable; the subsequent #pragma is ignored. This is consistent with the
behavior of the C++ compiler.

Implementation

The compiler will generate the assembly code for the different addr-mode settings
as shown in Table 14-4. The corresponding code is as follows (the #pragma
use_section is present to ensure that the variable var is placed in DATA rather than
SDATA for simplicity).

#pragma use_section DATA var
int var=1; /* var in DATA or SDATA (not in .bss or .sbss) */

reg = var;
func () ; /* func in CODE */

264

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

Notes for Table 14-4:

The compiler may select a different register for the reg variable than is shown
in the table.

To reproduce the code as shown, place the above code in a file, e.g. test.c, and
use -Xaddr-code and -Xaddr-data to set the addressing modes, and -g to turn
on debugging (this disables some minor optimizations which might otherwise
be present). For example, for standard addressing mode:

dcc -g -S -Xaddr-code=0x01 -Xaddr-data=0x01 -Xpass-source test.c

Table 14-4 Code Generated for Different Addressing Modes
Mode Reference to DATA: reg = var; Reference to CODE: func()
standard move.l _var,do jbsr _func
near-absolute move.l (_var).w,d0 jsr (_func) .w
far-absolute move.l _var,d0 jsr _func
near-data move.l (_var@sda).w(a5),d0 jsr (_func@sda) .w(a5)
far-data move.l (_var@sda).l(a5),do0 jsr (_func@sda) .1 (a5)
near-code move.l (_var).w(pc),d0 bsr.w _func
far-code move.l (_var).l(pc),do bsr _func

Notes:

The (var).1(a5), (var).1(pc), and 32-bit branch modes are not generated for the
plain 68000. The correct address is generated instead by multiple instructions.

Register a5 is only used for data-relative addressing when -Xsmall-data is set
to a non-zero value or one of the data-relative addressing modes is enabled
through #pragma section or command-line options. Otherwise a5 is used as a
normal preserved register.

The assembler uses some special 68K/CPU32 relocation types for the
operators used in the table above. See F.1.6 ELF Relocation Information, p.624
and F.2.6 COFF Relocation Information, p.634 for the complete list of relocation
types. See also include/elf_mc60.h.

265

Moving

Table 14-5

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

initialized Data From “text” to “data”

Sections that hold setable variables are generically referred to as “data” sections
(and should be in RAM), while sections that hold code, constants like strings, and
unchangeable const variables are generically referred to as “text” sections (and can
be in ROM).

The -Xconst-in-text option provides a shortcut for controlling the default section
for initialized data (istring) for the CONST, SCONST, and STRING constant section
classes. Its form is:

-Xconst-in-text=mask

where mask bit 0x1 controls const variables in the CONST section class, 0x2 controls
small const variables in the SCONST section class, and 0x4 controls string data in
the STRING section class.

If a mask bit is set to 1, variables or strings belonging to the corresponding section
classes are placed in ROMable “text” sections; if set to 0, they are placed in “data”
sections.

By default, -Xconst-in-text=0x5. This gives the behavior shown in the following
table. (Note: the table shows section names for initialized sections. See notes
following the table for uninitialized sections.)

-Xconst-in-text mask bits

“text” Section With “data” Section With
Section Class Mask Bit Mask Bit Set to 1 Mask Bit Set to 0
CONST 0x1 text (default) .data
SCONST 0x2 .sdata2 .sdata (default)
STRING 0x4 text (default) .data

NOTE: Note that when a section is in “data” it will have access mode RW

(read /write), while in “text”, the access mode will be R (read only). See 14.3 Access
Mode — Read, Write, Execute, p.260. If a section is moved from its default by
-Xconst-in-text, this will be a change from its usual default access mode.

NOTE: The .sdata2 section is placed with the .text section by the default linker
command file (perhaps to be located in ROM), and so is considered to be a “text”
section.

266

14 Locating Code and Data, Addressing, Access
14.4 Local Data Area (-Xlocal-data-area)

For example, -Xconst-in-text=1 means that initialized const variables and small
const variables (if -Xsmall-const is non-zero) should be placed in their usual
default “text” and “data” sections, .text and .sdata, respectively, while strings
should be placed in the .data section rather than their usual .text section.

While the option -Xconst-in-text is preferred, the older option -Xconst-in-data is
equivalent to -Xconst-in-text=0, and thus requests that data for all constant
sections, CONST, SCONST, and STRING be placed in their corresponding “data”
sections as given by the last column of the table above, and the older option
-Xstrings-in-text is equivalent to -Xconst-in-text=0xf, and thus requests that data
for all constant sections be placed in their default “text” sections.

The table above gives section names for initialized sections. There are no
uninitialized STRING sections. Uninitialized CONST sections, if moved from
“text” to “data”, go in the COMM (common) section (which the linker puts at the
end of the .bss section by default). Uninitialized SCONST sections, if moved from
“data” to “text”, go in the .sdata2 section.

14.4 Local Data Area (-Xlocal-data-area)

The compiler supports a local data area (LDA) optimization. This optimization
works as follows:

= The LDA optimization applies only to static and global variables of scalar
types—not arrays, structures, unions, or classes (for C++).

= Like all optimizations, LDA optimization is enabled only if option -O or -XO is
present. It can be disabled by setting -Xlocal-data-area=0.

» The LDA optimization applies only to scalar variables not assigned to the
small data or small const areas. Because -Xsmall-data and -Xsmall-const are 0
by default for 68K/CPU32 processors, the LDA optimization is used by
default. However, if -Xsmall-data or -Xsmall-const is set to a non-0 value, then
the LDA would be used only for scalar variables larger than those values if any.

» AnLDA is allocated for each module, and static and global scalar variables
which are referenced at least once are allocated to it except as noted above. To
restrict the optimization to static variables, use -Xlocal-data-area-static-only.
VxWorks developers are strongly advised to use -Xlocal-data-area-static-only

267

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

so that asynchronous changes to global variables remain visible to the
generated code.

= The variables in the LDA are addressed using efficient base register-offset
addressing. The base register is chosen for the module by the compiler as part
of its normal register assignment algorithms and optimizations.

» If at least one variable in the LDA is initialized, the LDA will be in the .data
section for the module. If all are uninitialized, the LDA will be in the .bss
section for the module.

NOTE: Note that this can change the usual behavior for uninitialized variables —
without LDA optimization, uninitialized variables go into the .bss section (or .sbss
section for small uninitialized variables if -Xsmall-data is > 0). But with LDA
optimization, variables to be put into the LDA are put there whether initialized or
not; and if any LDA variables are uninitialized, the LDA is placed in the .data
section for the module, and in that case, any uninitialized variables in the LDA will
also be in the .data section.

» By default, the size of the LDA is 32,767 bytes. It may be set to a different size
with option -Xlocal-data-area=n. However, a value larger than the default will
be less efficient because the default was chosen based on the size of the most
efficient offset. If there are too many scalar variables to fit in the LDA, the
overflow will be allocated as usual.

14.5 Position-Independent Code and Data (PIC and PID)

By using the linker command language, it is easy to have complete control over
where different sections of the program should be allocated in memory. However,
in some cases there is no way of knowing where a program will reside in memory
until load time. For example:

* In a multi-process environment without virtual memory, new programs are
loaded wherever there is unallocated space.

» When more than one process executes the same code section, but uses different
data sections. In this case only the data has to be position-independent.

In general there are two ways to provide load-time allocation:

268

14 Locating Code and Data, Addressing, Access
14.5 Position-Independent Code and Data (PIC and PID)

= By patching the code with the correct address while loading. The -r and -rn
options to the linker keep the relocation data in the file and can be used by the
loader to change all memory references. See F.1.6 ELF Relocation Information,
p.624 and F.2.6 COFF Relocation Information, p.634 for details about the -r
options and relocation.

* By generating position-independent code (PIC) which can be executed from
any address. The compiler will only use addressing modes that are relative to
either the current address or a reserved register.

There are two types of position-independence: data position-independence (PID),
which allows data to be located anywhere in memory, and code
position-independence (PIC), which allows code to be executed from anywhere.
The compiler can generate both types, either separately or together.

Individual code or data sections may be made position-independent with the
addr-mode clause of the #pragma section directive (see pragma section and
use_section Pragmas, p.251), or for all code or data sections in a compilation with
command-line options.

For the 68K/CPU32 family, the following options provide position-independence:

* The -Xcode-relative-near and -Xcode-relative-far options implement code
position-independence by only using PC-relative branches and by using
PC-relative addressing modes when accessing addresses in the code section,
such as references to strings and const data. The -Xcode-relative-near option
can be used safely only if the code section is less than 32KB. The
-Xcode-relative-far option works on any MC68000 processor, but generates a
longer and slower code sequence, especially on older MC68000 processors that
lack 32-bit relative branches.

* The -Xdata-relative-near and -Xdata-relative-far options implement data
position-independence by using register a5 as a pointer to the data section and
making all references to it as offsets from that register. The
-Xdata-relative-near option can be used only if the data section is less than
64KB. The -Xdata-relative-far option works on any MC68000 processor, but
generates a longer and slower code sequence, especially on older MC68000
processors.

* The -Xcode-relative-near-all and -Xcode-relative-far-all options implement
code and data position-independence by only using PC-relative branches and
by using PC-relative addressing modes when accessing all data. The
-Xcode-relative-near-all option can be used safely only if the code and data
sections is less than 32KB. The -Xcode-relative-far-all option works on any

269

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

MC68000 processor, but generates a longer and slower code sequence,
especially on older MC68000 processors that lack 32-bit relative branches.

Example:
The following command generates totally position-independent code.

dcc -Xcode-relative-far -Xdata-relative-far -0 c.c

NOTE: The -Xcode-relative-far and -Xdata-relative-far options still use 16-bit
offsets for data in the small const area (called SDA2 in EABI) and small data area
(SDA) respectively. However, with -Xcode-relative-far-all, references to the small
const area, if any, use a 32-bit offset rather than the more efficient 16-bit offset, and
for this reason this latter option is deprecated.

NOTE: The libraries are compiled with default options and therefore do not use
position-independent code and data.

Generating Initializers for Static Variables With Position-Independent Code

Position-independent addresses are not known at compile-time, so it is necessary
to dynamically set pointers having constant initial values whose position will not
be known until run-time, e.g., pointers to global variables, static local variables,
static class variables, functions or methods, whenever these are in
position-independent sections.

See 5.4.51 Generate Initializers for Static Variables (-Xdynamic-init), p.81 for
instructions on storing data in the initialization section when generating
position-independent code or data. Examples:

/* Always OK. */
int i = 1;

/* Following two statements, if compiled with -Xdata-relative-...,
* would also require -Xdynamic-init because variable i and the

* string "abc" would be position-independent data and have unknown
* addresses at compile-time

int *p = &i;
char *s = "abc";

270

14 Locating Code and Data, Addressing, Access
14.5 Position-Independent Code and Data (PIC and PID)

/* Following two statements, if compiled with -Xcode-relative-...,
* would also require -Xdynamic-init because the address of
* function f would be unknown at compile-time.
*/
int £ (int a);
int (*f_p) (int) = f;

Relationship Between Position-Independence and “Small” Areas

The compiler supports both “position-independence” and “small” data and
constant areas (see 5.4.31 Generate Position-independent Code (PIC)
(-Xcode-relative...), p.72, 5.4.39 Generate Position-independent Data (PID)
(-Xdata-relative...), p.76, 5.4.133 Set Size Limit for “small data” Variables
(-Xsmall-data=n), p.117, and 5.4.133 Set Size Limit for “small data” Variables
(-Xsmall-data=n), p.117).

The implementation of both position-independence and “small” areas use
base-offset addressing. Further, position-independent code and the small “const”
area use the program counter (PC), and position-independent data and the small
data areas (initialized and uninitialized) use the same base register (a5).

The compilers support both approaches for the following reasons:

» The “small” areas are limited in size to 64KB. But position-independence for
both code and data may be required for larger blocks of code or data.

» The compiler supports a range of microprocessors, and “small” areas have
been traditionally present for some of these even when position-independence
has not. Support for both approaches allows conversion, using familiar terms,
of legacy code developed with other tool sets.

271

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

272

15

Use in an Embedded
Environment

15.1 Introduction 274

15.2 Compiler Options for Embedded Development 274
15.3 User Modifications 276

15.4 Startup and Termination Code 276

15.5 Hardware Exception Handling 284

15.6 Library Exception Handling 284

15.7 Linker Command File 285

15.8 Operating System Calls 286

15.9 Communicating with the Hardware 290

15.10 Reentrant and “Thread-Safe” Library Functions 292

15.11 Target Program Arguments, Environment Variables, and Predefined
Files 292

15.12 Profiling in An Embedded Environment 294
15.13 Support for Multiple Object Formats 296

273

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.1 Introduction

Device software development differs significantly from development for native
environments, in part because there is often no operating-system support for:

» injtialization of data

» inijtialization of argc, argv, and environment variables

* hardware exception handling (illegal memory access, divide by zero, etc.)

» file and device I/O

* memory allocation

» signal handling

= execution of instructions to enable caches

» virtual memory

Other features often needed in an embedded environment include:

= control over addressing to minimize code size and maximize execution speed
= complete control over allocation of code and data to specific addresses

= placement of initialized data in ROM and its movement on startup to RAM
» packed structures to map external hardware or data from other processors

* mixing of big- and little-endian data structures

15.2 Compiler Options for Embedded Development

The following compile-time options and pragmas control code generation in
various ways. All are documented in 5. Invoking the Compiler.

-Xaddr-x
Control addressing modes for data and code. See 14.2 Addressing Mode —
Functions, Variables, Strings, p.257.

-Xdollar-in-ident
Allow variable names containing “$”-signs.

274

15 Use in an Embedded Environment
15.2 Compiler Options for Embedded Development

-Xmemory-is-volatile
Treat all memory references as volatile, to avoid optimizing away accesses to
hardware ports. This option is not needed if the volatile keyword is used for
variables making accesses to volatile data. See 5.4.100 Treat All Variables As
Volatile (-Xmemory-is-volatile, -X...-volatile), p.103.

-Xsize-opt
Minimize the size of the executable code.

-Xsmall-data

-Xsmall-const
Specify by size what data is to go into the small data area (SDA) and the small
const area. See 5.4.132 Set Size Limit for “small const” Variables (-Xsmall-const=n),
p.116.

-Xstack-probe
Insert code to check that the stack does not grow outside its boundaries. See
15.4.6 Stack Initialization and Checking, p.281 for details.

-Xconst-in-text=0xf
Put strings and const data in the .text section together with code. See Moving
initialized Data From “text” to “data”, p.266.

-Xmember-max-align

-Xstruct-min-align
Options to pack structures in different ways. See 5.4.99 Set Maximum Structure
Member Alignment (-Xmember-max-align=n), p.103 and 5.4.146 Set Minimum
Structure Member Alignment (-Xstruct-min-align=n), p.122.

-Xcode-relative...

-Xdata-relative...
Generate position-independent code and data (PIC and PID). See
5.4.31 Generate Position-independent Code (PIC) (-Xcode-relative...), p.72 and
5.4.39 Generate Position-independent Data (PID) (-Xdata-relative...), p.76, for
various forms of these options.

#pragma interrupt func

Specify that a function func is an exception handler. See interrupt Pragma, p.140.

#pragma pack
Control packing of structures and the byte order of members. See the pack
Pragma, p.143.

#pragma section ...
Control placement and addressing of variables and functions. See section and
use_section Pragmas, p.251.

275

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.3 User Modifications

Since most embedded environments are unique, some things must be modified by
the user:

= Startup code must initialize the processor and run-time.
» Hardware exceptions must be handled.
» A linker command file must specify where to allocate code and data.

* It may be necessary to modify library functions to make user-supplied
operating system calls.

15.4 Startup and Termination Code

This section describes startup and termination for self-contained applications built
with the compiler. Applications that run under an operating system (such as
VxWorks or Linux) work differently.

As shipped, startup is carried out by four modules: crt0.s, crtlibso.c, ctordtor.c,
and init.c. Termination is carried out by five modules: exit.c, crt0.s, crtlibso.c,
ctordtor.c, and _exit.c. Read this section and examine these modules to determine
whether any modifications are required for your target environment.

An overall schematic for startup and termination is shown in Figure 15-1. This
figure applies to all supported targets and does not show some details. See the
referenced modules for complete details. Notes, including source locations and
modification hints, are in the sub-sections immediately following the figure.

276

Figure 15-1

15 Use in an Embedded Environment

Startup and Termination Program Flow

15.4 Startup and Termination Code

crt0.s

.section .text
start:

Initialize stack.

Call __init_main(). _—
Call exit()
(in case user main()
returns).

crtlibso.c /
__init: \

Call __exec_ctors()
(in ctordtor.c).

\

\
<module’s .ctors section > |
<old-style .init$nn sectiM
Return from __init. |

|

|

-

_fini: <——
Call __exec_dtors()
(in ctordtor.c).

<module’s .dtors section>
<old-style .fini$nn sections>
Return from __fini.

—>

init.c: __init_main()

Move data from “rom” to “ram” for
linker LOAD spec.

Clear .bss, etc.
Set up argc, etc. if present.
Call __init().

return main
(argc, argv, env);

TSa

exit.c: exit(int status)

Call function registered by at_exit()
calls.

Call __fini().

Call _EXIT(status);

v

_exit.c: _EXIT(int status)

Close files if present.
Halt.

User’s program

int main(...)

{

exit(0):

- }

277

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.4.1 Location of Startup and Termination Sources and Objects

15.4.2 Notes

15.4.3 Notes

The source of crt0.s is located in the src/crt68 directory. Objects are in the library
directories shown in Table 2-2.

init.c, crtlibso.c, exit.c, and _exit.c are in the src directory. Objects are in libc.a.

for crt0.s

crt0.s begins at label start. This is the entry point for the target application.

crt0.s is brief, with most initialization done in init.c. Its first action is to initialize
the stack to symbol __SP_INIT. This symbol is typically defined a linker command
file. See Figure 25-1 for an example.

Insert assembly code as required to initialize the processor before crt0.s calls
__init_main() described in 15. Use in an Embedded Environment. Refer to
manufacturer’s manuals for the target processor for information on initializing the
processor.

To replace crt0.0:
* Copy and modify it as required.
» Assemble it with:

das crt0.s

» Link it either by including it on a dld command line when invoking the linker,
or by using the -Ws option if using the compiler driver, e.g.,

dcc -Wsnew_crt0.o ... other parameters ...

The -Ws option can be added to the user.conf configuration file to make it
permanent.

for crtlibso.c and ctordtor.c

By default, compiled modules generate special .ctors and .dtors sections for
startup and termination code, including constructor functions, destructor
functions, and global constructors in C++. The .ctors and .dtors sections contain
pointers to initialization and finalization functions, sorted by priority. This code is
invoked during initialization and finalization through calls to __exec_ctors() and
__exec_dtors() from the __init() and __fini() functions in crtlibso.c. The source

278

15 Use in an Embedded Environment
15.4 Startup and Termination Code

code for __exec_ctors() and __exec_dtors(), along with symbols marking the top
and bottom of .ctors and .dtors, is in ctordtor.c. (See Figure 15-1.)

crtlibso.c includes “wrapper” sections .init$00, .init$99, .fini$00, and .fini$99.
These sections, which previous versions of the compiler used for startup and
termination code, exist for backward compatibility.

For more information, see 15.4.8 Run-time Initialization and Termination, p.282.

NOTE: The malloc() function supplied with the compiler must be initialized. This
is done automatically by code generated in the .ctors section. If you do not use the
standard crtlibso.c, then include comparable code in your own startup file. Other
library functions may also require initialization, so __init() should be called in all
cases.

See also 5.4.51 Generate Initializers for Static Variables (-Xdynamic-init), p.81.

15.4.4 Notes for init.c

Initialization code that can be written in C or C++ should be inserted in or called

from __init_main(), typically just before calling main(), so that all other

initialization done by __init_main()—copying initial values from “rom” to “ram”,
clearing .bss, and so forth—can be done first.

Copying Initial Values From “ROM” to “RAM”, Initializing .bss

In a typical embedded system, the initial values for non-const variables must be
stored in some form of read-only memory, “ROM” for simplicity, while the code
must refer to the variables themselves in writable memory, “RAM”. At startup, the
initial values must be copied from ROM to RAM. In addition, C and C++ require
that uninitialized static global memory be initialized to zero.

init.c requires five symbols to “copy constants from ROM to RAM” (the traditional
phrase) and to clear .bss. These five symbols, all typically defined in a linker
command file, are:

__DATA_ROM
Start of the physical image of the data section for variables with initial values,
including all initial values—the location in “ROM” as defined using the LOAD
specification in the linker command file.

279

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

___DATA_RAM
Start of the logical image of the data section — the location in “RAM” where the
variables reside during execution as defined by an area specification (“>
area-name”) in the linker command file.

__DATA_END
End of the logical image of the data section. __DATA_END - _ DATA_RAM
gives the size in bytes of the memory to be copied.

__BSS_START
Start of the .bss section to be cleared to zero.

__BSS_END
End of the .bss section.

The code in init.c compares _ DATA_ROM to _ DATA_RAM; if they are different, it
copies the data section image from _ DATA_ROM to _ DATA_RAM. It then
compares _ BSS_START with _ BSS_END and if they are different sets the memory
so defined to zero.

As noted, these symbols are typically defined in a linker command file. See
25.6 Command File Structure, p.416 for an example.
Providing arguments to main and data for memory resident files

Examine the code in init.c to see how C-style main() function arguments and
environment variables can be set up. The variables used in this code, such as
__argv[] and __env][], are defined in src/memfile.c and src/memfile.h. These
variables, as well as data for memory resident files, can be created using the setup
program. See 15.11 Target Program Arquments, Environment Variables, and Predefined
Files, p.292 for details.

Replacing init.c
To replace init.c:

» Copy and modify it as required.
* Include it as a normal C module in your build.

15.4.5 Notes for Exit Functions

Because embedded systems are often designed to run continuously, exit() may not
be needed and will not be included in the target executable if not called.

280

15 Use in an Embedded Environment
15.4 Startup and Termination Code

To replace exit.c or _exit.c:

» Copy and modify as required.
= Include with normal C modules in your build.

15.4.6 Stack Initialization and Checking

Stack Initialization

The initial stack is initialized by crt0.s to symbol __ SP_INIT, typically defined in the
linker command file. See 15.4.2 Notes for crt(.s, p.278 and for an example see
25.6 Command File Structure, p.416.

An additional symbol, __SP_END, is defined as the end of the stack in standard
linker command files, as shown in the example. It is used in attempts to grow the
heap and in stack checking.

Stack Checking

If the -Xstack-probe option is used when compiling, the compiler inserts code in
each function prolog to check for stack overflow and to transfer memory from the
heap to the stack, if possible, on overflow.

Requirements

* Code compiled with -Xstack-probe or -Xrtc=4 must be linked with the librta.a
library (typically by using the -Irta option in the dld linker command line).

* Theidentifier _ SP_END must be defined in the linker command file as the
lower bound of the stack. See the file conf/default.dld for an example.

Implementation Details

Code is added to the prolog of each function (but see the note below) to determine
whether the stack exceeds _ RTC_SP_LIMIT (declared in rtc.h and initialized to
__SP_END, typically defined in the linker command file as in 25.1 Example
“bubble.dld”, p.410). If it does, the function __sp_grow() (defined in the librta.a
library) is called. If the stack and heap are contiguous and there is sufficient space
available in the heap, __sp_grow() will reassign the required memory from the
heap to the stack and move the boundary recorded in_ RTC_SP_LIMIT. If the stack
cannot be extended, __sp_grow() terminates the program by calling
__rtc_error("stack overflow"). See 15.6 Library Exception Handling, p.284 regarding
termination.

281

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: No stack-checking code is inserted in leaf functions (functions that do not
call other functions) which require less than 64 bytes of stack. Non-leaf functions
always allocate an additional 64 bytes on the stack to allow for this. Stack checking
code is generated only for leaf functions which require more than that.

15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()

malloc() allocates memory from a heap managed by function sbrk() in src/sbrk.c.
There are two ways to create the heap:

» Define _ HEAP_START and _ HEAP_END, typically in a linker command file.
See the files conf/default.dld, conf/sample.dld, and 25.6 Command File
Structure, p.416 for examples.

» Recompile sbrk.c as follows:
dcc -tfarget -c -D SBRK_SIZE=n sbrk.c
where 7 is the size of the desired heap in bytes.

The malloc() function implements special features for initializing allocated
memory to a given value and for checking the free list on every call to malloc() and
free(). See malloc(), p.539.

NOTE: To avoid excess execution overhead, malloc() acquires heap space in 8KB
master blocks and sub-allocates within each block as required, re-using space
within each 8KB block when individual allocations are freed. The default 8KB
master block size may be too large on systems with small RAM. To change this, call

size_t _ malloc_set_block_size (size_t blocksz)

where blocksz is a power of two.

NOTE: malloc() and related functions must be initialized by function __init() in
crtlibso.c. See the note at the end of the section 15.4.3 Notes for crtlibso.c and
ctordtor.c, p.278 for details.

15.4.8 Run-time Initialization and Termination

The compiler automatically generates calls to initialization and finalization
functions, including C++ global constructors, through pointers in each module’s

282

15 Use in an Embedded Environment
15.4 Startup and Termination Code

.ctors and .dtors sections. Initialization and finalization functions can appear in
any program module and are identified by the constructor and destructor
attributes, respectively. Functions identified with the constructor and destructor
attributes are executed when __init() and _ fini() are called, as shown in
Figure 15-1 and described in 15.4.3 Notes for crtlibso.c and ctordtor.c, p.278.

NOTE: An archived object file containing constructors or destructors will not be
pulled from its .a file and linked into the final executable unless it also contains at
least one function that is explicitly called by the application. To ensure execution
of startup and termination code, never create modules that contain only
constructor and destructor functions.

The priority of initialization and finalization functions can be set through
arguments to the constructor and destructor attributes; functions with lower
priority numbers execute first. For each priority level assigned, the compiler
creates a subsection called .ctors.nnnnn or .dtors.nnnnn, where nnnnn is a five-digit
numeral between 00000 and 65535; the higher the value of nnnnn, the earlier the
functions in that section are called. For example, a function declared with
__attribute__ ((constructor(12))) will be referenced in .ctors.65523 (because
65523=65535-12). All of the .ctors.nnnnn sections are grouped at link time into a
single section called .ctors, and all of the .dtors.nnnnn sections are grouped at link
time into a single section called .dtors. For an example linker map, see ctordtor.c.

By default, user-defined initialization and finalization functions (as well as global
class constructors) have the last priority, to ensure that compiler-defined
initialization and finalization occurs first.

For more information on constructor and destructor attributes, see constructor,
constructor(n) Attribute, p.155 and destructor, destructor(n) Attribute, p.156. To
change the default priority for initialization and finalization functions, see
5.4.78 Control Default Priority for Initialization and Finalization

Sections (-Xinit-section-default-pri), p.93.

Old-style Initialization and Termination

For backward compatibility, the compiler supports an older style of run-time
initialization and termination that uses .init$nn and .fini$nn sections (instead of
.ctors and .dtors). To use old-style initialization and finalization, enable
-Xinit-section=2 (see 5.4.77 Control Generation of Initialization and Finalization
Sections (-Xinit-section), p.93). In this mode, the compiler also supports the use of
special _STI__nn_and _STD__nn_ prefixes (as well as constructor and destructor
attributes) to identify initialization and finalization functions and set their priority.
In cases where both .init$nn and .ctors sections are present, the default __init()

283

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

function executes the code in .ctors first; similarly, in cases where both .fini$nn and
.dtors sections are present, the default __fini() function executes the code in .dtors
first.

15.5 Hardware Exception Handling

» Please refer to the MC680x0 Microprocessor User’s Manual for a description of
the exception (interrupt) handling by the hardware.

The compiler provides the following support for interrupt routines:
* A #pragma interrupt which specifies that a function is an exception handler.

» The library function raise(), which can be called with an appropriate signal
from the interrupt routine to raise a signal.

* A #pragma section directive that can place exception vectors at an absolute
address.

15.6 Library Exception Handling

On error, many standard library functions set errno and return a null or undefined
value as described for each function in 34. C Library Functions. This is typical of, for
example, file system functions.

Many math functions, malloc(), and some other library functions call a central
error reporting function (in addition to setting errno):

__diab_lib_error (int fildes, char *buf, unsigned nbyte) ;
where:

fildes
File descriptor index: 1 for stdout, 2 for stderr (the usual value for error

reports).

buf

Buffer containing an ASCII string describing the error, e.g., “stack overflow”.

284

15 Use in an Embedded Environment
15.7 Linker Command File

nbyte
Number of characters in buf (excluding any terminating null byte).

__diab_lib_error() is defined in src/lib_err.c and may be modified as required.
(The prototype for __diab_lib_error() is not included in any user accessible
header file; the prototype given above may be added to a user header file if it is
desirable to call __diab_lib_error() from user application code.) Unless the
message is intercepted by another program, __diab_lib_error() writes the
message to the file given by fildes and returns the number of bytes written. After
calling __diab_lib_error(), most functions continue execution (after setting errno
if required).

15.7 Linker Command File

A linker command file:

» Can specify input files and options, although usually these are on the
command line.

» Specifies how memory is configured.
» Specifies how to combine the input sections into output sections.
» Assigns addresses to symbols.

See 25. Linker Command Language for more information about the command
language, and 25.6 Command File Structure, p.416 for an example.

When invoking a compiler driver such as dcc, specify a non-default linker
command file using the -Wm option:

~Wmpathname
where pathname is the full name of the file. To use the same linker command file for
all compilations, specify this option in the user.conf configuration file.

If no -Wm option is used, the linker will use file version_path/conf/default.dld.
Documentary comments are included in this file; please see it for details. See
5.3.28 Specify Linker Command File (-W mfile), p.47 for additional details on the -W
m option.

285

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Other linker command files written for some specific targets are also provided in
the conf directory. These and default.dld may serve as examples for creating your
own linker command file.

15.8 Operating System Calls

The source files available in the src directory implement or provide stubs for a
number of POSIX/UNIX functions for an embedded environment. A partial set is
documented in the subsections of this section. Examine the .c files to see the
complete set.

The modules in the src directory are typically stubs which must be modified for a
particular embedded environment. These modules have been compiled and the
objects collected into two libraries:

libchar.a — basic operating systems functions using simple character
input/output

libram.a — basic operating system functions using RAM-disk file
input/output.

Variants of these libraries for different object module formats are found in the
directories documented in Table 2-2.

To use these functions:

» Modify the above files or those such as chario.c discussed below. That is,
replace the stub code with code which implements each required function
using the facilities available in the embedded environment.

» Compile the files; the script compile can be used as is or modified to do this.

» Use dar to modify either the original or a copy of libchar.a or libram.a as
appropriate, or simply include the modified object files in your link before the
libraries. See 27. D-AR Archiver for instructions.

» Ifacopyoflibchar.a or libram.a was modified, see 32.2 Library Structure, p.480
for a detailed description of how the libraries are structured and searched.

286

15 Use in an Embedded Environment
15.8 Operating System Calls

15.8.1 Character I/O

The predefined files stdin, stdout, and stderr use the __inchar()/__outchar()
functions in version_path/src/chario.c. These functions can be modified in order to
read/write to a serial interface on the user’s target. The files /dev/tty and /dev/lp
are also predefined and mapped to these character I/O functions.

chario.c can be compiled for supported boards and simulators by defining one of
several preprocessor macros when compiling chario.c. These macros are:

SingleStep debugger SINGLESTEP
L.D.P. M68EC0x0 board 1DP

SB306 board SBC306
EST Virtual Emulator EST
MBUG monitor for 68k boards MBUG

For example, all versions of chario.o in the supplied libraries are compiled for
SingleStep as follows:

dcc -c -DSINGLESTEP chario.c

These preprocessor macros typically cause the inclusion of code which reads from
or writes to devices on the board, or make system calls for doing so, or in the case
of SingleStep, supports input/output to the SingleStep command window.

chario.c has three higher level functions:

* inedit() corresponds to stdin; it reads a character by calling __inchar()
and calls outedit() to echo the character.

= outedit(...) corresponds to stdout; it writes a character by calling
__outchar().

= outerror(...) corresponds to stderr; it writes a character by calling
__outerrorchar(). This function is currently used only by SingleStep
(when compiling chario.c with -DSINGLESTEP); other implementations
write stderr output to stdout.

The lower level functions, __inchar(), __outchar(), and __outerrorchar()
implement the actual details of input/output for each of the boards for emulators
listed above. Examine the code for details.

See the makefiles in the example directories (version_path/example/...) for
suggestions on recompiling chario.c for the selected target board.

287

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.8.2 File I/O

A number of standard file I/O functions are implemented as a “RAM-disk”. These
functions are part of the standard libc.a library when cross is used as part of a
-ttof:cross option when linking (see Table 4-1).

For a convenient way to create RAM-disk files for use with these functions, see
15.11 Target Program Arguments, Environment Variables, and Predefined Files, p.292.

Space required by the file I/O functions is allocated by calls to malloc().

The following functions are supported. For details on any of these functions,
including header files containing their prototypes, lookup the function in 34. C
Library Functions.

access()
In access.c, checks if a file is accessible.

close()
In close.c, closes a file.

creat()
In creat.c, opens a new file by calling open().

fentl()
In fentl.c, checks the type of a file.

fstat()
In stat.c, gets some information about a file.

isatty()
In isatty.c, checks whether a file is connected to an interactive terminal. It is
used by the stdio functions to decide how a file should be buffered. If it is a
terminal, the stream will be flushed at every end-of-line, otherwise the stream
will be buffered and written in large blocks.

link()
In link.c, causes two filenames to point to the same file.

Iseek()
In Iseek.c, positions the file pointer in a file.

open()
In open.c, opens a new or existing file.

read()
In read.c, reads a buffer from a file.

288

15 Use in an Embedded Environment
15.8 Operating System Calls

unlink()
In unlink.c, removes a file from the file system.

write()
In write.c, writes a buffer to a file.

15.8.3 Miscellaneous Functions

The following functions provide miscellaneous services.

clock()
In clock.c, is an ANSI C function returning the number of clock ticks elapsed
since program startup. It is not used by any other library function.

__diab_lib_err()
In lib_err.c, reports errors caught by library functions. See 15.6 Library
Exception Handling, p.284.

_exit()
In _exit.c, closes all open files and halts. See 15.4.5 Notes for Exit Functions,
p-280.

getpid()
In getpid.c, returns a process number. Modify this if you have a
multiprocessing system.

__init_main()
In init.c, is called from the startup code and performs some initializations. See
15.4.4 Notes for init.c, p.279.

kill()
In kill.c, sends a signal to a process. Only signals to the current process are
supported.

signal()
In signal.c, changes the way a signal is handled.

time()
In time.c, returns the system time. Other functions in the library expect this to
be the number of seconds elapsed since 00:00 January 1st 1970.

289

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.9 Communicating with the Hardware

The following features facilitate access to the hardware in an embedded
environment.

15.9.1 Mixing C and Assembler Functions

The calling conventions of the compiler are well defined, and it is straightforward
to call C functions from assembler and vice versa. See 9. Calling Conventions for
details.

Note that the compiler sometimes prepends and/or appends an underscore
character to all identifiers. Use the -S option to examine how this works.

In C++, the extern "C" declaration can be used to avoid name mangled function
names for functions to be called from assembler.

15.9.2 Embedding Assembler Code

Use the asm keyword or direct functions to intermix assembler instructions in the
compiler function. See 7. Embedding Assembly Code for details.

15.9.3 Accessing Variables and Functions at Specific Addresses

There are four ways to place a variable or function at a specific absolute address:

1. At compile-time by using the #pragma section directive to specify that a
variable should be placed at an absolute address. See Using the Address Clause
to Locate Variables and Functions at Absolute Addresses, p.263.

Advantages of using absolute sections:

» I/Oregisters, global system variables, and interrupt vectors and functions
can be placed at the correct address from the program without the need to
write a complex linker command file.

» Absolute variables will have all symbolic information needed by symbolic
debuggers. Variables defined using the linker command language cannot
be debugged at a high level.

290

15 Use in an Embedded Environment
15.9 Communicating with the Hardware

Examples using absolute addressing at compile-time:

// define IOSECT:

// a user defined section containing I/0 registers
#pragma section IOSECT near-absolute RW address=0xffffff00
#pragma use_section IOSECT ioregl, ioreg2

// place ioregl at Oxffffff00 and ioreg2 at Oxffffff04
int ioregl, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt programException

#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect programException

void programException() {
//
}

At compile-time by using a macro. For example:

/* variable at address 0x100 */
#define mem port (*(volatile int *)0x100)

/* function at address 0x200 */
#define mem_func (*(int (*) ())0x200)

mem_port = mem_port + mem_func() ;
At link time by defining the address of an identifier. For example:
In the C file:

extern volatile int mem_port; /* variable */
extern int mem_func(); /* function */

mem_port = mem_port + mem_func() ;

In the linker command file add:

_mem_port = 0x100; /* Both with and without '_' */
mem_port = 0x100;

_mem_func = 0x200;

mem_func = 0x200;
Note the use of the volatile keyword to specify that all accesses to this memory
must be executed in the order as given in the source program, without the
optimizer eliminating any of the accesses.

By placing the variables or functions in a special named section during
compilation and then locating the section via a linker command file.

See 25. Linker Command Language for additional details.

291

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

15.10 Reentrant and “Thread-Safe” Library Functions

Most library functions are reentrant, although in some cases this is impossible
because the functions are by definition not reentrant. In 34. C Library Functions, the
“Reference” portion of each function description includes “REENT” for
completely reentrant functions and “REERR” for functions which are reentrant
except that errno may be set. Functions not so marked are not reentrant. In some
cases, standard functions are supplied in special reentrant versions, and functions
that modify only errno can be made completely reentrant by modifying the
__errno_fn() function. See 34. C Library Functions, for more information.

The reentrant functions are “thread-safe”—that is, they work in a multi-threaded
or multitasking environment. Notable exceptions include malloc() and free().
Typically, real-time operating systems include thread-safe versions of these
functions. You can also create thread-safe versions of malloc() and free() by
implementing the functions __diab_alloc_mutex(), __diab_lock_mutex(), and
__diab_unlock_mutex(); these three functions are called by malloc() (see
malloc.c for their usage) but, as shipped, do nothing.

15.11 Target Program Arguments, Environment Variables, and
Predefined Files

In a host-based execution environment, a program can be started with
command-line arguments and can access environment variables and a file system.

The setup feature brings the same capabilities to programs running in an
embedded environment without the need for an operating system or file devices.

Being able to pre-define arguments, environment variables, and files means:

» When porting an existing host-based program (e.g., a test program or
benchmark), it may be possible to compile and run the program with little or
no modification.

» A program canread large amounts of test or constant data from a “RAM-disk”
file using the input/output functions described in 15.8.2 File I/O, p.288.

292

15 Use in an Embedded Environment

15.11 Target Program Arguments, Environment Variables, and Predefined Files

The setup program provides initial values for arguments, environment variables,
and RAM-disk files as follows:

You run setup on your host system, giving it options which provide values for
target-based “command-line options” and “environment variables” and
which name host files.

setup writes a file on your host system called memfile.c. The data for the
arguments and environment variables and from the host files is included in
memfile.c.

You then treat memfile.c as part of your application: include it as a normal .c
file in your makefile in order to compile and link it with your application.

When you run your application on your target, the code in memfile.c and
associated library functions will provide the data for the argc and argv
arguments to main, for environment variables accessible through getenv calls,
and for RAM-disk files. (See 15.4 Startup and Termination Code, p.276 for related
details.)

setup is run as follows:

setup [-a arg] [-e evar[=valuel] [-b filel [-t file] ...

where the options are:

Increments arge by one and adds arg to the strings accessible through argv
passed to main in the usual way. The program name pointed to by argv[0] will
always be “a.out”.

-e evar[=value]

Creates an environment variable accessible through getenv() in the usual way:
getenv (“name”) will return a null-pointer if name does not match any evar
defined by -e, will return an empty string if there is a match but no value was
provided, or will return “value” as a string.

-b filename

The contents of the given host file will be a binary file accessible as a RAM-disk
file with the given name. (Any path prefix will be included in the filename
exactly as given.)

-t filename

The contents of the host file will be a text file accessible as a RAM-disk file with
the given name. (Any path prefix will be included in the filename exactly as
given.)

Any combination and number of the different options are allowed. Invoking setup
with no arguments will display a usage message.

293

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Example

If you run setup as follows:
setup -a -f -a db.dat -e DEBUG=2 -b db.dat -t fl.asc
it will write memfile.c in the current directory.
When memfile.c is compiled and included in your application:

* The application’s main function will act as if the application had been started
with the command line:

a.out -f db.dat

» The environment variable DEBUG will be set to “2” so that getenv("DEBUG")
will return “2””.

* Binary file db.dat will be predefined and can be opened with fopen() or
open() library calls.

= ASCII text file f1.asc will be predefined and can be opened as above.

setup is an ANSI standard C program supplied in source form as setup.c in the src
directory. To use it, first compile and link it with any native ANSI C tools on your
host system. Typically, it will be sufficient to change to the tools’ src directory, enter
the following command (assuming cc invokes an ANSI C compiler):

cc -o setup setup.c

and then move the executable file setup to your tools’ bin directory or some other
directory in your path.

15.12 Profiling in An Embedded Environment

Profiling collects information while your program executes. That information is
then fed back to the compiler for more optimal code generation based on what
your program actually does when it executes.

The compiler implements profiling through the -Xblock-count and -Xfeedback
options. There are three main steps:

» Compile your code with -Xblock-count to insert counting code.

294

15 Use in an Embedded Environment
15.12 Profiling in An Embedded Environment

* Run your program; count data will be written as your program runs. Transfer
the count data from the target to your host.

* Re-compile your code with -Xfeedback — the compiler will optimize based on
the count data.

In more detail:
* Compile all modules to be profiled with the -Xblock-count option, e.g.:
dcc -c -Xblock-count filel.c file2.c

This causes the compiler to insert minimal profiling code to track the number of
times each basic block is executed (a basic block is the code between labels and
branches).

This profile data is written by the profiling code to a target file named dbcnt.out.
Thus, you must either have an environment in which target files may be
connected to files on your host, or you may use the RAM-disk service (see
15.8.2 File /O, p.288).

» Copy library module version_path/src/_exit.c and modify it to write the
profiling data back to your host system. For example, if you used the
RAM-disk feature, copy the data in target file dbcnt.out to stdout and collect
the data into an ASCII file. The distributed _exit.c includes code to do this
conditioned by two macros: PROFILING and RAMDISK. To use this code
without further modification to _exit.c, recompile with:

dcc -c¢ -DPROFILING -DRAMDISK version_path/ src/_exit.c
See _exit.c for additional details.
= Compile the rest of your program and link as usual.

= Execute your program on the target system. When it terminates, it will write
the profiling information back to the host system per your modification to
_exit.c.

= If the profiling information was transferred back to the host in ASCII format,
use the ddump command to convert it to a binary file (the dbent.out output
filename is chosen because it is the default for the step after this).

ddump -B -o dbent.out your-file-of-collected-profile-data
» Recompile the modules profiled with the -Xfeedback option:
dcc -c -Xfeedback -XO filel.c file2.c

(use -Xfeedback=profile-file, where profile-file is the name of file of collected
profile data in binary form if that file is not named dbcnt.out).

295

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The compiler will optimize based on the profile data collected from the target.
Make sure to use the -XO option as well to get the best code (either -XO or -O
must be included or the profile data will be ignored).

15.13 Support for Multiple Object Formats

The compiler/assembler generates ELF or COFF object formats depending on the
selected target object format (see Table 4-1). By default, the linker generates ELF if
any input object is ELF, COFF if all are COFF, or may be controlled by the -Xelf or
-Xcoff linker options.

The ddump program converts COFF format to Motorola S-Record and IEEE 695
formats. Please see 29. D-DUMP File Dumper for more information.

296

16

17

18

19

20

21

22

PART Ill
Wind River Assembler

The Wind River Assemblerccoooevieimmmmnnnnns 299
Syntax RUIES ... 317
Sections and Location Counters 329
Assembler EXPressionsccoevsssssnssnnnmmmnnnnnns 333
Assembler Directivescccocvviiiimmnrinnsscnennnnn 339
Assembler Macroscccccviiiiiiiiinnnnnnnnneeeennnn 363
Example Assembler Listingccccevvviiiiiiiinnnnes 369

297

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

298

16

The Wind River Assembler

16.1 Selecting the Target 299

16.2 The das Command 300

16.3 Assembler Command-Line Options 300
16.4 Assembler -X Options 305

This chapter describes the assembler for 68K/CPU32 microprocessors. For
in-depth information on the 68K /CPU32 architecture and instructions, please refer
to the manufacturer’s documentation.

16.1 Selecting the Target

The target for the assembler is selected by the same methods as for the compiler.
See 4.1 Selecting a Target, p.23 for details. When using the compiler drivers dcc,
dplus, etc., the target for the assembler is selected automatically by the driver.

299

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

16.2 The das Command

The command to execute the assembler is as follows:
das [options] [input-files]
where:

das
Invokes the assembler.

options
Command-line options; see the following subsection for details. Options
must precede the input files.

input-files
A list of filenames, paths permitted, separated by whitespace, naming the
file(s) to be assembled; the default suffix is .s.

The assembler assembles the input file and generates an object file as determined
by the selected target configuration. By default, the output file has the name of the
input file with an extension suffix of .0. The -o option can be used to change the
output filename.

The form -@name can also be used for either options or input-file. If found, the name
must be either that of an environment variable or file (a path is allowed), the
contents of which replace -@name.

Example: assemble test.s with a symbol named DEBUG equal to 2 for use in
conditional assembly statements:

das -D DEBUG=2 test.s

16.3 Assembler Command-Line Options

The following command-line options are available. Also see the next section,
16.4 Assembler -X Options, p.305.

300

16 The Wind River Assembler
16.3 Assembler Command-Line Options

NOTE: Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. For easier reading, command-line options may be shown with
embedded spaces in the table. In writing options on the command line, space is
allowed only following the option letter, not elsewhere. For example,

“.D DEBUG=2" is valid; “-D DEBUG = 2” is not.

If the same option is given more than once, the last instance is used.

Show Option Summary (-?)

-2, -h,
--help
Show synopsis of command-line options.

Define Symbol Name (-Dname=value)

-D name [=value]
Define symbol name to have the given value. If value is not given, 1 is used. The
-D option can be used to set symbols used with conditional assembly. See the
.if expression, p.348 for more information.

Generate Debugging Information (-g)
-g
Generate debug line and file information. (ELF/DWARF format only).
Equivalent to -Xasm-debug-on.
Include Header in Listing (-H)
-H
Print a header on the first line of each page of the assembly listing. See Include

Header in Listing (-Xheader...), p.309 for additional details and 22. Example
Assembler Listing for an example of an assembly listing.

301

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Set Header Files Directory (-1 path)

-I path
Specify a directory where the assembler will look for header files. May be
given more than once. See the .include "file”, p.351 for more information.

Generate Listing File (-1, -L)

-1
Generate the listing file to input-file.Ist. (To change the default extension of the
output file, use -Xlist-file-extension="string”; for example,
-Xlist-file-extension=".L".)

Generate the listing file to standard output. See 22. Example Assembler Listing
for an example of an assembly listing.

Set outpUt File (-o file)

-o file
Write the object file to file instead of the default (input-file.s). Applies only to
the first file if a list of files is presented; remaining files in the list use the
default.

Remove the Input File on Termination (-R)

-R
May be used by tools to remove temporary files.

Specify Assembler Description (.ad) File (-T ad-file)

-T ad-file
Specify which assembler description (.ad) file to use. This is normally set
automatically by using the -t option, defining the DTARGET and the DOBJECT
environment variables, or using the -WDDTARGET and the -WDDOBJECT
command-line options. It is primarily for internal use by Wind River.

302

16 The Wind River Assembler
16.3 Assembler Command-Line Options

Select Target (-ttof:environ)
-ttof:environ
Specifies with one command the DTARGET (f), the DOBJECT (o), the DFP (f),
and the DENVIRON (environ) configuration variables. See 4. Selecting a Target
and Its Components for details.
Print Version Number (-V)
-v
Display the version number of the assembler on standard output.
Define Configuration Variable (-WDname=value)
-WDname=value
Set a configuration variable for use in the configuration files with the given
name to the given value. Overrides an environment variable of the same name.
Select Object Format and Mnemonic Type (-WDDOBJECT=object-format)
-WDDOBJECT=0bject
Specify the object format and mnemonic type. Overrides the environment
variable DOBJECT if it is also set.
Select Target Processor (-(WDDTARGET=target)
-WDDTARGET={arget
Specify the target processor. Overrides the environment variable DTARGET if
it is also set.

Discard All Local Symbols (-x)

=X
Discard symbols not declared .extern or .comm.

303

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Discard All Symbols Starting With .L (-X)

-X
Discard all symbols starting with .L; supports compilers using this form for
automatically generated symbols, including the Wind River compiler.

Print Command-Line Options on Standard Output (-#)

-#
The output of this option can be directed to a file. This can be convenient when
contacting Technical Services. The -# should immediately follow the das
command (after a space).

Read Command-Line Options from File or Variable (-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the assembler first looks
for an environment variable with the given name and substitutes its value. If
an environment variable is not found then it tries to open a file with given
name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the assembler
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E-=file, -@E+file, -@O=file, -@O+file)

-@E=file
-@E+file
Redirect any output to standard error to the given file.

-@o=file
-@o+file
Redirect any output to standard output to the given file.

In both cases, use of + instead of = appends the output to the file.

304

16 The Wind River Assembler
16.4 Assembler -X Options

16.4 Assembler -X Options

The following options provide more detailed control of the assembler. The -X
options are for use on the command line; -X options can also be set using the .xopt
assembler directive. See .xopt, p.361.

Select Default Absolute Address Mode (-Xabs-ind-long, -Xabs-ind-word)

-Xabs-ind-long
Use “Absolute Long Addressing Mode” as the default when an address is not
qualified with a size. This is the default.

-Xabs-ind-word
Use “Absolute Word Addressing Mode” as the default when an address is not
qualified with a size.

Example of -Xabs-ind-long;:

move.l (0x1234),d0 -> move.l (0x1234:w),d0
move.l (0x12345),d0 -> move.l (0x12345:1),d0
move.l (glob),do -> move.l (globa:1),d0

Example of -Xabs-ind-word:

move.l (0x1234),d0 -> move.l (0x1234:w),d0
move.l (0x12345),d0 -> move.l (0x12345:1),d0
move.l (glob),dol -> move.l (globa:w),d0

Specify Value to Fill Gaps Left by .align or .alignn Directive (-Xalign-fill-text)

-Xalign-fill-text=n
Fill gaps left by the .align or .alignn directive with the value n, overriding the
processor-specific default.

Interpret .align Directive (-Xalign-value, -Xalign-power2)

-Xalign-value
Interpret the value in an .align directive as the value to which the location
counter is to be aligned, which must be a power of 2. Example:
-Xalign-value=8 means .align is to align on an 8-byte boundary. This is the
default.

305

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xalign-power2
Interpret the value in an .align directive as the power of 2 to which the location
counter is to be aligned. Example: -Xalign-power2=3 means .align is to align
on an 8-byte boundary

Generate Debugging Information (-Xasm-debug-...)

-Xasm-debug-off
Do not generate debug line and file information. This is the default.

-Xasm-debug-on

Generate debug line and file information. (ELF/DWARF format only).

Align Program Data Automatically Based on Size (-Xauto-align)

-Xauto-align-off
The assembler performs no data alignment. This is the default.

-Xauto-align
Align program data automatically based on size.

Allow Comments Without Comment Character (-Xauto-comment-...)

-Xauto-comment-on
Allow comments ending an instruction or directive line to begin without a

leading comment character. This option implicitly sets -Xspace-off which
disallows spaces in operands. It also prohibits more than one statement per
line.

-Xauto-comment-off
Require a comment ending an instruction or directive line to begin with a
comment character. This is the default.

Select bra Instruction (-Xbra-is-rel, -Xbra-is-jra)
-Xbra-is-rel
The bra instruction without a size indicator must be PC-relative.

-Xbra-is-jra
The bra instruction without a size indicator can be converted to an absolute
jmp if target is > 32K away.

306

16 The Wind River Assembler
16.4 Assembler -X Options

Select 68K cmp Instruction (-Xcmp-normal, -Xcmp-swap)

-Xcmp-normal
The 68K cmp instruction behaves as described in the 68000 user’s manual. This
is the default.

-Xcmp-swap
The 68K cmp instruction has its operands swapped. This is the way many
UNIX 68K assemblers work.

Set Instruction Type (-Xcpu-...)

-Xcpu-target
Accept instructions only for the target processor designated by target. This
option is primarily for internal use and is set automatically by the driver in
response to the user-level -ttof:environ option. See Table 4-1 for details.

Set Default Value for Section Alignment (-Xdefault-align)

-Xdefault-align=value
For COFF modules, set the default alignment of a section not otherwise
aligned. The section is padded so that the size becomes a multiple of the
alignment value. See also Align Common Symbols (-Xcommon-align=n), p.401.

For both COFF and ELF modules, set the value use when calculating the
default alignment for .comm, .lcomm, and .sbss directives, and the alignment
used by the .even directive.

The default value of -Xdefault-align is 8 if no value is given.

Absent this directive, the default alignment for COFF sections is 8, and the
default alignment for ELF sections is the maximum alignment of all objects in
the section.

Note that for ELF modules, -Xdefault-align does not set the alignment of
sections — it sets the default for used by the .comm, .lcomm, .sbss, and .even
directives. Only if one of these directives is in fact used in a section will the
alignment be as set by -Xdefault-align rather than the maximum alignment of
all objects in the section.

307

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Select Default Displacement Size (-Xdisp-...)

-Xdisp-long

Use “long” as the displacement size of displacements without an explicit size
qualification. This is the default.

-Xdisp-word

308

Use “word” as the displacement size of displacements without an explicit size

qualification.

This option interacts with options -Xind16-range-... as shown by the following

examples.

Example of -Xdisp-long with -Xind16-range-off:

move.
move.
move.
move.
move.
move.

1
1
1
1
1
1

0x1234(a0),do
0x12345(a0),do
glob(a0),do
0x1234([a0]),d0 ->
0x12345([a0]),d0 ->
glob([a0]),do0

->
->
->

->

with -Xind16-range-on:

move.1l
move.1l
.1
1
1
1

move

move.
move.
move.

0x1234 (a0),do
0x12345(a0),do
glob(a0),do
0x1234([a0]),d0 ->
0x12345([a0]),d0 ->
glob([a0]),do0

->
->
->

->

move.
move.
move.
move.
move.
move.

move.
move.

move

move.

move

move.

0x1234:w(a0),do
0x12345:w(a0),do
glob:w(a0),do0
0x1234:w([a0]),d0
0x12345:1([a0]),d0
glob:1([a0]),d0

0x1234:w(a0),do
0x12345:1(a0),do0
glob:1(a0),do0
0x1234:w([a0]),d0
0x12345:1([a0]),do
glob:1([a0]),d0

Example of -Xdisp-word with -Xind16-range-off:

move.
move.

1
1
.1
1
1
1

move

move.
move.
move.

0x1234(a0),do ->
0x12345(a0),do
glob(a0),do

0x1234([a0]),d0 ->
0x12345([a0]),d0 ->

glob([a0]),d0

->
->

->

with -Xind16-range-on:

move.
move.
move.
move.
move.
move.

1
1
1
1
1
1

0x1234 (a0),do
0x12345(a0),do
glob(a0),do
0x1234([a0]),d0 ->
0x12345([a0]),d0 ->
glob([a0]),do0

->
->
->

->

move.
move.
move.
move.
move.
move.

move.
move.
move.
move.
move.
move.

0x1234:w(a0),do
0x12345:w(a0),do
glob:w(a0),do0
0x1234:w([a0]),d0
0x12345:1([a0]),d0
glob:w([a0]),d0

0x1234:w(a0),do
0x12345:1(a0),do0
glob:w(a0),do0
0x1234:w([a0]),d0
0x12345:1([a0]),d0
glob:w([a0]),d0

16 The Wind River Assembler
16.4 Assembler -X Options

Set FPU Type (-Xfpu-...)
-Xfpu-68881
Only accept code for 68881 FPU.

-Xfpu-68882
Only accept code for 68882 FPU.

-Xfpu-68040
Only accept code for 68040 FPU.

-X£pu-68060
Only accept code for 68060 FPU.

-Xfpu-all
Accept code for all 68K FPUs.

-Xfpu-none

Do not accept code for any FPU.

Enable Local GNU Labels (-Xgnu-locals-...)

-Xgnu-locals-off
Disable local GNU labels. See GNU-Style Locals, p.324 for more information.
The default setting is -Xgnu-locals-on.

-Xgnu-locals-on

Enable local GNU labels. See GNU-Style Locals, p.324 for more information.
This is the default.

Include Header in Listing (-Xheader...)

-Xheader
Include a header in the listing. See the -1 and the -L options. This option is
turned off as a default. This option has the same effect as the -H option. See
also -Xheader-format below 31.

-Xheader-off
Do not include a header in the listing file. This is the default.

See 22. Example Assembler Listing for an example of an assembly listing.

309

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Set Header Format (-Xheader-format="string")

-Xheader-format="string"
Define the format of the header in the assembly listing. (The header is enabled
by options -H or -Xheader above). The header string can contain format
specifications in any order introduced by a “%”. Characters not preceded by
“%" are printed as is, including spaces and escapes such as “\t” for tab.

Valid format specifications are:

%NE
Use n columns to display the error count.

%NF
Use n columns to display the filename.

Start a new line.

Use n columns to display the page number.

Use n columns to display the subtitle given with the -Xsubtitle option.
Use n columns to display the title given with the -Xtitle option.

Use n columns to display the warning count.
The default header string is:
"%$30T File: %10F Errors %4E"

See 22. Example Assembler Listing for an example of an assembly file listing.

Select Default Address Register Indirect Mode (-Xind16-range-off, -Xind16-range-on)

-Xindl6-range-off
Use “Address Register Indirect with Displacement” when possible and
truncate the displacement to 16 bits regardless of the -Xdisp-long and
-Xdisp-word options.This is the default.

-Xindl6-range-on
Use “Address Register Indirect with Displacement” only when the
displacement is known to fit in 16 bits or when -Xdisp-word is set.

These options interact with the -Xdisp-... options. See Select Default
Displacement Size (-Xdisp-...), p.308 for an example.

310

16 The Wind River Assembler
16.4 Assembler -X Options

Select Default Index Size (-Xindex-long, -Xindex-word)

-Xindex-long
Use “long” as the index size for references to index registers without an
explicit index size qualifier. This is the default.

-Xindex-word
Use “word” as the index size for references to index registers without an
explicit index size qualifier.

Example of -Xindex-long;:
move.l (a0,d0),do0 -> move.l (a0,d0:1),d0
Example of -Xindex-word:

move.l (a0,d0),do -> move.l (a0,d0:w),do

Set Label Definition Syntax (-Xlabel-colon...)

-Xlabel-colon
Require that all label definitions have a colon “:”appended. When this option
is selected, some directives are allowed to start the line.

Note that this applies to all directives, including .equ and .set. Thus, with this

option:
TRUE: .set 1 valid
TRUE .set 1 invalid

-Xlabel-colon-off
Do not require label definitions to end with a colon “:”. When this option is
selected, directives are not allowed to start in column 1. This is the default.

Set Format of Assembly Line in Listing (-Xline-format="string")

-Xline-format="string"
Define the format of each assembly line in a listing. The string can contain the
following format specifications, in any order, starting with a “%”. Characters
not preceded by “%” are printed as is, including spaces and escapes such as
“\t” for tab.

Valid format specifications are:

%NA
Use n columns to display current address.

311

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

%M . mC
Use n columns to display the generated code. A space is inserted at every

nth column.

%NnD
Display a maximum of n generated bytes for each source line. n may have

a value from 1 through 32. More than one listing line might be used to
display lines that produce many bytes.

Use n columns to display the current source line number.

Use n columns to display the current Program Location Counter (PLC)
which corresponds to a section number.

The assembly source statement follows the above items on the listing line.
The default line format string is:

"%$8A %2P %32D%15.2C%5L\t"

See 22. Example Assembler Listing for an example of an assembly listing.

Generate a Listing File (-Xlist-...)
-Xlist-file
Generate a listing file to file input-file.1st. Same as the -1 option.

-Xlist-off
Generate no listing file. This is the default.

-Xlist-tty
Generate a listing file to standard output. Same as the -L option.

See 22. Example Assembler Listing for an example of an assembly listing.

Specify File Extension for Assembly Listing (-Xlist-file-extension="string")

-Xlist-file-extension="string"
Use this option to override the default extension (.Ist) of the listing file
generated by -1 or -Xlist-file. For example, -Xlist-file-extension=".L" specifies
the file extension .L.

312

16 The Wind River Assembler
16.4 Assembler -X Options

Set Line Length of Listing File (-Xllen=n)

-Xllen=n
Define the number of printable character positions per line of the listing file.
The default is 132 characters. A value of 0 means unlimited line length. This
value may also be set or changed by the .1len (.llen expression, p.352) and .psize
(.psize page-length [line-length], p.354) directives.

See 22. Example Assembler Listing for an example of an assembly listing.

Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)
-Xmacro-arg-space-off
Do not permit blanks in macro arguments. This is the default.

-Xmacro-arg-space-on
Permit blanks in macro arguments.

Set MMU Type (-Xmmu-68xxx, -Xmmu-all, -Xmmu-none)
-Xmmu- 68851
Only accept code for the 68851 MMU.

-Xmmu-68030
Only accept code for the 68030 MMU.

-Xmmu-68040
Only accept code for the 68040 MMU.

-Xmmu-68060
Only accept code for the 68060 MMU.

-Xmmu-all
Accept code for the all 68K MMU .

-Xmmu-none

Do not accept code for any MMU.
Set Mnemonics Type (-Xmnem-all, -Xmnem-emb, -Xmnem-mit)

-Xmnem-all
Accept all of the mnemonics specified by the other -Xmnem-x options.

313

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-Xmnem-emb
Accept only Motorola (Freescale) Embedded mnemonics.

-Xmnem-mit
Accept only MIT mnemonics.

Set Output Object Format (-Xobject-format=form)

-Xobject-format=form
Set the object format the assembler should produce. form is one of:

coff COFF (Common Object File Format)
elf ELF (Executable and Linkable Format)

The object format is set automatically by the DOBJECT environment variable
and the -WDDOBJECT option and should not be set explicitly.

Select Branch Size Optimizations (-Xoptim-...)

-Xoptim-all
Enable branch size optimizations; choose the shortest branch instruction for

local branches. Change move to moveq. This is the default.

-Xoptim-off
-Xno-optim
Disable branch size optimizations.

Set Page Break Margin (-Xpage-skip=n)

-Xpage-skip=n
If n is zero (the default), page breaks in the listing file will be created using
formfeed (ASCII 12). Otherwise each page will be padded with # blank lines,
and these n blank lines included in the count set by -Xplen option. See
22. Example Assembler Listing for an example of an assembly listing.

Set Lines Per Page (-Xplen=n)

-Xplen=n
Define the number of printable lines per page in the listing file. The default

value of 1 is 60. See also -Xpage-skip above. This value may also be set or
changed by the .lcnt (see .lcnt expression, p.351) and .psize (see .psize

314

16 The Wind River Assembler
16.4 Assembler -X Options

page-length [line-length], p.354) directives. See 22. Example Assembler Listing for
an example of an assembly listing.

Limit Length of Conditional Branch (-Xprepare-compress=n)

-Xprepare-compress=n
Change the maximum length of a conditional branch from the default, which
is 32,766 bytes; if n is not specified, the length is set to 1024. If a conditional
branch exceeds this limit, the assembler inserts a reverse conditional around
an unconditional branch to the label.

Enable Spaces Between Operands (-Xspace-...)

-Xspace-off
Do not allow spaces between operands in an assembly instruction.

-Xspace-on
Allow spaces between operands in an assembly instruction. This is the default.

Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)

-Xstrip-locals
Do not include local symbols in the symbol table. This is the same as the -x
option. Local symbols are those not defined by .extern or .comm.

-Xstrip-locals-off
Include local symbols in the symbol table. This is the default.

-Xstrip-temps="string"
Do not include local labels starting with string in the symbol table. If no string
is specified, .L will be used. This is the same as the -X option. This option can
be used to suppress the temporary symbols generated by the compiler.

-Xstrip-temps-off
Include local symbols starting with .L in the symbol table. This is the default.

Set Subtitle (-Xsubtitle="string")
-Xsubtitle="string"

Define a subtitle that will be printed in the %S field of the header. See Set
Header Format (-Xheader-format="string”), p.310, for more information.

315

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Set Tab Size (-Xtab-size=n)

-Xtab-size=n
Define the number of spaces between tab stops. The default is 8.

Set Title (-Xtitle="string")
-Xtitle="string"

Define a title that will be printed in the %T field of the header. See Set Header
Format (-Xheader-format="string”), p.310, for more information.

316

17

Syntax Rules

17.1 Format of an Assembly Language Line 317
17.2 Symbols 320

17.3 Direct Assignment Statements 321

17.4 Reserved symbols 322

17.5 External Symbols 322

17.6 Local Symbols 324

17.7 Constants 325

17.1 Format of an Assembly Language Line

An assembly language file consists of a series of statements, one per line. The
maximum number of characters in an assembly line is 1024.

The format of an assembly language statement is:
[1abet :] [opcode] [operand field) [; comment]

Spaces and tabs may be used freely between fields and between operands (except
that -Xspace-off option prohibits spaces between operands. See Enable Spaces
Between Operands (-Xspace-...), p.315).

317

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

A comment starts with “;” as shown above. See Comment, p.320 for additional
comment details.

All fields are optional depending on the circumstances. In particular:
» Blank lines are permitted.
= A statement may contain only a label.

» The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). A statement may contain only an opcode. (Assembler directives may start
in column one but only if the -Xlabel-colon option is given.)

= A line may consist of only a comment beginning in any column.

An example of assembly language code using the different supported mnemonics
follows.

Motorola (Freescale) Embedded Mnemonics (-Xmnem-emb):

; mv_word (dest, src,cnt)
; move cnt 4-byte words from src to dest
PSECT
XDEF _mv_word
_mv_word:
link a6, #-0
move.l 8(ab),al
move.l 12(ab6),al
move.l 16(a6),d0

bra L3
L4

move.b 0(a0,d0),0(al,do)
LL3:

subg.l #1,d0

bne L4

unlk ab

rts

MIT Mnemonics (-Xmnem-mit):

| mv_word (dest, src, cnt)
move cnt 4-byte words from src to dest
.text
.globl _mv_word
_mv_word:
link a6, #-0
movl a6l (8),al

movl a6@(12),a0
movl a6@(16),d0
jra .L3

L4
movb a0@(d0:1:4),al@(d0:1:4)

318

Labels

Opcode

17 Syntax Rules
17.1 Format of an Assembly Language Line

LL3:
subgl #1,d0
bne L4
unlk ab
rts

A label is a user-defined symbol which is assigned the value of the current location
counter; both of which are entered into the assembler’s symbol table. The value of
the label is relocatable.

Alabel is a symbolic means of referring to a specific location within a program. The
following govern labels:

» Alabel is a symbol; see 17.2 Symbols, p.320 for the rules on forming symbols.

» Alabel always occurs first in a statement; there may be multiple labels on one
line.

» A label may be optionally terminated with a colon, unless the -Xlabel-colon
option is used in which case the colon is required. Examples:

start:

genesis: restart: ; Multiple labels
7S ; A local label
4: ; A local label

(See 17.6 Local Symbols, p.324 for details on local labels.)

The opcode of an assembly language statement identifies the statement as either a
machine instruction or an assembler directive.

The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). One or more blanks (or tabs) must separate the opcode from the operand
field in a statement. No blanks are necessary between a label ending with a colon
and an opcode. However, at least one blank is recommended to improve
readability.

A machine instruction is indicated by an instruction mnemonic.

An assembler directive (or just “directive”), performs some function during the
assembly process. It does not produce any executable code, although it may assign

319

Operand Field

Comment

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

space in a program for data. Assembler directives may start in column one but only
if the -Xlabel-colon option is given.

The assembler is case-insensitive regarding opcodes.

In general, an operand field consists of 0-2 operands separated by commas.

The format of the operand field for machine instruction statements is the same for
all instructions. The format of the operand field for assembler directives depends
on the directive itself.

R

The comment delimiters are semicolon”;” (Embedded mnemonics), and vertical
bar “ 1”7 (MIT mnemonics).

U

An asterisk in column 1 is also treated as a comment delimiter.

The comment field consists of all characters in a source line including and
following the comment character through the end of the line (the next <Newline>
character). These characters are ignored by the assembler.

17.2 Symbols

A symbol consists of a number of characters, with the following restrictions:

» Valid characters include A-Z, a-z, 0-9, period “.”, dollar sign “$“, and
underscore “_“.

» The first character must not be a “$” dollar sign.

» The first character must not be numeric except for local symbols (17.6 Local
Symbols, p.324).

The only limit to the length of symbols is the amount of memory available to the
assembler. Upper and lower cases are distinct: “Alpha” and “alpha” are separate
symbols.

320

17 Syntax Rules
17.3 Direct Assignment Statements

A symbol is said to be declared when the assembler recognizes it as a symbol of the
program. A symbol is said to be defined when a value is associated with it. A
symbol may not be redefined, unless it was initially defined with the directive
symbol .set expression (see symboll:] .set expression, p.357).

There are several ways to define a symbol:

= Asthelabel of a statement.

* Inadirect assignment statement.

» With the .equ/.set directives.

= Asalocal common symbol via the .lcomm directive.

The .comm directive will declare a symbol as a common symbol. If a common
symbol is not defined in any module, it will be allocated by the linker to the end of
the .bss section. See 23.4 COMMON Sections, p.381 for additional details.

17.3 Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The format of a direct assignment statement is one of the
following:

symbol[:] = expression
symbol[:] =: expression

The =: syntax has the side effect that symbol will be visible outside of the current
file. Examples of valid direct assignments are:

vect_size = 4

vectora = Oxfffe

vectorb = vectora-vect_size
CRLF: =: 0x0DOA

321

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

17.4 Reserved symbols

In some cases conflicts can occur between processor register names and symbols.
In order to avoid this, the assembler reserves these symbol names.

do to d7
Data registers.

a0 to a7, sp
Address registers.

fp0 to fp7

Floating point registers.

pc, zpc
Program counter register.

cc, ccr
Condition code registers.

sr
Status register.

usp
User stack pointer.

Case is not significant in the above table, that is, all upper and lower case
permutations are reserved.

17.5 External Symbols

A program may be assembled in separate modules, and linked together to form a
single program. By using external symbols, it is possible to define a label in one file
and use it in another. The linker will relocate the reference so that the same address
is used. There are two forms of external symbols:

* Ordinary external symbols declared with the .globl, .global, .xdef, or .export
directives.

» Common symbols declared with the .comm directive.

322

17 Syntax Rules
17.5 External Symbols

Note that high level languages such as C and C++ prefix external symbols with the
character “_" to symbols to avoid name clashes.

For example, the following statements define the array _table and the routine _two
to be external symbols:

Embedded Mnemonics:

XDEF _table, _two
DSECT
_table:
DS.B 20 ; twenty bytes long
PSECT
_two:
move.l #2,d0 ; return 2
rts

MIT Mnemonics:

.globl _table, _two

.data
_table:
.space 20 | twenty bytes long
.text
_two:
movl #2,d0 | return 2
rts

External symbols are only declared to the assembler by the .globl, .global, .xdef,
or .export directives. They must be defined (i.e., given a value) in another
statement by one of the methods mentioned above. They need not be defined in the
current file; in that case they are flagged as “undefined” in the symbol table. If they
are undefined, they are considered to have a value of zero in expressions.

The following statements, which may be located in a different file, use the above
defined labels:

jsr _two

move.l dO,_table
Note that whenever a symbol is used that is not defined in the same file, it is
considered to be a global undefined symbol by the assembler.

An external symbol is also declared by the .comm directive in one or more modules
(see .comm symbol, size [,alignment], p.343). For the rest of the assembly such a
symbol, called a common symbol, will be treated as though it is an undefined
global symbol. The assembler does not allocate storage for common symbols; this
task is left to the linker. The linker computes the maximum size of each common
symbol with the same name, allocates storage for it at the end of the final .bss
section, and resolves linkages to it (unless the -Xbss-common-off is used; see

323

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

5.4.20 Control Allocation of Uninitialized Variables in “COMMON" and bss Sections
(-Xbss-off, -Xbss-common-off), p.69).

17.6 Local Symbols

Local symbols provide a convenient way of generating labels for branch
instructions. Use of local symbols reduces the possibility of attempting to define a
symbol more than once in a program, and separates entry point symbols from local
references, such as the top of a loop. Local symbols cannot be referenced by other
object modules. The assembler implements two styles of local symbols.

Generic Style Locals

The generic style local symbols are of the form n$ where # is any integer.
Examples of valid local symbols:

1$

27$

3943
Leading zeroes are significant, e.g., 2$ and 02$ are different symbols. A local
symbol is defined and referenced only within a single local symbol block. There is
no conflict between local symbols with the same name which appear in different
local symbol blocks. A new local symbol block is started when either:

* A non-local label is defined.
* A new program section is entered.

GNU-Style Locals

A GNU-style local symbol consists of one to five digits when defined. A GNU-style
local symbol is referenced by the digits followed by the character f or b. When the
digits are suffixed by an f, the nearest definition going forward (toward the end of
the source) is referenced. When suffixed with the character b, the nearest definition
going backward (toward the beginning of the file) is referenced. Example:

324

17 Syntax Rules
17.7 Constants

15:
.long 15f ; Reference definition below.
.long 15b ; Reference definition above.
15:
By default the GNU style local symbols are recognized by the assembler. This can
be disabled with the option -Xgnu-locals-off (see zEnable Local GNU Labels
(-Xgnu-locals-...), p.309).

17.7 Constants

The assembler supports both integral and floating point constants. Integral
constants may be entered in decimal, octal, binary or hexadecimal form, or they
may be entered as character constants. Floating point constants can only be used
with the .float and .double directives.

Integral Constants

Internally, the assembler treats all integer constants as signed 32-bit binary two’s

complement quantities. Valid constant forms are listed below. The order of the list
is significant in that it is scanned from top to bottom, and the first matching form
is used.

10

c
character constant

Oxhex-digits
hexadecimal constant

Ooctal-digits
octal constant

$hex-digits
hexadecimal constant

lhex-digits
hexadecimal constant

@octal-digits
octal constant

325

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Y%binary-digits

binary constant
decimal-digits

decimal constant
octal-digitso

octal constant
octal-digitsq

octal constant
binary-digitsb

binary constant

Examples:
abc = 12 12 decimal
bcd = 012 12 octal (10 decimal)
cde = 0x12 12 hex (18 decimal)

To represent special character constants, use the following escape sequences:

Constant Value Meaning
"\b' 8 backspace
\t' 9 horizontal tab
"\n' 10 line feed (newline)
\v' 11 vertical tab
"\f' 12 form feed
"\r' 13 return
" 39 single quote
\\! 92 backslash
By using a “\nnn” construct, where nnn is an octal value, any character can be
specified:
'\101' same as ‘A (65 decimal)
"\60" same as ‘0 (48 decimal)

Floating Point Constants

Floating point constants have the following format:

326

17 Syntax Rules
17.7 Constants

[+] -Jiile | &)[+ | -]i

where i is an integer. All parts are optional as long as the constant starts with a sign
or a digit and contains either a decimal point or an exponent (e or E and a following
digit). Also, +NAN and [+/-]INF are supported. Examples:

float 1.2, -3.14, 0.27172el
double -123e-45, .56, le23

String Constants

The form of a string is:
"characters"
where characters is one or more printable characters or escape codes.

Characters represented in the source text with internal values less than 128 are
stored with the high bit set to zero. Characters with source text values from 128
through 255, and characters represented by the “\nnn” construct are stored as is.

A Newline character must not appear within the character string. It can be
represented by the escape sequence \n as described below. The (") is a delimiter
character and must not appear in the string unless preceded by a backslash “\”.

The following escape sequences are also valid as single characters:

Constant Value Meaning

\b 8 Backspace

\t 9 Horizontal tab

\n 10 Line Feed (New Line)
\v 11 Vertical tab

\f 12 Form feed

\r 13 Enter

\" 34 Double quote “”

\\ 92 Backslash “\”

\nnn nnn (octal) Octal value of nnn

Some examples follow. The final two are equivalent.

327

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Statement
.ascii "hello there"
.ascii "Warning-\007\007\n"

.ascii "Warning-",7,7,"\n"

Literals as operands

Hex Code Generated
68 65 6C 6C 6F 20 74 68 65 72 65
77 61 72 6E 69 6E 67 2D 07 07 0A

Same as previous line.

A pound sign “#” must precede a literal that is an operand:

move.l #2,d0
move.l #0x100,d0

328

; return 2
; return 256

18

Sections and Location
Counters

18.1 Program Sections 329
18.2 Location Counters 330

18.1 Program Sections

Assembly language programs are usually divided into sections to separate
executable code from data, constant data from variable data, initialized data from
uninitialized data, etc. Some important predefined sections are described below,
with a reference to the assembler directive that switches output to each section.

.text, p.359
Instruction space.

data, p.344
Initialized data.

.bss, p.342
Uninitialized data.

.sbss [symbol, size [alignment]], p.354
Short uninitialized data.

.sdata, p.355
Short initialized data.

329

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.sdata2, p.355
Constant short initialized data.

By invoking these directives, it is possible to switch among the sections of the
assembly language program. New sections can also be defined with the .section
directive (see .section name, [alignment], [type], p.355).

The assembler maintains a separate location counter for each section. Thus for
assembly code such as:

.text

instruction-block-1

.data

data-block-1

.text

instruction-block-2

.data

data-block-2
In the object file, instruction-block-2 will immediately follow instruction-block-1, and
data-block-2 will immediately follow data-block-1.

ELF sections are aligned based on their contents or on a specified alignment in a
.section directive. ELF sections are not extended to any boundary whether aligned
or not. For COFF, sections are aligned and sized to the first of: an alignment
specified with a .section directive, or to the value given with an -Xdefault-align
(307) command-line option, or to a default value of 8.

Padding introduced into a code section (but not other types of sections) by means
of an .align or .alignn directive, or at the end of a COFF section, is filled with the
nop instruction (0x4e71).

NOTE: See the -f linker option, 24. The did Command, for filling of gaps between
input sections in an output section.

18.2 Location Counters

The assembly current location counter is represented by the character “.”. In the
operand field of any statement or assembly directive it represents the address of
the first byte of the statement.

330

18 Sections and Location Counters
18.2 Location Counters

NOTE: A currentlocation counter appearing as an operand in a .byte directive (see
.byte expression ,..., p.342) always has the value of the address at which the first byte
was loaded; it is not updated while evaluating the directive.

The assembler initializes the location counter to zero. Normally, consecutive
memory locations are assigned to each byte of the generated code. However, the
location where the code is stored may be changed by a direct assignment altering
the location counter:

. = expression

expression must not contain any forward references, must not change from one pass
to another, and must not have the effect of reducing the value of “.”. Note that the

"o

assembler supports absolute sections when using ELF, so setting “.” to an absolute
position is equivalent to using the .org directive and will produce a section named
.abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the section, with
leading zeros to fill to eight digits. The linker will then place this section at the
specified address. For example:

. = 0xf£0000

will create a section named .abs.00£f0000 located at that address.

Storage area may also be reserved by advancing the “.”. For example, if the current
value of “.”is 0x1000:

.= . +0x100

would reserve 100 (hex) bytes of storage. The next instruction would be stored at
address 0x1100. Note that

.skip 0x100

is a more readable way of doing the same thing.

331

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

332

19

Assembler Expressions

Expressions are combinations of terms joined together by unary or binary
operators. An expression is always evaluated to a 32-bit value. If the instruction
calls for only 8 or 16 bits, the least significant 8 or 16 bits are used.

A term is a component of an expression. A term may be one of the following:

A constant.
A symbol.

An expression or term enclosed in parentheses (). Any quantity enclosed in

parentheses is evaluated before the rest of the expression. This can be utilized
to alter the normal precedence of operators, e.g., differentiating between a*b+c
and a*(b+c), or to apply a unary operator to an entire expression, e.g., -(a*b+c).

Any expression, when evaluated, is either absolute or relocatable:

1.

An expression is absolute if its value is fixed. An expression whose terms are
constants, or symbols whose values are constants via a direct assignment
directive, is absolute. A relocatable expression minus a relocatable expression,
where both items belong to the same program section is also absolute.

An expression is relocatable if it contains a label whose value will not be defined
until link time. In this case the assembler will generate an entry in the
relocation table in the object file. This entry will point to the instruction or data
reference so that the linker can patch the correct value after memory allocation.
The allowed relocatable expressions are defined in F. Object and Executable File
Formats together with the relocation type used. The following demonstrates
the use of relocatable expressions, where “alpha” and “beta” are symbols:

alpha
relocatable

333

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

alpha+5
relocatable

alpha-0xa
relocatable

alpha*2
not relocatable (error)

2-alpha
not relocatable, since the expression cannot be linked by adding alpha’s
offset to it

alpha-beta
absolute, since the distance between alpha and beta is constant, as long as
they are defined in the same section

alpha@l
relocatable (the low 16 bits of alpha)

NOTE: In the following tables, the phrase “expr evaluates to ... offset from the ...
base register” (or similar) means that the assembler generates a constant which is
adjusted as necessary by the linker so that the final value in memory is an offset
from the designated base register. These constructs are used for
position-independent code or data, or for small data or constant areas (both
“position-independence” and “small” are implemented using the same
mechanisms and registers). To execute correctly, the designated base register must
be loaded with the base of the code or data area as appropriate. See the discussions
of these topics in 14. Locating Code and Data, Addressing, Access.

Unary Operators
The unary operators recognized by the assembler are:

.ENDOFE.(section-name)
Address of the end of the given section. Evaluates to .endof.section_name,
a symbol created by the linker. (See 23.2 Symbols Created By the Linker,
p-378.)

High adjust operator, p.335expr@h
The most significant 16 bits of expr are extracted.

expr@ha
High adjust: The most significant 16 bits of expr are extracted and adjusted
for the sign of the least significant 16 bits of expr. See High adjust operator,
p-335 below.

334

19 Assembler Expressions

expr@l
The least significant 16 bits of expr are extracted.

expr@sda
The least significant 16 bits of the 32 bit expr are extracted.

Then 16 bit expr is evaluated relative to the “small data area” base register
a5.

expr@sdax
The least significant 16 bits of the 32 bit expr are extracted.

Then 16 bit expr is evaluated relative to the “small data area” base register
a5.

.SIZEOFE.(section-name)
Size of the given section. Evaluates to .sizeof.section_name, a symbol
created by the linker (see 23.2 Symbols Created By the Linker, p.378).

.STARTOF.(section-name)

Address of the start of the given section. Evaluates to .startof.section_name,
a symbol created by the linker (see 23.2 Symbols Created By the Linker,
p-378).

Unary add.
Negate.

Complement.

High adjust operator

Sometimes the compiler (or a hand-coded assembly language program, if not the
compiler) uses two instructions to copy an address to or from a location in memory.
Each instruction can include 16 bits of the address as an immediate value, and the
two 16-bit parts of the address are added to form the full address.

For the purposes of this discussion:
= The first instruction has the higher 16 bits of the address.

= The second instruction has the lower 16 bits of the address.

335

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

In some cases, the second instruction sign extends the low 16 bits (for example,
0x8000 is sign-extended to 0xffff8000). If so, the first instruction must compensate
so that the correct address is calculated when the two parts of the address are
added.

How the first instruction compensates depends on the most significant bit of the
lower 16 bits of the address:

= Ifitis zero, no adjustment is made.

= Ifitis 1, the first instruction adds 1 to the higher 16 bits of the address. The
second instruction adds Oxffff, which is equivalent to -1. Thus, the two
additions negate each other.

Binary Operators

The binary operators recognized by the assembler are:

Binary Operator Description
+ add

- subtract

* multiply

/ divide

! bitwise or
% modulo

& bitwise and
A bitwise exclusive or
<< shift left

>> shift right
== equal to

I= not equal to

<= less than or equal to

< less than

>= greater than or equal to
> greater than

336

19 Assembler Expressions

Operator Precedence

Expressions are evaluated with the following precedence in order from highest to
lowest. All operators in each row have the same precedence.

Table 19-1 Assembler Operator Precedence and Associativity

Operator Associativity
unary + — ~ right to left
@h @ha
"@A)lsda Y%sdax left to right
.startof. .endof. .sizeof.
* | % (modulo) left to right
binary + - left to right
<< >> left to right
< <= > >= left to right
== I= left to right
& left to right
A left to right
left to right

337

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

338

20

Assembler Directives

20.1 Introduction 339
20.2 List of Directives 340

20.1 Introduction

All the assembler directives (or just “directives”) described here that are prefixed

with a period “.” are also available without the period. Most are shown with a “.
except for those traditionally written without it.

If the -Xlabel-colon option is given (see Set Label Definition Syntax (-Xlabel-colon...),
p-311), then directives which cannot take a label may start in column 1. A directive
which can take a label—that is, can produce data in the current section—may not
start in column 1. If -Xlabel-colon-off is in force (the default), then no directive
may start in column 1.

Spaces are optional between the operands of directives unless the -Xspace-off
option is in force (see Enable Spaces Between Operands (-Xspace-...), p.315).

In addition to the directives documented in this chapter, the assembler recognizes
the following directives generated by some compilers for symbolic debugging:

.d1_line_start, .d1_line_end, .d1file, .d1line, .def, .endef, .In, .dim, .line, .scl,
.size, .tag, .type, .val, .d2line, .d2file, .d2_line_start, .d2_line_end, .d2string,

339

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.d2_cfa_offset,.d2_cfa_register,.d2_cfa_offset_list,.d2_cfa_same_value_list,
.d2_cfa_same_value, .uleb128, .sleb128

The remainder of this chapter describes individual assembler directives.

20.2 List of Directives

symbol[:] = expression

See symbol[:] .equ expression, p.346. See -Xlabel-colon-... in Set Label Definition
Syntax (-Xlabel-colon...), p.311 regarding the initial colon.

symbol[:] =: expression

Equivalent to symbol = expression except that symbol will be made a global symbol.
See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.311 regarding
the initial colon.

.2byte
This is a synonym for .short (.short expression ..., p.358) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.4byte

This is a synonym for .long (.long expression ,..., p.352) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

340

20 Assembler Directives
20.2 List of Directives

.align expression

Aligns the current location counter to the value given by expression (which must be
absolute). When the option -Xalign-value is set, expression is used as the alignment
value, and must be a power of 2. When the option -Xalign-power2 is set, the
alignment value is 2 to the power of expression.

The default is -Xalign-value.
There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (Ox4e71) unless a different value is specified with -Xalign-fill-text.

Example:

.align 4

With -Xalign-value, aligns on a 4-byte boundary; with -Xalign-power2, aligns on
a 24 = 16-byte boundary.

.alignn expression

.ascii "string"

Aligns the current location counter to the value given by expression (which must be
absolute).

There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (0x4e71) unless a different value is specified with -Xalign-fill-text.

Example:

.alignn 4

Will align on 4 byte boundary.

The .ascii directive stores the internal representation of each character in the string
starting at the current location. See String Constants, p.327 for rules for writing the
"string".

The .ascii directive is actually a synonym of the .byte directive — its operands may
be a list of expressions including non-strings. See .byte for details (.byte expression
yoorr P-342).

341

.asciz "string"

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically appended as the final character of the string. In the C language,
strings are null terminated. See String Constants, p.327 for rules for writing the
"string".

.balign expression

.blkb expression

.bss

.bsect

See .alignn expression, p.341.

See .skip size, p.358.

Switches output to the .bss section. Note that .bss contains uninitialized data only,
which means that the .skip, .space, and ds.b directives are the only useful
directives inside the .bss section.

See .bss, p.342 above.

.byte expression ,...

Reserves one byte for each expression in the operand field and initializes the value
of the byte to be the low-order byte of the corresponding expression. Multiple
expressions are separated by commas.

Any expression may be a string containing one or more characters. Each character
in the string will be allocated one byte. See String Constants, p.327 for the rules for
writing a string.

342

20 Assembler Directives
20.2 List of Directives

Example:
.byte 17,65,0101,0x41 ; sets 4 bytes
.byte 0 ; sets a single byte to 0
.byte 7,7, "Warning",7,7,0 ; sets 12 bytes

.comm symbol, size [,alignment]

Define symbol as the address of a common block with length given by expression
size bytes and make it global. Contrast with .lcomm, (./comm symbol, size
[.alignment], p.351) which does not make the symbol externally visible.

The size and alignment expressions must be absolute.

All common blocks with the same name in different files will refer to the same
block. The linker will collect and allocate space for all common blocks, and, by
default, place this space at the end of the .bss section; see 23.4 COMMON Sections,
p-381 for details.

Optional alignment

dc.b expression

The optional alignment expression specifies the alignment of the common block. It
must be absolute. If not specified, the default value equals the greatest power of 2
which is less than or equal to the minimum of size and the value specified by
-Xdefault-align (Set Default Value for Section Alignment (-Xdefault-align), p.307),
which defaults to 8.

See Interpret .align Directive (-Xalign-value, -Xalign-power2), p.305 for options for
giving the alignment by power of 2 or the value specified. The default is to align
on the value specified.

Note that the COFF object file does not support common block alignment. An
alignment value is ignored for COFF object files. See Align Common Symbols
(-Xcommon-align=n), p.401.

Examples (assume -Xdefault-align=8):

. comm al,100 ; 100 bytes aligned on an 8-byte boundary.
.comm a2,7,4 ; 7 bytes aligned on a 4-byte boundary.

See .byte expression ,..., p.342 above.

343

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

dc.l expression

See .long expression ,..., p.352.

dc.w expression

See .word expression, ..., p.361.

ds.b size

See .skip size, p.358.

.data

Switches output to the .data (initialized data) section.

.double float-constant ,...

Reserves space and initializes double 64-bit IEEE floating point values.
Example:
double 1.0, -123.45e-56

.dsect

See .data, p.344 above.
.eject

Forces a page break if a listing is produced by the -L or -1 options. See 22. Example
Assembler Listing for an example of an assembly listing.

344

.else

20 Assembler Directives
20.2 List of Directives

The .else directive is used with the .ifx directives to reverse the state of the
conditional assembly, i.e., if statements were skipped prior to the .else directive,
statements following the .else directive will be processed, and vice versa. See .if
expression, p.348 for an example.

.elseif expression

.elsec

.end

.endc

.endif

The .elseif directive must follow a .ifx or another .elseif directive in a conditional
assembly block. If all prior conditions (at the same nesting level) have been false,
then the expression will be tested and if non-zero, the statements following it
assembled, else statements will be skipped until the next .elseif, .else, or .endif
directive. The expression must be absolute. See .if expression, p.348 for an example.

See .else, p.345 above.

This directive indicates the end of the source program. All characters after the end
directive are ignored.

See .endif, p.345 below.

This directive indicates the end of a condition block; each .endif directive must be
paired with a .ifx directive. See .if expression, p.348 for an example.

345

.endm

.entry symbol ,

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

This directive indicates the end of a macro body definition. Each .endm directive
must be paired with a .macro directive. See 21. Assembler Macros for a detailed
description.

See .global symbol ,..., p.348.

symbol[:] .equ expression

.error "string"

.even

The statement must be labeled with a symbol and sets the symbol to be equal to
expression. See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.311,
regarding the initial colon. Example:

nine: .equ 9

NOTE: Symbols defined with .equ may not be redefined. Use the second form of
the .set directive in .set symbol, expression, p.357, instead of .equ if redefinition is
required.

Generate an error message showing the given string. See String Constants, p.327 for
rules for writing the "string".

Aligns the location counter on the default alignment value, specified by the
-Xdefault-align option (Set Default Value for Section Alignment (-Xdefault-align),
p-307).

NOTE: Use the compiler option -Xalign-off, described on 64, when compiling to
force the compiler to generate .even directives, the alignment of which can be
controlled by the assembler option -Xdefault-align (Set Default Value for Section
Alignment (-Xdefault-align), p.307), rather than .align directives.

346

20 Assembler Directives
20.2 List of Directives

.exitm

Exit the current macro invocation.

.extern symbol ,...
Declare that each symbol in the symbol list is defined in a separate module. The

linker supplies the value from the defining module during linking. Multiple
.extern directives for the same symbol are permitted. Example:

.extern add, sub,mul,div
.export symbol ,...

See .global symbol ,..., p.348 below.

file "file"
Specifies the name of the source file for inclusion in the symbol table of the object

file. The default is the name of the file. This directive is used by compilers to pass
the name of the original source file to the symbol table. Example:

.file "test.c"
fill count,[size[,value]]
Reserves a block of data that is count*size bytes big and initialized to count copies

of value. The size must be a value between 1 and 4. The default size is 1 and the
default value is 0.

float float-constant ,...

Reserves space and initializes single 32-bit IEEE floating point values. Example:

.float 3.14159265, .089%e4

347

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.global symbol ,...

.globl symbol ,...

.ident "string"

.if expression

Declares each symbol in the symbol list to be visible outside the current module.
This makes each symbol available to the linker for use in resolving .extern
references to the symbol. Example:

.global add, sub,mul,div

See .global symbol ,..., p.348 above.

Appends the character string to a special section called .comment in the object file.
See String Constants, p.327 for rules for writing the "string". Example:

.ident "version 1.1"

The .if construct provides for conditional assembly. The expression must be
absolute. If the expression evaluates to non-zero, all subsequent statements until the
next .elseif, .else, or .endif directive at the same nesting level are assembled. If the
terminating statement was .elseif or .else, then all statements following it up to the
next .endif at the same level are skipped.

If the expression is zero, all statements up to the next .elseif, .else, or .endif at the
same nesting level are skipped. An .elseif directive is evaluated and statements
following it are skipped or not in the same manner as for the initial .if directive. If
an .else directive is encountered, the statements following it up to the matching
.endif are assembled.

.if constructs may be nested. Example:

Lif long_file names
maxname: .equ 1024

.elseif medium_file_names
maxname: .equ 128

.else
maxname: .equ 14

.endif

The following directives are equivalent: .else and .elsec, and .endif and .endc.

348

20 Assembler Directives
20.2 List of Directives

.ifendian

.ifendian big
Assemble the following block of code if the mode is big-endian.

.ifendian little
Assemble the following block of code if the mode is little-endian.

Note: the “endian” mode is set automatically from the target options and may
not be directly changed by the user.

.ifeq expression

.ifeq is an alias for .if expression == 0. See “.if expression” above for more details.

.ifc "string1","string2"
.ifc is effectively an alias for .if "string1"="string2" (.if does not allow string

expressions). See .if expression, p.348 for more details. See String Constants, p.327
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifdef symbol
Assemble the following code if the symbol is defined. See also .ifndef symbol, p.350

below. See .if expression, p.348 for more details on .if constructs.

.ifge expression

The .ifge is an alias for .if expression >= 0. See .if expression, p.348 for more details.

.ifgt expression

The .ifgt is an alias for .if expression > 0. See .if expression, p.348 for more details.

349

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.ifle expression

The .ifle is an alias for .if expression <= 0. See .if expression, p.348 for more details.

.iflt expression

The .iflt is an alias for .if expression < 0. See .if expression, p.348 for more details.

.ifnc "string1","string2"
.ifnc is effectively an alias for .if "string1"!="string2" (.if does not allow string

expressions). See .if expression, p.348 for more details. See String Constants, p.327
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifndef symbol

Assemble the following code if the symbol is not defined. See .ifdef symbol, p.349
above. See also .if expression, p.348 for more details on .if constructs.

.ifne expression

.fne is an alias for .if expression != 0. See .if expression, p.348 for more details.

.import symbol ,...

See .extern symbol ,..., p.347.
.incbin "file"[,offset[,size]]

Insert the content of a specified file into the assembly output. The assembler
searches for the file in the current directory and all paths added using the -I option.

350

20 Assembler Directives
20.2 List of Directives

If offset is specified, offset bytes are skipped at the beginning of the file. If size is
specified, only size bytes are inserted into the assembly output.

.include "file"

Inserts the contents of the named file after the .include directive. May be nested to
any level. Example:

.include "globals.h"

Icnt expression

Set or change the number of lines on each page of the listing file. The default value
is 60. This count may be set initially by option -Xplen (Set Lines Per Page (-Xplen=n),
p-314), and it includes any margin set by option -Xpage-skip (Set Page Break Margin
(-Xpage-skip=n), p.314). See 22. Example Assembler Listing for an example of an
assembly listing. Example:

.lent 72

.Ilcomm symbol, size [,alignment]
Define a symbol as the address of a local common block of length size expression
bytes in the .bss section.

Note that the symbol is not made visible outside the current module. Contrast with
.comm .

The size and alignment expressions must be absolute. See Optional alignment, p.343
for a description of the alignment parameter and its default value. Example:

.lcomm local_array, 200 # 200 bytes aligned on 8 bytes by default
Jdist
Turns on listing of lines following the .list directive if the option -L or -1 is specified.

Listing can be turned off with the .nolist directive. See 22. Example Assembler
Listing for an example of an assembly listing.

351

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.llen expression

Set the number of printable character positions per line of the listing file. The
default value is 132. A value of 0 means unlimited line length. This count may be
set initially by option -Xllen (Set Line Length of Listing File (-Xllen=n), p.313). See
22. Example Assembler Listing for an example of an assembly listing. Example:

.1llen 132

.llong expression ,...

Reserves 8 bytes (64 bits) for each expression in the operand field and initializes the
value of the word to the corresponding expression. Example:

.llong Oxfedcba9876543210,0123456,-75 ; 24 bytes

.long expression ,...

Reserves one long word (32 bits) for each expression in the operand field and
initializes the value of the word to the corresponding expression. Example:

.long Oxfedcbad98,0123456,-75 ; 12 bytes

name.macro [parameter ,...]

Start definition of macro name. All lines following the .macro directive until the
corresponding .endm directive are part of the macro body. See 21. Assembler Macros
for a detailed description.

Note: the form:
.macro name parameter ,...

is also permitted for compatibility with other tools but is not recommended.

.mexit

Exit the current macro invocation. Synonymous with .exitm, p.347.

352

.name "file"

.nolist

.org expression

20 Assembler Directives
20.2 List of Directives

See file "file”, p.347.

Turns off listing of lines following the .nolist directive if the option -L or -1 is
specified. Listing can be turned on with the .list directive. See 22. Example
Assembler Listing for an example of an assembly listing.

Sets the current location counter to the value of expression. The value must either
be an absolute value or be relocatable and greater than or equal to the current
location. Using the .org directive with an absolute value in ELF mode will produce
a section named .abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the
section (with leading zeros as required to fill to eight digits). The linker will then
place this section at the specified address. Example:

.org 0x££0000

will produce a section named .abs.00£f0000 located at that address.

.p2align expression

.page

Aligns the current location counter to 2 to the power of expression. The .p2align
directive is equivalent to .align when the -Xalign-power2 option is enabled.

See .¢ject, p.344.

.pagelen expression

See .Icnt expression, p.351.

353

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.plen expression

See .Icnt expression, p.351.

.previous

Assembly output is directed to the program section selected prior to the last
.section, .text, .data, etc. directive.

.psect

See .text, p.359.

.psize page-length [,line-length]
Set the number of lines per page and number of character positions per line of the
listing file. This directive is exactly equivalent to setting page-length with the .Icnt
expression, p.351 and setting line-length with the .llen expression, p.352; see them for

additional details. See 22. Example Assembler Listing for an example of an assembly
listing.

Example:
.psize 72,132

.rdata

Switches output to the .rodata (read-only data) section.

.rodata

Switches output to the .rodata (read-only data) section.

.sbss [symbol, size [,alignment]]

With no arguments, switch output to the .sbss section (short uninitialized data
space).

354

.sbttl "string"

.sdata

.sdata2

20 Assembler Directives
20.2 List of Directives

With arguments, define a symbol as the address of a block of length size expression
bytes in the .sbss section and make it global.

The size and alignment expressions must be absolute. See Optional alignment, p.343
for a description of the alignment parameter and its default value. Examples:

.sbss ; switch to .sbss section
.sbss local_array,200 ; reserve space in .sbss section

See .subtitle "string”, p.359.

Switches output to the .sdata (short data space) section.

Switches output to the .sdata2 (constant short data space) section.

.section name, [alignment], [type]

Table 20-1

The assembly output is directed into the program section with the given name. The
section name may be quoted with the (") character or not quoted. The section is
created if it does not exist, with the attributes specified by type. type is one or more
of the following characters, written as either as a quoted "string" or without quotes.
If type is not specified, the default is d (data).

Section Type

Type Linker Command File

Character Section Type? Description of Section Contents
b BSS zero-initialized data

c TEXT executable code

d DATA data

m TEXT DATA mixed code and data

355

Table 20-1

.section n

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Section Type (contd)

Type Linker Command File
Character Section Type? Description of Section Contents
n COMMENT not allocatable — the section is not to occupy

space in target memory; for example,
debugging information sections such as

.debug in ELF

o not applicable® COMDAT section (see 23.5 COMDAT Sections,
p-382)

r CONST readable data

w DATA writable data

X TEXT executable code

a. See Type Specification: ([=]BSS), ([=]COMMENT), ([=ICONST), ([=]DATA), ([=]TEXT),
([=IBTEXT); OVERLAY, NOLOAD, p.422.

b. ‘0’, for COMDAT, is an additional attribute of a section and is usually used with
another type specification character. If “0” is used with another section type character,
the linker command file section type will be that of the other section type character; if
used by itself, the default will be COMMENT.

The alignment expression must evaluate to an integer and specifies the minimum
alignment that must be used for the section. Note that the COFF object module
format is unable to handle the alignment information. Instead, the linker
command language can be used to align the section.

The compiler uses the b type with the #pragma section directive to specify an
uninitialized section. Example: direct assembly output to a section named “.rom”,
with four-byte alignment, containing read-only data and executable code:

.section ".rom",4,rx

The assembly output is directed into the program section named “_Sn”. Example:
direct assembly output to a section named “_S1":

.section 1

356

20 Assembler Directives
20.2 List of Directives

.sectionlink section-name

This directive will cause the current section to be linked as if it had the name
section-name. This directive is available only for ELF object output.

.set option

The following .set option directives are available:

reorder

noreorder
When processed by the reorder program before assembly, enable/disable
reorder optimizations (thus, the .set reorder and .set noreorder directives are
actually “reorder” directives rather than assembler directives). Code
generated for modules compiled with optimization includes a .set reorder
directive. Use .set noreorder in asm strings and asm macros in such code to
disable reordering changes to these hand-coded assembly inserts. Follow with
.set reorder to re-enable reordering optimization. See 7.4 Reordering in asm
Code, p.174.

.set symbol, expression

Defines symbol to be equal to the value of expression. This is an alternative to the
.equ directive. Example:

.set nine, 9

NOTE: Using this form of .set, the symbol may not be redefined later. Use the next
form of .set with the symbol first on the line if redefinition is required

symbol[:] .set expression

Defines symbol to be equal to the value of expression. This form of the .set is different
from the .equ directive or the form of the .set directive immediately above in that
it is possible to redefine the value of symbol later in the same module. See
-Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.311, regarding the
initial colon.

expression may not refer to an external or undefined symbol. Example:

357

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

number: .set 9

number: .set number+1

.short expression ,...

Reserves one 16 bit word for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.short O0xba98, 012345, -75, 17 ; reserves 8 bytes.
.size symbol, expression

Sets the size information for symbol to expression. Note that only the ELF object file
format uses the size information.

.skip size

The .skip directive reserves a block of data initialized to zero. size is an expression
giving the length of the block in bytes. Example:

name: .skip 8
is the same as:
name: .byte 0,0,0,0,0,0,0,0

.Space expression

See .skip size, p.358 above.

.string "string"

See .ascii "string”, p.341.

.strz "string"

See .asciz "string”, p.342.

358

.subtitle "string"

text

itle "string"

Atl "string"

20 Assembler Directives
20.2 List of Directives

Sets the subtitle to the character string. This string replaces the %nS format
specification in the format the string defined by the -Xheader-format option (see
309). The subtitle may be set any number of times. The default subtitle is blank. See
String Constants, p.327 for rules for writing the "string".

.subtitle "string search function"

Switches output to the .text (instruction space) section.

Sets the title to character string. The title may be set any number of times. The
default title is blank. See String Constants, p.327 for rules for writing the "string".
Example:

.title "program.s"

See .title "string”, p.359 above.

.type symbol, type

Mark symbol as type. The type can be one of the following:

#object
@object
object
symbol names an object

#function
@function
function
symbol names a function

Note that only the ELF object file format uses type information.

359

.uhalf

.ulong

.ushort

.uword

warning "string"

.weak symbol ,...

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

This is a synonym for .short (.short expression ,..., p.358) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

This is a synonym for .long (.long expression ,..., p.352) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

This is a synonym for .short (.short expression ..., p.358) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

See .ushort, p.360 above.

Generate a warning message showing the given string. See String Constants, p.327
for rules for writing the "string".

Declares each symbol as a weak external symbol that is visible outside the current
file. Global references are resolved by the linker. Note that only the ELF object file
format supports weak external symbols. Example:

.weak add, sub,mul,div

For a further description of weak symbols see weak Pragma, p.148.

360

20 Assembler Directives
20.2 List of Directives

.width expression

See .llen expression, p.352.

.word expression, ...

.xdef symbol ,...

.xref symbol ,...

.xopt

Reserves one word (16 bits) for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.word 0xba98,012345,-75 ; rees 6 bytes.

See .global symbol ,..., p.348.

See .extern symbol ,..., p.347.

Pass -X options to the assembler using the format:
.xopt option name [=value]

Example:
.xopt align-value

has the same effect as using -Xalign-value on the command line. In case of a

conflict, .xopt overrides the command-line option. Also, some -X options are only
tested before the assembly starts; in that case, the .xopt directive will have no effect.
This option is primarily for internal use; the command-line options are preferred.

361

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

362

21

Assembler Macros

21.1 Introduction 363

21.2 Macro Definition 364

21.3 Invoking a Macro 367

21.4 Macros to “Define” Structures 367

21.1 Introduction

Assembler macros enable the programmer to encapsulate a sequence of assembly
code in a macro definition, and then inline that code with a simple parameterized
macro invocation.

Example:

mov8: .macro regl,reg2 ; macro definition
move.l (regl), (reg2)
move.l 4 (regl),4(reg2)

.endm
mov38 al,al ; macro invocation #1
mov8 a4,ab ; macro invocation #2

363

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

This will produce the following code:

move.l (a0), (al) ; macro expansion #1
move.l 4(a0),4(al)
move.l (a4d), (ab) ; macro expansion #2
move.l 4(a4),4(ab)

21.2 Macro Definition

A macro definition has the form:

label : .macro [parameter ,...]
macro body

.endm

where label is the name of the macro, without containing any period. In addition,
the following syntax is valid but is not recommended:

.macro name [parameter ,...]

macro body

.endm

The optional parameters can be referenced in the macro body in two different
ways. The following two examples show a macro which calculates

parl = par2 + par3
(where the parameters are assumed to be in registers).

1. By using the parameter name:

add3l: .macro.size parl,par2,par3 ; definition
move.size parl,par3
add.l par2,par3
.endm
add31.1 d4,ds,de ; invocation
produces

move.l d4,dé6
add.1l d5,de

364

21 Assembler Macros
21.2 Macro Definition

2. By using \n syntax where \1, \2, ... \9, \A, ... \Z are the first, second, etc.,
actual parameters passed to the macro. When the \n syntax is used, formal
parameters are optional in the macro definition. If present, both the named and
numbered form may be freely mixed in the same macro body.
add3l: .macro ; definition

move.l \1,\3

add.1l \2,\3
.endm

add3l d4,ds,deé ; lnvocation
produces

move.l d4,dé
add.1l ds,de6

The special parameter \0 denotes the actual parameter attached to the macro name

"o

with a “.” character in an invocation. Usually this is an instruction size.

add3: .macro srcl,src2,dest ; definition
move.\0 srcl,dest
add.1l src2,dest
.endm

add3.b do,d1,d2 ; lnvocation
produces

move.b do0,d2
add.1l dl,dz

Separating Parameter Names From Text

In the macro body, the characters “&&” can optionally precede or follow a
parameter name to concatenate it with other text. This is useful when a parameter

is to be part of an identifier:
21
xadd: .macro hcnst,dst ; definition -
add.l Ox&&hcnst,dst
.endm
xadd ££00,d0 ; invocation
produces

add.1l 0x££00,d0

365

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Generating Unique Labels

The special parameter \@ is replaced with a unique string to make it possible to
create labels that are different for each macro invocation.

The following macro defines a string of up to four bytes in the .data section at a
uniquely generated label (however the length of the string is not checked), and
then generates code to load the contents at that label (the string itself) into a

register.
lstr: .macro string, reg
.data
.Lm\@:
.byte string, 0
.previous
move.l #.Lm\@,reg
.endm
lstr "abc",d0
produces
.data
.Lm.0001:
.byte "abc", 0
.previous
move.l #.Lm.0001,d0

NARG Symbol

; definition

; invocation

The special symbol NARG represents the actual number of non-blank parameters
passed to the macro (not including any \0 parameter):

init: .macro value
Af NARG ==
.byte 0
.else
.byte value
.endc
.endm
init
init 10

produces

.byte 0
.byte 10

366

; definition

; invocation #1
; invocation #2

; expansion #1
; expansion #2

21 Assembler Macros
21.3 Invoking a Macro

21.3 Invoking a Macro

A macro is invoked by using the macro name anywhere an instruction can be used.
The macro body will be inserted at the place of invocation, and the formal
parameters in the macro definition will be replaced with the actual parameters, or
operands, given after the macro name.

Actual parameters are separated by commas. To pass an actual parameter that
includes special characters, such as blanks, commas and comment symbols, angle
brackets “< >” may be used. Everything in between the brackets is regarded as one
parameter.

If the option -Xmacro-arg-space-on is given, blanks may be included in an actual
parameter without using brackets. Example:

init: .macro command, list
.data
command list
.previous
.endm

init byte,<0,1,2,3>

produces
.data
.byte 0,1,2,3
.previous

21.4 Macros to “Define” Structures

Although struct is not part of the assembly language, the macros shown below

allow you to assign offsets to symbols so they can refer to structure members.
These macros do not allocate memory; they merely assign values to symbols. The
value of a structure “member” is its offset from the beginning of the structure.

The macros use CURRENT_OFFSET_VALUE to set the offsets of structure members:
the STRUCT macro sets CURRENT_OFFSET_VALUE to 0; the MEMBER macro
defines a symbol named for the member and having as its value
CURRENT_OFFSET_VALUE, then increments CURRENT_OFFSET_VALUE by the
size of the member.

367

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

STRUCT .macro

CURRENT_OFFSET_ VALUE .set 0
.endm

MEMBER .macro name, size

name = CURRENT_ OFFSET VALUE

CURRENT_OFFSET_ VALUE .set CURRENT_OFFSET VALUE + size
.endm

CURRENT_OFFSET_VALUE must be incremented with this form of the .set
directive because it allows the symbol so set to be set again later in the module. See

symbol[:] .set expression, p.357 for details.
Also, note that:
* The MEMBER macro cannot be labeled.

= These macros cannot be used to define nested structures because there is only

one CURRENT_OFFSET_VALUE used for all instances.

= A final MEMBER can be used to define the size of the structure.

Example

The macros define the symbols first_name, middle_initial, and last_name with
values 0, 20, and 21 respectively, and define name_size as the total size of the

“structure” with a value of 46.

STRUCT

MEMBER first_name, 20
MEMBER middle_initial, 1
MEMBER last_name, 25
MEMBER name_size, 0

One might use this, for example, as follows:

.data
recl:
.skip 20 ; reserve space for a first name
.skip 1 ; ... middle initial
.skip 25 ; ... and last name

Then an expression such as recl+last_name in an instruction would access the

last_name “member” of the recl “structure”.

368

22

Example Assembler Listing

If the -1 or -L option is specified, a listing is produced. The -1 option produces a
listing file with the default extension .1st (or the extension specified with
-Xlist-file-extension="string"). The -L option sends the listing to standard output.

The listing contains the following:

Location
Hexadecimal value giving the relative address of the generated code within
the current section.

PI
“P1” stands for “Program Location counter number”. Maps one-to-one to the
section number in the object file (but not necessarily in the same order). When
the same section is used at several discontinuous places in the source, the same
section number will be used for all instances.

Code
Generated code in hexadecimal.

Line
Source line number.

Source Statement
Source code lines.

To change the format of the assembly line, see Set Format of Assembly Line in Listing
(-Xline-format="string"), p.311.

If the -H option is used, a header containing the source filename and the
cumulative number of errors is displayed at the top of each page. To change the
format of the header, see Set Header Format (-Xheader-format="string"), p.310.

369

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Errors are not included in the listing but are always written to stderr.

The following shows a listing produced by assembling an extract from file swap.s
with the command:

das -tMC68060FN -1 -H swap.s.

swap.s is used with the bubble sort example in the Getting Started manual.

Figure 22-1 Assembly Listing File Swap.Ist

File: swap.s Errors 0
Location Pl Code Line Source Statement
1 .file "swap.s"
2 .section .text2,,c
3
4 .align 4
5 .xdef _swap
6
7 _swap:
00000000 01 4e56 0000 8 link a6, #-0
9
00000004 01 206e 0008 10 move.1l 8(ab6),al
00000008 01 2010 11 move.l (a0),do
0000000a 01 20a8 0004 12 move.1l 4(a0), (al)
0000000e 01 2140 0004 13 move.l do, 4 (a0)
14
00000012 01 4eS5e 15 unlk a6
00000014 01 4e75 16 rts

370

PART IV

Wind River Linker

23 The Wind River Linkerccccoiiiiimmmmnnnnnnneennnes 373
24 The dild Commandcccccmriiriiiimnrrinieeenene 387
25 Linker Command Languagecccccurreiniianns 409

371

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

372

23

The Wind River Linker

23.1 The Linking Process 374

23.2 Symbols Created By the Linker 378
23.3 .abs Sections 380

23.4 COMMON Sections 381

23.5 COMDAT Sections 382

23.6 Sorted Sections 383

23.7 Warning Sections 383

23.8 .frame_info sections 384

23.9 Branch Islands 385

This section describes the linker for 68K /CPU32 microprocessors and is organized
as follows:

» This chapter is a brief introduction to the linking process, including an
example, description of special symbols created by the linker, and treatment of
special sections.

= 24, The dld Command, describes the command to invoke the linker and its
options.

= 25. Linker Command Language, describes the language used in linker command
files.

373

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

In addition, F. Object and Executable File Formats, describes the formats of object files
processed by the linker and special relocation types for those requiring such
detailed information.

23.1 The Linking Process

This section provides an introduction to the linking process. Readers familiar with
linker operation may proceed to 23.2 Symbols Created By the Linker, p.378.

The linker is a program that combines one or more binary object modules produced
by compilers and assemblers into one binary executable file. It may also write a text
map file showing the results of its operation.

Each object module/file is the result of one compilation or assembly. Object files
are either stand-alone, typically with the extension .0, or are collected in archive

“u o

libraries, also called libraries. Library files typically have the extension “.a".

An object module contains sections of code (also called “text”), and “data”, with
names such as .text, .data (variables having initial values), .bss (“blank sections —
uninitialized variables), and various housekeeping sections such as a symbol table
or debug information.

The linker reads the sections from the object modules input to it, and based on
command-line options and a linker command file, combines these input sections into
output sections, and writes an executable file (usually; it is also possible to output a
file which can be linked again with other files in a process called incremental
linking).

A section may contain a reference to a symbol not defined in it — an undefined
external. Such an external must be defined as global in some other object file. A
global definition in one object file may be used to satisfy the undefined external in
another.

As compiled or assembled into an input object file, the first byte of each input
section is at address O (typically). But when finally located in memory as part of
some output section, the input section will not be at address 0 (except for the first
input section in an output section that is actually located at 0). Any absolute
references to bytes in the section from within the section will therefore be “wrong”
and will require relocation. The input object file contains sections of relocation

374

23 The Wind River Linker
23.1 The Linking Process

information which the linker will use to adjust such absolute references. Relocation
information is used to make other similar adjustments as well.

Given the definitions above, in the abstract, the linking process consists of six

steps:

1. Read the command line and linker command file for directions.

2. Read the input object files and combine the input sections into output sections
per the directions in the linker command file. Globals in one object file may
satisfy undefined externals in another.

3. Search all supplied archive libraries for modules which satisfy any remaining
undefined externals.

4. Locate the output sections at specific places in memory per the directions in
the linker command file.

5. Use the relocation information in the object files to adjust references now that
the absolute addresses for sections are known.

6. If requested, write a link map showing the location of all input and output

Linking Example

sections and symbols.

This section provides an example of the above linking process. Consider the
following two C files:

File fl1.c:

int a = 1;
int b;

main ()

{
b =2;
£2(3);

}
P
File f2.c:

extern int a, b;

f2 (int <)
{

printf("a:%d, b:%d, c:%d\n", a, b, <c);
}

375

Table 23-1

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The compilation command

dcc -0 -c -Xsmall-data=0 fl.c f2.c

generates the object files f1.0 and f2.0.

The contents of the two object files are shown in Table 23-1.

Linking Example Files

Section Type of Data Contents
fl.o:
.text Code Instructions of function main().
.data Variables Initialized variable _a.
.rela.text Relocation Reference to the variable _b inside main().
entries Reference to the function _f2 inside main().
-symtab Symbol table Symbol _main, defined in .text section.
entries Symbol _a, defined in the .data section.
Symbol _b, COMMON block of size 4.
Symbol _f2, undefined external symbol.
f2.0:
-text Code Instructions of function f2() and the string used
in printf().
.rela.text Relocation Reference to the variable _a inside £2().
entries Reference to the variable _b inside £2().
Reference to the function _printf inside £2().
Reference to the printf string inside £2().
-symtab Symbol table Symbol _f2, defined in the .text section.
entries Symbol _a, undefined external symbol.

Symbol _b, undefined external symbol.
Symbol _printf, undefined external symbol.
Local symbol for the printf string, defined in the
.text section.

Note that the actual symbol names are prefixed with an underscore (“_") by the
compiler to avoid name clashes with register names, etc.

376

23 The Wind River Linker
23.1 The Linking Process

Invoking the linker explicitly using the dld command is fully described in 24. The
dld Command. However, the easiest way to invoke the linker is to use one of the
compiler drivers, for example, dcc, as follows:

dcc fl.o f2.0 -o prog

The driver notes that the input files are objects (f1.0 and £2.0) and invokes the
linker immediately, supplying default values for the library, library search paths,
linker command file, etc. To see how the linker is invoked, add the option -# to the
above command; this option directs the driver to display the commands it uses to
invoke the subprograms.

Schematically, the result will be as follows:

dcc fl.o0 £2.0 -0 prog -#
dld -YP,search-paths -l:crt0.o fl.o f2.0 -o prog -lc
version_path/conf/default.dld
The -YP option specifies directories which the linker will search for libraries
specified with “-1” options and files specified with “-l:filename” options. crt0.0 is
the C start-up module. The -lc option directs the linker to search for a library
named libc.a in the paths specified by -YP.

With this command, the linker will proceed as follows:

1. The text file is assumed to be a linker command file (default.dld here), input
object files are scanned in order (crt0.0, f1.0, and £2.0), and archive libraries are
searched as necessary for undefined externals (the library filename libc.a is
constructed from the option -Ic).

In this link, the file printf.o is loaded from libc.a because printf is not defined
in the f1.0 or f2.0 objects. printf.o, in turn, needs some other files from libc.a,
such as fwrite.o, strlen.o, and write.o.

2. Per the directions in the default.dld linker command file, input sections with
the same name are combined into one output section. In this instance all .text
sections from crt0.0, f1.0, f2.0, printf.o, fwrite.o, etc. are concatenated into a
single output .text section. This also done for the other input sections. The
linker command language can be used to specify how sections should be
grouped together and where they should be placed in memory.

3. All “common blocks” not defined in .text or .data are placed last in the .bss
section. See 23.4 COMMON Sections, p.381 for details. In this case four bytes
for the variable _b are allocated in .bss section.

4. Once the location of all output sections is known, the linker assigns addresses
to all symbols. By default, the linker puts the .text section in one area of
memory, and concatenates the .data and the .bss sections and locates the result

377

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

in another area in higher memory. However these defaults are seldom
adequate in an embedded system, and memory layout is usually controlled by
a linker command file (version_path/conf/default.dld in this example).

5. Allinput sections are copied to the output file. While copying the raw data, the
linker adjusts all address references indicated by the relocation entries. Note
that there is no space in the input object file or output executable for .bss
sections and .sbss sections (if present) because they will be initialized by the
system at execution time.

6. Anupdated symbol table is written (unless suppressed by the -s, strip option).

NOTE: While .bss and .sbss sections do not occupy space in the linker output file,
if converted to Motorola S-Records, S-Records will be generated to set the space to
zeros. To suppress this, use the -v option to the -R command for ddump in

29. D-DUMP File Dumper.

NOTE: The linker accepts object files in ELF (Executable and Linking Format) and
COFF (Common Object File Format) formats It generates ELF if any modules is
ELF, COFF if all are COFE. See also -Xelf (402) and -Xcoff (400).

23.2 Symbols Created By the Linker

If necessary, the linker creates the following symbols at the end of the link process.
(The linker does not recreate symbols that the user has already defined or create
symbols that are never referred to in any module.) These can be used in C or
assembly programs, for example, in startup code to initialize .bss sections to zero,
or to “copy ROM to RAM” (see Example 25-8Copying Code from “ROM” to “"RAM”,
p-435, for an example of the latter).

Thatis, a module may declare these symbols as external and use them without ever
defining them in any module. The linker will then create the symbols as described
during the linking process, and satisfy the external by referring to the created
symbol.

.endof.section-name
Address of the last byte of the named section. See Note 1.

378

Notes:

23 The Wind River Linker
23.2 Symbols Created By the Linker

.sizeof.section-name
Size in bytes of the named section. See Note 1.

.startof.section-name
Address of the first byte of the named section. See Note 1.

etext, _etext
First address after final input section of type TEXT. See Note 2.

edata, _edata
First address after final input section of type DATA. See Note 2.

end, _end
First address after highest allocated memory area.

sdata, _sdata
First address of first input section of type DATA. See Note 2.

stext, _stext
First address of first input section of type TEXT. See Note 2.

_SDA_BASE_, _ SDA_BASE_, _gp, _ gp
The base address for access to data in the .sdata and .sbss sections. Defined as
the base of the output .sdata section + 0x7ff0, but only if at least one of these
sections is present. Loaded into register a5 by startup module crt0.0. See Note
3.

_ GLOBAL_OFFSET_TABLE_,
_ PROCEDURE_LINKAGE_TABLE_,
_ DYNAMIC
Base addresses for access to data in the .got, .plt, and .dynamic sections.

1. .endof...., .sizeof...., and .startof.... cannot be used in C code because C
identifiers must include only alphanumeric characters and underscores. But
they can be used in assembly code. See Unary Operators, p.334.

2. See type-spec in Type Specification: ([=]BSS), ([=ICOMMENT), ([=]CONST),
([=]DATA), ([=]ITEXT), ([=]BTEXT); OVERLAY, NOLOAD, p.422, for a
discussion of output section types DATA and TEXT. As noted there, if an output
section contains more than one type of input section, then its type is a union of
the input section types. In this case, the symbols related to the DATA and TEXT
sections as described above are not well-defined.

3. By default, -Xsmall-data=0. If -Xsmall-data is greater than 0, then variables of
size less than or equal to that value will be allocated in the SDATA section class,

379

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

called the Small Data Area, with initialized variables placed in the .sdata
section, and uninitialized variables in the .sbss section. The default.d1ld linker
command file includes the following lines:

.sdata (DATA) : {}

.sbss (BSS) : {}
This collects all input .sdata and .sbss sections into output sections having the
same names, and locates the .sbss section immediately after the .sdata section.
With _SDA_BASE_ defined by the linker as the address of the output .sdata
section + 0x7ff0, and loaded into the a5 base register by startup module crt0.o,
all of the data in these two sections is accessible with a 16-bit offset. The sizes
of the two sections does not matter as long as their combined size is not larger
than 64KB - 0x10 bytes.

NOTE: The linker warns if a symbol beginning with _SDA_BASE is referred to
in some module but not defined (either explicitly, or implicitly by the presence
of an .sdata output section.

For example, the following prints the first address after the highest allocated
memory area:

extern char end [];
main() {

printf ("Free memory starts at 0x%x\n",end) ;

}

end is made an incomplete array to ensure that it is not placed in the small data
area.

23.3 .abs Sections

Input files may contain sections with names of the form .abs.nnnnnnnn, where
nnnnnnnn is eight hexadecimal digits (zero-filled if necessary). Such sections will
automatically be located at the address given by nnnnnnnn.

The compiler generates such sections in response to #pragma section directives of
the form

#pragma section class_name [addr_mode] [acc_mode] [address=n]

380

23 The Wind River Linker
23.4 COMMON Sections

where the value given the address=n clause becomes the nnnnnnnn in the section
name.

23.4 COMMON Sections

Common variables are public variables declared either:

* Incompiled code outside of any function, without the extern or static qualifier,
and which are not initialized, e.g. at the module level:
int x[lO] ;
* With .comm or .lcomm in assembly language.

Such variables are assigned to an artificial COMMON section.

The linker gathers all common variables together and appends them to the end of
the output section named .bss; that is, the combined artificial COMMON sections
for all modules becomes the end of the .bss output section.

These are the standard actions if the -Xbss-common-off option is not used. If the
-Xbss-common-off option is used:

» There must be exactly one definition of each such variable in the modules of a
link, with all other declarations being extern or .xref, or the linker will report
an error.

» Each such variable will be part of the .bss section for the module in which it is
defined. Because the location of individual sections may be controlled on a per
file basis when linking, such variables can be located more precisely.

If an incremental link is requested (option -r), COMMON sections are allocated
only if the -a option is also given.

NOTE: Because the compiler does not create a “small common”, small data
variables are treated as if covered by -Xbss-common-off. For example, with

-Xsmall-data set to its default value of 0, an int variable will be located in the .bss

section for the file in which it is defined.

381

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Linker Command File Requirements with COMMON

As noted above, by default the linker places COMMON sections at the end of
output section .bss. If there is no .bss section, then the linker command file must
include a section-contents of the form [COMMON] (see Section Contents, p.419).

SCOMMON Section

The linker can process an SCOMMON section, typically holding “small” common
variables and sometimes produced by other tools. This section is not normally
used by the Wind River tools. Just as the COMMON section is appended to the .bss
output section, the SCOMMON section, if present, is appended to the .sbss output
section; if there is no .sbss output section, it is appended to the .bss output section.
If neither the .sbss nor .bss output section exists, then the linker command file
must contain a section-contents of the form [SCOMMON] (see Section Contents,
p-419).

23.5 COMDAT Sections

A COMDAT section is created by using “o” for the section type in an assembler
.section directive (see .section name, [alignment], [type], p.355), or by using the
compiler option -Xcomdat-on which causes sections generated for templates and
run-time type information to be marked COMDAT (see 5.4.32 Mark Sections as
COMDAT for Linker Collapse (-Xcomdat), p.74). See this latter discussion for the an
example of the use of COMDAT sections.

When the linker encounters identical COMDAT sections, it removes all except one
instance and resolves all references to symbols in the COMDAT section to the
single instance.

If a non-COMDAT section is present along with one or more identical COMDAT
sections, the linker will still collapse the COMDAT sections to one instance, but
will treat the symbols in the COMDAT section as weak. See weak Pragma, p.148 for
the treatment of weak symbols.

382

23 The Wind River Linker
23.6 Sorted Sections

23.6 Sorted Sections

The GROUP definition described in GROUP Definition, p.426, is the usual way for
a user to explicitly control the order of input sections in an output section. A
second mechanism for controlling input section order, called sorted sections is
described here.

An input section is a sorted section if its name begins with a period and ends with
“$nn”, where nn is a two-digit decimal number, for example .init$15. The first part
of the name (before the $nn) is called the common section name and the $nn part is
called the priority. Input sections can also be assigned priority in the linker
command file.

As described beginning on Section-Definition, p.418, a section-definition defines an
output section and may include a list of input sections. The order in the output
section of the input sections is undefined. However if the list of input sections
includes a common section name, then all input sections having that common
section name will be placed together and will be sorted in the output section in
order of their ascending priority numeric priority.

An input section having the common section name but no priority suffix is given
priority 50. The order among sorted sections with the same priority is undefined.

This sorted section feature is used by the compiler to order sections when
generating initialization code. See 15.4.8 Run-time Initialization and Termination,
p-282 for details.

23.7 Warning Sections

If a section is named .warning, the linker prints the text from that section to

standard output as a warning message if any section is loaded from the file. The
warning is printed only during the final linking; incremental linking will put such

sections into the output file. This is useful when the library has stub functions that

need to be replaced.

383

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Example:
#pragma section DATA ".warning" N

char Akwarning“ = "No chario output routine has been given.\n"
"Printing through write() or printf() will not work.\n";

#pragma section DATA

int _ outchar (int ¢, int last)
{
}

The linker prints the following message:

dld: warning:
No chario output routine has been given.
Printing through write() or printf() will not work.

23.8 .frame_info sections

The compiler generates .frame_info sections for C++ programs when
exception-handling is enabled. A section is created for any function that might
appear on the call stack between a try and a throw; the linker concatenates these
into a searchable table that is used for stack-unwinding and object clean-up after
an exception occurs. For each function, the table contains a small (8- to 24-byte)
record that includes pointers to structures in the .data section. Since the C++
support functions in libd.a are compiled with exception-handling enabled, most
C++ programs have at least some .frame_info data.

By default, C functions do not have .frame_info sections. To generate .frame_info
sections for C functions—essential in mixed programs in which C++ exceptions
may propagate back through C functions—use the -Xframe-info compiler option.
Throwing an exception through C code that is not compiled with -Xframe-info
results in a call to the C++ standard-library terminate() function. Pure C++
applications and applications that only call C from C++, never the other way
around, do not need to use -Xframe-info.

384

23 The Wind River Linker
283.9 Branch Islands

23.9 Branch Islands

Branch islands work as follows: if a 16-bit branch is to a target further away than is
valid with 16 bits, a branch island is inserted automatically by the linker at a location
in memory between the original branch and the target. The original branch is
changed to branch to an instruction in the branch island, and that instruction in the
branch island in turn branches to the original target (now in range from the branch
island).

Related options:

-Xbranch-islands-off (see Enable/Disable Branch Island Generation
(-Xbranch-islands...), p.400)
Disable branch islands. They are on by default.

-Xmax-short-branch (see Limit Short Branch Island Generation (-Xmax-short-branch),
p-403)
Establish the maximum branch delta permitted for a 16-bit branch from 215 -
1 to a value less than permitted with 16 bits.

-Xpic-only (see Make Branch Islands Position-Independent (-Xpic-only), p.404)
Make the branch at the branch island position-independent.

385

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

386

24

The dld Command

24.1 The dld Command 387

24.2 Defaults 390

24.3 Order on the Command Line 391
24.4 Linker Command-Line Options 391
24.5 Linker -X options 399

24.1 The dild Command

The linker is invoked by the following command:
aia [options] inputfile . . .

Options are described in 24.4 Linker Command-Line Options, p.391 and 24.5 Linker
-X options, p.399.

The linker decides what to do with each input-file given on the command line by
examining its contents to determine its type. Each file is either an object file, an
archive library file, or a text file containing directives to the linker:

» Object files: These are loaded in the order given on the command line.

» Archive files: If there is a reference to an unresolved external symbol after
loading the objects, then any archive library files given on the command line

387

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

(or specified with -1 options) are searched for the symbol, and the first object
module defining the missing symbol is loaded from the libraries.

Library search order depends on the use of the -L,-Y L, -Y U, -Y P, and
-Xrescan-libraries options. See Specify Search Directories for -1 (-Y L, -Y P,-Y U),
p-398 and Re-scan Libraries (-Xrescan-libraries...), p.405 for details.

Archive libraries may be built with the dar tool. Archive libraries built by other
archivers must conform to the ELF or COFF formats accepted by the linker.

Text files: A text file is interpreted as a file of linker commands. These
commands are described in 25. Linker Command Language. More than one
linker command file is allowed.

Linker Command Structure

u oy

A typical linker command will be as follows in outline (where “...” means
repetition, and on one line when entered):

dld -YP,search-paths -o output-file-name -1:startup-object-file object-file ...
library... -1libs... linker-command-file

where:

-YP,

search-paths

Directories to search for files named by -1 options and -1: options. The paths for
the default directories are based on the default target. See Select Target Processor
and Environment (-t tof:environ), p.398.

(Search paths can also be specified using other -Y options and the -L option as
described later).

-o outputfile-name

Options to specify the name of the output file (the default is a.out if no -o
option is given).

-1:startup-object-file

388

Startup object file. Link this file first to help establish the order of various
initialization sections. Searched for in the directories specified by -Y or -L
options (no path prefix allowed). Because the first character after -1is “:” the
search is for a file with the exact name following the colon. Contrast with -1
below.

Alternatively, the startup object file can be named directly on the command
line, in which case a path prefix is allowed.

24 The did Command
24.1 The dld Command

object-file...
The object files to be linked.

library... -1libs...
Libraries to be searched for modules defining otherwise undefined external
symbols. Libraries can be given directly on the command line with path prefix,
or searched for in the -Y or -L directories by using the -lname form. In the latter
case, the library name libname.a is constructed from name and no path prefix is
allowed.

linker-command-file
Text file of linker commands. A path prefix is allowed.

To get a map to stdout, add the -m, -m2, or -mé option (with increasing detail).

A good way to gain experience with linker command lines, and to see default
values for the parts of the command line outlined above, is to invoke dcc or dplus
with the -# option to show the command line for each subprogram. For example,
the following command line:

dcc -# -o hello.out hello.c -m > hello.map

would effectively invoke the linker with the following command line (assumes
defaults of ELF object format and no floating point, and shows each argument on
a separate line for readability):

dld -Y P, /diab/4.x/MC60EN/simple:/diab/4.x/MC60EN:
/diab/4.x/MC60E/simple: /diab/4.x/MC60E
-l:crt0.o0
hello.o
-0 hello.out
-lc
/diab/4.x/conf/default.dld
-m > hello.map

where:

-Y P, /diab/4.x/...
Directories to search for files named by -1 options.

-l:crt0.o0

Startup object file from the directories specified by the -YP option.

hello.o
The object module to be linked.

-o hello.out
The name of the output file instead of a.out.

-lc
Search for library libc.a for modules defining unresolved externals in the
directories specified by -YP.

389

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

/diab/4.x/conf/default.dld

Use the default linker command file.

-m > hello.map

24.2 Defaults

Request a minimal map and redirect it from stdout to hello.map (the driver
dcc passes any option it does not recognize, the -m in this case, to the linker).

In addition to application input object files, the linker typically needs a linker
command file to direct the link, libraries to satisfy undefined externals, and often
a startup object file.

When the linker is invoked explicitly with the dld command, there will be no
default linker command file, no libraries, and no startup file — all must be
specified using command-line options as described in this chapter.

When the linker is invoked automatically by the dcc or dplus drivers, it is invoked
with options which specify default linker command file, libraries, and startup

obje

ct file.

These defaults are as follows:

390

Linker command file: the default is version_path/conf/default.dld. To specify a
different linker command file when using dcc or dplus, use the -Wmfile option
(5.3.28 Specify Linker Command File (-W mfile), p.47). Note that -Wm is an option
to the compiler driver directing its sub-invocation of the linker; -Wm is not a
linker option. To provide a linker command file when invoking the linker
directly, just name it on the dld command line.

Libraries: the defaults are libraries libc.a and, for C++, libd.a from the
directories associated with the default target, and/or as specified with -1, -L,
and/or -Y options on the command line as documented later in this manual.

Startup object file: the default is crt.o from the selected target subdirectory. To
specify a different startup object file when using dcc or dplus, use the -Wsfile
option (5.3.29 Specify Startup Module (-W sfile), p.47). As with -Wm this is a
driver, not a linker, option.

24 The did Command
24.3 Order on the Command Line

To see the defaults for a particular case, execute dcc or dplus with the -# option to
display the command line for the compiler, assembler, and linker as each is
automatically invoked.

NOTE: Linker command files formerly used an extension of .Ink. As of version 4.2,
this is changed to .dld because .Ink is used by Windows to designate a shortcut. In
the conf directory, identical copies of each linker command file using each
extension will be present for an interim period.

24.3 Order on the Command Line

Options and files may be intermixed and may be given in any order except that an
option which specifies a search directory for -1, that is -L or -Y, must be given
before a -1 to which it is to apply. However the following order is recommended:

= options

* object files

» libraries and -1 options which name libraries
*» linker command file

Other options may be mixed in any order. While libraries and objects may be in any
order (with the default setting of -Xrescan-libraries, see Re-scan Libraries
(-Xrescan-libraries...), p.405), a link will be faster if there is no need to re-scan a
library. The linker may also be more efficient in processing a linker command file
if its has encountered all objects first.

24.4 Linker Command-Line Options

This section contains standard command-line options common to many linkers.
The next section documents -X options which provide additional detailed control
over the linker (beginning with 24.5 Linker -X options, p.399).

For a concise list of all options, see the table of contents.

391

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Show Option Summary (-2, -?X)

-2,-h
--help
Show synopsis of command-line options.
-?2X, -hX
Show synopsis of -X options (see 24.5 Linker -X options, p.399).

Read Options From an Environment Variable or File (-@name, -@ @name)

-@ name
Read command-line options from environment variable name if it exists, else
from file name.

In an environment variable, separate options with a space. In a file, place one
or more options per line, separated by a space.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E-=file, -@E+file, -@O=file, -@O+file)

-@E=file

Redirect any output to standard error to the given file.
-@O=file

Redirect any output to standard output to the given file.

Use of “+” instead of “=" will append the output to the file.

Link Files From an Archive (-A name, -A...)

-A filename

-A -lname

-A -lifilename
Link all files from the specified archive. The -A option affects only the
argument immediately following it, which can be a filename or -1 option. (See
Specify Library or File to Process (-Iname, -I:filename), p.395.) If filename or name is
not an archive, -A has no effect.

Sections can still be dropped with the -Xremove-unused-sections option.

392

24 The did Command
24.4 Linker Command-Line Options

-Al...
Same as -A.

-A2...
Same as -A, but overrides -Xremove-unused-sections for the specified
archives.

-A3...
Same as -A2, but also overrides -s and -ss for the specified archives.

Allocate Memory for Common Variables When Using -r (-a)

-a
Common variables are not normally allocated when an incremental link is
requested by the -r option. The -a option forces allocation in this case. See
23.4 COMMON Sections, p.381 for details.

Set Address for Data and tExt (-Bd=address, -Bt=address)

-Bd=address

-Bt=address
Allocate .text section and other constant sections to the given address. The -Bd
and -Bt options provide a simple way to define where to allocate the sections
without having to write a linker command file. If either -Bd or -Bt is specified,
the linker will use the following command specification:

SECTIONS {
GROUP Bt-address : {
.text (TEXT) {
*(.text) *(.rdata) *(.rodata)
*(.init) *(.fini)
}
.sdata2 (TEXT) : {}
}
GROUP Bd-address: {

.data (DATA) : {}
.sdata (DATA) : {}
.sbss (BSS) : {}

.bss (BSS) : {}
}

If the -N option is given, the .data section is placed immediately after the .text
section.

393

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: The-Bd and -Bt options are ignored if a linker command file is present. The
default.dld linker command file will be present by default if the linker is invoked
implicitly by dec or dplus. To use -Bd and -Bt, suppress the use of the default linker
command file with the -W m option with no name on the dcc or dplus command

line

Bind Function Calls to Shared Library (-Bsymbolic)

When creating a shared library, bind function calls, if possible, to functions
defined within the shared library. For VxWorks RTP application development.

Define a Symbol At An Address (-Dsymbol=address)

-Dsymbol=address
Define specified symbol at specified address.

Define a Default Entry Point Address (-e symbol)

-e symbol
symbol is made the default entry address and entered as an undefined symbol

in the symbol table. It should be defined by some module.

Specify “fill” Value (-f value, size, alignment)

-f value
-f value, size

-f value, size, alignment
Fill all “holes” in any output section with 16-bit value rather than the default

value of zero. Optional size and alignment are specified in bytes; the default is
2,1

394

24 The did Command
24.4 Linker Command-Line Options

Specify Directory for -l search List (-L dir)

-L dir
Add dir to the list of directories searched by the linker for libraries or files
specified with the -1 option. More than one -L option can be given on the
command line.

Must occur prior to a -1 option to be effective for that option.

Specify Library or File to Process (-Iname, -l:filename)

-lname
Specify a library with the constructed name libname.a to be searched for object
modules defining missing symbols.

-I:filename
Process the given filename (without modification, no path prefix allowed): an
object file is linked, an archive is searched as necessary, a text file is taken as a
linker command file.

For both forms, search for the file is performed in the following order:

= The directories given by -L dir options in the order these options are
encountered.

= The directories as given by any -Y L, -Y P, or -Y U options (see these
options in Specify Search Directories for -1 (-Y L, -Y P, -Y U), p.398).

Any -L or -Y option must occur prior to all -1 options to which it applies.

If no -L or -Y option is present, search a set of directories based on the selected
target and environment. See 4.2 Selected Startup Module and Libraries, p.27 for
details.

Generate link map (-m, -m2, -m4)
-m (equivalent to -m1)
Generate a link map of the input and output sections on the standard output.

-m2
Generate a more detailed link map of the input and output sections, including
symbols and addresses, on the standard output. -m2 is a superset of -m1.

395

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-m4
Generate a link map with a cross reference table.

-mé6
Equivalent to -m2 plus -m4: generated a detailed link map and cross reference
table.

The value following “m” is converted to hexadecimal and used as a mask;
thus, -m3 is equivalent to -m2. Undefined bits in the mask are ignored.

Allocate .data Section Immediately After .text Section (-N)
-N
This option is used in conjunction with options -Bd and -Bt. See them for
details (Set Address for Data and tExt (-Bd=address, -Bt=address), p.393).
Change the Default Output File (-o file)
-o file
Use file as the name of the linked object file instead of the default filename
a.out.
Perform Incremental Link (-r, -r2, -r3, -r4, -r5)
-r
The linked output file will still contain relocation entries so that the file can be

re-input to the linker. The output file will not be executable, and no unresolved
reference complaints will be reported.

Link the program as usual, but create relocation tables to make it possible for
an intelligent loader to relocate the program to another address. Absent other
options, a reference to an unresolved symbol is an error.

Equivalent to the -r2 option except that unresolved symbols are not treated as
errors.

Link for the VxWorks loader.

396

24 The did Command
24.4 Linker Command-Line Options

Equivalent to the -r option except that COMDAT sections are merged and
converted to normal sections.

The -r options are required only for incremental linking, not when producing
an ordinary absolute executable.

Rename Symbols (-R symbol1=symbol2)

-R symboll=symbol2
Rename symbols in the linker output file symbol table. The order of the symbol
names is not significant; -R symboll=symbol2 does the same thing as -R
symbol2=symboll. If both symbols exist, both are renamed: symboll becomes
symbol2 and symbol2 becomes symboll.

Search for Shared Libraries on Specified Path (-rpath)

-rpath path
Search for shared libraries on specified path, a colon-separated list of
directories. (If no search path is specified, the linker looks in the directory
where the executable resides.) For VxWorks RTP application development.

Do Not Output Symbol Table and Line Number Entries (-s, -ss)

-s
Do not output symbol table and line number entries to the output file.

-ss
Same as -s, plus also suppresses all .comment sections in the output file.
Specify Name for Shared Library (-soname)
-soname=libraryName

Use libraryName as the name of the shared object containing compiled library
code. For VxWorks RTP application development.

397

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Select Target Processor and Environment (-t tof:environ)
-t tof:environ
Select the target processor, object format, floating point support, and
environment libraries. See the -t option in 4. Selecting a Target and Its
Components for details. This option is not valid in a linker command file.
Define a Symbol (-u symbol)
-u symbol
Add symbol to the symbol table as an undefined symbol. This can be a way to
force loading of modules from an archive.
Print version number (-V)
-V
Print the version of the linker.
Print Version Number (-VS value)
-VS value
Store value as the version stamp in the optional header. COFF only.
Do Not Output Some Symbols (-X)
-X
Do not output symbols starting with @L and .L in the generated symbol table.
These symbols are temporaries generated by the compiler.
Specify Search Directories for -1 (-Y L, -Y P, -Y U)
-Y L, dir

Use dir as the first default directory to search for libraries or files specified with
the -1 option.

398

24 The did Command
24.5 Linker -X options

-Y Pdir
dir is a colon-separated list of directories. Search each of the directories in the
list for libraries or files specified with the -1 option.

-Y U, dir
Use dir as the second default directory to search for libraries or files specified
with the -1 option.

Notes:
1. These options must occur prior to all -1 options to which they are to apply.

2. The dccand dplus programs (but not dld itself) generate a -Y P option suitable
for the selected target and environment. Unless you are replacing the libraries,
you should not normally use this option. Use the -L option to specify libraries
to be searched before the Wind River libraries. (See Specify Directory for -1 search
List (-L dir), p.395.)

3. Ifno-Y or -1 options are present on the dld command line, the linker will
automatically search the directories associated with the default target. See
4.2 Selected Startup Module and Libraries, p.27 for details.

4. Ifa-Yoptionis used, -Y P is recommended. The older -Y L and -Y U options
are provided for compatibility. Use of -Y P together with -Y L or -Y U is
undefined.

24.5 Linker -X options

The following -X options provide additional detailed control over the linker. Many
are present to improve compatibility and ease of conversion from other tool sets.

For a concise list of all options, see the table of contents.

Use Late Binding for Shared Libraries (-X)

-Xbind-lazy
Bind each shared-library function the first time it is called. (By default, binding
occurs when the module is loaded.) For VxWorks RTP application
development.

399

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Enable/Disable Branch Island Generation (-Xbranch-islands...)

-Xbranch-islands

-Xbranch-islands-off
Enable or disable generation of branch islands. The default is to generate
branch islands where necessary (-Xbranch-islands).

See 23.9 Branch Islands, p.385 for a general discussion.

Check Input Patterns (-Xcheck-input-patterns)

-Xcheck-input-patterns
Check that every input section pattern in the linker command file matches at
least one input section. Emit a warning if an unmatched pattern is found.

-Xcheck-input-patterns=2
Same as -Xcheck-input-patterns, but emit a message of severity level
“information” instead of “warning”. (For use with -Xstop-on-warning,)

Check for Overlapping Output Sections (-Xcheck-overlapping)

-Xcheck-overlapping
Check for overlapping output sections and sections which wrap around the
32-bit address boundary.

Use COFF Format for Output File (-Xcoff...)
-Xcoff
This is the default if all input files are in COFF format. See also -Xelf.

-Xcoff-diab68k
Select Wind River 68K COFF output file format (magic number 0630).

-Xcoff-moto68k
Select Motorola (Freescale) 68K COFF format (magic number 0520).

400

24 The did Command
24.5 Linker -X options

Align Common Symbols (-Xcommon-align=n)

-Xcommon-align=n
Align each common symbol on an n-byte boundary if and only if, no
alignment is specified for the symbol in the object file. The default value is 8.
COFF only (ELF aligns each symbol individually).

Remove Multiple Structure Definitions (-Xcompress-symbols)

-Xcompress-symbols

-Xcompress-symbols-off
Remove multiple definitions of structures in a COFF symbol table. This can
dramatically reduce the symbol table size when many object files containing
the same structure definitions are linked together.

Force Linker to Continue After Errors (-Xdont-die)

-Xdont-die
Force the linker to continue after errors which would normally halt the link.
For example, issue warnings rather than errors for undefined symbols and
out-of-range symbols.

When the linker is forced to continue it produces reasonable output and
returns error code 2 to the parent process. By default, the make utility stops on
such errors; if you want it to continue you must handle this error code in the
makefile explicitly.

Do Not Create Output File (-Xdont-link)
-Xdont-link
Do not create a linker output file. Useful when the linker is started only to
create a memory mabp file.
Use Shared Libraries (-Xdynamic)
-Xdynamic

Link against shared libraries (.so files). For VxWorks RTP application
development.

401

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Use ELF Format for Output File (-Xelf)

-Xelf
This is the default if any input file is in ELF format. See also -Xcoff.

ELF Format Relocation Information (-Xelf-rela-...)

-Xelf-rela
Use RELA relocation information format for ELF output. This is the default.

-Xelf-rela-off
-Xelf-rela=0
Use REL relocation information format for ELF output.

Do Not Export Symbols from Specified Libraries (-Xexclude-libs)

-Xexclude-libs=lIist
Do not automatically export symbols from the libraries specified in the
comma-delimited list. (Use the same library names, prefixed with “1”, that you
would use with the -1 option.) Example: -Xexclude-libs=Ic,Im. For VxWorks
RTP application development.

Do Not Export Specified Symbols (-Xexclude-symbols)

-Xexclude-symbols=list
Do not export the symbols specified in the comma-delimited list when creating
a shared library. Example: -Xexclude-symbols=functionl,function2. For
VxWorks RTP application development.

Write Explicit Instantiations File (-Xexpl-instantiations)

-Xexpl-instantiations
Cause the linker to write the source lines of an explicit instantiations file to
stdout. To minimize space taken by template classes, the output from
-Xexpl-instantiations can be used to create an explicit instantiations file
(necessary header files must still be added); see Templates, p.241. This option is
deprecated.

402

24 The did Command
24.5 Linker -X options

Generate Executable for Conversion to IEEE-695 (-Xextern-in-place)

-Xextern-in-place
Generate a modified COFF file suitable for conversion to IEEE-695 format
using the ddump -I command.

This linker option is required if the ddump -I is to be used. Further, when this
option is used, the resulting file contains modified COFF, and is not suitable
for any use other than input to ddump -I. If standard COFF is also required,
link twice with and without this option.

Store Segment Address in Program Header (-Xgenerate-paddr)

-Xgenerate-paddr
Store the address of each segment in the p_paddr field of the corresponding
entry in the program header table. Without this option, the p_paddr value will
be 0.

Generate RTA Information (-Xgenerate-vmap)

-Xgenerate-vmap
Generates special information used by the RTA.

Limit Short Branch Island Generation (-Xmax-short-branch)

-Xmax-short-branch=n

-Xmax-short-branch-off
Set the maximum branch delta for a 16-bit branch, that is, the maximum
branch distance permitted before a branch island is used. If this option is not
specified (equivalent to -Xmax-short-branch-off or -Xmax-short-branch=0), a
default maximum branch delta of 2% -1 (thatis, +/- 32KB - 1) is assumed; the
branch offset is limited by instruction format only.

See 23.9 Branch Islands, p.385 for a general discussion.
Do Not Align Output Section (-Xold-align)

-Xold-align
Do not align output sections.

403

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Without this option (the default), each output section is given the alignment of
the input section having the largest alignment. Output sections must be
aligned to support position-independent code.

With this option, output sections are not aligned, and each output section
begins immediately after the previous output section. (In this later case, input
sections will still be aligned per their requirements, potentially leaving a gap
from the start of the output section to the start of the first input section within
it.)

Pad Input Sections to Match Existing Executable File (-Xoptimized-load)

-Xoptimized-load=n
-Xoptimized-load

Minimize the difference between the already existing executable file (if any)
and the new file by padding input sections. n specifies how much relative
space the linker can use for padding, where 0 means no padding and 100 is the
default. The larger the value of 1, the more similar the images are likely to be.

The linker saves the old executable file with the .old extension and generate a
diff file with the .blk extension.

Make Branch Islands Position-Independent (-Xpic-only)

-Xpic-only

Generate only position-independent branch islands. The default is off,
generating branch islands which are not position-independent. See 23.9 Branch
Islands, p.385 for a general discussion.

Add Leading Underscore “_” to All Symbols (-Xprefix-underscore...)

-Xprefix-underscore

404

"oy

Add a leading underscore “_" to all symbols in the files specified after this
command. Use -Xprefix-underscore=0 to turn off this feature. The default is
off.

24 The did Command
24.5 Linker -X options

-Xprefix-underscore-coff

-Xprefix-underscore-elf
-Xprefix-underscore-coff and -Xprefix-underscore-elf add underscores to
symbols coming from COFF or ELF input files respectively. This can be helpful
with third-party tools that use different naming schemes.

Remove Unused Sections (-Xremove-unused-sections)

-Xremove-unused-sections
-Xremove-unused-sections-off
Remove all unused sections. By default the linker keeps unused sections.

A section is used if it:
» Isreferred to by another used section.

* Hasaprogram entry symbol—that is, a symbol defined with the -e option
(Define a Default Entry Point Address (-e symbol), p.394) or one of __start,
_start, start, _ START, _START, _main, or main (order reflects priority).

» Isnot referenced by any section and has a name that starts with .debug,
fini, .frame_info, .init, .j_class_table, or .line.

* Defines a symbol used in an expression in the linker command file.

» Defines a symbol specified with the -u option (Define a Symbol (-u symbol),
p-398).

NOTE: This option is especially useful in combination with -Xsection-split
(5.4.126 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p-115) to reduce code size. When both options are used, each function in a
module will generate a separate CODE section, and thus functions which are
not called will be removed.

Re-scan Libraries (-Xrescan-libraries...)

-Xrescan-libraries

-Xrescan-libraries-off
Request that the linker re-scan libraries to satisfy undefined externals. This is
the default. It solves the ordering problem which occurs when one library uses
symbols in another and vice-versa.

405

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Use -Xrescan-libraries-off to force the linker to scan libraries and object files
in precisely the order given on the command line.

Re-scan Libraries Restart (-Xrescan-restart...)

-Xrescan-restart

-Xrescan-restart-off
If -Xrescan-libraries is on, when more than one library is presented to the
linker, force the linker to rescan the libraries from first to last in order for each
undefined symbol. This is the default.

Use -Xrescan-restart-off with -Xrescan-libraries to cause the linker, after
finding symbols in one library, to continue with the next library for the rest of
the undefined symbols.

Align Sections (-Xsection-align=n)

-Xsection-align=n
Force COFF input sections to have an alignment of n instead of the default 8.
(Ignored for ELF output.)

Build Shared Libraries (-Xshared)

-Xshared
Build shared libraries (rather than stand-alone executables). For VxWorks RTP
application development.

Sort .frame_info Section (-Xsort-frame-info)

-Xsort-frame-info

-Xsort-frame-info-off
To enable sorting of the .frame_info section, use -Xsort-frame-info. By default,
sorting is disabled (-Xsort-frame-info-off).

406

24 The did Command
24.5 Linker -X options

Link to Static Libraries (-Xstatic)

-Xstatic
Link against static (.a) libraries rather than shared (.so) libraries. Use this
option when both static and shared libraries are available. For VxWorks RTP
application development.

Stop on Redeclaration (-Xstop-on-redeclaration)

By default, the linker issues a warning each time it encounters a redeclaration.
If -Xstop-on-redeclaration is specified, the linker halts with an error on the
first redeclaration.

Stop on Warning (-Xstop-on-warning)

-Xstop-on-warning
Request that the linker stop the first time it finds a problem with severity of
warning or greater.

Suppress Leading Dots “.” (-Xsuppress-dot...)

-Xsuppress-dot

-Xsuppress-dot-coff

-Xsuppress-dot-elf
Suppress leading dots “.” in the object files following this option. With the
“-coff” and “-elf” suffixes, suppression will occur only for COFF and ELF files
respectively.

Suppress Section Names (-Xsuppress-section-names)
-Xsuppress-section-names

Do not output section names to the symbol table. This option is for other tools
which cannot process these names.

407

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Suppress Paths in Symbol Table (-Xsuppress-path)

-Xsuppress-path
In the symbol table, suppress any pathname in “file” symbols (type STT_FILE,
see Table F-4). ELF object file format only.

Suppress Leading Underscores ‘_’ (-Xsuppress-underscore-...)

-Xsuppress-underscore

-Xsuppress-underscore-coff

-Xsuppress-underscore-elf
Suppress leading underscores “_" in the object files following this option. Note
that for symbols with more than one leading underscore, only the first will be
removed. With the “-coft” and “-elf” suffixes, suppression will occur only for
COFF and ELF files respectively.

78z

Remove/Keep Unused Sections (-Xunused-sections...)

-Xunused-sections-remove
Same as -Xremove-unused-sections (Remove Unused Sections
(-Xremove-unused-sections), p.405).

-Xunused-sections-keep
Same as -Xremove-unused-sections-off (Remove Unused Sections
(-Xremove-unused-sections), p.405).

-Xunused-sections-list
Print a list of removed sections.

408

25

Linker Command Language

25.1 Example “bubble.dld” 410
25.2 Syntax Notation 413

25.3 Numbers 414

25.4 Symbols 414

25.5 Expressions 415

25.6 Command File Structure 416
25.7 MEMORY Command 417
25.8 SECTIONS Command 418
25.9 Assignment Command 427
25.10 Examples 428

The linker command language can:
» Specify input files and options.
» Specify how to combine the input sections into output sections.

» Specify how memory is configured and assign output sections to memory
areas.

» Assign addresses or other values to symbols.

A default linker command file, default.dld, is present in the conf directory. See
24.2 Defaults, p.390 for its use.

409

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

25.1 Example “bubble.dld”

Some examples in this chapter are drawn from the bubble.dld command file on
the next page for the “bubble sort” program in the Getting Started manual. This
example is distributed with the compiler suite in directory
version_path/example/m68k. The chapter ends with additional unrelated
examples. Some notes follow the figure.

410

Figure 25-1

25 Linker Command Language
25.1 Example “bubble.dld”

bubble.did Linker Command File Extract

Linker Commands

Explanation

MEMORY

{
roml : org
romz : org
ram: org

stack: org

}

SECTIONS
{

.text ¢ { *(.text)
*(.init)
.ctors ALIGN(4) :
{ ctordtor.o(.ctors)
.dtors ALIGN(4) :
{ ctordtor.o(.dtors)

} > roml

.text2 ¢ { *(.text2)

} > rom2

GROUP : {

DATA_RAM
.data LOAD(__ DATA_ROM)

DATA_END
BSS_START
bss ¢ {3
BSS_END
HEAP_START
} > ram
}
HEAP_END =
SP_INIT =
SP_END =
MEMORY
{
roml : org =
rom?2 : org
ram: org

stack: org

ADDR (ram) +SIZEOF (ram) ;
ADDR (stack) +SIZEOF (stack) ;
ADDR (stack) ;

Define four memory areas.

Collect code sections from all input files into a single output .text
section and locate it in rom1 (except for .text2 code sections).

ctors and .dtors sections for startup and termination invocation.

Collect all .text2 sections and locate in rom2.
Define __ DATA_ROM as equal to the current location. Symbols
defined this way are used within this file and during initialization.

Group .data and .bss output sections together in the order given.

Collect initialized data sections (.data) from all input files “{ }” into
a single output .data section and logically locate in ram.

But use LOAD to place the actual data after the .text2 section in
rom2. __init_main() will move the actual data from rom2 to
ram.

Reserve space for all .bss sections in ram after the .data section.
Any remaining space will be used as heap by malloc().

Define other symbols used by crt0.s, init.c, and sbrk.c to control
initialization and memory allocation:
... Start of heap memory for sbrk.c.

... End of heap memory for sbrk.c.
... Initial address of stack pointer for crt0.s.
... Only used when stack probing by sbrkb.c.

Define four memory areas.

411

User’s Guide, 5.4

Wind River Compiler for 68K/CPU32

Figure 25-1 bubble.dld Linker Command File Extract (cont'd)

Linker Commands

Explanation

SECTIONS
{
GROUP : {
.text ¢ { *(.text)
*(.init) *(.fini) }
.ctors ALIGN(4) :
{ ctordtor.o(.ctors) *(.ctors) 1}
.dtors ALIGN(4) :
{ ctordtor.o(.dtors) *(.dtors) 1}
.sdata2 : {}
} > roml

.text2 ¢ { *(.text2)

_ DATA_ROM = .;
} > rom2
GROUP : {
_ DATA_RAM = .;
.data LOAD(__DATA_ROM) : {}

.sdata (DATA)
LOAD (ADDR (.sdata) - ADDR(.data)
+ _ DATA_ROM)
{}

___DATA_END
__BSS_START .7
.sbss : {}
bss ¢ {1}
__BSS_END = .;

__HEAP_START = .;

} > ram
__HEAP_END = ADDR (ram) +SIZEOF (ram) ;
__SP_INIT = ADDR (stack)+SIZEOF (stack) ;
__SP_END = ADDR (stack) ;

Collect code sections from all input files into a single output .text
section and locate it in rom1 memory (except for .text2 code
sections). Also, locate .sdata2 with the .text sections (“small”
const variables, actually of 0 length in the example).

.ctors and .dtors sections for startup and termination invocation.

Collect all .text2 sections and locate in rom2.

Define __DATA_ROM as equal to the current location. The
symbols defined this way are used within this file and during
initialization.

Group .data, .sdata, .sbss, and .bss output sections together in
the order given.

Collect initialized data sections (.data) from all input files “{ }” into
a single output .data section and locate logically in ram memory.
But use LOAD to place the actual data after the .text2 section in
rom2. __init_main() will move the actual data from rom2 to
ram.

Similarly locate .sdata logically in ram, use LOAD to place it
physically after .data in rom2.

Reserve space for all .bss and .sbss sections in ram after the
.data section. Remaining space will be used as heap by
malloc().

Define other symbols used by crt0.s, init.c, and sbrk.c to control
initialization and memory allocation:
... Start of heap memory for sbrk.c.

End of heap memory for sbrk.c.
Initial address of stack pointer for crt0.s.
Only used when stack probing for sbrk.c.

412

25 Linker Command Language
25.2 Syntax Notation

Notes for bubble.dld
Two features of bubble.dld are especially noteworthy:

= The use of the LOAD specification to create two images of variables having
initial values, a physical image containing the initial values and intended for
some form of read-only memory, and a logical image where the variables will
reside during execution. See the LOAD Specification, p.423 and Copying Initial
Values From “ROM” to “RAM”, Initializing .bss, p.279 for details.

» The definition of nine of the symbols:

— _DATA_ROM, _ DATA_RAM, and _ DATA_END used in copying the
initial values and _ BSS_START and __BSS_END used in clearing static
uninitialized variables (see Copying Initial Values From “ROM” to “RAM”,
Initializing .bss, p.279).

— _HEAP_START and __HEAP_END to define the heap for use by malloc()
and related functions. See 15.4.7 Dynamic Memory Allocation - the heap,
malloc(), sbrk(), p.282.

— __SP_INIT and __SP_END to define the stack. See 15.4.6 Stack Initialization
and Checking, p.281.

25.2 Syntax Notation

Italic words such as area-name represent items you must supply. The required type
of each item — symbol name or number, can be gathered from the examples.

The following special characters are parts of commands and are required where
shown:
L O N

The following characters are used only in the command descriptions and not in the
linker command language itself. They have the meanings shown:

|

or

[

The enclosed construct is optional. When several optional items are adjacent,
they may be given in any order.

413

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

;fhe preceding item or construct may be repeated.
For example

alo | <] ..
means that a is required, then any number of b or c.

Note that the “{* and “}” characters are part of commands and do not indicate a set
of alternatives from which one must be chosen.

Long lists of alternative tokens are given by following the phrase “one of” with a
list of the tokens on one or more lines, as in

assign-op: one of
= += —_= * = /=

25.3 Numbers

Several linker commands require a number, for example to specify an address or a
size.

Numbers are hexadecimal if they begin with “0X” or “0x”, else octal if they begin
with “0”, else decimal. Hexadecimal digits are “0” - “9”, “a” - “f”, and “A” - “F*;
octal digits are “0” - “7*; decimal digits are “0V - “9”.

25.4 Symbols

A symbol, once defined, may be used anywhere a number is required except in a
MEMORY command. Symbols are defined in object files or by assignment
commands (see 25.9 Assignment Command, p.427).

A symbol defined in an assignment command is an identifier following the rules of
the C language with the addition of “$” and “.” as valid characters. Symbols may
be up to 1,000 characters long.

414

25 Linker Command Language
25.5 Expressions

NOTE: A symbol or filename which does not follow these rules may be given by
quoting it with double-quote characters, for example, an object file named
“12340.0”.

25.5 Expressions

A linker expression is allowed anywhere a number is required, and is one of the
following forms from the C language:

number

symbol

unary-op expression

expression binary-op expression
expression ? expression s expression
(expression)

where the operators are the following operators from the C language:
unary-op: one of
binary-op: one of

/ %

— R —R

&
|
The operators have their meaning and precedence as in C. Parentheses can be used
to change the precedence.

When a symbol name is used in an expression, the address of that symbol is used.
The symbol”.” means the current location counter (allowed only within a
statement list in a SECTIONS command).

The following pseudo functions are valid in expressions. Forward references are
permitted.

415

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

SIZEOF (section-name)
Size of the named section (see Example 25-6Empty Sections, p.431 for an
important limitation when using the SIZEOF operator).

SIZEOF (memory-area-natie)
Size of a memory area defined with the MEMORY command.

ADDR (section-name)
Address of the named section.

ADDR (memory-area-name)
Address of a memory area.

NEXT (expr)
First multiple of expr that falls into unallocated memory.

HEADERSZ
Total size of all the headers.

FILEOFFSET (section-name)
File offset of the named section.

ALIGN (value)
((.+value-1) & ~(value-1))

25.6 Command File Structure

A command file is a list of commands. These are:

MEMORY { memory-area-definition }
SECTIONS { section-or-group-definition ... }
assignment-command
object-filename
archive-filename
command-line-option
The above commands may each be repeated as many times as required and may

be given in any order as long as names are defined before use.

Each of these commands is described below except for the last three: in addition to,
or instead of, being given as arguments on the command line, object and archive
library files and command-line options may be given as commands.

416

25 Linker Command Language
25.7 MEMORY Command

NOTE: While different object files may be named on both the command line and in
a linker command file, do not duplicate the same object filename in both places.
This may cause sections from the duplicated object file to be duplicated in memory.

The command language is free format. More than one command may be given on
a line, and a command may be written on multiple lines without need for any
special continuation character.

Identifiers are as in C with the addition of period “.” and “$” as a valid identifier
characters; identifiers may be up to 1,000 characters long.

Whitespace is generally required as in C around identifiers and numbers but not
special characters.

C-style comments are allowed anywhere whitespace would be.

25.7 MEMORY Command

MEMORY {
area-name : { origin | org | o } = start-address| ,
{1length | 1en | 1 } = number-ofbytes [,]

}

v ”

The MEMORY command names one or more areas of memory, e.g. “rom”, “ram”.
Each area is defined by a start address and a length in bytes. A later
section-definition command can then direct that an output section be located in a
named area. The linker will warn if the total length of the sections assigned to any
area exceeds the area’s length. Example:

MEMORY {
roml: org = 0x010000, len = 0x10000
rom2 : org = 0x020000, len = 0x10000
ram: org = 0x100000, len = 0x70000
stack: org = 0x170000, len = 0x10000

}

Symbols (25.4 Symbols, p.414) cannot be used within the MEMORY command;
start-address and number-of-bytes must be numeric expressions.

417

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

25.8 SECTIONS Command

SECTIONS {
section-definition | group-definition

}

The SECTIONS command does most of the work in a linker command file. Each
input object file consists of input sections. The primary task of the linker is to collect
input sections and link them into output sections. The SECTIONS command defines
each output section and the input sections to be made part of it. Within the
SECTIONS command, a GROUP statement may be used to collect several output
sections together.

The components of the SECTIONS command are described next. See Figure 25-1
for example illustrating many of the possibilities.

Section-Definition
At a minimum, each section-definition defines a new output section and specifies the
input sections that are to be put into that output section. Optional clauses may:

» Specify an address for the output section or place the output section in a
memory area defined by an earlier MEMORY command.

= Align the section.
= Fill any holes in the section with a fixed value.

= Define symbols to be used later in the linker command file or in the code being
linked.

The full form of a section-definition is shown in Figure 25-2. For clarity, each clause
is written on a separate line and is identified to its right for description below.

418

25 Linker Command Language
25.8 SECTIONS Command

Figure 25-2 section-definition
Syntax Element
output-section-name type-spec

[([=]{Bss | comEnT | consT | DATA | TEXT |
BTEXT}[OVERLAY][NOLOAD]) |

address-value | BIND (_expression)] ClddTESS-SPEC
ALIGN (expression) | align-spec
LOAD (expression) | load-spec
[OVERFLOW (size-expression, overflow-section-name) OUET’ﬂOW-SPEC
{ section-contents } -
=fill-value | = (fill-value[, size[, alignment]])] fill-spec
> area-name | area-spec

Note that most clauses are optional, and section modifiers (those preceding the “:”)
may be in any order. Thus, the minimum section-definition has the form:

output-section-name : { section-contents }

NOTE: Exercise caution when naming custom sections. Section names that begin
with a dot (.) may conflict with the compilation environment’s namespace.

Section Contents

section-contents is required in a section-definition. section-contents is a sequence of one
or more of the forms from Figure 25-1 separated by whitespace or comment:

<empty>
That is, { } with no explicitly named section-contents: include in the output
section all sections from all input object files which have the same name as the
output-section-name. Example:

.data : { }

NOTE: The <empty> form is processed only after the linker has examined and
processed all other input specifications. Thus, input sections loaded directly or
indirectly as a result of other more explicit specifications will not be re-loaded
by an { } form, even if they appear after it.

filename
Include all sections from the named object file which have the same name as
the output-section-name. Example:

.data : { testl.o, test2.o0 }

419

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

* (input-section-spec ...)
input-section-spec may be one of four forms:

section-name
Include the named sections from all input object files but do not include
input sections already included earlier. Example:

.data : { *(.data) }

section-name[symbol]
Include the section defining the given symbol. The “[” and “]” characters
do not mean “optional” in this case but rather are to be used as shown.
Example:

.text : { *(.text[malloc]) }

This form is especially useful with option -Xsection-split. See
5.4.126 Generate Each Function in a Separate CODE Section Class
(-Xsection-split), p.115.

Include all sections.

input-section-spec=n
Include sections according to input-section-spec and assign them priority n.
(See 23.6 Sorted Sections, p.383.)

object-filespec (input-section-spec ...)
Include the named sections from the named object file, where input-section-spec
is as defined immediately above and object-filespec is a pattern expression.*
Example:

.roml : { roml.o(.data), roml.o(.sdata) }

archive-filespec[member-name] (input-section-spec ...)
Include the named sections from the named object file, where
input-section-spec is as defined above, and archive-filespec and member-name
are pattern expressions.* Example:

Ltext @ { libproj.a[malloc.o](.text) }

[COMMON]
For explicit placement of COMMON sections. See Linker Command File
Requirements with COMMON, p.382 for additional information.

[SCOMMON]
For explicit placement of SCOMMON sections. See SCOMMON Section, p.382
for additional information.

420

25 Linker Command Language
25.8 SECTIONS Command

assignment-command
Define a symbol or change the program counter to create a “hole” (which may
be filled by a fill-value). See 25.9 Assignment Command, p.427.

ASSERT (expression|, text])
Evaluate expression and display an error message if expression is zero. Optional
text is included in error message.

STORE (expression, size-in-bytes)
Reserve and initialize storage (see STORE Statement, p.425).

*A pattern expression has the syntax:
filename | { expression }

where expression is one of the following:

! expression
expression | expression
expression & expression
(expression)
filename

and filename can include the following special characters:

* matches any string, including the null string.

? matches any single character.

[...] matches any one of the enclosed characters. A pair of characters
separated by a comma denotes a range.

Note that any pattern more complex than * should be enclosed in double quotes.
For example,

text_libimpfp.a (TEXT)
libimpfp.al[*] (.text)

will read in all .text sections from all object files beginning with libimpfp.a. To read
in sections named .text and .Text from only those object files whose names begin
with libimpfp.asfpf, use

text_libimpfp.a (TEXT)
libimpfp.a[“sfpf*”] (“.[Ttlext”)

For more information, consult documentation on POSIX regular expressions.

The order of the sections listed in the section-contents is undefined as is the order of
output sections in a SECTIONS command. A GROUP definition may be used to
ensure the order of a set of output sections. (See GROUP Definition, p.426.)

421

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: A section-contents specification must have at least one non-COMMENT
input section, e.g., a BSS, CONST, DATA, or TEXT section, or the type of the output
section will default to COMMENT, and it will not be allocated any memory. See
below regarding section types.

Type Specification: ([=]BSS), ((=ICOMMENT), ([=]CONST), ([=]DATA), ([=]ITEXT), ([=]BTEXT);
OVERLAY, NOLOAD

The type-spec clause sets the type of the output section. If absent, the type will be
determined by the types of the input sections. If all input sections in a given output
section are of the same type, the type of the output section will be that of the input
sections and no type-spec clause is necessary. Mixing input sections of different
types in a single output section is not recommended. If input sections do have
different types, the linker will choose a type from the input sections in the
following order from highest priority to least: TEXT, CONST, DATA, BSS, and
COMMENT.

To force the linker to choose the specified type regardless of the types of the input

“__1

sections, use the “=" form. For example, (=DATA) will force the output section to
have the DATA type.

type-spec can also be used when linking files produced by third-party tools which
do not tag each section with its type.

The alternative type specifications indicate the expected contents of the section:

(BSS)
Section contains uninitialized data space.

(COMMENT)
Section debug or other information not part of the program memory
space.

(CONST)
Section contains initialized data space.

(DATA)
Section contains initialized variables.

(TEXT)
Section contains code and/or constants.

(BTEXT)
Blank text section.

422

25 Linker Command Language
25.8 SECTIONS Command

OVERLAY tells the linker that the section can overlap other sections. The section
should have BIND specification; memory is not allocated for it. Example:

.textl (TEXT OVERLAY) BIND(ADDR(.text)) : { }

NOLOAD tells the linker not to mark the section as loadable.

NOTE: COFF specifications require that a DATA and a TEXT section be defined in
the linker command file.

Address Specification

The form of the address-spec is:
address-value | BIND (expression)

The address-spec clause specifies the address for the first byte of the output section.
It is either an absolute address, address-value, or the word BIND followed by an
expression that can contain the functions SIZEOF, ADDR, and NEXT (see

25.5 Expressions, p.415). An address-spec is not allowed inside a GROUP (see
GROUP Definition, p.426).

NOTE: A section with an address specification (address-spec) does not need a
memory-area specification (area-spec), since the linker automatically marks the
corresponding address range as reserved. If both an address-spec and an area-spec
are provided, the linker checks that the address range is completely inside the
memory area and displays a warning if it is not.

ALIGN Specification

The form of the align-spec is:
ALIGN (expression)

An align-spec clause causes the linker to align the section on the byte boundary
given by the value of expression.

LOAD Specification
The form of the load-spec is:

LOAD (expression)

In a typical embedded system, the values for all variables with explicit
initialization must be stored in some type of read-only memory before the system
is “powered up”. During execution, the variables must themselves be located in
RAM so they can be set (except for const variables which can remain in ROM).

423

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Thus, during startup, the initial values for these variables must be copied from
ROM to RAM.

To distinguish these two locations, we refer to the physical and logical addresses of
the output section.

» physical address: This is the address given by the expression in the load-spec. It is
this address which is used in the section header when the section is written to
the linked output file. Thus, if a dynamic loader loads the section, or the
section data is burned into a ROM, it will be at this physical address.

» logical address: This address is set by an address-spec or an area-spec in the
section-definition. This will be actual address of the section during execution.
Thus, when linking references to a variable in the section, the linker will use
the variable’s logical address.

NOTE: The load-spec only controls the physical/logical addressing of the section.
Typically, assignment statements are used to define symbols for the physical and
logical addresses of the section and its length. These symbols are then used by
startup code to copy the physical data from ROM to its logical location in RAM.
See the examples in this chapter, as well as default.dld in the conf directory and
crt0.s in the appropriate target directory for the startup copying code.

Also, copying code in the startup module, init.c, copies only a single contiguous
physical section. Thus, while more than one LOAD specification is permitted, the
output sections named in the expressions must be contiguous.

The following example is from Figure 25-1:

GROUP : { ...
.data LOAD (__DATA_ROM) : ()
} > ram
output assign assign physical collect all sections with
section logical “load” address at the same name as the
name address in __DATA_ROM output section (.data)
ram defined elsewhere from all input files

424

25 Linker Command Language
25.8 SECTIONS Command

OVERFLOW Specification

The overflow specification enables you to specify the size limit of a section and to
request that the linker place input sections which will not fit into the initial section
into a different section, called the overflow section.

The form of the overflow-spec is:
OVERFLOW (size-expression, overflow-section-name)
The size-expression specifies the size of the initial section in bytes, and
overflow-section-name names the section that is to receive the input sections that
cannot fit into the initial section.
Fill Specification
The form of the fill-spec is
=fill-value
or
=(fill-valuel, size[, alignment]])
The fill-spec instructs the linker to fill any holes in an output section with a two-byte
pattern. A hole is created when an assignment statement is used to advance the
location counter “.”. The linker also creates holes to align input sections according
to alignment. size and alignment are in bytes; valid values are 1, 2, and 4.
Area Specification
The form of the area-spec is

> area-namnie

where area-name is defined by an earlier MEMORY command (see 25.7 MEMORY
Command, p.417).

An area-spec causes the linker to locate the output section at the next available
location in the given area (subject to any ALIGN clause, see ALIGN Specification,
p-423).
STORE Statement
The STORE statement reserves and initializes memory space. Its form is:
STORE (expression, size-in-bytes)

where expression is the value to be stored at the current address, and size-in-bytes is
the size of the storage area, normally 4 for 32-bit values. Example:

425

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

_ptr_to_main = .;
STORE (_main, 4)

will create a label _ptr_to_main that contains the 4-byte pointer to the label _main.

GROUP Definition

A SECTIONS command may contain group-definitions as well as section-definitions
(see 25.8 SECTIONS Command, p.418).

A group treats several output sections together and ensures they are located in a
continuous memory block in the order given in the group-definition. When sections
are not in a group, their order is not defined, although it may be dictated implicitly
by, for example, address-spec clauses.

The full form of a group-definition is shown below. For clarity, each clause is written
on a separate line and is identified to its right.

GROUP
‘ address-spec
address-value | BIND (expression) | , P
ALIGN (expression)] alzgn—spec
{ section-definition ... }
[>area-name | area-spec

The clauses in a GROUP are defined above: address-spec in Address Specification,
p-423, align-spec in ALIGN Specification, p.423, section-definition in Section-Definition,
p-418, and area-spec in Area Specification, p.425.

NOTE: The address-value and BIND clauses may not be used on a section-definition
inside a GROUP, only on the GROUP itself.

Both a section-definition and a group-definition can end with an area-spec. Usually
when defining a group, an area-spec is used only on the group-definition and not on
the section-definitions enclosed within it.

426

25 Linker Command Language
25.9 Assignment Command

25.9 Assignment Command

An assignment command defines or redefines the value of a symbol. Assignment
commands are allowed at the outer-most level of a linker command file, and as
items in the section-contents of a section-definition (see Section Contents, p.419).

An assignment command may have either of the following forms:

symbol assign-operator expression ;
create an absolute symbol and assign it the value of expression

symbol @ {section-name | symbol2 }assign-operator expression ;
create a symbol in the given section, or the same section as symbol2, and
assign it the value of expression

where:

symbol and symbol2: an identifier following the rules of the C language with the
addition of “$” and “.” as valid characters and limited to 1,000 characters.

assign-operator: one of
= += —-= *= /=
”

The assign”;” is required.

When the assignment is inside a section-definition, the special symbol “.” is allowed
on either the left or right and refers to the current location counter.

A “hole” can be created in a section by incrementing the “.” symbol. If the fill-spec
is used on the section-definition, the reserved space is filled with the fill-value.

Example: create a 100 byte gap in a section:
. += 100;
Example - define the beginning of the stack for use by initialization code:

__ SP_INIT = ADDR(stack) + SIZEOF (stack) ;

427

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

25.10 Examples

Example 25-1 Avoiding Long Command Lines

A simple command file to avoid having to give a long command line when
invoking the linker could look as follows:

main.
load.
read.
arch.
-m2

® O O O

This means: load files main.o, load.o and read.o, search archive arch.a, and
generate a detailed memory map.

The output sections for the above, not being defined in the command file itself, and
absent -Bd and/or -Bt options on the command line, will be as described for these
options (see Set Address for Data and tExt (-Bd=address, -Bt=address), p.393), and
using default addresses for each which are appropriate to the target.

Example 25-2 Basic

The command file:

MEMORY

{
meml : origin = 0x2000, length = 0x4000
mem2 : origin = 0x8000, length = 0xa000

}

SECTIONS

{
.text : {} > mem2
.data : {} > meml
.bss : {} > meml

}

_start_addr = start;

means that all .text sections are collected together and positioned in the memory
area starting at 8000 hex. The sections .data and .bss are placed in order in the
mem1 area beginning at 2000 hex. The symbol _start_addr is defined to be the
same as the address of the symbol start from one of the input files.

The input object files for the above linker command file are those given on the
command line (and any others extracted from libraries to satisfy unresolved
external symbols in those files).

428

25 Linker Command Language
25.10 Examples

Example 25-3 Define a Symbol, Create a “Hole

The command file

SECTIONS
{
.text @ {}
.data ALIGN(8)
{
fl.o (.data)
_afl = .;
. = . + 2000;
* (.data)
} = 0x1234
.bss ¢ {1}

}

means first load the .text sections. Align on 8 and load the .data section from the
file f1.0. Set the symbol _af1 to the current address. Create a hole in the output
section with a size of 2000 decimal bytes. Load the rest of the .data sections from
the files given on the command line. Fill the hole with the value 0x1234. Load the

.bss sections thereafter.

Example 25-4 Groups

The command file

MEMORY
{
a: org = 0x100a8, len = 0x7ffeff58

}

SECTIONS

{
.text BIND((0x10000 + HEADERSZ+7) & (~7))

{
*(.1init) *(.text)

}

GROUP BIND (NEXT (0x10000) +
((ADDR(.text) + SIZEOF(.text)) % 0x2000))

{

.data : {}
.bss : {}
}
}
. 25
means that all input sections called .init or .text are combined into the output -

section .text. This output section is allocated at the address “0x10000 + size of all
headers aligned on 8”.

If HEADERSZ is 0xe0, the address becomes 0x100e0.

429

Example 25-5

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The sections .data and .bss are grouped together and put at the next multiple of
0x10000 added to the remainder of the end address of .text divided by 0x2000.

If .text is 0x23450 bytes long, the values are defined to be:

NEXT (0x10000) = 0x40000

ADDR (.text) = 0x100e0

SIZEOF (.text) = 0x23450

(ADDR (. text) +SIZEOF (.text))%0x2000 = 0x01530
address of .data = 0x41530

This is a typical default algorithm in a paged system where it is important to align
the section addresses on the file-offset in the executable file.

Document With C-Style Comments

The following command file is documented with C-style comments.

/*
* The following section defines two memory areas:
* one 1 MB RAM area starting at address 0
* one 1 MB ROM area starting at address 0x1000000
*/

MEMORY

{

0x0, len = 0x100000

0x1000000, len = 0x100000

ram: org
rom: org

-

/*
* The following section defines where to put the
* different input sections. .text contains all
* code + optionally strings and constant data, .data
* contains initialized data, and .bss contains
* uninitialized data.
*/
SECTIONS

{
/* Allocate code in the ROM area. */

.text : {} > rom

/*

* Allocate data in the RAM area.

* Initialized data is actually put at the end of the
* .text section with the LOAD specification.

*/
GROUP : {
.data LOAD(ADDR(.text)+SIZEOF(.text)) : {}
.bss : {}
} > ram

430

Example 25-6

25 Linker Command Language
25.10 Examples

Note the use of the LOAD clause to allocate the .data section to a physical address
in ROM, after the .text section, while the logical address (the address used during
execution) is in the RAM. The initialized data in .data has to be moved from the
physical address to the logical address during start up.

Empty Sections

It may be an error to define a section without any input sections. This extended
example begins with a sample linker command file extract likely to be faulty, and
then discusses some potential workarounds. Recommended solutions are at the
end of the example. While some of the workarounds are not recommended, they
serve to illustrate a number of principles in linker command file construction.

Consider the following example:

SECTIONS
{
.stack : {
stack_start

stack_end
} > ram

stack_start + 0x10000;

}

The above is apparently intended to reserve space for a stack and to define symbols
marking its beginning and end.

There are four potential problems:

“" o

» The address of the current location, “.”, and therefore of stack_start, is not
well-defined. If there are no input sections named .stack in the input files, then
stack_start will be at the “next” unfilled location in ram, or at the beginning of
the ram memory area if no other commands directing output to ram precede
the above .stack output section definition.

However, if .stack sections do appear in the input files, these will be
automatically included in this .stack output section — but whether they will
appear before or after the address given to stack_start is undefined (the rules
are complex and subject to change, so no guarantee of order is made for this
poorly constrained case).

431

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

If .stack sections do appear in the input files, the definition of “.” and therefore
of .stack_start can be made well defined by adding an input section
specification as follows:
.stack ALIGN(4) : {
stack_start = .;
* (.stack)
stack_end = .;
} > ram
» stack_start may not be aligned as required. Lacking an align-spec as in the case
above, the alignment will be 1, which may not be valid if the .stack section
definition is preceded by a section with, for example, an odd length.

This problem could be solved by providing an align-spec:
.stack ALIGN(4) : { ... }

» The assignment to stack_end will as expected define it to be stack_start plus
0x10000 bytes, but this assignment in and of itself does not allocate/reserve memory.
If other section definitions result in object bytes in what is intended to be the
stack area, the linker will not warn of the conflict.

This problem could be solved by incrementing the current location:

stack_start = .;
. += 0x10000;
stack_end = .;

“" oy

Incrementing “.” creates a “hole”. The hole will be zero-filled (absent
specification of a different constant with option -f — see Specify “fill” Value (-f
value, size, alignment), p.394).

A reminder: the current location symbol, “.”, may appear only in a SECTIONS
command, either between section definitions, or within a section-definition
(Section-Definition, p.418) or a group-definition (GROUP Definition, p.426).

“" oy

» Creating a hole by incrementing “.” actually uses space in the output image
(which could be more of an issue with larger stack). If the area reserved for the
stack is expected to be 0, this unnecessary space in the output image can be
eliminated by a BSS type-spec (Type Specification: ([=]BSS), ([=ICOMMENT),
([=ICONST), ([=IDATA), ([=ITEXT), ([=IBTEXT); OVERLAY, NOLOAD, p.422):

.stack (BSS) ALIGN(4) : { ... }

Combining all of the above, the following is at least valid and likely to produce an
acceptable result if there are no .stack sections in input files.

432

Example 25-7

25 Linker Command Language
25.10 Examples

SECTIONS
{

.stack (BSS) ALIGN(4): {
stack_start = .;

. += 0x10000;
stack_end = .
} > ram

}

However, because of its potential problems as described in this example, this
approach is not recommend. A recommended way to define a stack, especially in
combination with a heap, is to use GROUP definitions to locate sections in the
desired order, and then to define a stack and heap from the end of the final GROUP
(using assignment commands as above). Another way is to define a separate
memory area for the heap or stack with the MEMORY command. These approaches
are combined in the default.dld linker command file. See 25. Linker Command
Language for details.

Right and Wrong Ways to Use SIZEOF

Adding the size of a section to its address is not a reliable way to calculate the
address of the next section to follow because there may be an alignment gap
between the sections. For example, the following figure shows incorrect and
correct ways to define the physical address in a LOAD specification and to define
a heap symbol. Incorrect commands in the incorrect method and changes in the
correct method are in bold.

433

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Figure 25-3 Correct and Incorrect Use of SIZEOF

MEMORY (Used by both incorrect and correct examples.)
{

roml: org = 0x20000, len = 0x10000 /* 3rd 64KB */

rom2 : org = 0x30000, len = 0x10000 /* 4th 64KB */

ram: org 0x80000, len 0x30000 /* 512KB - 703KB */
stack: org = 0xb0000, len = 0x10000 /* 7043B - 768KB */

Incorrect LOAD Specification and Symbol Definition Using SIZEOF

SECTIONS
{
GROUP : {
.text : { *(.text) *(.init) *(.fini) }
.ctors ALIGN(4):{ ctordtor.o(.ctors) *(.ctors) }
.dtors ALIGN(4) :{ ctordtor.o(.dtors) *(.dtors) }
.sdata2 : {}
} > roml

.text2 : { *(.text2) } > rom2

GROUP : {
.data LOAD(ADDR(.text2) + SIZEOF(.text2)) : {}
.sdata LOAD(ADDR(.text2) + SIZEOF(.text2) + SIZEOF (.data)) : {}
.sbss : {}
bss : {}
} > ram
__HEAP_START = ADDR(.bss) + SIZEOF(.bss); (Alignment gap after .bss could
make __ HEAP_START wrong.)
__HEAP_END = ADDR (ram) + SIZEOF (ram) ; (Memory areas are fixed size;

SIZEOF use 1s correct.)

434

25 Linker Command Language
25.10 Examples

Figure 25-3 Correct and Incorrect Use of SIZEOF (cont'd)

Corrected
SECTIONS
{
GROUP : {
.text : { *(.text) *(.init) *(.fini) }
.ctors ALIGN(4) :{ ctordtor.o(.ctors) *(.ctors) }
.dtors ALIGN(4):{ ctordtor.o(.dtors) *(.dtors) }
.sdata2 : {}
} > roml
.text2 ¢ { *(.text2) } > rom2
__ _DATA ROM= .; (Define symbol for use in LOAD.)
} > rom2
GROUP : {
.data LOAD(__DATA_ROM) : {}
.sdata (DATA) LOAD (ADDR(.sdata) - ADDR(.data) + __ DATA ROM) : {}
.sbss : {}
.bss ¢ {}
} > ram
__HEAP_END = ADDR (ram) + SIZEOF (ram); Memory areas are fixed size;
__ SP_INIT = ADDR(stack) + SIZEOF (stack); SIZEOF use is correct.)

__SP_END ADDR (stack) ;

Example 25-8 Copying Code from “ROM” to “RAM”

In embedded systems, code and data are typically burned into a ROM-type device,
and then initial values for global and static variables are copied to RAM during
system startup. The startup code can automatically copy such initial values as
described in Copying Initial Values From “ROM” to “RAM”, Initializing .bss, p.279,
which makes reference to the linker LOAD specification. (See LOAD Specification,
p-423.)

Copying code, not just initial data values, to high speed RAM can increase
performance because it can be much faster to access than ROM. This example
shows how to modify a simplified version the version_path/conf/sample.dld file
shipped with the compiler suite to support this. In addition, a new copy_to_ram()
function is required, and crt0.s is modified to call it.

Note: For simplicity, the small data and small constant areas have been removed
from this example.

435

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

This example assumes an understanding of the startup code and the LOAD
specification referred to above.

The first part of this discussion describes changes that are made to the linker
command file. The following SECTIONS directive can be used to locate code
physically in ROM but logically in RAM:

SECTIONS
{

.text LOAD (ROM_ADDRESS) :{}

} > ram
The LOAD instruction tells the linker where code is to be loaded in ROM at load
time — the physical address (for example, when the PROM is burned). The area
specification (the > ram part of the statement) tells the linker where the code will
be during execution — the logical address. Note that this SECTIONS directive does
not copy the data from ROM to RAM,; it only tells the linker where to resolve
references to functions, labels, string constants located with code, and so forth. In
this example a user-supplied function called copy_to_ram() does the actual
copying of code from ROM to RAM during system startup.

If a LOAD directive and an area specification such as those shown above are used
for the initialization code, that code will not be accessible. This is because the linker
would resolve references to the initialization code in the ram area, and so the
initialization code would never be found. One solution to this “chicken and egg”
problem is to refrain from copying the initialization code, crt0.0 and
copy_to_ram(), to RAM, leaving it in ROM.

Here are the details:

1. Locate initialization code into ROM only, in a section called .startup. The
startup code consists of crt0.0 and copy_to_ram().

2. Locate the rest of the code, and all global and static variables, physically in
ROM but logically in RAM, except for uninitialized variables, which is only
placed in RAM.

3. Assign symbols to keep track of important addresses in RAM and ROM. See
the diagram below.

436

25 Linker Command Language
25.10 Examples

uninitialized data

_____________ __DATA_END
RAM copy of data (global, static variables)
_____________ __TEXT_END
copy of code text
__DESTINATION

__DATA_ROM_START

ROM

__SOURCE

crt0.s and copy_to_ram()

The symbols __ SOURCE (in ROM) and __ DESTINATION (in RAM) mark the
beginning of the code areas (not including the initialization code).

_ DATA_ROM_START marks the beginning of data in ROM, and _ TEXT_END
marks the end of the .text section in RAM. _ DATA_END marks the end of the code
and variable sections that are to be copied.

The next two pages show the simplified sample.dld, before and after changes are
made. Comments have been reduced to improve readability and unnecessary
details have been omitted; changes appear in bold text in the second version of
sample.dld. See bubble.dld for another example of more complete linker
command files in 25. Linker Command Language.

In the “after” linker command file (Figure 25-5), note that _ DATA_ROM and
__DATA_RAM are made equal to each other in order to prevent crt0.o from
redundantly copying data. (crt0.0 copies data from ROM to RAM if those symbols
are not equal; see Copying Initial Values From “ROM” to “RAM”, Initializing .bss,
p-279.)

437

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Figure 25-4 sample.dld As It Is Distributed

MEMORY Specify memory layout.
{

rom: org=0x0, 1en=0x100000

ram: org=0x100000, len=0x100000

stack: org=0x300000, 1len=0x100000
}

SECTIONS The first GROUP contains code and constant
{ data, and is allocated in the rom memory area.
GROUP :
{
.text (TEXT) :{

*(.text) *(.rodata) *(.rdata)
*(.frame_info) *(.j_class_table)
*(.init) *(.fini)
.ctors ALIGN(4):{ ctordtor.o(.ctors)
*(.ctors) }
.dtors ALIGN(4):{ ctordtor.o(.dtors)
*(.dtors) }
}

__DATA_ ROM = .;
} > rom
GROUP : { The second GROUP allocates space for
__DATA RAM = .; initialized and uninitialized data in the ram
memory area, as directed by > ram at the end of
the GROUP. This is the “logical” location;
references to symbols in the GROUP are to
ram.
.data (DATA) LOAD(__DATA_ROM) : But the LOAD specification on the .data output
{ *(.data) *(.j_pdata) } section causes that section to follow be at
_ DATA_ROM in the GROUP above in the
actual image (the "physical" address).
__DATA_END = .;
__BSS_START = .; Allocate uninitialized sections.
.bss (BSS) : {}
__BSS_END = .;
__HEAP_START= .;
} > ram

}

438

25 Linker Command Language

Figure 25-5
MEMORY { ... }

SECTIONS
{

.startup (TEXT) : {
crt0.o(.text)
*(.startup)

__SOURCE = (. + 3) & ~3;

} > rom

GROUP :
{
__DESTINATION = .;
.text (TEXT) LOAD(__ SOURCE) : {

*(.text)

}

__TEXT END = .;

__DATA ROM_START = __ SOURCE +
__ TEXT END - _ DESTINATION;

.data (DATA) LOAD(__ DATA ROM START)
{ *(.data) *(.j_pdata) }

_ _DATA END = .;

__BSS_START = .;
.bss (BSS) : {}
__BSS_END = .;

__HEAP_START = .;
} > ram

}

__ DATA_ROM
__ DATA_RAM

0;
__DATA_ROM;

25.10 Examples

sample.did Highlighting Changes Made for Copying from ROM to RAM

Create a startup section for initialization code,
crt0.0 and copy_to_ram(), that will only be placed
in ROM. __SOURCE is the beginning address for
the ROM to RAM copy.

Make sure __ SOURCE is aligned.

Combine the rest of the code and data into a group
located in RAM. Use LOAD directives to place all
of this group (except uninitialized data) in ROM.
__DESTINATION is the address in RAM for the
ROM-to-RAM copy. Some details (such as .ctors
and .dtors) have been removed.

__TEXT_END marks the end of code.
_ DATA_ROM_START marks the beginning of

data in ROM.

__DATA_END marks the end of data to be copied.

Allocate uninitialized sections.

Make __DATA_ROM and __ DATA_RAM equal
so initialization code will not copy initial values
from ROM to RAM.

A simple copy program can be used to copy from ROM to RAM, using
__DATA_END and _ DESTINATION to calculate the number of bytes to copy.

/* These symbols are defined in a linker command file. */

extern int _ SOURCE[],

#pragma section CODE ".startup"

void copy_to_ram(void) {

DESTINATIONI[],

DATA _ENDI[];

439

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

unsigned int i;
unsigned int n;
/* Calculate length of the region in ints */

n = _ DATA_END - _ DESTINATION;
for (1 = 0; 1 < n; i++) {
__DESTINATION[i] = __ SOURCE[i];

}
}

crt0.s must call copy_to_ram(). The following is added after the comment “insert
other initialization code here,” before calling __init_main().

Jjbsr _copy_to_ram

NOTE: An alternative to using copy_to_ram(), which is implemented with a for

loop, would be to call memcpy() from crt0.0, but then memcpy() would remain
in ROM, with its slow access.

440

PART V

Wind River Compiler Utilities

26 Utilitiesooovviiiirie s 443
27 D-AR Archiver ... 445
28 D-BCNT Profiling Basic Block Counter 451
29 D-DUMP File DUMPEToommiiieirirrrressssssssssssssssnas 455
30 dmake Makefile Utilitycccoovrvrmmmmmmmmmmnnnnnnnnnnnns 465
31 WindISS Simulator and Disassembler 467

441

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

442

26

Utilities

The following chapters describe utility tools that accompany the compiler suite.

26.1 Common Command-Line Options

All tools in the Wind River suite accept the following command-line options where
meaningful. They are repeated here for convenience.

Show Option Summary (-?)

-?I 'hl
--help
Show synopsis of command-line options.

Read Command-Line Options from File or Variable
(-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the tool first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then it tries to open a file with given name

443

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

and substitutes the contents of the file. If neither an environment variable or a
file can be found, an error message is issued and the tool terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E-=file, -@E-+file, -@O=file, -@O+file)

-@E=file

Redirect any output to standard error to the given file.
-@O=file

Redirect any output to standard output to the given file.

”

Use of “+” instead of “=" will append the output to the file.

444

27

D-AR Archiver

27.1 Synopsis 445
27.2 Syntax 445

27.3 Description 446
27.4 Examples 449

27.1 Synopsis

Create and maintain an archive of files of any type, with special features for object
files.

27.2 Syntax

dar command [position-name| archivefile [name] ...

445

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

27.3 Description

The dar command maintains files in an archive. Archives can contain files of any
kind. However, object files are handled in a special way. If any of the included files
is an object file, the archiver will generate an invisible symbol table in the archive.
This symbol table is used by the linker to search for missing identifiers without
scanning through the whole archive.

NOTE: An archive file consisting only of object files is also called a library, and so
the archiver is often referred to as a librarian.

command is composed of a hyphen (-) followed by a command letter. One or more
optional modifier letters for some commands may either be concatenated to the
command letter, or may be given as separate option arguments (see below for
examples).

position-name is the name of a file in the archive used for relative positioning with
the -r and -m commands.

archive-file is the archive file pathname.

name is one or more files in the archive. Multiple name arguments are separated by
whitespace.

27.3.1 dar Commands

dar commands and modifiers are as follows. Modifiers are shown in brackets. See
also 26.1 Common Command-Line Options, p.443.

-d [1v]
Delete the named files from the archive.

-m [abiv]
Move the named files. If any of the [abi] modifiers are employed, the
position-name argument must be present and the files will be positioned in the
same manner as with the -r command. Otherwise the files are moved to the
end of the archive.

-p [sv]
Print the contents of the named files on the standard output. This is useful only
with text files in an archive; binary files, e.g., object files, are not converted and
so are not normally printable.

446

27 D-AR Archiver
27.3 Description

-q [cflv]
Quickly append the named files at the end of the archive without checking
whether the files already exists. If the archive contains any object files, the
symbol table file will be updated. If the [f] modifier is used, the files will be
appended without updating the symbol table file, which is considerably faster.
Use the -s command when all files have been inserted in the archive to update
the symbol table.

-r [abciluv]
Replace the named files in the archive. New files are placed at the end of the
archive unless one of the [abi] modifiers is used. If so, position-name must be
given to specify a position in the archive. With the [bi] modifiers, the named
files will be positioned before position-name; with the [a] modifier, after it.

If the archive does not exist, create it.

If the [u] modifier is specified, then only files with a modification date later
than the corresponding files in the archive will be replaced.

-s [IR]
Update the symbol table file in the archive. Used when the archive is created
with the -qf command.

-t [sv]
List a table of contents for the archive on the standard output.
-V
Print the version number of dar.
-X [Isv]
Extract the named files from the archive and place them in the current
directory. The archive is not changed.

Table 27-1 dar Command Modifiers

Use With
Commands
a -m -r Insert the named files in the archive after the file
position-name.
b -m -r Insert the named files in the archive before the file
position-name. Same as “i” modifier.
c -q -t Does not display any message when a new archive

archive-file is created.

447

Table 27-1

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

dar Command Modifiers (cont'd)

Use With
Commands
D pathname
-q-r When adding to or replacing files in an archive, prefix
pathname to name of each file to be stored to access it in the
file system (but do not store the additional pathname in the
symbol table).

f -q Append files to the archive, without updating the symbol
table file. If any of the files already exist, multiple copies will
exist in the archive. The next time the -s command is used
dar will delete all copies but the last of the files with the
same name.

i -m -r Insert the named files in the archive before the file
position-name. Same as “b” modifier.

j -q-r Store a path prefix if given with an object file in the archive

1 -d-q-r-s-x

S -p-t-x

u -

A -d-m-p
-q-r-t-x

R -S

symbol table instead of just the base filename.

NOTE: The path prefix becomes part of the name in the
archive. Thus, if a single file x.0 is added once as x.0 and a

second time as lib/x.o using the “j” option, it will be stored
twice in the archive.

Place temporary files in the current directory instead of the
directory specified by the environment variable TMPDIR, or
in the default temporary directory.

Same as the -s command.

Replace those files that have a modification date later than
the files in the archive.

Verbose output.

Sort object files in the archive so that the linker does not
have to scan the symbol table in multiple passes.

448

27 D-AR Archiver
27.4 Examples

27.4 Examples

Example 27-1

Example 27-2

Example 27-3

Example 27-4

Example 27-5

Some later examples build on earlier examples.

New Archive

Create a new archive lib.a and add files f.0 and h.o to it (the -r command could also
be used):

dar -q lib.a f.o h.o

Modify Above Archive: Replace File, Add File

Replace file .0, and insert file g.o in archive lib.a, and also display the version of
dar. Without the “a” modifier, the new file g.o would be appended to the end of the
archive. With the “a” modifier and the first f.o acting as the position-name in the
command, new file g.o is inserted after the replaced f.o:

dar -rav f.o lib.a f.o g.o

Alternative command for Example 2

Example 27-1 - Example 27-2 can also be given in the following form with the
modifier letters given as separate options. The first item following dar must always
be the command from 27.3.1 dar Commands, p.446.

dar -r -a -v f£.0 lib.a f.o g.o

Quick Append to Archive

Quickly append f.o to the archive lib.a, without checking if f.o already exists. This
operation is very fast and can be used as long as the archive is later cleaned with
the -sR command (see below):

dar -qf lib.a f.o
Cleanup Archive After Quick Appends

Cleanup archive lib.a by creating a new sorted symbol table and removing all but
the last of files with the same name. This is useful after many files have been added
with the -qf option:

dar -sR lib.a

449

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Example 27-6 Extract File from Archive Without Changing Archive

Extract file.c from archive source.a and place it in the current directory. The
archive is unchanged.

dar -x source.a file.c
Example 27-7 Delete File from Archive Permanently

Delete file.c files from archive source.a. The file is deleted without being written
anywhere:

dar -d source.a file.c

450

28

D-BCNT Profiling Basic Block
Counter

28.1 Synopsis 451
28.2 Syntax 451

28.3 Description 452
28.4 Files 453

28.5 Examples 453
28.6 Coverage 454
28.7 Notes 454

28.1 Synopsis

Display profile data collected from one or more runs of a program.

28.2 Syntax

abent [-£ profilefile] [-b n] [-1 n] [-n] [-t n] sourcefile, ...

451

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

28.3 Description

28.3.1

dbent

The dbent command displays the number of times each line in a source program
has been executed. It can also be used to show “coverage” information (see
28.6 Coverage, p.454).

The files to be measured must be compiled with the -Xblock-count option. By
definition, a basic block is a segment of code with exactly one entrance and one
exit. Thus, all statements in a basic block will have the same count. Compiling with
-Xblock-count causes the compiler to insert code into each basic block to record
each execution of the block. Each time the resulting program is run, the profile data
is stored in the file named in the environment variable DBCNT. If DBCNT is not set,
the file dbent.out will be used. If the program is executed more than once, the new
profile data will be added to the existing DBCNT file.

After the profile data has been collected and returned to the host, to display one or
more source files together with their line counts, enter the command:

dbent [options| sourcefilel, sourcefile2, ...

If the name of the DBCNT file is not dbcnt.out, use the -f option to provide the
pathname of the actual file with the line counting information. See below for
examples.

dbcent options are as follows. See also 26.1 Common Command-Line Options, p.443.

Options
-f file
Read profile data from file instead of dbcnt.out.

-hn
Do not print lines executed more than n times.

-1n
Do not print lines executed fewer than n times.

-n
Print the line number of every source line.

-tn
Print the n most frequently executed lines.

-V
Print the version number of dbcnt.

452

28 D-BCNT Profiling Basic Block Counter
28.4 Files

28.4 Files

NOTE: Files processed by dbecnt must be unique in their first 16 characters.

28.4.1 Output File for Profile Data

dbent.out
Default output file for profile data.

DBCNT
Environment variable giving the name of the profile data file.

28.5 Examples

The file file.c (shown annotated below) is compiled with:
dcc -Xblock-count -o file file.c

When executed, the following output is produced:
47 numbers are multiples of 3 or 5.

dbcent is used to show how many times each line is executed:
dbent file.c

dbcent produces the following output:

file.c (1 run(s)):

main ()
{
1 int i = 100, n = 0;
1
101 while(i > 0) {
100 if ((1 $3) ==0|] (1 %5) ==0) {
67
47 n++;
47 }
100 i--;
100 }
1 printf ("%d numbers are multiples of 3 or 5.\n",n);

453

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

NOTE: When a source line contains more than one basic block, such as the if
statement above, empty lines are added to show the count of the basic blocks after
the first.

The following will find the 100 most frequently executed source lines in a program:

dbcnt -n -t100 *.c

28.6 Coverage

The following will find all source lines which did not execute in a program:
dbent -h0 -10 -n *.c

(The second option, -10, is hyphen, lower-case L, 0.)

28.7 Notes

The functions __dbinic() and__dbexit() must exist in the standard library in order
for the linker to be able to link the files compiled with the -Xblock-count option.

For information on support for file I/O and environment variables in an
embedded environment, see 15.8.2 File I/O, p.288 and 15.11 Target Program
Arquments, Environment Variables, and Predefined Files, p.292.

See 15.12 Profiling in An Embedded Environment, p.294 for an additional example.

454

29

D-DUMP File Dumper

29.1 Synopsis 455
29.2 Syntax 455

29.3 Description 456
29.4 Examples 462

29.1 Synopsis

Dump or convert all or parts of object files and archive files.

29.2 Syntax

ddump [command] [modifiers] file, ...

455

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

29.3 Description

An object file consists of several different parts which can be individually dumped
or converted with the ddump command.

ddump accepts both object files and archive files; in the latter case, each file in the
archive is processed by the ddump command. ddump can generate debugging
information only for code that is fully bound at link time; it does not work on
relocatable object files.

ddump can also be used to convert from COFF or ELF to other object formats. See
the -R command for Motorola S-Records and the -I command for IEEE 695 (COFF
only).

command is composed of a hyphen (-) followed by one or more command letters.
One or more optional modifier letters for some commands may either be
concatenated to the command letter, or may be given as separate option
arguments. Commands and options are all represented by unique letters and so
may be mixed in any order. Typically modifiers consisting of a single letter are
concatenated with commands, while modifiers taking a separate argument are
given as separate options (e.g., -Rv versus -R -o name).

ddump permits combining options that produce output files. For example:
ddump -RI a.out

will produce both a Motorola S-Record output file, srec.out, and an IEE695 output
file, ieee.out from the COFF input file a.out. When producing multiple output files
in this way, do not specify an output filename with the -o option as both files
would be written to the same output file.

See also 26.1 Common Command-Line Options, p.443.

29.3.1 ddump commands

-a
Dump the archive header for all the files in an archive file.

-B
Convert a hexadecimal file to binary format. Each pair of hexadecimal
numbers is translated to one byte in the output file. Whitespace (spaces, tabs,
and newlines) are ignored. Unless the -0 modifier is used, the output file will
be named bin.out.

456

-C

-F

29 D-DUMP File Dumper
29.3 Description

Generate a difference file (either a SingleStep .blk file or an S-Record) from two
ELF executable files. Usage:

ddump -C [modifiers] filel file2
The following special modifiers are available:

-h
Generate differences for read-only sections and a complete dump for
writable sections. Useful when the original executable has already run on
the target and has modified some writable information.

-v
Generate differences for initialized sections. Useful when the executable
has initialized uninitialized data.

-p2
Generate an S-Record instead of a .blk file.
Dump the string table in each object file.

Dump the DWARF debugging information in each object file.

Demangle C++ names entered interactively, one per line (no files are
processed). Enter Ctrl-C or the end-of-file character to terminate interactive
mode. If combined with other options, prints demangled names. See 13.5 C++
Name Mangling, p.243 for details on how names are mangled.

Dump the file header in each object file.
Dump the symbols in the global symbol table in each archive file.

Display the contents of any file in hexadecimal and ASCII formats. The -p
modifier will display hexadecimal only.

Dump the section headers in each object file.

457

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

458

Convert a COFF file to IEEE-695 object format. The output file will be named
ieee.out unless the -o modifier is used. The -p name modifier can be used to
specify the processor name.

NOTE: The linker option -Xextern-in-place is required when creating an
executable file to be converted to IEEE-695 format. See Generate Executable for
Conwversion to IEEE-695 (-Xextern-in-place), p.403 for details.

ddump appends an extra underscore in front of symbols in the IEEE-695 file
when there is no main function in the COFF executable.

NOTE: If commands in the linker command file cause two or more input
sections from the same module to be combined into a single output section,
ddump -I will produce the following warning:

ddump: warning multiple section ranges for module name

This is because COFF debug format includes section vs. file information, but
cannot accommodate the case of more than one input section from a single file
in an output section. This warning indicate that such information was lost
(which may affect some debuggers), and may be otherwise ignored.

The startup module, crt0, includes multiple code sections, and so will produce
this warning.

(Not available for ELF files.)
Dump the line number information in each object file.

Dump the symbol table information in each object file. Similar to the UNIX nm
command. The following special modifiers are available. See also the -t option
below for a more readable dump but without further options.

X
Display numbers in hexadecimal.
-0
Display numbers in octal.
-u
Display only undefined symbols.

-0

29 D-DUMP File Dumper
29.3 Description

P
Display symbols in BSD format.
Suppress header.

-1
Display filename before symbol name.

Emulate GNU nm output.

Dump the optional header in each object file.

NOTE: -o is both a command and an option. If any of the commands -B, -1, or
-R are encountered, then a following -o is assumed to specify the output file
for the -B, -I, or -R command. If -0 is encountered first, then it is the command.
See the -o modifier on 29.3.1 ddump commands, p.456.

Convert an executable (usually, or object) file to different formats, especially
Motorola S-Record format. The output file will be named srec.out unless the -o
modifier is used (see 29.3.1 ddump commands, p.456). Sections may be selected
with the -n or -d and +d modifiers as usual.

The following special modifiers are available:

-mt
Write S-Records of the given type: 1 for 16-bit addresses, 2 for 24
bit-addresses, 3 for 32-bit addresses (the default). No space is permitted
between “m” and ¢.

P
Write a plain ASCII file in hexadecimal (not S-Record format).

Write a binary file (not S-Record format). Inter-section gaps of size less
than or equal to 10KB are filled with 0. The size may be changed with the
-y option described in 29.3.1 ddump commands, p.456. A larger gap will
cause an error.

-v
Do not output the .bss or .sbss section (applies to all output formats).

459

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Without -v, S-Records will be generated to set .bss and .sbss sections to 0.
This will increase transmission or programming time when sending
S-Records to PROM programmers or other devices and may not be
desirable.

-wn
Set the line width of the S-records to represent n data characters. The actual
line length is 2n plus the size of other fields such as the address field. The
default value of nis 20. 21 is used instead of n because it takes 21 hex digits
to represent n characters. No space is permitted between “w” and n.

-1
Dump the relocation information in each object file.

-S
Display the size of the sections. Similar to the UNIX size command. By using
the -f modifier, the section names will be included in the output. By default,
only the .text, .data, and .bss sections will be included. By using the -v
modifier, all sections will be included.

-s
Dump the section contents in each object file.
NOTE: Use of the v modifier, that is, -sv, is highly recommended.

-T
Remove the symbol table information in each object file. Similar to the UNIX
strip command. (COFF only.)

-t
Dump the symbol table information in each object file. For COFF objects only,
the -v2 option will suppress debug information in the dump.

-tindex
Dump the symbol table information for the symbol indexed by index in the
symbol table.

+tindex
Dump the symbol table information for the symbols in the range given by the
-t option through the +t option. If no -t was given, 0 is used as the lower limit.

-V

Print the version number of ddump.

460

Table 29-1

=Zname

29 D-DUMP File Dumper
29.3 Description

Dump the line number information for the function name.

-zname,number
Dump the line number information in the range number to number2 given by
+z for the function name.

+znumber?

Provide the upper limit for the -z option.

ddump command modifiers

Use With
Command
-d -h-1-R-s Dump information for sections greater than or equal to
number number. Sections are numbered 1, 2, etc.
+d -h-1-R-R-s Dump information for sections less than or equal to
number number.
-n -h-1-R-s-t Dump the information associated with each section
namelist name in a comma-separated list of section names.
-oname -I-R Specify an output filename for the -B, -I, and -R
commands. (See note regarding the -o command in
29.3.1 ddump commands, p.456.)
P any but -1 Suppress printing of headers. Special meaning with -R.
-p name -l only Set the processor name in the “Module Begin” record. If
this option is not specified the processor name is taken
from the magic number of the input file. A list of
processor names and magic numbers can be found in
the IEEE 695 specification.
-u any Underline filenames. Special meaning with -R.
-v any Dump information in verbose mode. Special meaning

with -R.

461

Table 29-1

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

ddump command modifiers (cont'd)

Use With
Command
-yn -Ru Change the size of the gap zero-filled by the -Ru
command to 7 (see 29.3.1 ddump commands, p.456). For
example:

ddump -Ru -y20000 ...

will permit gaps from 1 through 20,000 bytes.

29.4 Examples

Example 29-1

Example 29-2

Example 29-3

Example 29-4

Dump File Header and Symbol Table for Files in Archive

Dump the file header and symbol table from each object file in an archive in
verbose mode:

ddump -ftv lib.a
Convert Executable File to Motorola S-Records

Convert an executable file named test.out to Motorola S-Record format, naming
the output file test.rom. Use the -v option to suppress the .bss section (without -v,
S-Records would be generated to fill the .bss section with zeros).

ddump -Rv -o test.rom test.out
Generate S-Records Only for “data” Sections

Same as the prior example but convert and output only sections .data and .sdata
and call the result data.rom.

ddump -R -n .data, .sdata -o data.rom test.out
Display Section Sizes

Use -Sf to show the size of all sections loaded on the target. See below:
ddump -Sf a.out

9056 (.text+.sdata2) + 772 (.data+.sdata) + 428(.sbss+.bss) =
10256

462

Example 29-5 Demangle C++ Names

29 D-DUMP File Dumper
29.4 Examples

Demangle C++ names with ddump -F:

ddump -F

mymain FiPPc

mymain (int , char **)
init_ 7myclassFv
myclass::init (void)

command entry
user entry
demangled result
user entry
demangled result

463

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

464

30

dmake Makefile Utility

30.1 Introduction 465
30.2 Installation 465
30.3 Using dmake 466

30.1 Introduction
Rebuilding the Wind River libraries requires the special make utility, dmake, by

Dennis Vadura. dmake is shipped and installed automatically with the tools.

dmake supports the standard set of basic rules and features supported by most
“make” utilities — see the documentation for other “make” utilities for details.

30.2 Installation

The dmake executable is shipped in the bin directory and requires no special
installation.

465

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

30.3 Using dmake

Use dmake as a typical “make” utility. For example, enter dmake without
parameters to cause it to look for a makefile named, on Windows, makefile
(case-insensitive), and on UNIX, first makefile and then Makefile.

Enter dmake -h for a list of command-line options.

dmake requires a “startup” file unless the -r option is given on the command line,
and will look for the file in the following locations in order:

= The value of the macro MAKESTARTUP if defined on the command line.
= The value of the MAKESTARTUP environment variable if defined.

» The file version_path/dmake/startup.mk (supplied as shipped).

466

31

WindISS Simulator and
Disassembler

31.1 Synopsis 467

31.2 Simulator Mode 468

31.3 Batch Disassembler Mode 473

31.4 Interactive Disassembler Mode 474
31.5 Examples 475

31.1 Synopsis

WindISS, the Wind River Instruction Set Simulator, is a simulator for executables
and a disassembler for object files and executables. The disassembler mode
provides both batch and interactive disassembly. The three modes of operation are
selected by:

windiss ...
Simulation (with no -i option).

windiss -i ...

Batch disassembly.

windiss -ir ...
Interactive disassembly.

The modes of operation are described the next three sections.

467

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

31.2 Simulator Mode

In simulator mode, windiss can take command-line arguments, input from
standard input, and send output to standard output.

Table 31-1 Syntax (Simulator Mode)

windiss [-b binary-offset] Load file at address; requires -t option.

[-a debug-mask]

[-0]

[-DE tracefile]

[-Di trigger-address| . . stop-address]
[, tmce—count]]

[—Dm mnge—sturt[.. mnge—stop]
[, trace-count]]

[-Ds skip-count[, trace-count]]

[—Dx max—count]
[-e entry-point]
[-h hex-offset]

[-T mem-init-value]

[-m mem-size]

[-ma]

[—mm mnge—sturt[. .mnge—end} [rl[w][r

[w]lx]

, mn]ge—start[. .range-end] [z

[-M address-mask]

[-N nice-value]

Write debugging information.
Trace execution, show disassembly and register state.
Send -D... trace output to file.
Trace only on execution in address range;
trace for count instructions.
Start trace on first read /write in address range.
trace for count instructions.

Start trace after skip-count instructions; trace for
count.

Execute max-count instructions, then stop.

Set entry point address.

Load at offset; requires -t option.

Initialize memory to low byte of value, else to 0.

Set memory size in bytes; suffixes K (kilo) or M
(mega).

Allocate memory automatically when accessed.

Specify memory map in address range(s); r, w, and x
set memory type to read, write, and execute.

Specify address mask applied to simulated target.

Run with lower priority on windows; nice-value can
be 0 (default) to 6 (lowest priority).

468

Table 31-1 Syntax (Simulator Mode)

31 WindISS Simulator and Disassembler
31.2 Simulator Mode

[-p]

[-a]

[-]

[-s clock-speed]
[-s stack-address]
[-t target-mzme]
[-v]

[-x exception-mask |

filename [argument...]

Generate count profile without using -Xprof...
options.

Quiet mode — no messages except user output.
Internal use by RTA.

Set clock speed (in megahertz).

Specify initial value of stack and environment area.
Set target. target-name may be set to MC68K.
Display version number.

Set exception mask.

Executable file to simulate and arguments to it if any.

31.2.1 Compiling for the WindISS Simulator

The simulator is easiest to use with ELF files that were compiled for the windiss
environment, without hardware floating point support (which windiss does not
provide). To select the windiss environment when compiling, assembling, and

linking, either:

» Use -ttof:windiss on the compiler, assembler, or linker command line.

» Use dctrl -t to specify the target and environment. When dctrl prompts Select
environment, select other, and then enter windiss.

If object files were not compiled with ELF object file coding, the linker option -Xelf
can be used to produce ELF file executables. Also, special switches described
below allow for simulation using binary and hex files.

31.2.2 Simulator Mode Command and Options

The following shows options for running windiss in simulator mode. The space
between the option and its value is optional unless otherwise noted. When an
option has multiple values, no other spaces are allowed. All numeric values may
be specified in decimal or hex, e.g., 16 or 0x10.

469

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-b address

Load binary file at address. The -t option must be used to indicate the target.

-d debug-mask

470

Write debugging information using debug-mask to indicate options. Mask bits
may be ORed and are specified in hex, e.g. Oxc. Mask bits not listed below are
reserved. The mask bits are as follows:

1,2 Turn logging on for the RTA server. Bit 2 requests more detail
than bit 1.

4 Cannot be used without bit 8. When used with bit 8, windiss
displays the contents of buffers for POSIX calls.

8 Log POSIX calls.

16 Log exceptions, if exceptions are enabled. For example, the
timer interrupt can be logged.

64 Log target memory handling.

Show initial register state; trace execution, showing disassembly for all
instructions; show values for all registers that are changed.

trace-file
Direct output from all -D tracing options (-D, -Di, -Dm, and -Ds) to the
trace-file.

trigger-address

[.. stop-address]

[, trace—count]

Enable tracing, displaying each instruction as it executes and any registers
modified by it on stdout. No space is allowed in the arguments except after
-Di.

Start tracing when the PC enters the range from trigger-address..stop-address.
The default for stop-address gives a range of one instruction at the
trigger-address.

Addresses may be symbols. (Note: by default, the compiler prepends function
names with an underscore “_".)

Stop tracing when execution reaches the stop-address or after trace-count
instructions. If neither is present, tracing continues until the program
terminates. Note that the program does not terminate when tracing stops —
the program always runs until completion unless the -Dx option is present.

If trace-count is 0, tracing is enabled as long as the PC is within the specified
function or range. When the PC is outside of range (e.g. when executing a
subroutine), tracing is disabled.

31 WindISS Simulator and Disassembler
31.2 Simulator Mode

Program output to stdout is intermixed with trace output unless the -Df
option is used to redirect trace output to a different file. Examples:

windiss -Di main hello.out
Trace beginning at main.

windiss -Di main, 1l hello.out
Trace one instruction beginning at main.

windiss -Di main..printf hello.out
Trace from main through the first entry to printf.

windiss -Di printf,0 hello.out
Trace printf, skipping subroutine calls.

Note: simulation is slower with this option.

-Dm range-start [. mnge—stop] [tmce—count]
Start tracing on the first read or write to any memory location in the given
range. Stop tracing after trace-count instructions if present.

See -Di for other details and related examples.

-Ds skip-count|, trace-count]
Execute at full speed until skip-count instructions have been executed and then

begin tracing each instruction as executed. Stop tracing after trace-count
instructions if present.

See -Di for other details and related examples.

-Dx max-count
Execute max-count instructions and then stop.

-e entry-point
Specify the entry point of binary file.

-El
-Eb
Specify endianity for a binary file: -Eb for big-endian, or -El for little-endian.

-h address
Load hex file at address. The -t option must be used to indicate the target.

-I mem-init-value
Initialize memory to the low-order byte of the given value. Memory is cleared
to 0 without this option.

-m mem-size
Specify size of memory in simulator. Sizes can be specified in bytes, kilobytes
with “k” or “K”, or megabytes with “m” or “M”. For example, the following
are equivalent: -m 2M, -m 2048K, -m 2097152, and -m 0x200000. The program
terminates with an error if the end of memory is reached.

471

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

-ma
Use automatic memory allocation. Memory is allocated when accessed.

-mm mnge—start[.. mnge—end] [r] [w] [x] [, mnge—sturt[.. mnge—end] [r] [w] [x]] [,]
Specify a memory map starting at range-start and ending at range-end. The r, w,
and x flags set the memory type to read, write, and execute; the default is rwx.
Multiple ranges can be specified.

=M memory-mask
Specify an address mask to be applied to all target addresses before access to
the simulated memory. Used to mask off high address bits to fit applications
linked to high memory.

-N nice-value
Run windiss using lower priority on windows. nice-value can be 0 to 6, where
0 is the default (normal execution) and 6 is the lowest priority.

(none) or -2
Use windiss alone on the command line to see a list of windiss options.

-p
Generate count profile data even for programs not compiled with -Xprof-...
options, effectively using -Xprof-count (110; hierarchical profile data not
available). Without -1, upon program completion, the profile data is written to
stdout. With -r, the RTA collects the profile data.

-q
Run in quiet mode: do not print messages other than output from the user’s
program.

Not for direct use. Used for connection to the RTA.

-s clock-speed
Set simulated clock speed in megahertz. The default is 10 (MHz). clock-speed
must be an integer. This does not change the execution speed of windiss itself;
rather, it changes the simulated time reported by windiss.

-8 stack-address
Specify the initial value of the stack and environment area. The defaultis to use
the highest available memory address, or 0x80000000 if automatic memory
allocation is used (see -ma above).

-t target-name
Specify target processor for program. Not needed for ELF files. Abbreviated
names are used for specifying target processors: ARM, M32R, MC68K, MCF
(for ColdFire), MCORE, MIPS, NEC, PPC, SH, SPARC, and X86. (Note that
these abbreviated names are only the initial part of the t component of the

472

31 WindISS Simulator and Disassembler
31.3 Batch Disassembler Mode

-ttof:environ option to the compiler, linker and assembler. Only the abbreviated
forms shown are currently permitted with windiss.)

-V
Print windiss version.

-X exception-mask
exception-mask is a 32-bit target-specific value that controls which exceptions
are handled by windiss. The least significant bit corresponds to exception 0,
the next bit to exception 1, and so on. If a bit is 1, windiss simulates the
corresponding exception (branching to the exception handler, which must be
supplied by the application program). If the bit is 0 (the default), windiss
terminates the program when the exception occurs.

Only the following exceptions are implemented (by bit number):

31.3 Batch Disassembler Mode

31.3.1 Syntax (Disassembler Mode)

windiss -ilo | e | 1] [label] [-R1 start-address [-R2 end-address]] [-R3 section] filename

label is used only with the 1 modifier.

For the -ir option, see 31.4 Interactive Disassembler Mode, p.474.

31.3.2 Description

Batch disassembly mode is selected by the -i option with no “r” modifier. In batch
disassembler mode, windiss disassembles ELF object files and executables and
writes the assembly code to standard output. The -i stands for instructions.

windiss can disassemble programs compiled either:

» For the windiss environment, without hardware floating point support. See
31.2.1 Compiling for the WindISS Simulator, p.469.

» For other environments, if there are no floating point instructions.

473

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The modifiers o, e, and 1 are appended to the -i without an additional hyphen and
with no spaces allowed. Modifiers may be used together in any order. To
disassemble code use:

= -jalone to disassemble the whole file.

» [e] -R1 start-address [-R2 end-address] to specify code addresses. Use 0x for hex
numbers. If part of a function is specified by a -R1 and -R2 options, the entire
function is disassembled unless the “e” option is used to request exact
addresses. A space is required between either the -R1 or -R2 option and the

address.

» -R3 section to specify a section index in the object file. If the specified section
has zero length, the option is ignored.

= 0 to also show machine code.

= 1label to specify the name of a function to be disassembled.

"o

NOTE: By default, the compiler prepends function names with an underscore

31.4 Interactive Disassembler Mode

31.4.1 Syntax (Interactive Disassembler Mode)

windiss -ir[o] filename

31.4.2 Description

In interactive disassembler mode, windiss prints the disassembled ELF object
code and executables interactively. The -i stands for instructions; the r modifier
selects interactive mode; the o modifier shows hex machine code in addition to
assembly language. windiss can disassemble programs compiled either:

» For the windiss environment, without hardware floating point support. See
31.2.1 Compiling for the WindISS Simulator, p.469.

= For other environments, if there are no floating point instructions.

474

31 WindISS Simulator and Disassembler
31.5 Examples

To disassemble code in interactive mode:
d[isasm] label | [-e] start-address [end-address]

If part of a function is specified, the entire function will be disassembled unless the
-e option is given. The -e option requests that exact addresses be disassembled,
without other code.

To quit interactive mode:

aluit]

"o

NOTE: By default, the compiler prepends function names with an underscore

31.5 Examples

Example 31-1

Example 31-2

Simulate Using All Defaults

Run windiss in simulator mode. The program output is 17.
windiss a.out
17

windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled

Simulate with Specified Memory Sizes

Run windiss in simulator mode, specifying memory size as 20,000 bytes, and then
1 megabyte:

windiss -m 20000 a.out

windiss: loading outside of memory, EA=0x4c00 (increase by using -m
<gize>)

windiss -m 1M a.out
17

windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled

475

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Example 31-3 Simulate Showing POSIX Calls

Run windiss in simulator mode, and use the debug option with a mask to show
POSIX calls.

windiss -d 8 a.out
% posix call 120: isatty(l), ret=1l, errno=0
% posix call 4: write(1l, Ox6bfc, 4)

®

17
windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled
Example 31-4 Batch Disassemble Entire File
Disassemble a.out:
windiss -i a.out
Example 31-5 Batch Disassemble One Function in File
Disassemble main in a.out:
windiss -il main a.out

Example 31-6 Batch Disassemble Functions in Address Range

Disassemble all code in function which includes addressees from 0x9c to Ox4e:
windiss -i -R1 0x9c -R2 Ox4e a.out

Disassemble only code from 0x9c to Ox4e:
windiss -ie -R1 0x9c -R2 Ox4e a.out

Example 31-7 Interactive Disassembly

Disassemble a.out in interactive mode, examine main and addresses 0xa0 to Oxa4:

windiss -ir a.out Command line

d main Interactive command
d -e 0xa0 Oxad Exact address range
q Quit

476

PART VI

C Library

32 Library Structure, Rebuildingccccciriiiiinnnes 479
33 Header Files ... 493
34 C Library Functionscccciviiciimmnninnscceeennnnns 499

477

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

478

32

Library Structure, Rebuilding

32.1 Introduction 479
32.2 Library Structure 480
32.3 Library Sources, Rebuilding the Libraries 489

32.1 Introduction

These chapters describe the C libraries provided with Wind River compiler.
The libraries are compliant with the following standards and definitions:

ANSI X3.159-1989
ISO/IEC 9945-1:1990
POSIX IEEE Std 1003.1
SVID Issue 2

For C++ specific headers, see 13.1 Header Files, p.237.

479

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

32.2 Library Structure

NOTE: Libraries are usually selected automatically by the -t option to the linker, or
by default as set by dctrl -t. This section is provided for user customization of the
process and can be skipped for standard use.

The Wind River library structure supports a wide range of processors, types of
floating point support, and execution environments. This section describes that
structure and the mechanism used by the linker to select particular libraries.

This section should be read in conjunction with the following:

» 2. Configuration and Directory Structure.
» 4. Selecting a Target and Its Components.

These sections describe the location of the components of the tools and the
configuration variables (and their equivalents — environment variables and
command-line options) used to control their operation. That knowledge is
assumed here.

32.2.1 Libraries Supplied

The next table shows the libraries distributed with the tools. This does not include
libc.a, which is not an archive library, but is instead a text file which includes other
libraries (see 32.2.3 libc.a, p.485). These libraries are distributed in various
subdirectories of version_path as described following the table.

libcfp.a
Floating point functions called by user code, including, for example, the printf
and scanf formatting functions (but not the actual device input/output code).
The version selected depends on the type of floating point selected: hardware,
software, or none as described below.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.485).

libchar.a
Basic operating system functions using simple character input/output for
stdin and stdout only (stderr and named files are not supported). This is an
alternative to libram.a.

Sometimes included automatically by libc.a, see 32.2.3 libc.a, p.485.

480

32 Library Structure, Rebuilding
32.2 Library Structure

libcomplex.a
C++ complex math class library for use with older compiler releases. See Older
Versions of the Compiler, p.232.

Not automatic; include with -1 complex option.

libd.a
Additional standard library and support functions delivered with C++ only
(libc.a is also required).

Included automatically in the link command generated by dplus. If the linker
is invoked directly (command dld), then must be included by the user with the
-1d option.

libdold.a
Additional standard library and support functions delivered with C++ only
(libc.a is also required) for use with older compiler releases. See Older Versions
of the Compiler, p.232.

Included automatically in the link command generated by dplus when the
-Xc++-o0ld option is used. If the linker is invoked directly (command dld), then
must be included by the user with the -ldold option.

libi.a
General library containing all standard ANSI C functions except those in
libcfp.a, libchar.a, and libram.a.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.485).

libimpfp.a
Conversions between floating point and other types. There are three versions:
one for use with hardware floating point, one for software floating point, and
an empty file when “none” is selected for floating point.

libimpl.a
Utility functions called by compiler-generated or runtime code for constructs
not implemented in hardware, e.g. low-level software floating point (except
conversions), 64-bit integer support, and register save/restore when absent in
the hardware.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.485).

libios.a
C++ iostream class library for use with older compiler releases. See Older
Versions of the Compiler, p.232.

Not automatic; include with -lios option.

481

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

libm.a
Advanced math function library.

Not automatic; include with an -Im option.

libstl.a
Alias for libstlstd.a.

Not automatic; include with -Istl (or -Istlstd) option.

libstlabr.a
Abridged standard C++ library. Does not provide exception-handling
functions or the type_info class for RI'TI support. For more information, see
13.2 C++ Standard Libraries, p.238.

Not automatic; include with -Istlabr option.

libstlstd.a
C++ iostream and complex math class libraries.

Not automatic; include with -Istlstd (or -1stl) option.

libwindiss.a
Support library required by the windiss core instruction-set simulator. This
library is included automatically whenever a -t option ending in “:windiss” is
used, for example, -tMC68060FS:windiss. See 31. WindISS Simulator and
Disassembler for details.

libpthread.a
Unsupported implementation of POSIX threads for use with the example
programs. Text file which includes sub-libraries libdk*.a.

libram.a
Basic operating system functions using Ram-disk file input/output—an
alternative to libchar.a.

Sometimes included automatically by libc.a (see 32.2.3 libc.a, p.485).

The tools accommodate requirements for different floating point and target
operating system and input/output support using two mechanisms:

= libc.a is a text file which includes a number of the libraries listed above.
Several libc.a files which include different combinations are delivered for each
target.

» The configuration information held in the configuration variables DTARGET,
DOBJECT, DFP, and DENVIRON causes dcc or dplus to generate a particular set
of paths used by the linker to search for libraries. By setting these configuration
variables appropriately, the user can control the search and consequently the

482

32 Library Structure, Rebuilding
32.2 Library Structure

particular libc.a or other libraries used by the linker to resolve unsatisfied
externals.

As described in 4. Selecting a Target and Its Components, these four configuration
variables are normally set indirectly using the -ttof:environ option on the
command line invoking the compiler, assembler, or linker or by default with
the dctrl program.

The DENVIRON configuration variable (set from the environ part of
-ttof:environ) designates the “target operating system” environment. The tools
use two standard values: simple and cross, which as shown below, help define
the library search paths.

In addition, the tools may be supplied with directories and files to support
other environ operating-system values. See the release notes and other relevant
documentation for details on any particular operating system supported.

The remainder of this section describes these mechanisms in more detail.

32.2.2 Library Directory Structure

Table 32-1

For 68K/CPU32 microprocessors:

The library directories all begin with “MC60” as shown in Table 32-1.

The object module format specifier — the o part of the -ttof:environ option or its
equivalent, is “L” for ELF. The examples will assume ELF. Substitute as
required for COFF.

The tools have been installed in the version_path directory as described in
Table 2-1.

Given the above assumptions, and following the pattern described in 4. Selecting a
Target and Its Components, the libraries above (32.2.1 Libraries Supplied, p.480) will
be arranged as follows:

Library Directory Locations

Directory / file

Contents

MC60F/

libc.a

Directories and files for ELF components (final “F” in MC60F).

Text file which includes other ELF libraries as described below
— no input/output support.

483

Table 32-1

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Library Directory Locations (cont'd)

Directory / file

Contents

libchar.a

libi.a

libimpl.a

libd.a

libram.a

cross/libc.a

simple/libc.a

windiss/libwindiss.a

MC60FN/

libcfp.a

libimpfp.a

MC60FsS/

libcfp.a

libcomplex.a

libimpfp.a

libios.a

libm.a

libpthread.a

ELF basic operating system functions using character
input/output for stdin and stdout only (stderr and named
files are not supported).

ELF standard ANSI C functions.
ELF functions called by compiler-generated or runtime code.
ELF additional C++ standard and support functions.

ELF basic operating system functions using RAM-disk
input/output.

ELF libc.a which includes the RAM-disk input/output library
libram.a.

ELF libc.a which includes the basic character input/output
library libchar.a.

Support library for WindISS instruction-set simulator when
supplied. Note: implicitly also uses cross/libc.a.

ELF floating point stubs for floating point support of “None”.

Stubs to avoid undefined externals.

Empty file required by different versions of libc.a.

ELF software floating point libraries:

Floating point functions called by user code.

Old C++ complex math class library.

Conversions between floating point and other types.
Old C++ iostream class library.

Math library.

Unsupported implementation of POSIX threads for use with the
example programs. Text file which includes sub-libraries
libdk*.a.

484

Table 32-1

Library Directory Locations (cont'd)

32 Library Structure, Rebuilding
32.2 Library Structure

Directory / file

Contents

libstlstd.a

C++ iostream and complex math class libraries.

MC60FH/ ELF hardware floating point libraries supporting hardware floating
point built into the processor; parallel to MC60FS.

MC60N/ Parallel directories for COFF components (final “D” in MC60).

MC60S/

MC60SH/

32.2.3 libc.a
There are three libc.a files in the table above. Each of these is a short text file which
contains -1 option lines, each line naming a library. The -1 option is the standard
command-line option to specify a library for the linker to search. When the linker
finds that libc.a is a text file, it reads the -1 lines in the libc.a and then searches the
named libraries for unsatisfied externals. (As with any -1 option, only the portion
of the name following “lib” is given; thus, -li identifies library libi.a.)
This approach allows the functions in libc.a to be factored into groups for different
floating point and input/output requirements. Three of the libc.a files delivered
with the tools are:

Table 32-2 libc.a Files Delivered With the Tools

liba.c files Contents Use

MC60F/1libc.a -1i Standard C runtime but with no
_lcf . Y
_l‘i:mgl input/output support; if input /output calls
“limpfp are made they will be undefined.

MC60F/simple/libc.a -1 Supports character input/output by adding
j;ﬁir libchar.a for stdin and stdout only (stderr
“limpl and named files are not supported).
-limpfp

MC60F/cross/libc.a -1i Supports RAM-disk input/output by
~lefp adding libram.a. Used automatically by
-lram . A
“limpl windiss.
-limpfp

485

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Notes:
* Only one of the simple or cross (or similar) libraries should be used.

» windiss is a pseudo-value for environ: it selects the windiss/libwindiss.a
library silently and in addition selects the cross/libc.a library.

= The order of the lines in each liba.c file determines the order in which the
linker will search for unsatisfied externals.

The particular libc.a found, as well as the directories for the libraries listed in each
libc.a, are determined by the search path given to the linker as described in the
next section.

32.2.4 Library Search Paths

Table 32-3

When dcc or dplus is invoked, it invokes the compiler, assembler, and linker in
turn. The generated linker command line includes:

* an-lc option to cause the linker to search for libc.a
» for C++, an -1d option to cause the linker to search for libd.a

* a-YP option which specifies the directories to be searched for these libraries
and also for the libraries named in the selected libc.a (and any others specified
by the user with -1 libname options)

The -Y P option generated for each target is a function of the -ttof:environ option or
its equivalent environment variables, and is defined in 4.2 Selected Startup Module
and Libraries, p.27.

Following the pattern there, the assumptions made here will generate a-Y P option
listing the following directories in the order given for each setting of the floating
point f part of the -t:tof option or its equivalent, and where environ is either simple
Or Cross:

Directories Searched for Libraries

Floating point

f Directories Environment support
N version_path/MC6 0FN/environ speciﬁc None
version _path/MC60FN ‘ generic None
version_path/MC6 0F/environ o .
version_path/MC60F specific not applicable
generic not applicable

486

32 Library Structure, Rebuilding
32.2 Library Structure

Table 32-3 Directories Searched for Libraries (cont'd)

Floating point

f Directories Environment support
s version_path/MC60FS/environ specific Software
version_path/MC60FS ;
version_path/MC6 0F/environ gene.n.c Software.
version_path/MCE0F specific not applicable
generic not applicable
H version_path/MC6 0FH/environ specific Hardware
(SH4/43) verS{onyathMCsoFH ‘ generic Hardware
version_path/MC6 0F/environ - .
version_path/MCE0F specific not applicable
generic not applicable
Notes:

» There is no error if a directory given with the -Y P option does not exist.

» The difference between “None” floating point support and “not applicable” is
that the directories for the “not applicable” cases do not contain any floating
point code, only integer, while the “None” cases will use the MC60FN/libcfp.a
and MC60FN/libimpfp.alibraries. MC60FN/libcfp.a provides stubs functions
that call printf with an error message for floating point externals used by
compiler-generated or runtime code so that these externals will not be
undefined; MC60FN/libimpfp is an empty file needed because each libc.a is
common to all types of floating point support.

The following table gives examples of the libraries found given the above directory
search order. Note that the search for the libraries included by a libc.a is
independent of the search for libc.a. That is, regardless of which directory supplies
libc.a, the search for the libraries it names begins anew with the first directory in
the selected row of Table 32-3 above. In all cases, a library is taken from the first

directory in which it is found.

487

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Table 32-4 Examples of Libraries Found for Different -t Options

-t option Libraries Found Notes
-tMC60FN: simple MC60F/simple/libc.a libc.a is specific to the environment, but
MCEOF/1ibi.a never to the ﬂo.atmg. point support. It is
MC60FN/1ibcfp.a found in the third directory searched. It
MC60F/libchar.a names four libraries:
MC60F/libimpl.a
MC60FN/1ibimpfp.a » libi.a and libimpl.a are common to all
MC60F systems and are found in the
fourth directory MC60.

» The floating point support is
independent of the environment and
comes from the second directory
MC60FN.

» The character input/output support is
independent of the floating point
support, and while it has been selected
because of the simple environment
setting, it resides in the generic fourth

directory MC60.
-tMC60FS:cross MC60F/cross/libc.a Again, libc.a is specific to the environment
- but not the floating point support, and is
MC60F/1ibi.
MC60FS /;i;c:p .a found in the third directory MC60F/cross. It
MC60F/libram.a again names four libraries:
MC60F/libimpl.a
MC60FS/1ibimpfp.a = libi.a and libimpl.a are in the fourth
directory MC60F as before.
= The software floating point library
libcfp.a is from the second directory,
now MC60FS.
= This time libram.a has been selected by
MC60F/cross/libc.a instead of libchar.a
(but still from the fourth directory
MC60F as before).
-tMC60FS:windiss In addition to the libraries found for -tMC60FS:cross, searches

windiss/libwindiss.a before searching for MC60F/cross/libc.a.

488

Table 32-4

32 Library Structure, Rebuilding

32.3 Library Sources, Rebuilding the Libraries

Examples of Libraries Found for Different -t Options (cont'd)

-t option

Libraries Found

Notes

-tMC60FS:cust

MC60F/cust/libc.a

MC60F/libi.a
MC60FS/libcfp.a
MC60F/cust/libchar.a
MC60F/libimpl.a
MC60FS/libimpfp.a

The customer has defined a new libc.ain a
new MC60F/cust directory for a C++ project
using software floating point. This libc.a
text file consists of the following five lines:

-1i

-lcfp

-lchar

-limpl

-limpfp
Thus, based on the search order implied by
the -tMC60FS:cust option, the standard
libraries MC60F/libi.a, MC60F/libimpl.a,
MC60FS/libcfp.a, and MC60FS/libimpfp.a
will be searched.

In addition, the library
MC60F/cust/libchar.a, a special character
I/0 package for the customer’s MC60F -t
environment, will also be searched. Because
directory MC60FS/cust is searched before
MC60F, the linker will find the customer’s
libchar.a library rather than the standard
MC60F/libchar.a.

32.3 Library Sources, Rebuilding the Libraries

32.3.1 Sources

This section describes how to re-build the libraries from source.

The libraries and makefiles are contained in three subdirectories of

version_path/libraries:

489

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

build/*

There are subdirectories for each of MC60F, MC60FH, MC60FN, etc. Each
subdirectory contains a main Makefile and supporting makefiles.

Only the MC60F/Makefile is to be used directly by the user. It in turn invokes
the makefiles in MC60FH, MC60FN, etc. These latter makefiles are
self-documenting and begin with comments that should be read before
re-building the libraries.

include/

include.cxx/*
include.unx/*

Include files used by for the C++ (but not C), and C libraries respectively.

src/*

Source for all generally distributed library files.

32.3.2 Rebuilding the Libraries

The following steps rebuild the libraries:

1.

490

If you do not want to run make against all of the libraries, edit the Makefile at
both the MC60F level and the MC60FH, MC60FN, etc., levels to remove any
unwanted libraries.

Change directory to version_path/libraries/build/MC60F for ELF or
version_path/build/MC60 for COFF.
Enter the command:

dmake -vd
Note: to change the arguments that the libraries build with, change the
CFLAGS macro defined in version_path/libraries/build/defs.mk.

Each library will be built in its corresponding build directory, that is,
version_path/libraries/build/MC60F, version_path/libraries/build/MC60FH,
etc.

Move the successfully built libraries to the version_path/MC60F,
version_path/MC60FH, etc. corresponding directories, replace each existing file
with the newly built file.

Alternatively, leave the libraries where they are, or move them to some other
location, and provide -Y P options as described in the first part of this chapter.

32 Library Structure, Rebuilding
32.3 Library Sources, Rebuilding the Libraries

NOTE: The Dinkum C++ libraries are built with the GNU make utility (gmake),
not with dmake.

32.3.3 C++ Libraries

The Wind River tools include two versions of the standard C++ library: the
complete version (libstlstd.a) and the abridged version (libstlabr.a). For
information about these libraries, see 13.2 C++ Standard Libraries, p.238. By default,
libstlstd.a is compiled with the full library sources and exception-handling
enabled, while libstlabr.a is compiled with the abridged library sources and
exception-handling disabled. You can compile these libraries in a different
configuration by redefining either or both of the macros

_ CONFIGURE_EMBEDDED and _ CONFIGURE_EXCEPTIONS. These macros are
defined in dtools.conf and automatically reset by compiler flags such as -Xc++abr;
hence their definitions must be overridden on the command line if you wish to
change them. Setting _ CONFIGURE_EMBEDDED to 1 uses the abridged library
sources and setting _ CONFIGURE_EXCEPTIONS to 1 enables exception-handling.
For example, to compile the libstlstd.a without exception-handling, add

_ CONFIGURE_EXCEPTIONS=0 to the command line.

491

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

492

33

Header Files

33.1 Files 493
33.2 Defined Variables, Types, and Constants 496

33.1 Files

The following list is a subset of the header files provided. Each is enclosed in angle
brackets, < >, whenever used in text to emphasize their inclusion in the standard
C library.

All header files are found in version_path/include. See 2. Configuration and Directory
Structure for additional information.

NOTE: In this manual, some paths are given using UNIX format, that is, using a “/”
separator. For Windows, substitute a”\” separator.

33.1.1 Standard Header Files

<aouthdr.h>

COFF optional header.

<ar.h>
Archive header.

493

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

<assert.h>
assert() macro.

<ctype.h>
Character handling macros.

<dcc.h>
Prototypes not found elsewhere.

<errno.h>
error macros and errno variable.

<fcntl.h>
creat(), fentl(), and open() definitions.

<filehdr.h>
COFF¥ file header.

<float.h>
Floating point limits.

<limits.h>
Limits of processor and operating system.

<linenum.h>
COFF line number definitions.

<locale.h>
Locale definitions.

<malloc.h>

Old malloc() definitions. Use <stdlib.h>.

<math.h>
Defines the constant HUGE_VAL and declares math functions.

<mathf.h>
Single precision versions of <math.h> functions.

<memory.h>
Old declarations of mem*(). Use <string.h>.

<mon.h>
monitor() definitions.

<netdb.h>
Berkeley socket standard header file.

<netinet/in.h>

Berkeley socket standard header file.

<netinet/tcp.h>

Berkeley socket standard header file.

494

33 Header Files
33.1 Files

<regexp.h>
Regular expression handling.

<reloc.h>
COFF relocation entry definitions.

<scnhdr.h>
COFF section header definitions.

<search.h>
Search routine declarations.

<setjmp.h>
setjmp() and longjmp() definitions.

<signal.h>

Signal handling.

<stdarg.h>
ANSI variable arguments handling.

<stddef.h>
ANSI definitions.

<stdio.h>
stdio library definitions.

<stdlib.h>
ANSI definitions.

<storclass.h>

COFF storage classes.

<string.h>
str*() and mem*() declarations.

<syms.h>
COFF symbol table definitions.

<sys/socket.h>

Berkeley socket standard header file.

<sys/types.h>
Type definitions.

<time.h>
Time handling definitions.

<unistd.h>

Prototypes for UNIX system calls.

<values.h>
OId limits definitions. Use <limits.h> and <float.h>.

495

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

<varargs.h>

Old variable arguments handling. Use <stdarg.h>.

NOTE: If the macro __lint is set (#define __lint), the header files will not use any
C language extensions. This is useful for checking code before running it with a
third party lint facility.

33.2 Defined Variables, Types, and Constants

The following list is a subset of the variables, types, and constants defined in the
header files in the C libraries.

errno.h

Declares the variable errno holding error codes. Defines error codes; all starting
with E. See the file for more information.

fentl.h

Defines the following constants used by open() and fentl():

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for reading and writing.

O_NDELAY
No blocking.

O_APPEND
Append all writes at the end of the file.

496

float.h

limits.h

math.h

mathf.h

setjmp.h

signal.h

stdarg.h

33 Header Files
33.2 Defined Variables, Types, and Constants

Defines constants handling the precision and range of floating point values. See
the ANSI C standard for reference.

Defines constants defining the range of integers and operating system limits. See
the ANSI C and POSIX 1003.1 standards for reference.

Defines the value HUGE_VAL that is set to IEEE double precision infinity.

Defines the value HUGE_VAL_F that is set to IEEE single precision infinity.

Defines the type jmpbuf, used by setjmp() and longjmp().
Defines the type sigjmpbuf, used by sigsetjmp() and siglongjmp().

Defines the signal macros starting with SIG.
Defines the volatile type sig_atomic_t that can be used by signal handlers.
Defines the type sigset_t, used by POSIX signal routines.

Defines the type va_list used by the macros va_start, va_arg, and va_end.

497

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

stddef.h

Defines ptrdiff_t which is the result type of subtracting two pointers.
Defines size_t which is the result type of the sizeof operator.
Defines NULL which is the null pointer constant.

stdio.h

Defines size_t which is the result type of the sizeof operator.

Defines fpos_t which is the type used for file positioning.

Defines FILE which is the type used by stream and file input and output.
Defines the BUFSIZ constant which is the size used by setbuf().

Defines the EOF constant which indicates end-of-file.

Defines NULL which is the null pointer constant.

Declares stdin as a pointer to the FILE associated with standard input.
Declares stdout as a pointer to the FILE associated with standard output.
Declares stderr as a pointer to the FILE associated with standard error.

stdlib.h
Defines size_t which is the result type of the sizeof operator.
Defines div_t and ldiv_t which are the types returned by div() and Idiv().

Defines NULL which is the null pointer constant.
Defines the EXIT_FAILURE and EXIT_SUCCESS constants returned by exit().

string.h
Defines NULL which is the null pointer constant.

Defines size_t which is the result type of the sizeof operator.

time.h

Defines CLOCKS_PER_SEC constant which is the number of clock ticks per second.

498

34

C Library Functions

34.1 Format of Descriptions 499
34.2 Reentrant Versions 501
34.3 Function Listing 502

34.1 Format of Descriptions

This chapter briefly describes the functions and function-like macros provided in
the Wind River C libraries. For more detailed descriptions, and for information
about the C++ libraries, see the references cited in Additional Documentation, p.8.

NOTE: The standard C libraries documented here are not the ones used for
VxWorks applications. If you specify the :rtp or :vxworksx.x execution
environment, the tools will automatically link a different set of C libraries. See the
documentation that accompanied your VxWorks development tools for more
information.

Each function description is formatted as follows:

name
header files
prototype definition
brief description

499

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

OS calls: optional; see below
Reference: see below

34.1.1 Operating System Calls

Some of the functions described in this chapter make calls on operating system
functions that are standard in UNIX environments. In embedded environments,
such functions cannot be used unless the embedded environment includes a
real-time operating system providing these operating system functions.

The functions which call operating system functions, directly or indirectly, have all
the required operating system functions listed. The non-UNIX user can employ
this list to see what system functions need to be provided in order to use a
particular function.

Some functions refer to standard input, output, and error — the standard
input/output streams found in UNIX and Windows environments. For embedded
environments, see 15.8.1 Character 1/O, p.287 and 15.8.2 File I/O, p.288 for
suggestions for file system support.

34.1.2 References

The function descriptions refer to the following standards and definitions:

ANSI
The function/macro is defined in ANSI X3.159-1989.

ANSI 754
The function is define in ANSI/IEEE Std 754-1985.

DCC
The function/macro is added to Wind River C.

POSIX
The function/macro is defined in IEEE Std 1003.1-1990.

SVID
The function/macro is defined in System V Interface Definition 2.

UNIX
The function/macro is provided to be compatible with Unix V.3.

500

34 C Library Functions
34.2 Reentrant Versions

Other references:

MATH
The math libraries must be specified at link time with the -Im option.

SYS
The function must be provided by the operating system or emulated in a
stand-alone system.

REENT
The function is reentrant. It does not use any static or global data.

REERR
The function might modify errno and is reentrant only if all processes
ignore that variable. But see 34.2 Reentrant Versions, p.501 below.

Most functions in the libraries have a synonym to conform to various standards.
For example, the function read() has the synonym _read(). In ANSI C, read() is
not defined, which means that the user is free to define read() as a new function.
To avoid conflicts with such user-defined functions, library functions, e.g. fread(),
call the synonym defined with the leading underscore, e.g. _read().

34.2 Reentrant Versions

In some cases, non-reentrant standard functions are supplied in special reentrant
versions. These reentrant versions are not separately documented, but they are
easy to find because their names end in _r. For example, localtime() (in gmtime.c)
has a reentrant counterpart called localtime_r() (in gmtime_r.c).

All functions that modify the errno variable call the wrapper function
__errno_fn(), defined in cerror.c. When a function is marked as REERR in the
listing below, you can make it completely reentrant by modifying __errno_fn() to
preserve the value of errno.

For information about malloc() and free(), see 15.10 Reentrant and “Thread-Safe”
Library Functions, p.292.

501

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

34.3 Function Listing

a641()

abort()

abs()

access()

This section lists all functions in the library in alphabetic order. Leading
underscores “_" are ignored with respect to the alphabetic ordering.

#include <stdlib.h>
long a64l (const char *s);

Converts the base-64 number, pointed to by *s, to a long value.

Reference: SVID, REENT.

#include <stdlib.h>
int abort (void) ;

Same as exit(), but also causes the signal SIGABRT to be sent to the calling process.
If SIGABRT is neither caught nor ignored, all streams are flushed prior to the signal
being sent and a core dump results.

OS calls: close, getpid, kill, sbrk, write.
Reference: ANSI

#include <stdlib.h>
int abs(int 1i);

Returns the absolute value of its integer operand.

Reference: ANSI, REENT.

#include <unistd.h>
int access(char *path, int amode) ;

Determines accessibility of a file.

502

acos()

acosf()

advance()

34 C Library Functions
34.3 Function Listing

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <math.h>
double acos (double x);

Returns the arc cosine of x in the range [0,]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM, and a message indicating a
domain error is printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float acosf(float x);

Returns the arc cosine of x in the range [0, t]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM, and a message indicating a
domain error is printed on the standard error output. This is the single precision
version of acos().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <regexp.h>
int advance(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression
in expbuf. See SVID for more details.

Reference: SVID.

503

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

asctime()
#include <time.h>
char *asctime(const struct tm *timeptr) ;
Converts time in timeptr into a string in the form exemplified by
"Sun Sep 16 01:03:52 1973\n".
Reference: ANSI.

asin()
#include <math.h>
double asin(double x);

Returns the arc sine of x in the range [-n/2, ©/2]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM and a message indicating a
domain error is printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

asinf()
#include <mathf.h>
float asinf (float x);

Returns the arc sine of x in the range [-n/2, ©/2]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM and a message indicating a
domain error is printed on the standard error output. This is the single precision
version of asin().

OS calls: write.

Reference: DCC, MATH, REERR.

assert()

#include <assert.h>
void assert (int expression) ;

Puts diagnostics into programs. If expression is false, assert() writes information
about the particular call that failed (including the text of the argument, the name
of the source file, and the source line number — the latter are respectively the

504

atan()

atanf()

atan2()

34 C Library Functions
34.3 Function Listing

values of the preprocessing macros _ FILE__ and __LINE__) on the standard error
file. It then calls the abort() function. assert() is implemented as a macro. If the
preprocessor macro NDEBUG is defined at compile time, the assert() macro will
not generate any code.

OS calls: close, getpid, kill, sbrk, write.
Reference: ANSI.

#include <math.h>
double atan(double x);

Returns the arc tangent of x in the range [-n/2, n/2].
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float atan(float x);

Returns the arc tangent of x in the range [-n/2, ©/2]. This is the single precision
version of atan().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double atan2 (double x, double Vy);

Returns the arc tangent of y/x in the range [-r, rt], using the signs of both arguments
to determine the quadrant of the return value. If both arguments are zero, then zero
is returned, errno is set to EDOM and a message indicating a domain error is
printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

505

atan2f()

atexit()

atof()

atoi()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <mathf.h>
float atan2(float x, float y);

Returns the arc tangent of y/x in the range [-7, «t], using the signs of both arguments
to determine the quadrant of the return value. If both arguments are zero, then zero
is returned, errno is set to EDOM and a message indicating a domain error is
printed on the standard error output. This is the single precision version of
atan2().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <stdlib.h>
void atexit (void (*func) (void));

Registers the function whose address is func to be called by exit().

Reference: ANSI.

#include <stdlib.h>
double atof (const char *nptr);

Converts an ASCII number string nptr into a double.

Reference: ANSI, REERR.

#include <stdlib.h>
int atoi(const char *nptr);

Converts an ASCII decimal number string nptr into an int.

Reference: ANSI, REENT.

506

atol()

bsearch()

calloc()

ceil()

34 C Library Functions
34.3 Function Listing

#include <stdlib.h>
long atol (const char *nptr);

Converts an ASCII decimal number string nptr into a long,.

Reference: ANSI, REENT.

#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nel, size_t size,
int (*compar) ());

Binary search routine which returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in increasing order. key
points to a datum instance to search for in the table, base points to the element at
the base of the table, nel is the number of elements in the table. compar is a pointer
to the comparison function, which is called with two arguments that point to the
elements being compared.

Reference: ANSI, REENT.

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Allocates space for an array of nmemb objects of the size size. Returns a pointer to
the start (lowest byte address) of the object. The array is initialized to zero. See
malloc() for more information.

OS calls: sbrk, write.
Reference: ANSI.

#include <math.h>
double ceil (double x);

Returns the smallest integer not less than x.

OS calls: write.

507

ceilf()

_chgsign()

clearerr()

clock()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Reference: ANSI, MATH, REENT.

#include <mathf.h>
float ceilf (float x);

Returns the smallest integer not less than x. This is the single precision version of
ceil().
OS calls: write.

Reference: DCC, MATH, REENT.

#include <math.h>
double _chgsign(double x);

Returns x copies with its sign reversed, not 0 - x. The distinction is germane when
x is +0 or -0 or NaN. Consequently, it is a mistake to use the sign bit to distinguish
signaling NaNs from quiet NaNs.

Reference: ANSI 754, MATH, REENT.

#include <stdio.h>
void clearerr (FILE *stream);

Resets the error and EOF indicators to zero on the named stream.

Reference: ANSI.

#include <time.h>
clock_t clock(void) ;

Returns the number of clock ticks of elapsed processor time, counting from a time
related to program start-up. The constant CLOCKS_PER_SEC is the number of ticks
per second.

OS calls: times.

508

close()

compile()

_copysign()

cos()

34 C Library Functions
34.3 Function Listing

Reference: ANSI.

#include <unistd.h>
int close(int fildes);

Closes the file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <regexp.h>
int compile(char *instring, char *expbuf, char *endbuf, int eof);

Compiles the regular expression in instring and produces a compiled expression
that can be used by advance() and step() for pattern matching.

Reference: SVID.

#include <math.h>
double _copysign(double x, double vy);

Returns x with the sign of y. Hence, abs(x) = _copysign(x, 1.0) even if x is NalN.

Reference: ANSI 754, MATH, REENT.

#include <math.h>
double cos(double x);

Returns the cosine of x measured in radians. Accuracy is reduced with large
argument values.

OS calls: write.

Reference: ANSI, MATH, REERR.

509

cosf()

cosh()

coshf()

creat()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <mathf.h>
float cosf(float x);

Returns the cosine of x measured in radians. Accuracy is reduced with large
argument values. This is the single precision version of cos().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with
large argument values.

OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float coshf (float x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with
a large argument values. This is the single precision version of cosh().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int creat (char *path, mode_t mode) ;

Creates the new file path.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

510

ctime()

difftime()

div()

drand48()

34 C Library Functions
34.3 Function Listing

Reference: POSIX, SYS.

#include <time.h>
char *ctime(const time_t *timer);

Equivalent to calling asctime(localtime(timer)).

Reference: ANSI.

#include <time.h>
double difftime(time_t tl, time_t tO0);

Returns the difference in seconds between the calendar time t0 and the calendar
time ¢1.

Reference: ANSI, REENT.

#include <stdlib.h>
div_t div(int numer, int denom) ;

Divides numer by denom and returns the quotient and the remainder as a div_t
structure.

Reference: ANSI, REENT.

#include <stdlib.h>
double drand48(void) ;

Generates pseudo-random, non-negative, double-precision floating point
numbers uniformly distributed over the half-open interval [0.0, 1.0[(i.e. excluding
1.0), using the linear congruential algorithm and 48-bit integer arithmetic. It must
be initialized using the srand48(), seed48(), or lcong48() functions.

Reference: SVID.

511

dup()

ecvi()

erf()

erff()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <unistd.h>
int dup(int fildes);

Duplicates the open file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <dcc.h>
char *ecvt (double value, int ndigit, int *decpt, int *sign);

Converts value to a null-terminated string of ndigit digits and returns a pointer to
it. The high-order digit is non-0 unless value is zero. The low-order digit is rounded
to the nearest value (5 is rounded up). The position of the decimal point relative
the beginning of the string is stored through decpt (negative means to the left of the
returned digits). If the sign of the result is negative, the integer pointed to by sign
is set to one, otherwise it is set to zero.

Reference: DCC.

#include <math.h>
double erf (double x);

Returns the error function of x.

Reference: SVID, MATH, REENT.

#include <mathf.h>
float erff(float x);

Returns the error function of x. This is the single precision version of erf().

Reference: DCC, MATH, REENT.

512

erfc()

erfcf()

exit()

_exit()

34 C Library Functions
34.3 Function Listing

#include <math.h>
double erfc(double x);

Complementary error function = 1.0 - erf(x). Provided because of the extreme loss
of relative accuracy if erf(x) is called for large x and the result subtracted from 1.0.

Reference: SVID, MATH, REENT.

#include <mathf.h>
float erfcf(float x);

Complementary error function = 1.0 - erff(x). Provided because of the extreme loss
of relative accuracy if erff(x) is called for large x and the result subtracted from 1.0.
This is the single precision version of erfc().

Reference: DCC, MATH, REENT.

#include <stdlib.h>
void exit (int status);

Normal program termination. Flushes all open files. Executes all functions
submitted by the atexit() function. Does not return to its caller. The following
status constants are provided:

EXIT_FAILURE unsuccessful termination
EXIT_SUCCESS successful termination

OS calls: _exit, close, sbrk, write.

Reference: ANSI.

#include <unistd.h>
void _exit (int status);

Program termination. All files are closed. Does not return to its caller.

513

exp()

expf()

fabs()

fabsf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <math.h>
double exp (double x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value
would overflow or 0 when the correct value would underflow, and sets errno to
ERANGE.

OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float expf(float x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value
would overflow or 0 when the correct value would underflow and sets errno to
ERANGE. This is the single precision version of exp().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double fabs (double x);

Returns the absolute value of x.

Reference: ANSI, MATH, REENT.

#include <mathf.h>
float fabsf (float x);

514

fclose()

fenti()

fevt()

fdopen()

34 C Library Functions
34.3 Function Listing

Returns the absolute value of x. This is the single precision version of fabs().

Reference: DCC, MATH, REENT.

#include <stdio.h>
int fclose(FILE *stream) ;

Causes any buffered data for the named stream to be written out, and the stream to
be closed.

OS calls: close, sbrk, write.

Reference: ANSI.

#include <fcntl.h>
int fentl (int fildes, int cmd, ...);

Controls the open file fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <dcc.h>
char *fcvt (double value, int ndigit, int *decpt, int *sign);

Rounds the correct digit for printf format "%f" (FORTRAN F-format) output
according to the number of digits specified. See ecvt().

Reference: DCC.

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

515

feof()

ferror()

fflush()

fgetc()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

See fopen(). fdopen() associates a stream with a file descriptor, obtained from
open(), dup(), creat(), or pipe(). The type of stream must agree with the mode of
the open file.

OS calls: fentl, Iseek.
Reference: POSIX.

#include <stdio.h>
int feof (FILE *stream);

Returns non-zero when end-of-file has previously been detected reading the
named input stream.

Reference: ANSI.

#include <stdio.h>
int ferror (FILE *stream);

Returns non-zero when an input/output error has occurred while reading from or
writing to the named stream.

Reference: ANSI

#include <stdio.h>
int fflush(FILE *stream) ;

Causes any buffered data for the named stream to be written to the file, and the
stream remains open.

OS calls: write.

Reference: ANSI.

#include <stdio.h>
int fgetc(FILE *stream) ;

516

34 C Library Functions
34.3 Function Listing

Behaves like the macro getc(), but is a function. Runs more slowly than getc(),
takes less space, and can be passed as an argument to a function.

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

fgetpos()
#include <stdio.h>
int fgetpos (FILE *stream, fpos_t *pos);
Stores the file position indicator for stream in *pos. If unsuccessful, it stores a
positive value in errno and returns a nonzero value.
OS calls: Iseek.
Reference: ANSIL
fgets()
#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);
Reads characters from stream into the array pointed to by s, until n-1 characters are
read, or a new-line character is read and transferred to s, or an EOF is encountered.
The string is terminated with a null character.
OS calls: isatty, read, sbrk, write.
Reference: ANSIL
fileno()
#include <stdio.h>
int fileno (FILE *stream);
Returns the integer file descriptor associated with the named stream; see open().
Reference: POSIX.
_finite()

#include <math.h>
double _finite(double x);

517

floor()

floorf()

fmod()

fmodf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Returns a non-zero value if -o< x < +eg and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

#include <math.h>
double floor (double x);

Returns the largest integer (as a double-precision number) not greater than x.

Reference: ANSI, MATH, REENT.

#include <mathf.h>
float floorf (float x);

Returns the largest integer (as a single-precision number) not greater than x. This
is the single precision version of floor().

Reference: DCC, MATH, REENT.

#include <math.h>

double fmod(double x, double y);

Returns the floating point remainder of the division of x by y, zero if y is zero or if
x/y would overflow. Otherwise the number is f with the same sign as x, such that
x=iy+f for some integer i, and absolute value of f is less than absolute value of y.

Reference: ANSI, MATH, REENT.

#include <mathf.h>

float fmodf (float x, float y);

Returns the floating point remainder of the division of x by y, zero if y is zero or if
x/y would overflow. Otherwise the number is f with the same sign as x, such that
x=iy+f for some integer i, and absolute value of f is less than absolute value of y.
This is the single precision version of fmod().

518

fopen()

fprintf()

34 C Library Functions
34.3 Function Listing

Reference: DCC, MATH, REENT.

#include <stdio.h>

FILE *fopen(const char *filename, const char *type);

Opens the file named by filename and associates a stream with it. Returns a pointer
to the FILE structure associated with the stream. type is a character string having
one of the following values:

" open for reading

"w" truncate or create for writing

"a" append; open for writing at EOF, or create for writing
"r+" open for update (read and write)

"wt" truncate or create for update

"a+" append; open or create for update at EOF

A "b" can also be specified as the second or third character in the above list, to
indicate a binary file on systems where there is a difference between text files and
binary files. Examples: "rb", "wb+", and "a+b".

OS calls: Iseek, open.
Reference: ANSI.

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Places output argument on named output stream. See printf().

NOTE: By default in most environments, fprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.556, with a NULL buffer pointer after opening but before writing to
the stream:

setbuf (*stream, 0);

OS calls: isatty, sbrk, write.
Reference: ANSI.

519

fputc()

fputs()

fread()

free()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdio.h>
int fputc(int ¢, FILE *stream)

Behaves like the macro putc(), but is a function. Therefore, it runs more slowly,
takes up less space, and can be passed as an argument to a function.

OS calls: isatty, sbrk, write.
Reference: ANSIL

#include <stdio.h>
int fputs(const char *s, FILE *stream) ;

Writes the null-terminated string pointed to by s to the named output stream.
OS calls: isatty, sbrk, write.
Reference: ANSL

#include <stdio.h>
#include <sys/types.h>
int fread(void *ptr, size_t size, int nitems, FILE *stream);

Copies nitems items of data from the named input stream into an array pointed to
by ptr, where an item of data is a sequence of bytes of length size. It leaves the file
pointer in stream pointing to the byte following the last byte read.

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

#include <stdlib.h>
void free(void *ptr) ;
extern int _ no_malloc_warning;

Object pointed to by ptr is made available for further allocation. ptr must
previously have been assigned a value from malloc(), calloc(), or realloc().

520

freopen()

frexp()

frexpf()

34 C Library Functions
34.3 Function Listing

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on
the stderr stream. The warning can be suppressed by assigning a non-zero value
to the integer _ no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write.
Reference: ANSI.

#include <stdio.h>
FILE *freopen(const char *filenam, const char *type, FILE *stream) ;

See fopen(). freopen() opens the named file in place of the open stream. The
original stream is closed, and a pointer to the FILE structure for the new stream is
returned.

OS calls: close, 1seek, open, sbrk, write.

Reference: ANSI.

#include <math.h>
double frexp(double value, int *eptr);

Given that every non-zero number can be expressed as x*(2"), where 0.5<=x1<1.0
and n is an integer, this function returns x for a value and stores n in the location
pointed to by eptr.

Reference: ANSI, REENT.

#include <mathf.h>
float frexpf(float value, int *eptr);

Given that every non-zero number can be expressed as x*(2"), where 0.5<=x1<
1.0 and n is an integer, this function returns x for a value and stores n in the location
pointed to by eptr. This is the single precision version of frexp().

Reference: DCC, MATH, REENT.

521

fscanf()

fseek()

fsetpos()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdio.h>
int fscanf (FILE *stream, const char *format, ...);

Reads formatted data from the named input stream and optionally assigns
converted data to variables specified by the format string. Returns the number of
successful conversions (or EOF if input is exhausted). See scanf().

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

#include <stdio.h>
int fseek(FILE *stream, long offset, int whence) ;

Sets the position of the next input or output operation on the stream. The new
position is at the signed distance offset bytes from the beginning, from the current
position, or from the end of the file, according to whence. The next operation on a
file opened for update may be either input or output. whence has one of the
following values:

SEEK_SET offset is absolute position from beginning of file.
SEEK_CUR offset is relative distance from current position.
SEEK_END offset is relative distance from the end of the file.

OS calls: Iseek, write.

Reference: ANSI.

#include <stdio.h>
int fsetpos (FILE *stream, const fpos_t *pos);

Sets the file position indicator for stream to *pos and clears the EOF indicator for
stream. If unsuccessful, stores a positive value in errno and returns a nonzero value.

OS calls: Iseek, write.

Reference: ANSI.

522

fstat()

ftell()

fwrite()

gamma()

34 C Library Functions
34.3 Function Listing

#include <sys/types.h>
#include <sys/stat.h>
int fstat(int fildes, struct stat *buf);

Gets file status for the file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <stdio.h>
long ftell (FILE *stream) ;

See fseek(). Returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

OS calls: Iseek.
Reference: ANSI.

#include <stdio.h>
#include <sys/types.h>
int fwrite(const void *ptr, size_t size, int nitems, FILE *stream);

Appends at most nitems items of data from the array pointed to by ptr to the named
output stream. See fread().

OS calls: isatty, sbrk, write.
Reference: ANSIL

#include <math.h>
double gamma (double Xx) ;
extern int signgam;

523

gammaf()

gevi()

getc()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Returns the natural logarithm of the absolute value of the gamma function of x.
The argument x must be a positive integer. The sign of the gamma function is
returned as -1 or 1 in signgam.

OS calls: write.

Reference: UNIX, MATH, REERR.

#include <mathf.h>
float gammaf (float x);
extern int signgamf;

Returns the natural logarithm of the absolute value of the gamma function of x.
The argument x must be a positive integer. The sign of the gamma function is
returned as -1 or 1 in signgamyf. This is the single precision version of gamma).

OS calls: write.

Reference: DCC, MATH, REERR.

#include <dcc.h>
char *gcvt (double value, int ndigit, char *buf) ;

See ecvt(). Converts value to a null-terminated string in the array pointed to by buf
and returns buf. Produces ndigit significant digits in FORTRAN F-format if
possible, otherwise E-format. Any minus sign or decimal point will be included as
part of the string. Trailing zeros are suppressed.

Reference: DCC.

#include <stdio.h>
int getc(FILE *stream) ;

Returns the next character (i.e. byte) from the named input stream. Moves the file
pointer, if defined, ahead one character in stream.

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

524

getchar()

getenv()

getopt()

getpid()

34 C Library Functions
34.3 Function Listing

#include <stdio.h>
int getchar (void) ;

Same as getc, but defined as getc(stdin).
OS calls: isatty, read, sbrk, write.
Reference: ANSI.

#include <stdlib.h>
char getenv(char *name) ;

Searches the environment list for a string of the form name=value, and returns a
pointer to value if present, otherwise a null pointer.

Reference: ANSI, REENT.

#include <stdio.h>
int getopt (int argc, char *const *argv, const char *optstring);

extern char *optarg;

extern int optind, opterr;
Returns the next option letter in argv that matches a letter in optstring, and supports
all the rules of the command syntax standard. optarg is set to point to the start of
the option-argument on return from getopt(). getopt() places the argv index of the
next argument to be processed in optind. Error message output may be disabled by
setting opterr to 0.

OS calls: write.

Reference: SVID.

#include <unistd.h>
pid_t getpid(void);

Gets process ID.

525

gets()

getw()

gmtime()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <stdio.h>
char *gets(char *s);

Reads characters from stdin into the array pointed to by s, until a new-line
character is read or an EOF is encountered. The new-line character is discarded and
the string is terminated with a null character. The user is responsible for allocating
enough space for the array s.

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

#include <stdio.h>
int getw(FILE *stream) ;

Returns the next word (i.e., the next integer) from the named input stream, and
increments the file pointer, if defined, to point to the next word.

OS calls: isatty, read, sbrk, write.
Reference: SVID.

#include <time.h>
struct tm *gmtime (const time_t *timer);

Breaks down the calendar time timer into sections, expressed as Coordinated
Universal Time.

Reference: ANSI.

526

hcreate()

hdestroy()

hsearch()

hypot()

34 C Library Functions
34.3 Function Listing

#include <search.h>
int hcreate(unsigned nel);

Allocates sufficient space for a hash table. See hsearch(). The hash table must be
allocated before hsearch() is used. nel is an estimate of the maximum number of
entries the table will contain.

OS calls: sbrk.
Reference: SVID.

#include <search.h>
void hdestroy (void) ;

Destroys the hash table, and may be followed by another call to hcreate(). See
hsearch().

OS calls: sbrk, write.
Reference: SVID.

#include <search.h>

ENTRY *hsearch (ENTRY item, ACTION action);

Hash table search routine which returns a pointer into the hash table, indicating
the location where an entry can be found. item.key points to a comparison key, and
item.data points to any other data for that key. action is either ENTER or FIND and
indicates the disposition of the entry if it cannot be found in the table. ENTER
means that item should be inserted into the table and FIND indicates that no entry
should be made.

OS calls: sbrk.
Reference: SVID.

#include <math.h>
double hypot (double x, double vy);

527

hypotf()

irand48()

isalnum()

isalpha()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows.

Reference: UNIX, MATH, REERR.

#include <mathf.h>
float hypotf (float x, float vy);

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows. This
is the single precision version of hypot().

Reference: DCC, MATH, REERR.

#include <stdlib.h>
long irand48 (unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, n-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: UNIX.

#include <ctype.h>
int isalnum(int c);

Tests for any letter or digit. Returns non-zero if test is true.

Reference: ANSI, REENT.

#include <ctype.h>
int isalpha(int c);

Tests for any letter. Returns non-zero if test is true.

Reference: ANSI, REENT.

528

isascii()

isatty()

iscntrl()

isdigit()

isgraph()

34 C Library Functions
34.3 Function Listing

#include <ctype.h>
int isascii(int c);

Tests for ASCII character, code between 0 and 0x7f. Returns non-zero if test is true.

Reference: SVID, REENT.

#include <unistd.h>
int isatty(int fildes);

Tests for a terminal device. Returns non-zero if fildes is associated with a terminal
device.

Although not a system call in the UNIX environment, it needs to be implemented
as such in an embedded environment using the stdio functions.

Reference: POSIX.

#include <ctype.h>
int iscntrl (int c);

Tests for control character (0x7f or less than 0x20). Returns non-zero if test is true.

Reference: ANSI, REENT.

#include <ctype.h>
int isdigit(int c);

Tests for digit [0-9]. Returns non-zero if test is true.

Reference: ANSI, REENT.

#include <ctype.h>
int isgraph(int c);

529

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Tests for printable character not including space. Returns non-zero if test is true.

Reference: ANSI, REENT.

islower()

#include <ctype.h>
int islower (int c);

Tests for lower case letter. Returns non-zero if test is true.

Reference: ANSI, REENT.

_isnan()

#include <math.h>
double _isnan(double x);

Returns a non-zero value if x is a NaN, and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

isprint()

#include <ctype.h>
int isprint(int c);

Tests for printable character (including space). Returns non-zero if test is true.

Reference: ANSI, REENT.

ispunct()

#include <ctype.h>
int ispunct (int c);

Tests for printable punctuation character. Returns non-zero if test is true.

Reference: ANSI, REENT.

isspace()

#include <ctype.h>
int isspace(int c);

530

isupper()

isxdigit()

io()

jof()

34 C Library Functions
34.3 Function Listing

Tests for space, tab, carriage return, new-line, vertical tab, or form-feed. Returns
non-zero if test is true.

Reference: ANSI, REENT.

#include <ctype.h>
int isupper (int c);

Tests for upper-case letters. Returns non-zero if test is true.

Reference: ANSI, REENT.

#include <ctype.h>
int isxdigit(int c);

Tests for hexadecimal digit (0-9, a-f, A-F). Returns non-zero if test is true.

Reference: ANSI, REENT.

#include <math.h>
double jO (double x);

Returns the Bessel function of x of the first kind of order 0.
OS calls: write.

Reference: UNIX, MATH, REERR.

#include <mathf.h>
float jOf(float x);

Returns the Bessel function of x of the first kind of order 0. This is the single
precision version of jO().

OS calls: write.

Reference: DCC, MATH, REERR.

531

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

i1Q)
#include <math.h>
double jl(double x);
Returns the Bessel function of x of the first kind of order 1.
OS calls: write.
Reference: UNIX, MATH, REERR.
j1f()
#include <mathf.h>
float jlf(float x);
Returns the Bessel function of x of the first kind of order 1. This is the single
precision version of j1().
OS calls: write.
Reference: DCC, MATH, REERR.
in()
#include <math.h>
double jn(double n, double x);
Returns the Bessel function of x of the first kind of order #.
OS calls: write.
Reference: UNIX, MATH, REERR.
jnf()

#include <mathf.h>
float jnf(float n, float x);

Returns the Bessel function of x of the first kind of order #. This is the single
precision version of jn().

OS calls: write.
Reference: DCC, MATH, REERR.

532

jrand48()

kill()

krand48()

13tol()

34 C Library Functions
34.3 Function Listing

#include <stdlib.h>
long jrand48(unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [-231, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. The calling program must place the initial value Xi into the xsubi array
and pass it as an argument.

Reference: SVID.

#include <signal.h>
int kill (int pid, int sig);

Sends the signal sig to the process pid.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <stdlib.h>
long krand48 (unsigned short xsubi[3], unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, n-1], using the linear congruential algorithm and 48-bit integer
arithmetic.

Reference: UNIX.

#include <dcc.h>
void 13tol(long *1lp, char *cp, int n);

Converts the list of 1 three-byte integers packed into the character string pointed
to by cp into a list of long integers pointed to by *Ip.

Reference: UNIX, REENT.

533

164a()

labs()

Icong48()

Idexp()

Idexpf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdlib.h>
char *164a(long 1);

Converts the long integer I to a base-64 character string.

Reference: SVID.

#include <stdlib.h>
long labs(long 1i);

Returns the absolute value of i.

Reference: ANSI, REENT.

#include <stdlib.h>
void lcong48 (unsigned short param([7]) ;

Initialization entry point for drand48(), Irand48(), and mrand48(). Allows the
user to specify parameters in the random equation: Xi is param[0-2], multiplier a is
param[3-5], and addend c is param[6].

Reference: UNIX.

#include <math.h>
double ldexp (double value, int exp);

Returns the quantity: value * (2**P). See also frexp().
Reference: UNIX, REERR.

#include <mathf.h>
float ldexpf (float value, int exp);

Returns the quantity: value * (2**P). See also frexpf(). This is the single precision
version of 1dexp().

534

Idiv()

_lessgreater()

Ifind()

link()

34 C Library Functions
34.3 Function Listing

Reference: DCC, MATH, REERR.

#include <stdlib.h>
1div_t 1ldiv(long int numer, long int denom) ;

Similar to div(), except that arguments and returned items all have the type long
it

Reference: ANSI, REENT.

#include <math.h>
double _lessgreater (double x, double vy);

The value of x <>y is non-zero only when x < y or x >y, and is distinct from
NOT(x = y) per Table 4 of the ANSI 754 standard.

Reference: ANSI 754, MATH, REENT.

#include <stdio.h>

#include <search.h>

void *1find(const void *key, const void *base, unsigned *nelp, int size,
int (*compar) ());

Same as Isearch() except that if datum is not found, it is not added to the table.
Instead, a null pointer is returned.

Reference: UNIX, REENT.

#include <unistd.h>
int link(const char *pathl, const char *path2);

Creates a new link path2 to the existing file pathl.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

535

localeconv()

localtime()

log()

_logb()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <locale.h>
struct lconv *localeconv (void) ;

Loads the components of an object of the type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. See also setlocale().

Reference: ANSI.

#include <time.h>
struct tm *localtime(const time_t *timer);

Breaks down the calendar time timer into sections, expressed as local time.

Reference: ANSI.

#include <math.h>
double log(double x);

Returns the natural logarithm of a positive x.
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <math.h>
double _logb(double x);

Returns the unbiased exponent of x, a signed integer in the format of x, except that
logb(NaN) is NaN, logb(infinity) is +o¢ and logb(0) is -cand signals the division
by zero exception. When x is positive and finite the expression scalb(x, -logb(x))
lies strictly between 0 and 2; it is less than 1 only when x is denormalized.

Reference: ANSI 754, MATH, REENT.

536

logf()

log10()

log10f()

longjmp()

34 C Library Functions
34.3 Function Listing

#include <mathf.h>
float logf(float x);

Returns the natural logarithm of a positive x. This is the single precision version of
log().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double loglO (double x);

Returns the logarithm with base ten of a positive x.
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float loglOf(float x);

Returns the logarithm with base ten of a positive x. This is the single precision
version of 1log10().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <setjmp.h>
void longjmp (jmp_buf env, int val);

Restores the environment saved in env by a corresponding setjmp() function call.
Execution will continue as if the setjmp() had just returned with the value val. If
val is 0 it will be set to 1 to avoid conflict with the return value from setjmp().

Reference: ANSI, REENT.

537

Irand48()

Isearch()

Iseek()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdlib.h>

long lrand48(void) ;

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

#include <stdio.h>

#include <search.h>

void *lsearch(const void *key, const void *base, unsigned *nelp, int size,
int (*compar) ());

Linear search routine which returns a pointer into a table indicating where a datum

may be found. If the datum is not found, it is added to the end of the table. base

points to the first element in the table. nelp points to an integer containing the

number of elements in the table. compar is a pointer to the comparison function

which the user must supply (for example, stremp()).

Reference: SVID, REENT.

#include <unistd.h>
off_t lseek(int fildes, off_t offset, int whence);

Moves the file pointer for the file fildes to the file offset offset. whence has one of the
following values:

SEEK_SET offset is absolute position from beginning of file
SEEK_CUR offset is relative distance from current position
SEEK_END offset is relative distance from the end of the file

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

538

Itol3()

mallinfo()

malloc()

34 C Library Functions
34.3 Function Listing

#include <dcc.h>
void 1ltol3 (char *cp, long *1p, int n);

Converts a list of long integers to three-byte integers. It is the inverse of 13tol().

Reference: UNIX, REENT.

#include <malloc.h>

struct mallinfo mallinfo(void)

Used to determine the best setting of malloc() parameters for an application. Must
not be called until after malloc() has been called.

Reference: SVID.

#include <stdlib.h>

void *malloc(size_t size);

Allocates space for an object of size size. Returns a pointer to the start (lowest byte
address) of the object. Returns a null pointer if no more memory can be obtained
by the OS.

The first time malloc() is called, it checks the following environment variables:

DMALLOC_INIT=n
If set, malloc() initializes allocated memory with the byte value n. This is
useful when debugging programs that may depend on malloc() areas
always being set to zero.

DMALLOC_CHECK
If set, malloc() and free() check the free-list every time they are called.
This is useful when debugging programs that may trash the free-list.

NOTE: malloc() and related functions must be initialized by the function __init()
in crtlibso.c. See the note at the end of 15.4.3 Notes for crtlibso.c and ctordtor.c, p.278
for details. See also 15.10 Reentrant and “Thread-Safe” Library Functions, p.292.

OS calls: sbrk.

539

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Reference: ANSI.

__malloc_set_block_size()

mallopt()

matherr()

#include <malloc.h>

size_t _ malloc_set_block_size(size_t blocksz);

To avoid excess execution overhead, malloc() acquires heap space in 8KB master
blocks and sub-allocates within each block as required, re-using space within each
8KB block when individual allocations are freed. The default 8KB master block size
may be too large on systems with small RAM. To change this, call this
__malloc_set_block_size function. The argument must be a power of two.

#include <malloc.h>

int mallopt (int cmd, int value);

Used to allocate small blocks of memory quickly by allocating a large group of
small blocks at one time. This function exists in order to be compatible to SVID, but
its use is not recommended, since the malloc() function is already optimized to be
fast.

Reference: SVID.

#include <math.h>
int matherr (struct exception *x);
Invoked by math library routines when errors are detected. Users may define their
own procedure for handling errors, by including a function named matherr() in
their programs. The function matherr() must be of the form described above.
When an error occurs, a pointer to the exception structure x will be passed to the
user-supplied matherr() function. This structure, which is defined by the
<math.h> header file, includes the following members:

int type;

char *name;

double argl, arg2, retval;
The member type is an integer describing the type of error that has occurred from
the following list defined by the <math.h> header file:

540

matherrf()

mblen()

34 C Library Functions
34.3 Function Listing

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The member name points to a string containing the name of the routine that
incurred the error. The members argl and arg?2 are the first and second arguments
with which the routine was invoked.

The member retval is set to the default value that will be returned by the routine
unless the user’s matherr() function sets it to a different value.

If the user’s matherr() function returns non-zero, no error message will be printed,
and errno will not be set.

If the function matherr() is not supplied by the user, the default error-handling
procedures, described with the math library routines involved, will be invoked
upon error. errno is set to EDOM or ERANGE and the program continues.

Reference: SVID, MATH.

#include <mathf.h>
int matherrf (struct exceptionf *x);

This is the single precision version of matherr().

Reference: DCC, MATH.

#include <stdlib.h>

int mblen(const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that
constitute the next multi-byte character, or -1 if the next n (or the remaining bytes)
do not compromise a valid multi-byte character. A terminating null character is not
included in the character count. If s is a null pointer and the multi-byte characters
have a state-dependent encoding in current locale, the function returns nonzero;
otherwise, it returns zero.

Reference: ANSI, REENT.

541

mbstowcs()

mbtowc()

memccpy()

memchr()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdlib.h>

size_t mbstowcs (wchar_t *pwc, const char *s, size_t n);

Stores a wide character string in the array whose first element has the address pwc,
by converting the multi-byte characters in the string s. It converts as if by calling
mbtowc(). It stores at most n wide characters, stopping after it stores a null wide
character. It returns the number of wide characters stored, not counting the null
character.

Reference: ANSI, REENT.

#include <stdlib.h>

int mbtowc (wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that
constitute the next multi-byte character. (The number of bytes cannot be greater
than MB_CUR_MAX). If pwc is not a null pointer, the next multi-byte character is
converted to the corresponding wide character value and stored in *pwc. The
function returns -1 if the next n or the remaining bytes do not constitute a valid
multi-byte character. If s is a null pointer and multi-byte characters have a
state-dependent encoding in current locale, the function stores an initial shift state
in its internal static duration data object and returns nonzero; otherwise it returns
Zero.

Reference: ANSI, REENT.

#include <string.h>
void *memccpy (void *sl, const void *s2, int c, size_t n);

Copies characters from s2 into s1, stopping after the first occurrence of character c
has been copied, or after n characters, whichever comes first.

Reference: SVID, REENT.

#include <string.h>
void *memchr (const void *s, int ¢, size_t n);

542

memcecmp()

memcpy()

memmove()

memset()

34 C Library Functions
34.3 Function Listing

Locates the first occurrence of c (converted to unsigned char) in the initial 7
characters of the object pointed to by s. Returns a null pointer if ¢ is not found.

Reference: ANSI, REENT.

#include <string.h>
int memcmp (const void *sl, const void *s2, size_t n);

Compares the first n character of s1 to the first n characters of s2. Returns an integer
greater than, equal to, or less than zero according to the relationship between s1
and s2.

Reference: ANSI, REENT.

#include <string.h>
void *memcpy (void *sl, const void *s2, size_t n);

Copies n character from the object pointed to by s2 into the object pointed to by s1.
The behavior is undefined if the objects overlap. Returns the value of s1.

Reference: ANSI, REENT.

#include <string.h>
void *memmove (void *sl, const void *s2, size_t n);

Copies n characters from the object pointed by 52 into the object pointed to by s1.
It can handle overlapping while copying takes place as if the n characters were first
copied to a temporary array, then copied into sI. Returns the value of s1.

Reference: ANSI, REENT.

#include <string.h>
void *memset (void *s, int ¢, size_t n);

Copies the value of ¢ into each of the first n characters of the object pointed to by s.
Returns the value of s.

543

mktemp()

mktime()

modf()

modff()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Reference: ANSI, REENT.

#include <stdio.h>
char *mktemp (char *template);

Replaces the contents of the string pointed to by template with a unique filename,
and returns the address of template. The template string should look like a filename
with six trailing Xs, which will be replaced with a letter and the current process ID.

OS calls: access, getpid.
Reference: SVID.

#include <time.h>
time_t mktime (struct tm *timeptr) ;

Converts the local time stored in timeptr into a calendar time with the same
encoding as values returned by the time() function, but with all values within
their normal ranges. It sets the structure members tm_mday, tm_wday, tm_yday.

Reference: ANSI, REENT.

#include <math.h>
double modf (double value, double *iptr);

Returns the fractional part of value and stores the integral part in the location
pointed to by iptr. Both the fractional and integer parts have the same sign as value.
See also frexp().

Reference: ANSI, REENT.

#include <mathf.h>
float modff (float value, float *iptr);

544

mrand48()

_nextafter()

nrand48()

34 C Library Functions
34.3 Function Listing

Returns the fractional part of value and stores the integral part in the location
pointed to by iptr. Both the fractional and integer parts have the same sign as value.
See also frexpf(). This is the single precision version of modf().

Reference: DCC, MATH, REENT.

#include <stdlib.h>
long mrand48 (void) ;
Generates pseudo-random non-negative long integers uniformly distributed over
the interval [-231, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

#include <math.h>

double _nextafter (double x, double y);

Returns the next representable neighbor of x in the direction toward y. The
following special cases arise: if x = y, then the result is x without any exception
being signaled; otherwise, if either x or y is a quiet NaN, then the result is one or
the other of the input NaNs. Qverflow is signaled when x is finite but _nextafter(x,
y) lies strictly between +25™i" and -25™in, [n both cases, inexact is signaled.

Reference: ANSI 754, MATH, REENT.

#include <stdlib.h>
long nrand48 (unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic.

Reference: SVID.

545

offsetof()

open()

perror()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stddef.h>
size_t offsetof (type, member) ;

Returns the offset of the member member in the structure type. Implemented as a
macro.

Reference: ANSI, REENT.

#include <fcntl.h>
int open(const char *path, int oflag, int mode);

Opens the file path for reading or writing according to oflag. Usual values of oflag
are:

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <stdio.h>
void perror (const char *s);

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

Produces a message on the standard error output describing the last error
encountered during a call to a system or library function. The array of message
strings sys_errlist[] may be indexed by errno to access the message string directly
without the new-line. sys_nerr is the number of messages in the table. See
strerror().

OS calls: write.

Reference: ANSI.

546

pow()

powf()

printf()

34 C Library Functions
34.3 Function Listing

#include <math.h>
double pow(double x, double vy);

Returns the value of x¥. If x is zero, y must be positive. If x is negative, y must be an
integer.
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float powf (float x, float y);

Returns the value of x¥. If x is zero, y must be positive. If x is negative, y must be an
integer. This is the single precision version of pow().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <stdio.h>
int printf (const char *format, ...);

Places output arguments on stdout, controlled by format. Returns the number of
characters transmitted or a negative value if there was an error. A summary of the
printf() conversion specifiers is shown below. Each conversion specification is
introduced by the character %. Conversion specifications within brackets are
optional.

% {flags} {field_width} {.precision} {length_modifier} conversion

flags
Single characters which modify the operation of the format as follows:

left adjusted field

signed values will always begin with plus or minus sign

547

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

space
values will always begin with minus or space

#
Alternate form. Has the following effect: For o (octal) conversion, the first
digit will always be a zero. G, g, E, e and f conversions will always print a
decimal point. G and g conversions will also keep trailing zeros. X, x (hex)
and p conversions will prepend non-zero values with 0x (or 0X)

0

zero padding to field width (ford, i,11,0,q,u,x, X, e, E, f, g, and G
conversions)

field_width
Number of characters to be printed in the field. Field width will be padded
with space if needed. If given as “*”, the next argument should be an integer
holding the field width.

.precision
Minimum number of digits to print for integers (d, i, 11, o, q, u, x, and X).
Number of decimals printed for floating point values (e, E, and f). Maximum
number of significant digits for g and G conversions. Maximum number of
characters for s conversion. If given as “*” the next argument should be an
integer holding the precision.

length_modifier
The following length modifiers are used:

h
Used before d, i, 0, n, u, x, or X conversions to denote a short int or
unsigned short int value.

1
Used before d, i, 0, n, u, x, or X conversions to denote a long int or
unsigned long int value.

L
Used before e, E, £, g, or G conversions to denote a long double value.
Used before d, i, 0, u, x, or X conversions to denote a long long value.

conversion
The following conversion specifiers are used:
d

Write signed decimal integer value.

548

1

34 C Library Functions
34.3 Function Listing

Write signed decimal integer value.

Write signed long long decimal integer value.

Write unsigned octal integer value.

Write signed long long decimal integer value.

Write unsigned decimal integer value.

Write unsigned hexadecimal (0-9, abc...) integer value.
Write unsigned hexadecimal (0-9, ABC...) integer value.
Write floating point value: [-]d.ddde+dd .

Write floating point value: [-]d.dddE+dd .

Write floating point value: [-]ddd.ddd .

Write floating point value in f or e notation depending on the size of the
value (“best” fit conversion).

Write floating point value in f or E notation depending on the size of the
value (“best” fit conversion).

Write a single character.
Write a string.

Write a pointer value (address).

549

putc()

putchar()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Store current number of characters written so far. The argument should be
a pointer to integer.

%
Write a percentage character.

The floating point values Infinity and Not-A-Number are printed as inf, INF, nan,
and NAN when using the e, E, f, g, or G conversions.

NOTE: By default in most environments, printf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.556, with a NULL buffer pointer after opening but before writing to
the stream:

setbuf (*stream, 0);

OS calls: isatty, sbrk, write.
Reference: ANSI.

#include <stdio.h>
int putc(int c, FILE *stream)

Writes the character c onto the output stream at the position where the file pointer,
if defined, is pointing.

OS calls: isatty, sbrk, write.
Reference: ANSI.

#include <stdio.h>
int putchar (int c)

Similar to putc() but writes to stdout.
OS calls: isatty, sbrk, write.
Reference: ANSI.

550

putenv()

puts()

putw()

qsort()

34 C Library Functions
34.3 Function Listing

#include <stdlib.h>
int putenv(char *string);

string points to a string of the form name=value, and putenv() makes the value of
the environmental variable name equal to value. The string pointed to by string
becomes part of the environment, so altering string alters the environment.

OS calls: sbrk, write.
Reference: SVID.

#include <stdio.h>
int puts(const char *s);

Writes the null-terminated string pointed to by s, followed by a new-line character,
to stdout.

OS calls: isatty, sbrk, write.
Reference: ANSIL

#include <stdio.h>
int putw(int w, FILE *stream)

Writes the word (i.e., integer) w to the output stream at the position at which the file
pointer, if defined, is pointing.

OS calls: isatty, sbrk, write.

Reference: SVID.

#include <stdlib.h>

void gsort(void *base, size_t nel, size_t size, int (*compar) ());

Sorts a table in place using the quick-sort algorithm. base points to the element at
the base of the table, nel is the number of elements. size is the size of each element.
compar is a pointer to the user supplied comparison function, which is called with
two arguments that point to the elements being compared.

551

raise()

rand()

read()

realloc()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Reference: ANSI, REENT.

#include <signal.h>
int raise(int sig);

Sends the signal sig to the executing program.
OS calls: getpid, kill.
Reference: ANSIL

#include <stdlib.h>
int rand(void);

Returns a pseudo random number in the interval [0, RAND_MAX].

Reference: ANSI.

#include <unistd.h>
int read(int fildes, void *buf, unsigned nbyte) ;

Reads max nbyte bytes from the file associated with the file descriptor fildes to the
buffer pointed to by buf.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

#include <stdlib.h>
void *realloc (void *ptr, size_t size);
extern int _ no_malloc_warning;

Changes the size of the object pointed to by ptr to the size size. ptr must have
received its value from malloc(), calloc(), or realloc(). Returns a pointer to the

552

remove()

rename()

rewind()

34 C Library Functions
34.3 Function Listing

start address of the possibly moved object, or a null pointer if no more memory can
be obtained from the OS.

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on
the stderr stream. The warning can be suppressed by assigning a non-zero value
to the integer variable _ no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write.
Reference: ANSI.

#include <stdio.h>
int remove (const char *filename) ;

Removes the file filename. Once removed, the file cannot be opened as an existing
file.

OS calls: unlink.
Reference: ANSI.

#include <stdio.h>
int rename (const char *old, const char *new);

Renames the file old to the file new. Once renamed, the file old cannot be opened
again.

OS calls: link, unlink.
Reference: ANSI.

#include <stdio.h>
void rewind(FILE *stream) ;

Same as fseek(stream, OL, 0), except that no value is returned.
OS calls: isatty, read, sbrk, write.
Reference: ANSI.

553

sbrk()

_scalb()

scanf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <unistd.h>
void *sbrk(int incr);

Gets incr bytes of memory from the operating system.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: UNIX, SYS.

#include <math.h>
double _scalb(double x, int N);

Returns y * 2N for integeral values N without computing 2.

Reference: ANSI 754, MATH, REENT.

#include <stdio.h>
int scanf (const char *format, ...);

Reads formatted data from stdin and optionally assigns converted data to
variables specified by the format string. Returns the number of successful
conversions (or EOF if input is exhausted).

If the format string contains white-space characters, input is scanned until a
non-white-space character is found.

A conversion specification is introduced by the character %.

If the format string neither contains a white-space nor a %, the format string and
the input characters must match exactly.

A summary of the scanf() conversion specifiers is shown below. Conversion
specifications within braces are optional.

% {*} {field_width} {length_modifier} conversion
*

No assignment should be done (just scan the field).

field_width
Maximum field to be scanned (default is until no match occurs).

554

34 C Library Functions
34.3 Function Listing

length_modifier
The following length modifiers are used:

1

Used before d, i, or n to indicate long int or before o, u, x to denote the
presence of an unsigned long int. For e, E, g, G, and f conversions the |
character implies a double operand.

Used before d, i, or n to indicate short int or before o, u, or x to denote the
presence of an unsigned short int.

For e, E, g, G, and f conversions the L character implies a long double
operand. For d, i, 0, u, x, and X conversions the L character implies a
long long operand.

conversion
The following conversions are available:

d
Read an optionally signed decimal integer value.
i
Read an optionally signed integer value in standard C notation. Default is
decimal notation, but octal (On) and hex (0xn, 0Xn) notations are also
recognized.
1
Read an optionally signed long long decimal integer value.
0
Read an optionally signed octal integer.
q
Read an optionally signed long long decimal integer value.
u
Read an unsigned decimal integer.
x, X
Read an optionally signed hexadecimal integer.
f,e,E g G

Read a floating point constant.

Read a character string.

555

seed48()

setbuf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Read field_width number of characters (1 is default).

Store the number of characters read so far. The argument should be a
pointer to an integer.

Read a pointer value (address).

Read characters as long as they match any of the characters that are within
the terminating]. If the first character after [is a #, the matching condition
is reversed. If the [is immediately followed by] or], the] is assumed to
belong to the matching sequence, and there must be another terminating
character. A range of characters may be represented by first-last, thus [a-f]
equals [abcdef].
%
Read a % character.
Notes: Except for the [, ¢, or n specifiers leading white-space characters are
skipped. Variables must always be expressed as addresses in order to be assignable
by scanf.

OS calls: isatty, read, sbrk, write.
Reference: ANSI.

#include <stdlib.h>
unsigned short *seed48(unsigned short seedl6v{3b;

Initialization entry point for drand48(), Irand48(), and mrand48().
Reference: SVID.

#include <stdio.h>
void setbuf (FILE *stream, char *buf);

May be used after the stream has been opened but before reading or writing to it. It
causes the array pointed to by buf to be used instead of an automatically allocated

556

setjmp()

setlocale()

34 C Library Functions
34.3 Function Listing

buffer. If buf is the null pointer, then input/output will be unbuffered. The constant
BUFSIZ in <stdio.h> defines the required size of buf.

OS calls: isatty, sbrk, write.
Reference: ANSIL

#include <setjmp.h>

int setjmp (jmp_buf env);

Saves the current execution environment in env for use by the longjmp() function.
Returns 0 when invoked by setjmp() and a non-zero value when returning from a
longjmp() call.

Reference: ANSI, REENT.

#include <locale.h>

char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the category
and locale arguments. Can be used to change or query the program’s entire locale
with the category LC_ALL; the other values for category name only portions of the
program’s locale. LC_COLLATE affects the behavior of the strcoll() and strxfrm()
functions. LC_CTYPE affects the behavior of the character handling functions and
the multi-byte functions. LC_MONETARY affects the monetary formatting
information returned by the localeconv() function. LC_NUMERIC affects the
decimal-point character for the formatted input/output functions and the string
conversion functions, as well as the non-monetary formatting information
returned by the localeconv() function. LC_TIME affects the behavior of the
strftime() function.

A value of “C” for locale specifies the minimal environment for C translation; a
value of " for locale specifies the implementation-defined native environment.
Other implementation-defined strings may be passed as the second argument to
setlocale().

At program start-up, the equivalent of setlocale(LC_ALL, "C") is executed.
The compiler currently supports only the “C” locale.

Reference: ANSI.

557

setvbuf()

signal()

sin()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <stdio.h>
void setvbuf (FILE *stream, char *buf, int type, size_t size);

See setbuf(). type determines how the stream will be buffered:

_IOFBF causes stream to be fully buffered
_IOLBF causes stream to be line buffered
_IONBF causes stream to be unbuffered

size specifies the size of the buffer to be used; BUFSIZ in <stdio.h> is the suggested
size.

OS calls: sbrk, write.
Reference: ANSI.

#include <signal.h>
void (*signal (int sig, void (*func) ())) (void);

Specifies the action on delivery of a signal. When the signal sig is delivered, a signal
handler specified by func is called.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: ANSI, SYS.

#include <math.h>
double sin(double x);

Returns the sine of x measured in radians. It loses accuracy with a large argument
value.

OS calls: write.

Reference: ANSI, MATH, REERR.

558

sinf()

sinh()

sinhf()

sprintf()

34 C Library Functions
34.3 Function Listing

#include <mathf.h>
float sinf (float x);

Returns the sine of x measured in radians. It loses accuracy with a large argument
value. This is the single precision version of sin().

OS calls: write.
Reference: DCC, MATH, REERR.

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large
argument value.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float sinhf (float x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large
argument value. This is the single precision version of sinh().

Reference: DCC, MATH, REERR.

#include <stdio.h>
int sprintf (char *s, const char *format , ...);

Places output arguments followed by the null character in consecutive bytes
starting at *s; the user must ensure that enough storage is available. See printf().

Reference: ANSI, REENT.

559

sqrt()

sqrtf()

srand()

srand48()

sscanf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <math.h>
double sqgrt (double x);

Returns the non-negative square root of x. The argument must be non-negative.
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float sqgrtf(float x);

Returns the non-negative square root of x. The argument must be non-negative.
This is the single precision version of sqrt().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <stdlib.h>
void srand(unsigned seed) ;

Resets the random-number generator to a random starting point. See rand().

Reference: ANSI.

#include <stdlib.h>
void srand48(long seedval) ;

Initialization entry point for drand48(), Irand48(), and mrand48().
Reference: SVID.

#include <stdio.h>
int sscanf (const char *s, const char *format, ...);

560

step()

strcat()

strchr()

stremp()

34 C Library Functions
34.3 Function Listing

Reads formatted data from the character string s, optionally assigning converted
data to variables specified by the format string. It returns the number of successful
conversions (or EOF if input is exhausted). See scanf().

Reference: ANSI, REENT.

#include <regexp.h>
int step(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression
expbuf. See SVID for more details.

Reference: SVID.

#include <string.h>
char *strcat(char *sl, const char *s2);

Appends a copy of the string pointed to by s2 (including a null character) to the
end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

#include <string.h>
char *strchr (const char *s, int c);

Locates the first occurrence of ¢ in the string pointed to by s.

Reference: ANSI, REENT.

#include <string.h>
int strcmp (const char *sl, const char *s2);

Compares s1 to s2. Returns an integer greater than, equal to, or less than zero
according to the relationship between sI and s2.

561

streoll()

strepy()

strespn()

strdup()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Reference: ANSI, REENT.

#include <string.h>
int strcoll (const char *sl, const char *s2);

Compares s1 to s2, both interpreted as appropriate to the LC_COLLATE category of
the current locale. Returns an integer greater than, equal to, or less than zero
according to the relationship between s1 and s2.

Reference: ANSI, REENT.

#include <string.h>
char *strcpy(char *sl, const char *s2);

Copies the string pointed to by s2 (including a terminating null character) into the
array pointed to by s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

#include <string.h>
size_t strcspn(const char *sl, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely
of characters not from s2.

Reference: ANSI, REENT.

#include <string.h>
char *strdup(const char *sl);

Returns a pointer to a new string which is a duplicate of s1.
OS calls: sbrk.
Reference: SVID.

562

strerror()

strftime()

34 C Library Functions
34.3 Function Listing

#include <string.h>
char *strerror (int errnum) ;

Maps the error number in errnum to an error message string.

Reference: ANSI, REENT.

#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr);
Uses the format format and values in the structure timeptr to generate formatted
text. Generated characters are stored in successive locations in the array pointed to
by s. It stores a null character in the next location in the array. Each non-% character
is stored in the array. For each % followed by a character, a replacement character
sequence is stored as shown below. Examples are in parenthesis.

Y%a abbreviated weekday name (Mon)
%A full weekday name (Monday)

%b abbreviated month name (Jan)

%B full month name (January)

Y%c date and time (Jan 03 07:22:43 1990)
%d day of the month (04)

%H hour of the 24-hour day (13)

%I hour of the 12-hour day (9)

%j day of the year, Jan 1 = 001 (322)
Y%m month of the year (11)

%M minutes after the hour (43)

%p AM/PM indicator (PM)

%S seconds after the minute (37)

%U Sunday week of the year, from 00 (34)
Y%w weekday number, Sunday = 0 (3)

563

strlen()

strncat()

strncmp()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

%W Monday week of the year, from 00 (23)
Y%x date (Jan 23 1990)

%X time (23:33:45)

Yoy year of the century (90)

%Y year (1990)

%Z time zone name (PST)

% %o percent character (%)

Reference: ANSI, REENT.

#include <string.h>
size_t strlen(const char *s);

Computes the length of the string s.
Reference: ANSI, REENT.

#include <string.h>

char *strncat(char *sl, const char *s2, size_t n);

Appends not more than n characters from the string pointed to by s2 to the end of
the string pointed to by s1. The initial character of s2 overwrites the null character
at the end of s1. The behavior is undefined if the objects overlap. A terminating null
character is always appended to the result.

Reference: ANSI, REENT.

#include <string.h>
int strncmp (const char *sl, const char *s2, size_t n);

Compares not more than # characters (characters after a null character are ignored)
in s1 to 52. Returns an integer greater than, equal to, or less than zero according to
the relationship between s1 and s2.

564

strncpy()

strpbrk()

strrchr()

strspn()

34 C Library Functions
34.3 Function Listing

Reference: ANSI, REENT.

#include <string.h>
char *strncpy(char *sl, const char *s2, size_t n);

Copies not more than n characters from the string pointed to by s2 (including a
terminating null character) into the array pointed to by s1. The behavior is
undefined if the objects overlap. If s2 is shorter than 7, null characters are
appended.

Reference: ANSI, REENT.

#include <string.h>
char *strpbrk(const char *sl, const char *s2);

Locates the first occurrence of any character from the string pointed to by s2 within
the string pointed to by s1.

Reference: ANSI, REENT.

#include <string.h>
char *strrchr (const char *s, int c);

Locates the last occurrence of ¢ within the string pointed to by s.

Reference: ANSI, REENT.

#include <string.h>
size_t strspn(const char *sl, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely
of characters from s2.

Reference: ANSI, REENT.

565

strstr()

strtod()

strtok()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <string.h>

char *strstr(const char *sl, const char *s2);

Locates the first occurrence of the sequence of characters (not including a null
character) in the string pointed to by s2 within the string pointed to by s1.

Reference: ANSI, REENT.

#include <stdlib.h>

double strtod(const char *str, char **endptr);

Returns as a double-precision floating point number the value represented by the
character string pointed to by str. The string is scanned to the first unrecognized
character. Recognized characters include optional white-space character(s),
optional sign, a string of digits optionally containing a decimal point, optional e or
E followed by an optional sign or space, followed by an integer. At return, the
pointer at *endptr is set to the first unrecognized character.

Reference: ANSI, REERR.

#include <string.h>

char *strtok(char *sl, const char *s2);

Searches string s1 for address of the first element that equals none of the elements
in string s2. If the search does not find an element, it stores the address of the
terminating null character in the internal static duration data object and returns a
null pointer. Otherwise, searches from found address to address of the first
element that equals any one of the elements in string s2. If it does not find element,
it stores address of the terminating null character in the internal static duration
data object. Otherwise, it stores a null character in the element whose address was
found in second search. Then it stores address of the next element after end in the
internal duration data object (so next search starts at that address) and returns
address found in initial search.

Reference: ANSI.

566

strtol()

strtoul()

strxfrm()

34 C Library Functions
34.3 Function Listing

#include <stdlib.h>

long strtol (const char *str, char **endptr, int base);

Returns as a long integer the value represented by the character string pointed to
by str. The string is scanned to the first character inconsistent with the base.
Leading white-space characters are ignored. At return, the pointer at “endptr is set
to the first unrecognized character.

If base is positive and less then 37, it is used as the base for conversion. After an
optional sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base: after an optional leading sign a
leading zero indicates octal, a leading “0x” or “0X” indicates hexadecimal, else
decimal conversion is used.

Reference: ANSI, REERR.

#include <stdlib.h>

long strtoul (const char *, char **endptr, int base);

Returns as an unsigned long integer the value represented by the character string
pointed to by s. The string is scanned to the first character inconsistent with the
base. Leading white-space characters are ignored. This is the same as strtol(),
except that it reports a range error only if the value is too large to be represented as
the type unsigned long.

Reference: ANSI, REERR.

#include <string.h>

size_t strxfrm(char *sl, char *s2, size_t n);

Transforms s2 and places the result in s1. No more than # characters are put in s1,
including the terminating null character. The transformation is such that if
stremp() is applied to the two strings, it returns a value greater than, equal to, or
less than zero, corresponding to the result of the strcoll() function applied to the
same two original strings. Copying between objects that overlap causes undefined
results.

Reference: ANSI, REENT.

567

swab()

tan()

tanf()

tanh()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <dcc.h>
void swab(const char *from, char *to, int nbytes)

Copies nbytes bytes pointed to by from to the array pointed to by to. nbytes must be
even and non-negative. Adjacent even and odd bytes are exchanged.

Reference: SVID, REENT.

#include <math.h>
double tan(double x);

Returns the tangent of x measured in radians.
OS calls: write.

Reference: ANSI, MATH, REERR.

#include <mathf.h>
float tanf(float x);

Returns the tangent of x measured in radians. This is the single precision version
of tan().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x measured in radians.

Reference: ANSI, MATH, REENT.

568

tanhf()

tdelete()

tell()

tempnam()

34 C Library Functions
34.3 Function Listing

#include <mathf.h>
float tanhf (float x);

Returns the hyperbolic tangent of x measured in radians. This is the single
precision version of tanh().

Reference: DCC, MATH, REENT.

#include <search.h>
void *tdelete(const void *key, void **rootp, int (*compar) ());

The tdelete() function deletes a node from a binary search tree. The value for rootp
will be changed if the deleted node was the root of the tree. Returns a pointer to the
parent of the deleted node. See tsearch().

Reference: SVID.

#include <dcc.h>
long tell (int fildes);

Returns the current location in the file descriptor fildes. This is the same as
Iseek(fildes,0L,1).
OS calls: Iseek.

Reference: DCC.

#include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

Creates a unique filename, allowing control of the choice of directory. If the
TMPDIR variable is specified in the user’s environment, it is used as the temporary
file directory. Otherwise, the argument dir points to the name of the directory in
which the file is to be created. If dir is invalid, the path-prefix P_tmpdir (<stdio.h>)
is used. If P_tmpdir is invalid, /tmp is used. See tmpnam().

Reference: SVID.

569

tfind()

time()

tmpfile()

tmpnam()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#include <search.h>
void *tfind(void *key, void *const *rootp, int (*compar) ());

tfind() will search for a datum in a binary tree, and return a pointer to it if found,
otherwise it returns a null pointer. See tsearch().

Reference: SVID, REENT.

#include <time.h>
time_t time(time_t *timer) ;

Returns the system time. If timer is not a null pointer, the time value is stored in
*timer.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: ANSI, SYS.

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file using a name generated by tmpnam() and returns the
corresponding FILE pointer. File is opened for update ("w+"), and is automatically
deleted when the process using it terminates.

OS calls: Iseek, open, unlink.

Reference: ANSI

#include <stdio.h>

char *tmpnam(char *s);

Creates a unique filename using the path-prefix defined as P_tmpdir in <stdio.h>.
If s is a null pointer, tmpnam() leaves the result in an internal static area and
returns a pointer to that area. At the next call to tmpnam(), it will destroy the
contents of the area. If s is not a null pointer, it is assumed to be the address of an

570

toascii()

tolower()

_tolower()

toupper()

34 C Library Functions
34.3 Function Listing

array of at least L_tmpnam bytes (defined in <stdio.h>); tmpnam() places the
result in that array and returns s.

OS calls: access, getpid.
Reference: ANSIL

#include <ctype.h>
int toascii (int c);

Turns off all bits in the argument c that are not part of a standard ASCII character;
for compatibility with other systems.

Reference: SVID, REENT.

#include <ctype.h>
int tolower (int c);

Converts an upper-case letter to the corresponding lower-case letter. The argument
range is -1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

#include <ctype.h>
int _tolower (int c);

Converts an upper-case letter to the corresponding lower-case letter. Arguments
outside lower-case letters return undefined results. The speed is somewhat faster
than tolower().

Reference: SVID, REENT.

#include <ctype.h>
int toupper (int c);

571

_toupper()

tsearch()

twalk()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Converts a lower-case letter to the corresponding upper-case letter. The argument
range is -1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

#include <ctype.h>

int _toupper (int c);

Converts a lower-case letter to the corresponding upper-case letter. Arguments
outside lower-case letters return undefined results. The speed is somewhat faster
than toupper().

Reference: SVID, REENT.

#include <search.h>

void *tsearch(const void *key, void ** rootp, int (*compar) ());

Used to build and access a binary tree. The user supplies the routine compar to
perform comparisons. key is a pointer to a datum to be accessed or stored. If a
datum equal to *key is in the tree, a pointer to that datum is returned. Otherwise,
*key is inserted, and a pointer to it is returned. rootp points to a variable that points
to the root of the tree.

Reference: SVID.

#include <search.h>

void twalk(void *root, void (*action) ());

twalk() traverses a binary tree. root is the root of the tree to be traversed, and any
node may be the root for a walk below that node. action is the name of the user
supplied routine to be invoked at each node, and is called with three arguments.
The first argument is the address of the node being visited. The second argument
is a value from the enumeration data type typedef enum {preorder, postorder,
endorder, leaf} VISIT (see <search.h>), depending on whether this is the first,
second, or third time the node has been visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the level
of the node in the tree, with the root as level zero. See tsearch().

572

tzset()

ungetc()

unlink()

_unordered()

34 C Library Functions
34.3 Function Listing

Reference: SVID, REENT.

#include <sys/types.h>
#include <time.h>
void tzset (void) ;

tzset() uses the contents of the environment variable TZ to override the value of
the different external variables for the time zone. It scans the contents of TZ and
assigns the different fields to the respective variable. tzset() is called by asctime()
and may be called explicitly by the user.

Reference: POSIX.

#include <stdio.h>
int ungetc(int ¢, FILE *stream);

Inserts character c into the buffer associated with input stream. The argument ¢ will
be returned at the next getc() call on that stream. ungetc() returns c and leaves the
file associated with stream unchanged. If c equals EOF, ungetc() does nothing to the
buffer and returns EOF. Only one character of push-back is guaranteed.

Reference: ANSI.

#include <unistd.h>
int unlink(const char *path);

Removes the directory entry path.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

#include <math.h>
double _unordered(double x, double y);

573

viprintf()

vfscanf()

vprintf()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Returns a non-zero value if x is unordered with y, and returns zero otherwise. See
Table 4 of the ANSI 754 standard for the meaning of unordered.

Reference: ANSI 754, MATH, REENT.

#include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE *stream, const char *format, va_list arg);

This is equivalent to fprintf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

NOTE: By defaultin most environments, vfprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.556, with a NULL buffer pointer before after opening but before
writing to the stream:

setbuf (*stream, 0);

OS calls: isatty, sbrk, write.
Reference: ANSI.

#include <stdarg.h>
#include <stdio.h>
int vfscanf (FILE *stream, const char *format, va_list arg);

This is equivalent to fscanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.
Reference: DCC.

#include <stdarg.h>
#include <stdio.h>
int vprintf (const char *format, va_list arg);

574

vscanf()

vsprintf()

vsscanf()

34 C Library Functions
34.3 Function Listing

This is equivalent to printf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

NOTE: By default in most environments, vprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.556, with a NULL buffer pointer before after opening but before
writing to the stream:

setbuf (*stream, 0);

OS calls: isatty, sbrk, write.
Reference: ANSI.

#include <stdarg.h>
#include <stdio.h>
int vscanf (const char *format, va_list arg);

This is equivalent to scanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.
Reference: DCC.

#include <stdarg.h>
#include <stdio.h>
int vsprintf (char *s, const char *format, va_list arg);

This is equivalent to sprintf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, sbrk, write.
Reference: ANSI, REENT.

#include <stdarg.h>
#include <stdio.h>
int vsscanf (const char *s, const char *format, va_list arg);

575

wcstombs()

wctomb()

write()

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

This is equivalent to sscanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.
Reference: DCC, REENT.

#include <stdlib.h>

size_t wcstombs (char *s, const wchar_t *wcs, size_t n);

Stores a multi-byte character string in the array whose first element has the address
s by converting each of the characters in the string wcs. It converts as if calling
wctomb(). It stores no more than n characters, stopping after it stores a null
character. It returns the number of characters stored, not counting the null
character; unless there is an error, in which case it returns -1.

Reference: ANSI.

#include <stdlib.h>

int wctomb (char *s, wchar_t wchar) ;

If s is not a null pointer, the function determines the number of bytes needed to
represent the multi-byte character corresponding to the wide character wchar. It
converts wchar to the corresponding multi-byte character and stores it in the array
whose first element has the address s. It returns the number of bytes required, not
counting the terminating null character; unless there is an error, in which case it
returns -1.

Reference: ANSI.

#include <unistd.h>
int write(int fildes, const void *buf, unsigned nbyte) ;

Writes nbyte bytes from the buffer buf to the file fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

576

yo()

yof()

y1()

y1f()

34 C Library Functions
34.3 Function Listing

#include <math.h>
double y0 (double x);

Returns the Bessel function of positive x of the second kind of order 0.
OS calls: write.

Reference: UNIX, MATH, REERR.

#include <mathf.h>
float y0f(float x);

Returns the Bessel function of positive x of the second kind of order 0. This is the
single precision version of y0().

OS calls: write.

Reference: DCC, MATH, REERR.

#include <math.h>
double vyl (double x);

Returns the Bessel function of positive x of the second kind of order 1.
OS calls: write.

Reference: UNIX, MATH, REERR.

#include <mathf.h>
float ylf(float x);

Returns the Bessel function of positive x of the second kind of order 1. This is the
single precision version of y1().

OS calls: write.

Reference: DCC, MATH, REERR.

577

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

yn()
#include <math.h>
double yn(double n, double x);
Returns the Bessel function of positive x of the second kind of order n.
OS calls: write.
Reference: UNIX, MATH, REERR.
ynf()

#include <mathf.h>
float ynf(float n, float x);

Returns the Bessel function of positive x of the second kind of order n. This is the
single precision version of yn().

OS calls: write.

Reference: DCC, MATH, REERR.

578

PART VII

Appendices

Configuration Filesccccciiiiriiiiimmnriinniceeennnens 581
Compatibility Modes: ANSI, PCC, and K&R C . 595
Compiler LIiMitsccccvvviiiiiiisnnmeememmmennensssseeeeeeeas 601

Compiler Implementation Defined Behavior 603

Assembler Coding Notesccooemmrrriiiicnnnnnnnn 611
Object and Executable File Formats 617
Compiler -X Options Numeric List 641
MeSSagesccvrrririrsisssssssnnnnnne e 645

579

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

580

Configuration Files

A.1 Configuration Files 581

A.2 How Commands, Environment Variables, and Configuration Files
Relate 582

A.3 Standard Configuration Files 584
A.4 The Configuration Language 588

A.1 Configuration Files

The compiler drivers and other tools are controlled by options from two sources:
the command line, and standard configuration files installed automatically as part
of the compiler suites.

Configuration files permit options to be constructed from string constants and
variables using assignment, if, switch, include, and other statements.

For the most part, configuration files are used internally by the compiler suites to
support multiple target processors. The current default target configuration is
stored in the version_path/conf/default.conf configuration file (see 4.3 Alternatives
for Selecting a Target Configuration, p.29).

This appendix explains configuration file processing and the configuration
language. It will be useful to those wishing to create configuration files, or to
understand or modify the standard configuration files normally used by the tools.

581

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

A.2 How Commands, Environment Variables, and Configuration
Files Relate

If a tool is executed with no options on the command line, no configuration file,
and no environment variables set, then all options will have their default values as
described here.

In practice, each tool is usually executed with some options on the command line,
perhaps some options set with environment variables, and a number of
site-dependent defaults set in configuration files, with remaining options having
default values.

NOTE: Configuration files are used when the dcc, dplus, das, or dld programs are
executed explicitly, e.g., from the command line or in a makefile. In this chapter,
the term fool refers to any of these programs when executed explicitly.

When the dcc or dplus command automatically invoke the das or dld commands,
configuration file processing is done for the dec or dplus command and not again
for the implicit das or dld command.

A.2.1 Configuration Variables and Precedence

Variables may be set in three places:
* In the operating system environment (see 2.3 Environment Variables, p.15).

* On the command line using the -WD option for any variable, the -WC option
for configuration variable DCONFIG, and the -t option to implicitly set
configuration variables DTARGET, DOBJECT, DFP, and DENVIRON.

* In configuration files using assignment statements.

These are in order of precedence from lowest to highest: a variable defined on the
command line overrides an environment variable of the same name, and a variable
setin a configuration overrides both a command line and an environment variable
of the same name. (Thus, in a configuration file, it is usual to test whether a variable
has a value before assigning it a default value — see examples below.)

582

A Configuration Files

A.2 How Commands, Environment Variables, and Configuration Files Relate

A.2.2 Startup

Figure A-1

Here is how each tool processes the command line and configuration files at
startup.

NOTE: Order is important. If a variable is given a value, or an option appears more
than once, the final instance is taken unless noted otherwise.

The tool scans the command line for an -@ option followed by the name of
either an environment variable or a file, and replaces the option with the
contents of the variable or file.

The tool scans the command line for each -WD variable=value option. If a
variable matches an existing environment variable, the new value effectively
replaces the existing value for the duration of the command (the operating
system environment is not changed).

The option -WC config-file-name is equivalent to
-WDDCONFIG=config-file-name. Thus, if both -WC and -WDDCONFIG options
are present, the config-file-name will be taken from the final instance, and if
either is present, they will override any DCONFIG environment variable.

The tool finds the main configuration file by checking first for a value of
variable DCONFIG, and then if that is not set, looking in the standard location
as given in Table A-1. The tool parses each statement in the configuration file
as described in the following subsections.

After parsing the configuration file, the tool processes each of the input files on
the command line using the options set by command-line and
configuration-file processing.

Figure A-1 below, provides a simplified example of how the above works.

The remainder of this chapter provides additional details and examples and
explains each of the statements allowed in a configuration file.

Example of Command-Line and Configuration-File Processing

Situation

An engineer works on Project 1 and normally uses target1 with standard optimization (-O
option). Now the engineer has a target2 prototype and wants to use extended optimization

(-X0).

Environment variables (set using operating system commands not shown)

583

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Figure A-1 Example of Command-Line and Configuration-File Processing (cont'd)

DFLAGS: -0 As described in 2.3.1 Environment Variables
Recognized by the Compiler, p.16, DFLAGS
is a convenient way to give options with an
environment variable.

Command line The command line is used to select the special
dec -ttarget? -X0 testl.c processor target2 and extended optimization.
Excerpts from configuration file dtools.conf If the target had not been set on the command

if (1SDTARGET) DTARGETfargetl line or elsewhere, it would default to target1.

SDFLAGS $DFLAGS evaluates to -O. $* is a special variable

5 evaluating to all of the command-line
arguments. The -XO option from the command
line overrides the related -O option from the
DFLAGS environment variable.

A.3 Standard Configuration Files

Wind River recommends the use of three configuration files in a hierarchy.
Standard versions of two of the files, dtools.conf and default.conf are shipped
with the tools.

The tool identifies the main configuration file using the DCONFIG variable as
described in A.2.2 Startup, p.583. If DCONFIG is not set, it then looks for the file
dtools.conf. Its standard location is the conf subdirectory of the directory holding
the selected version of the tools as shown in the following table (see also Table 2-1).

Table A-1 Main Configuration File: Standard Name and Location

System Path and Name
UNIX lusr/lib/diab/version/conf/dtools.conf

Windows 95,98, and NT c:\diab\version\conf\dtools.conf

584

A Configuration Files
A.3 Standard Configuration Files

The standard location of the main configuration file can be changed by setting the
DCONFIG environment variable, by using the -WC option, or by using the
-WDDCONFIG option.

The standard dtools file is structured broadly as shown in Figure A-2 on the next
page dtools shows how the compiler combines the various environment variables
and command-line options. dtools also serves as an example of how to write the

configuration language.

Avoid altering dtools. Instead, set defaults and specific options by using the -t
option on the command line to set DTARGET, DOBJECT, DFP, and DENVIRON (see
4.1 Selecting a Target, p.23), or otherwise modifying default.conf, and/or by
providing your own user.conf.

As shown in Figure 4-b, the dtools configuration file includes default.conf and
then user.conf near the beginning. These files must be located in the same
directory as dtools.conf (no path is allowed on include statements in configuration
files). If you want a private copy of these files, copy all the configuration files to a
local directory and change the location of dtools.conf as described at the beginning
of this section.

No error is reported if an include statement names a non-existent file; therefore,
both files are optional.

A.3.1 DENVIRON Configuration Variable

Configuration variable DENVIRON is set in default.conf and may be overridden
by setting an environment variable of the same name or by providing a -ttof:environ
option on the command line executing dcc, dplus, das, or dld.

As shown in Figure A-2, if a file named $DENVIRON.conf exists in the conf
subdirectory, it will be included by dtools.conf. The tools are delivered with
several such “environment” .conf files. These are used to set options as required
for several different target operating systems support by Wind River.

The DENVIRON configuration variable also controls the default search path use by
the linker to find libraries. See the environ entry in the Table 4-1 and the section
4.2 Selected Startup Module and Libraries, p.27 for details.

585

Wind River Compiler for 68K/CPU32

User’s Guide, 5.4

Figure A-2 Standard dtools.conf Configuration File - Simplified Structure

Variables and assignments used to customize selection and operation of the tools.

include
default.conf

include
user.conf

Read the second of the two configuration files included with the
tools. This file records the target configuration in variables
DTARGET, DOBJECT, and DFP, and DENVIRON, and is updated
automatically during installation or by dctrl -t.

ASCII file to be created by the user to set, for example, default
-X options and optimizations, additional default include files and
libraries, default preprocessor macros, etc.

Switch and other statements using DTARGET, DOBJECT, and DFP to set options and flags,
especially with respect to different targets. Also selection of tools if not customized above.

include
SDENVIRON.conf

dcc, dplus section
SUFLAGS1

SDFLAGS

$~k

SUFLAGS2

das section

SUAFLAGS1
&*
SUAFLAGS2

dld section

SULFLAGS1
g*
SULFLAGS2

This optional file sets options for a specific target operating system.
See A.3.1 DENVIRON Configuration Variable, p.585.

Standard options to be used unless overridden by $UFLAGS2. To be
set by the user in the user.conf configuration file.

As described in 2.3.1 Environment Variables Recognized by the Compiler,
p-16, SDFLAGS is a convenient way to set an environment variable
for widely used options. Because it follows $UFLAGS1, an option in
$DFLAGS will override the same option in §UFLAGS1.

All arguments from the command line (-t, -WD, and -WC options are
not re-processed). Options here will override the same options in
both $UFLAGS1 and $DFLAGS.

Overrides for $UFLAGS1, $DFLAGS, and the command line. To be set
by the user in the user.conf configuration file.

$UAFLAGS1 and $UAFLAGS?2 can be set in user.conf to provide
options for the assembler when it is executed explicitly, with
$UFLAGSI1 options processed before command-line options and
$UFLAGS2 options processed after.

And similarly, SULFLAGS1 and $ULFLAGS2 can be set in user.conf to
set options for the linker when it is executed explicitly.

586

A Configuration Files
A.3 Standard Configuration Files

A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables

Configuration file processing gives you several ways to provide options. The
standard configuration files shipped with the tools are intended to be used as
follows:

UFLAGS1 and UFLAGS?2 are intended for compiler options that should
“always” be used. It is intended that UFLAGS1 and UFLAGS?2 be set in a local
configuration file, user.conf, that you supply. Since you will not want to
change this frequently, options set there will be “permanent” unless
overridden.

As shown in Figure A-2 above, UFLAGS1 is expanded before command-line
options and files, and UFLAGS2 after command-line options.

Example: to make sure that the lint facility is always on and that the compiler
checks for prototypes, create a user.conf with the following lines:

File: user.conf

Always perform lint + check for prototypes. (Note: as
assignment, quotes are required with embedded spaces.)
UFLAGS1="-Xlint -Xforce-prototypes"

NOTE: Variables are referenced with a “$”, e.g., $UFLAGS1 as shown in
Figure A-2, but are written without a “$” when being set by an assignment
statement.

If there is a site-wide user.conf, the tools administrator can make sure that any
user using it will not require too much memory by adding the following to
user.conf:

Limit memory for optimization.

UFLAGS2=-Xparse-size=1000

DFLAGS is intended to be an environment variable for options that change
more frequently than those in the configuration files, but not with every
compile. For example, it may be conveniently used to select levels for
optimization and debugging information.

DFLAGS applies only to explicit execution of dec and dplus, not to explicit
execution of das or dld. However, some options are passed by dcc and dplus
to the assembler or linker, e.g., the -L or -Y P options to specify a library search
directory for the linker, or the -Wa,arguments or -W1,arquments options to pass
arguments to the assembler or linker. If DFLAGS includes such options, they
will be passed along as usual.

587

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

» Options for a specific compilation are given on the command line. These
override any options set with UFLAGS1, DFLAGS, but not UFLAGS2 since
UFLAGS?2 occurs after $* in dtools.conf.

NOTE: UFLAGS1 and UFLAGS2 (and UAFLAGS1, UAFLAGS2, ULFLAGS],
ULFLAGS2) cannot be overridden by environment variables of the same name.
This is because they are reset to empty strings at the beginning of dtools.conf
before being read from user.conf. This is in contrast to DFLAGS which is not so
reset and can therefore be an environment variable.

A.3.3 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2 Configuration Variables

Similar to the way UFLAGS1 and UFLAGS?2 are intended to provide “permanent”
options to be processed before and after command-line options for the compiler,
UAFLAGS1 and UAFLAGS2 provide before-and-after options for the assembler and
ULFLAGS1 and ULFLAGS2 provide before-and-after options for the linker.

As with UFLAGS1 and UFLAGS?2, it is expected that these options will be assigned
values in a user-supplied user.conf configuration file, and because they are reset to
the empty string at the beginning of dtools.conf they cannot be set as environment
variables. See Figure A-2 for additional details.

A.4 The Configuration Language

As noted above, the ultimate purpose and effect of configuration file processing is
to provide values for options. The simplest type of configuration file is an ordinary
text file containing multiple lines where each line sets a single option.

Beyond this, a straight-forward configuration language allows greater control over
configuration file processing, so that different options and their values may be set
depending on options present on the command line, on environment variables,
and on variables defined by the user within a configuration file or a file included
by a configuration file.

The remainder of this section describes the configuration language and ends with
an extended example.

588

A Configuration Files
A.4 The Configuration Language

A.4.1 Statements and Options

A configuration file consists of a sequence of statements and options separated by
whitespace. A # token at any point on a line not in a quoted string introduces a
comment; the rest of the line is ignored. Thus, a line may contain multiple
statements and options ending in a comment.

A statement is either an assignment statement or starts with one of the keywords
error, exit, include, if (and else), print, or switch (and case, break, and endsw).

In general, it is preferable to write one statement or option per line. This makes a
configuration file easier to understand and modify. An exception to this rule is
made for lines containing an if or else statement, each of which governs the
remaining statements and options on a line as described below.

Whitespace, consisting of spaces or tabs, may be used freely between statements
and/or options for readability. Blank lines are ignored.

A line may not be continued to a second line, but there is no practical limit on the
length of a line except that which may be imposed by an operating system or text
editor.

Any text which is not a statement or comment per the above is taken as options. In
general, options have one of four forms, each introduced by a single character
option letter x:

-X

-X name

-x value
-x name=value

Either the name or the value may a quoted or unquoted string of characters as
allowed by a particular option, and either may include variables introduced by a
“$” character (see A.4.4 Variables, p.590 below). Examples:

-0

-X0 "O" is a name

-0 test.out "test.out" is a value
-Xlocal-data-area=0

-I$HOME/include "$SHOME" is a variable

A.4.2 Comments

A #token at any point on a line not in a quoted string introduces a comment — the
rest of the line is ignored. Examples:

.......... # This is a comment through the end of the line.
not_a_comment = "# This is an assignment, not a comment"

589

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

A.4.3 String Constants

A string constant is any sequence of characters ending in whitespace (spaces and
tabs) or at end-of-line. To include whitespace in a string constant, enclose the entire
constant in double quotes. Also, a string may include a variable prefixed with a “$”
character.

There is no practical length limit except that imposed by the maximum length of a
line. Examples:
Simple_string_constant

"string constant with embedded spaces"
"$XFLAGS -Xanother-X-flag" # SXFLAGS will be expanded

A.4.4 Variables

All variables are of type string. Variable names are any sequence of letters, digits,
and underscores, beginning with a letter or underscore (letters are “A” - “Z” and

a” - ”z”, digits are “0” - “9”). There is no practical length limit to a variable name
except that imposed by the maximum length of a line.

Variables are case sensitive.

To set a variable in a configuration file use an assignment statement. (See
A.4.5 Assignment Statement, p.591).

To evaluate a variable, that is, to use its value, precede it with a “$” character. See
A.2.1 Configuration Variables and Precedence, p.582 for a discussion of how
environment variables and variables used in configuration files relate and their
precedence.

Variables are not declared. A variable which has not been set evaluates to a
zero-length string equivalent to ” .

The special variable $* evaluates to all arguments given on the command line.
(However -WC and -WD arguments have already been processed and are
effectively ignored.) See examples below and also Figure A-2.

The special variable $-x, where x is one or more characters, evaluates to any user
specified option starting with x, if given previously (on the command line or in the
configuration file). Otherwise it evaluates to the zero-length string. If more than
one option begins with x, only the first is used.

For example, if the command line includes option -Dtest=level9, then $-Dtest
evaluates to -Dtest-level9.

590

A Configuration Files
A.4 The Configuration Language

The special variable $$ is replaced by a dollar sign “$”.

The special variable $/ is replaced by the directory separation character on the host
system: “/” on UNIX and “\” on Windows. (On any specific system, you can just
use the appropriate character. Wind River uses “$/” for portability.)

Examples: assume that the environment variable DFLAGS is set to “-XO”, and that

the following command is given:

dcc -Dlevel99 -g2 -O -WDDFP=soft file.c

The following table shows examples of how variables are set given these

assumptions.

Table A-2 Variable Evaluation in Configuration Files

Variable Evaluates To

Comment (see assumptions above)

$DFLAGS “-XO”

$DFP “soft”

$-WDFP “-WDDFP=soft”

$-Dlevel “-Dlevel99”
$* “-Dlevel99 ...
file.c”

Environment variable.

Value is as if -WD set the DFP configuration
variable (see 5.3.26 Define Configuration
Variable (-W Dname=value), p.46).

In the form $-x, x is the entire WD option.

In the form $-x, x need match only the
beginning of an option.

Evaluates to the entire command minus the
initial dcc.

A.4.5 Assignment Statement

The assignment statement assigns a string to a variable. Its form is:

varigble = [string-constant]

As noted above, a string-constant may include a variable — see the last example.

Examples:

DLIBS=

XLIB=$SHOME/lib
YFLAGS="S$XFLAGS -X12"
if (...) PF=-p GF=-g

SXFLAGS="$XFLAGS -Xanother-flag"

Set to empty string.

Variable XLIB is set.

Use "" for spaces in a string.
Two on one line (see i1f below).
Inner $XFLAGS will be expanded.

591

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

A.4.6 Error Statement

The error statement terminates configuration file processing with an error. See the
switch statement for an example.

A.4.7 Exit Statement

The exit statement stops configuration file processing. This is useful, for example,
in an header file that specifies all compiler options, but does not want the compiler
to continue the parsing in default.conf and dtools.conf.

A.4.8 If Statement

The if statement provides for conditional branching in a configuration file. There
are two forms:

if (expression) statements and/or options
and

if (expression) statements and/oxr options

else statements and/or options
If expression is true, the rest of the same line is interpreted and, if the next line
begins with else, the remainder of that line is ignored. If expression is false, the
remainder of the line is skipped, and, if the next line begins with else, the
remainder of that line is interpreted. Blank lines are not allowed between if and
else lines.

expression is one of:

string true if string is non-zero length

Istring true if string is zero length

stringl == string2 true if stringl is equal to string2

stringl != string2 true if stringl is not equal to string2
Note that because any statement can follow else, one may write a sequence of the
form

if

else if

else if

else

592

A Configuration Files
A.4 The Configuration Language

Examples:
if (!$LIB) LIB=/usr/lib # 1f LIB s not defined, set it
if (SOPT == yes) -0 # option -0 if OPT is "yes"
else -g # else option -g

A.4.9 Include Statement

The include permits nesting of configuration files. Its form is:
include file

The contents of file file are parsed as if inserted in place of the include statement.
The file must be located in the same directory as the main configuration file since
no path is allowed in include statements. (See A.3 Standard Configuration Files,
p-584.)

If the given file does not exist, the statement is ignored. Example:

include user.con

A.4.10 Print Statement

The print statement outputs a string to the terminal. Its form is:
print string
Example:

if (!$DTARGET) print "Error: DTARGET not set"

A.4.11 Switch Statement

The switch provides for multi-way branching based on patterns. It has the form:

switch (string)
case patternl:

break
case pattern-n:

endsw

593

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

where each pattern is any string, which can contain the special tokens “?”
(matching any one character), “*” (matching any string of characters, including the
empty string) and “[* (matching any of the characters listed up to the next “]”).
When a switch statement is encountered, the case statements are searched in order
to find a pattern that matches the string. If such a pattern is found, interpretation
continues at that point. If no match is found, interpretation continues after the
endsw statement. If more than one pattern matches the string, the first will be used.

If a break statement is found within the case being interpreted, interpretation
continues after endsw. If no break is present at the end of a case, interpretation falls
through to the next case.

Example:
switch (SDTARGET)
case CHIP*: # any DTARGET beginning withCHIP
break
case *: # any other DTARGET

print Error: DTARGET not set"
error
endsw

594

Compatibility Modes: ANSI,
PCC, and K&R C

Table B-1

NOTE: This section relates to C, not C++. Of the options listed in Table B-1, only
-Xdialect-strict-ansi (equivalent to -Xstrict-ansi) affects the C++ compiler.

The Wind River compiler supports various standards, including full ANSI C89,
partial ANSI C99, and full ANSI C++. Many existing C programs are coded in
accordance with slightly varying standards. To ease porting of these programs, C
modules can be compiled in four different modes as selected by an option from the

following table:

Compatibility Mode Options for C Programs

Mode Option Meaning

C89 -Xdialect-c89 Conform to the ISO/IEC 9899:1990 standard
for C.

C99 -Xdialect-c99 Conform to the ISO/IEC 9899:1999 standard
for C. NOTE: Only a subset of this standard
is supported.

ANSI -Xdialect-ansi Conform to ANSI X3.159-1989 with some

additions as shown in the table below.

Strict ANSI -Xdialect-strict-ansi

Conform strictly to the ANSI X3.159-1989
standard. Equivalent to -Xstrict-ansi.

595

Table B-1

Table B-2

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Compatibility Mode Options for C Programs (contd)

Mode Option Meaning

K&R -Xdialect-k-and-r Conform to the pre-ANSI “standard”
defined in The C Programming Language by
Kernighan and Ritchie, with most ANSI
extensions activated.

PCC -Xdialect-pcc Emulate the behavior of System V.3 UNIX
compilers.

The following table describes the differences among these modes. If not otherwise

“u_ 1 “u_ 17

noted, “y” means “yes” and “n” means “no”.

Features of Compatibility Modes for C Programs

Strict
Functionality K&R ANSI ANSI PCC
long float is same as double. y n n y

The long long type is defined; but a warning (w) is y y w y
generated when long long is used.

The asm keyword is defined. y y n y
The volatile, const, and signed keywords are y y y n
defined.

“Double underscore” keywords (e.g. __inline__and y y n y

__attribute__) are defined.

The type of a hexadecimal constant >= 0x80000000 is i u u i
unsigned int (u) or int (i).

In ANSI it is legal to initialize automatic arrays, s s s w
structures, and unions. The compiler always accepts
this and is either silent (s) or gives a warning (w).

A scalar type can be cast explicitly to a structure or w w n w
union type, if the sizes of the types are the same. Such
typecasts generate a warning (w).

596

Table B-2

B Compatibility Modes: ANSI, PCC, and K&R C

Features of Compatibility Modes for C Programs (cont'd)

Functionality

K&R ANSI

Strict
ANSI

PCC

When two integers are mixed in an expression, they
cause conversions and the result type is either
“unsigned wins” (u) or “smallest possible wins” (s).
Example:

((unsigned char)l > -1)

which is 0 if (u) and 1 if (s).

u

S

S

u

When a bit-field is promoted to a larger integral type,
sign is always preserved.

When prototypes are used and the arguments do not
match an error (e) or warning (w) is generated.

Float expressions are computed in float (f) or double

@).

When an array is declared without a dimension in an
invalid context an error (e) or warning (w) is
generated.

When an array is declared with a zero dimension,
generates a warning.

Incompletely braced structure and array initializers
can either be parsed top-down (t) or bottom-up (b).
May be controlled by the -Xbottom-up-init option
(5.4.19 Parse Initial Values Bottom-up
(-Xbottom-up-init), p.68).

When pointers and integers are mismatched,
generates an error (e) or a warning (w). May be
controlled by the -Xmismatch-warning
(5.4.101 Warn On Type and Argument Mismatch
(-Xmismatch-warning), p.104).

Trigraphs, e.g. “??” sequences, are recognized.

597

Table B-2

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Features of Compatibility Modes for C Programs (cont'd)

Strict

Functionality K&R ANSI ANSI PCC
Illegal structure references generate either an error e e e w
(e) or a warning (w). If more than one defined
structure contains a member, an error is always
generated. Example:

int *p; p->m = 1;
p is both a pointer to an int and a pointer to a
structure containing member m. This is likely an
error.
Comments are replaced by nothing (n) or a space (s). n S S n
Macro arguments are replaced in strings and y n n y
character constants. Example:

#define x(a) if (a) printf("a\n");
The “a” in the printf string will be replaced only for
K&R and PCC.
A missing parameter name after a # in a macro n n y n
declaration generates an error.
Characters after an #endif directive will generate a n n y n
warning.
Preprocessor errors are either errors (e) or warnings e e e w
(w).
Preprocessor recognizes vararg macros. (Not y y y n
available with -Xpreprocessor-old option.)
__STDC__macro is predefined to (0), (1) or is not n 0 1 n
predefined (n).
__STDC__macro can be undefined with #undef. n
__STRICT_ANSI__ macro is predefined. n n y n
Spaces are legal before cpp #-directives. n y y n

598

B Compatibility Modes: ANSI, PCC, and K&R C

Table B-2 Features of Compatibility Modes for C Programs (cont'd)

Strict
Functionality K&R ANSI ANSI PCC
Parameters redeclared in the outer most level of a w e e w
function will generate an error (e) or warning (w).
If the function setjmp() is used in a function, r r r s
variables without the register attribute will be forced
to the stack (s) or can be allocated to registers (r).
C++ comments “//” are recognized in C files. y y n y
Predefined macros without leading underscores, y y n y
e.g., unix, are available.
The following construct, in which a newly defined n n n y

type is used to declare a parameter, is legal:

f(i) typedef int i4; i4 i; {}

599

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

600

Compiler Limits

The C and C++ compiler limits usually relate to the size of internal data structures.
Most internal data structures are dynamically allocated and are therefore limited
only by total available virtual memory.

The following shows the minimum limits required by Section 2.2.4.1 of the ANSI

X3.159-1989 C standard. The Wind River Compiler meets or exceeds these limits in
all cases. When not limited by available memory (effectively unlimited), the C and
C++ limit is shown in parentheses. “No limit” is shown in some cases for emphasis.

15 nesting levels of compound statements, iteration control, and selection
control structures

8 nesting levels for #include directives (Wind River: 100)
8 nesting levels of conditional inclusion

12 pointer, array, and function declarators modifying a basic type in a
declaration

127 expressions nested by parentheses

31 initial characters are significant in an internal identifier or a macro name
(Wind River: no limit)

6 significant initial characters in an external identifier (Wind River: no limit)
511 external identifiers in one source file (Wind River: no limit)

127 identifiers with block scope in one block

1,024 macro identifiers simultaneously defined in one source file

31 parameters in one function definition and call

601

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

» 31 parameters in one macro definition and invocation
= 509 characters in a logical source line

= 509 characters in a string literal (after concatenation)

= 32,767 bytes in an object

= 255 case labels in a switch statement

The length of a symbol output by the compiler is limited to approximately 8,000
characters. In C++ projects with complex hierarchies, it is possible, though
unlikely, that mangled names will run up against this limit, resulting in assembler
errors, linker errors, or unexpected runtime behavior (when the wrong function or
variable is accessed).

Memory is dynamically allocated as required, and is a function of:

= The size of the largest function in the source file. The size is measured in
number of expression nodes, where each operand and operator generate one
node in addition to several nodes per function. After code generation, the
memory used by a function is reused.

» Optimization level. Some optimizations use a large amount of memory.
Reaching analysis uses memory proportional to the number of basic blocks
multiplied by the number of variables used in the function.

» Large initialized arrays.

In addition, the number of KBytes the compiler is allowed to use to delay code
generation in order to perform interprocedural optimizations is limited internally.
The default value is 3000KB with -O and 6MB with -XO. It can be changed with
option -Xparse-size (see 5.4.108 Specify Optimization Buffer Size (-Xparse-size),
p-107).

The compiler does not generate correct debug information if there are more than
1023 included files.

602

Compiler Implementation
Defined Behavior

D.1 Introduction 603

D.2 Translation 604

D.3 Environment 606
D.4 Library functions 607

D.1 Introduction

The ANSI C standard X3.159-1989 leaves certain aspects of a C implementation to
the tools vendor. This appendix describes how Wind River has implemented these
details. Note that there are differences between C and C++; this appendix
addresses C only.

NOTE: This chapter contains material applicable to execution environments
supporting file I/O and other operating system functions. Much of it therefore
depends on the operating system present, if any, and may not be relevant in an
embedded environment.

603

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

D.2 Translation

Diagnostics

See H. Messages.

Identifiers

There are no limitations on the number of significant characters in an identifier.
The case of identifiers is preserved.

Characters

ASClI is the character set for both source and for generated code (constants, library
routines).

There are no shift states for multi-byte characters.
A character consists of eight bits.

Each character in the source character set is mapped to the same character in the
execution set.

There may be up to four characters in a character constant. The internal
representation of a character constant with more than one character is constructed
as follows: as each character is read, the current value of the constant is multiplied
by 256 and the value of the character is added to the result. Example:

'abc' == (('a'*256)+'b"')*256+'c’

By default, wide characters are implemented as long integers (32 bits). See also
5.4.158 Define Type for wchar (-Xwchar=n), p.126.

Unless specified by the use of the -Xchar-signed or -Xchar-unsigned options
(5.4.25 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.70), the
treatment of plain char as a signed char or an unsigned char is as defined in
Table 8-1.

Integers

Integers are represented in two’s-complement binary form. The properties of the
different integer types are defined in 8.1 Basic Data Types, p.177.

Bitwise operations on signed integers treat both operands as if they were unsigned,
but treat the result as signed.

The sign of the remainder on integer division is the same as that of the divisor on
all supported processors.

604

D Compiler Implementation Defined Behavior
D.2 Translation

Right shifting a negative integer divides it by the corresponding power of 2, with
an odd integer rounded down. In the binary representation (on all supported
processors), the sign bit is propagated to the right as bits are dropped from the
right end of the number.

Floating Point

The floating point types use the IEEE 754-1985 floating point format on all
supported processors. The properties of the different floating point types are
defined in 8.1 Basic Data Types, p.177.

The default rounding mode is “round to nearest”.

Arrays and Pointers

The maximum number of elements in an array is equal to (UINT_MAX-
4)/sizeof(element-type). For UINT_MAX, see limits.h.

Pointers are implemented as 32 bit entities. A cast of a pointer to an int or long, and
vice versa, is a bitwise copy and will preserve the value.

The type required to hold the difference between two pointers, ptrdiff_t, is int (this
is sufficient to avoid overflow).
Registers

Alllocal variables of any basic type, declared with or without the register storage
class can be placed in registers. struct and union members can also be put in
registers.

Variables explicitly marked as having the auto storage class are allocated on the
stack.
Structures, Unions, Enumerations, and Bit-fields

If a member of a union is accessed using a member of a different type, the value
will be the bitwise copy of original value, treated as the new type.

See pages 177 to 181 for more information about the implementation of structures
and unions, bit-fields, and enumerations.

Qualifiers

Volatile objects are treated as ordinary objects, with the exception that all read /
write / read-modify-write accesses are performed prior to the next sequence-point
as defined by ANSIL.

605

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Declarators

There is no limit to how many pointer, array, and function declarators are able to
modify a type.

Statements

There is no limit to the number of case labels in a switch statement.

Preprocessing Directives

Single-character constants in #if directives have the same value as the same
character constant in the execution character set. These characters can be negative.

Header files are searched for in the order described for the -I command-line option
(see Set Header Files Directory (-1 path), p.302). The name of the included file is
passed to the operating system (after truncation if necessary to conform to
operating system limits).

The #pragma directives supported are described in 6.3 Pragmas, p.137.

The preprocessor treats a pathname beginning with “/”, “\”, and a “driver letter”
(c:) as an absolute pathname. All other pathnames are taken as relative.

D.3 Environment

The function called at startup is called main(). It can be defined in three different
ways:

» With no arguments:
int main(void) {...}

» With two arguments, where the first argument (argc) has a value equal to the
number of program parameters plus one. Program parameters are taken from
the command line and are passed untransformed to main() in the second
argument argvl[], which is a pointer to a null-terminated array of pointers to
the parameters. argv[0] is the program name. argv[argc] contains the null
pointer

int main(int argc, char *argvu) {...}

606

D Compiler Implementation Defined Behavior
D.4 Library functions

» With three arguments, where argc and argv are as defined above. The
argument env is a pointer to a null-terminated array of pointers to
environment variables. These environment variables can be accessed with the
getenv() function

int main(int argc, char *argv([], char *env[]) {...}

D.4 Library functions

Table D-1

The NULL macro is defined as 0.

The assert function, when the expression is false, will write the following message
on standard error output and call the abort function:

Assertion failed: expression, file file, line-number

The ctype functions test for the following characters:

ctype Functions

Function Decimal ASCII Value and Character

isalnum 65-90 (“A”-"Z2") 97-122 (“a”-"z”) 48-57 (“0”-"9”)
isalpha 65-90 (“A”-"Z2") 97-122 (“a”-"z")

iscntr 10-31

isdigit 48-57 (“07-"97)

isgraph 33-126

islower 97-122 (“a”-"z")

isprint 32-126

ispunct 33-47 58-64 91-96 123-126

isspace 9-13 (TAB,NL, VT, FE, CR) 32 (")

isupper 65-90 (“A”-"Z2")

isxdigit 48-57 (“07-"9”) 65-70 (“A”-"F”) 97-102 (“a”-"f")

607

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

The mathematics functions do not set errno to ERANGE on undervalue errors.

The first argument is returned and errno is set if the function fmod has a second
argument of zero.

Information about available signals can be found in the target operating system
documentation.

The last line of a text stream need not contain a new-line character.
All space characters written to a text stream appear when read in.
No null characters are appended to text streams.

A stream opened with append (“a”) mode is positioned at the end of the file unless
the update flag (“+”) is specified, in which case it is positioned at the beginning of
the file.

A write on a text stream does not truncate the file beyond that point.

The libraries support three buffering schemes: unbuffered streams, fully buffered
streams, and line buffered streams. See function setbuf(), p.556 and setvbuf(), p.558
for details.

Zero-length files exist.

The rules for composing valid filenames can be found in the documentation of the
target operating system.

The same file can be opened multiple times.

If the remove function is applied on an opened file, it will be deleted after it is
closed.

If the new file already exists in a call to rename, that file is removed.
The %p conversion in fprintf behaves like the %X conversion.

The %p conversion in fscanf behaves like the %x conversion.
i

The character in the scanlist for “%[” conversion in the fscanf function denotes
a range of characters.

On failure, the functions fgetpos and ftell set errno to the following values:

EBADF if file is not an open file descriptor.
ESPIPE if file is a pipe or FIFO.

The messages are generated by the perror and strerror functions may be found in
file errno.h in the sys subdirectory of the include subdirectory (see Table 2-2 for
the location of include).

608

D Compiler Implementation Defined Behavior
D.4 Library functions

The memory allocation functions calloc, malloc, and realloc return NULL if the
size requested is zero. The function abort flushes and closes any open file(s).

Any status returned by the function exit other than EXIT_SUCCESS indicates a
failure.

The set of environment variables defined is dependent upon which variables the
system and the user have provided. See 15.11 Target Program Arguments,
Environment Variables, and Predefined Files, p.292. These variables can also be
defined with the setenv function.

The system function executes the supplied string as if it were given from the
command line.

The local time zone and the Daylight Saving Time are defined by the target
operating system.

The function clock returns the amount of CPU time used since the first call to the
function clock if supported.

609

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

610

Assembler Coding Notes

E.1 Instruction Mnemonics 611

E.2 Operand Addressing Modes 613

This chapter describes the conventions used in the assembler to specify instruction
mnemonics and addressing modes.

E.1 Instruction Mnemonics

The instruction mnemonics used by the assembler are described in the M68000
Family Programmer’s Reference Manual and the MC680x0 Microprocessor User’s
Manuals with a few variations described below.

Most of the 68K/CPU32 instructions can apply to byte, word, or long operands;
thus the normal instruction mnemonic is suffixed with b, w or 1 to indicate which
operand length that was intended. For example, there are three mnemonics for the
tst instruction: tst.b, tst.w and tst.l.

NOTE: The “.” preceding the operand length field is optional. Thus, the tst
instructions can be written as tstb, tstw, and tstl.

611

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

When using the bcc, bra, and bsr instructions without a size, the assembler will
produce the shortest form it can. This may be an 8, 16, or, depending on processor
type, a 32 bit address relative to the program counter (PC). If the processor type
does not support the 32 bit PC-relative branch instruction an error will be
generated.

With the option -Xbra-is-jra on (306), the assembler will generate an absolute jump
instead of generating an error. Absolute address is implemented for conditional
branches by inverting the sense of the condition and branching around a 32 bit jmp
or jsr instruction. As an alternative, the instructions bec, bra and bsr can be
replaced with jec, jra (or jbra), and jsr, respectively to get this behavior on selected
instructions, without specifying the -Xbra-is-jra option.

The following table summarizes the additional instruction conventions accepted
by the assembler:

Description Examples
move instruction without ending “e”. mov.b
movl
fmove instruction without ending “e”. fmov. s
fmovd
cmpm without ending “m”. cmp.1 (a0)+, (al)+
address register instructions (e.g. adda) add.l do0,a0
" cmp . 1 do ’ a0

without ending “a”. move.1 d0. a0

subl do, a0

Immediate instructions (e.g. addi) without add.l #10,d0
. “2rr and.l #OX80,dO
endlng L. cmp. 1 #10,a0
eor.1l #0xff,do
orl #0xEE,do

subl do, a0

No dot “.” necessary to indicate moveb dl,do0

: : : movw d2,ds3
instruction size. cmpl 410, a4

Branches without a size are optimized to bra label
use shortest possible size. The branch will still lb:’rsli izgi
be PC-relative unless the -Xbra-is-jra option is

used.

Byte size branches (bra.b) can use the “.s” bra.s label

(short) suffix.

612

E Assembler Coding Notes
E.2 Operand Addressing Modes

Description Examples
Optimized jump instructions selects the jra label
shortest possible PC-relative or absolute ﬁza %22;1
branch. jbsr func

E.2 Operand Addressing Modes

E.2.1 Registers

This section specifies the valid names for registers. See 9.6 Register Use, p.194 for

details on register use.

Register names can be given in either lowercase or uppercase. Beyond the usual

Motorola (Freescale) register names, the following register names are accepted:

Table E-1 Special Registers

Name Description

sp Same as a7

fp Same as a6

zpc Suppressed pc register (can be used in complex addressing modes)
za0-za7 Suppressed address register

zd0-zd7 Suppressed data register

E.2.2 Expressions

The effective addressing modes specify the operand(s) of an instruction. For
details of the effective addressing modes see the manufacturer’s manuals cited

613

Table E-2

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

above. Note that not all instructions allow all addressing modes. Details are given
in the manuals.

Many of the effective address modes have other names by which they may be more
commonly known. These names appear to the right of the Motorola (Freescale)
name in parentheses.

The following table describes with examples how the various addressing modes
are specified depending on the mnemonics type selected.

Addressing Mode Examples

Addressing Mode Embedded MIT
Data Register Direct do do
Address Register Direct a0 a0
Address Register Indirect (indirect) (a0) a0@
Address Register Indirect with (a0)+ a0l@+
Postincrement (autoincrement)

Address Register Indirect with -(a0) a0@-
Predecrement (autodecrement)

Address Register Indirect with (12,a0) a0@12
displacement (16 bit indexed). 12(a0) a5@uar:w

See Notes 1 and 2. (var).w(a5)

(var@sda).w(a5)

Address Register Indirect with (12,a0,d1) a0d@(12,d1)
index (double indexed with 8 bit (a0,d1) a0(d1)
offset). 12(a0,d1) a0(12,d1:w:4)
See Note 3. (12,20,d1.w*4)
Absolute Short (label).w label:w
Absolute Long label label

(label).1 label:1
Immediate Data #17 #17

#oar #oar

614

Table E-2

E Assembler Coding Notes
E.2 Operand Addressing Modes

Addressing Mode Examples (cont'd)

Addressing Mode Embedded MIT
Program Counter Indirect with (12,pc) pc@12
displacement (16 bit indexed) 12(pc) pc@uar:w
(var).w(pc)
Program Counter Indirect with (12,pc,d1) pc@(12,d1)
index (double indexed with 8 bit (pc,d1) pe(d1)
offset) 12(pc,d1) pc(12,d1:w:4)
(12,pc,d1.w*4)
Memory Indirect Postindexed ([4,a0],d1*4,8) a0@(4)@(8,d1:4)
Memory Indirect Preindexed ([4,a0,d1*4],8) a0@(4,d1:4)@(8)
PC Memory Indirect Postindexed ([4,pcl,d1%*4,8) pc@(4)@(8,d1:4)
PC Memory Indirect Preindexed ([4,pc,d1*4],8) pc@(4,d1:4)@(8)
Notes:

1. (var).w(a5): the size of the expression or the value of the constant used in an
addressing mode will determine which format to use. The assembler will use
the shortest format possible. If the value of the expression is unknown (i.e.
refers to relocatable label), the assembler will use the longest format possible.
The size of an expression can be forced by suffixing it with a .w/.1 (Embedded

mnemonics) or a :w/:1 (MIT mnemonics). Note that since the period (“.”) can
be used in a label identifier, parentheses must be used, that is, (label).w.

2. There are no limits on the complexity of an expression as long as all the
operands are constants. When a label is used in the expression, the assembler
will generate a relocation entry so that the linker can patch the instruction with
the correct address. See F. Object and Executable File Formats for a complete list
of accepted expressions and their corresponding relocation types.

3. The size and scale of the index register is optional. The default size is 1 (long)
and the default scale is 1.

See Table F-4 for a complete list of relocation types.

615

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

616

Object and Executable File
Formats

F1 Executable and Linking Format (ELF) 617
F2 Common Object File Format (COFF) 628

F.1 Executable and Linking Format (ELF)

This section describes the Executable and Linking Format (ELF). The form
NAME(n) means that the symbolic value NAME has the value shown in the
parentheses.

F.1.1 Overall Structure

The ELF Object Format is used both for object files (.0 extension) and executable
files. Some of the information is only present in object files, some only in the
executable files.

ELF files consist of the following parts. The ELF header must be in the beginning
of the file; the other parts can come in any order (the ELF header gives offsets to
the other parts).

ELF header
General information; always present.

617

User’s Guide, 5.4

Program header table

Wind River Compiler for 68K/CPU32

Information about an executable file; usually only present in executables.

Section data

The actual data for a section; some sections have special meaning, i.e. the
symbol table and the string table.

Section headers

Information about the different ELF sections; one for each section.

The following figure shows a typical ELF file structure:

ELF Header

Program Header Table

Section 1 Data

Section n Data

Section Header Table

F.1.2 ELF Header

The ELF header contains general information about the object file and has the
following structure from the file elf.h (E1£32_Half is two bytes, the other types are

four bytes):

#define EI_NIDENT 16

typedef struct {

unsigned char
E1f32_Half
E1f32_Half
E1£32_Word
E1f32_Addr
E1f32_Off
E1f32_Off
E1£32_Word
E1f32_Half
E1f32_Half
E1f32_Half
E1f32_Half
E1f32_Half
E1f32_Half

618

e_ident [EI_NIDENT] ;
e_e_type;
e_machine;
e_version;
e_entry;
e_phoff;
e_shoff;
e_flags;
e_ehsize;
e_phentsize;
e_phnum;
e_shentsize;
e_shnum;
e_shstrndx;

Table F-1

ELF Header Fields

F Object and Executable File Formats
F.1 Executable and Linking Format (ELF)

Field

Description

e_ident

e_type

e_machine

e_version

e_entry

e_phoff

e_shoff

e_flags

e_ehsize

e_phentsize

e_phnum

e_shentsize

e_shnum

e_shstrndx

Sixteen byte long string with the following content:
4-byte file identification: "\x7FELF"

1-byte class: 1 for 32-bit objects

1-byte data encoding: little-endian: 1, big-endian: 2
1-byte version: 1 for current version

9-byte zero padding

The file type: relocatable: 1, executable: 2

Target architecture:

4 MC68000 and ColdFire

Object file version: set to 1.

Programs entry address.

File offset to the Program Header Table.

File offset to the Section Header Table.

Not used.

Size of the ELF Header.

Size of each entry in the Program Header Table.
Number of entries in the Program Header Table.
Size of each entry in the Section Header Table.
Number of entries in the Section Header Table.

Section Header index of the entry containing the String Table
for the section names.

619

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

F.1.3 Program Header

The program header is an array of structures, each describing a loadable segment
of an executable file. The following structure from the file elf.h describes each

entry:
typedef struct {

E1£32_Word p_type;

E1£f32_Off p_offset;
E1f32_Addr p_vaddr;
E1£f32_Addr p_paddr;
E1£f32_Word p_filesz;
E1£32_Word p_memsz;
E1£32_Word p_flags;
E1£32_Word p_align;

} E1£32_Phdr;

ELF Program Header Fields
p_type
Type of the segment; only PT_LOAD(1) is used by the linker.

p_offset
File offset where the raw data of the segment resides.

p_vaddr
Address where the segment resides when it is loaded in memory.

p_paddr
Not used.

p_filesz
Size of the segment in the file; it may be zero.

p_memsz
Size of the segment in memory; it may be zero.

p_flags
Bit mask containing a combination of the following flags:

PF_X (1) Execute
PF_W (2) Write
PF_ R @) Read

p_align
Alignment of the segment in memory and in the file.

620

F.1.4 Section Headers

Table F-2

F Object and Executable File Formats
F.1 Executable and Linking Format (ELF)

There is incitation header for each section in the ELF file, specified by the e_shnum
field in the ELF Header. Section headers have the following structure from the file

elf.h:

typedef struct {

E1£32_Word
E1£32_Word
E1£32_Word
E1f32_Addr
E1f32_Off
E1£32_Word
E1£32_Word
E1£32_Word
E1£32_Word
E1£32_Word
} E1£32_Shdr;

ELF Section Header Fields

sh_name;
sh_type;
sh_flags;
sh_addr;
sh_offset;
sh_size;
sh_link;
sh_info;
sh_addralign;
sh_entsize;

Field Description

sh_name Specifies the name of the section; it is an index into the section
header string table defined below.

sh_type Type of the section and one of the below:

SHT_NULL (0) inactive header

SHT_PROGBITS (1) code or data defined by the program

SHT_SYMTAB (2) symbol table
SHT_STRTAB (3) string table
SHT_RELA (4) relocation entries
SHT_NOBITS (8) uninitialized data

SHT_COMDAT (12) like SHT_PROGBITS except that the linker

removes duplicate SHT_COMDAT sections
having the same name and removes
unreferenced SHT_COMDAT sections (used
in C++ template instantiation — see
Templates, p.241).

621

Table F-2

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

ELF Section Header Fields (cont'd)

Field Description
sh_flags Combination of the following flags:
SHF_WRITE (1) contains writable data
SHF_ALLOC (2) contains allocated data
SHF_EXECINSTR (4) contains executable instructions
sh_addr Address of the section if the section is to be loaded into memory.
sh_offset File offset to the raw data of the section; note that the SHT_NOBITS
sections does not have any raw data since it will be initialized by the
operating system.
sh_size Size of the section; an SHT_NOBITS section may have a non-zero
size even though it does not occupy any space in the file.
sh_link Link to the index of another section header:
SHT_COMDAT section with which this section should be
combined
SHT_RELA the symbol table
SHT_NOBITS section with which this section should be
combined
SHT_PROGBITS section with which this section should be
combined
SHT_SYMTAB the string table
sh_info Contains the following information:

sh_addralign

sh _entsize

SHT_RELA the section to which the relocation applies
SHT_SYMTAB index of the first non-local symbol
Alignment requirement of the section.

Size for each entry in sections that contains fixed-sized entries, such
as symbol tables.

622

Table F-3

F Object and Executable File Formats
F.1 Executable and Linking Format (ELF)

The following table shows the correspondence between the type-spec as defined on
422 and the ELF section type and flags assigned to the output section.

type-spec — ELF Section Type and Flags Correspondence

Type-spec Section Type (sh_type) Section Flags (sh_flags)

BSS SHT_NOBITS SHF_ALLOC | SHF_WRITE
COMMENT SHT_PROGBITS (none)

CONST SHT_PROGBITS SHF_ALLOC

DATA SHT_PROGBITS SHF_ALLOC | SHF_WRITE
TEXT SHT_PROGBITS SHF_ALLOC | SHF_EXECINSTR

F.1.5 Special Sections

Following are the names of some typical sections and explains their contents:

.text
Machine instructions, constant data and strings.

.data
Initialized data.

.sdata
Small initialized data; see the -Xsmall-data option on 117.

.bss
Uninitialized variables.

.sbss
Small uninitialized data.

.comment
Comments from #ident directives in C.

.ctors
Code that is to be executed before the main() function.

.dtors
Code that is to be executed when the program has finished execution.

.debug
Symbolic debug information using the DWARF format.

623

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

.line
Line number information for symbolic debugging.

.relaname
Relocation information for the section name.

.shstrtab
Section names.

.strtab

String Table for symbols in the Symbol Table.

.symtab
Contains the Symbol Table.

F.1.6 ELF Relocation Information

Relocation Information sections contain information about unresolved references.
Since compilers and assemblers do not know at what absolute memory address a
symbol will be allocated, and since they are unaware of definitions of symbols in
other files, every reference to such a symbol will create a relocation entry. The
relocation entry will point to the address where the reference is being made, and
to the symbol table entry that contains the symbol that is referenced. The linker will
use this information to fill in the correct address after it has allocated addresses to
all symbols.

When an offset is added to a symbol in the assembly source

move.l wvar+16,d0

that offset is stored in the r_addend field, so that adding the real address of the
symbol with the address field will yield a correct reference.

The relocation section does not normally exist in executable files.
A relocation entry has the following structure from the file elf.h:

typedef struct {

E1f32_Addr r_offset;
E1£32_Word r_info;
E1£32_Sword r_addend;

} E1£f32_Rela;

624

F Object and Executable File Formats
F.1 Executable and Linking Format (ELF)

ELF Relocation Entry Fields

Table F-4

r_offset
Relative address of the area within the current section to be patched with the
correct address.

r_info >> 8
Upper 24 bits of r_info is an index into the symbol table pointing to the entry
describing the symbol that is referenced at r_offset.

r info & 255
Lower 8 bits is the relocation type that describes what addressing mode is
used; it describes whether the mode is absolute or relative, and the size of the
addressing mode. See the table below for a description of the various
relocation types.

r_addend
A constant to be added to the symbol when computing the value to be stored
in the relocatable field.

The relocation types for each supported target are documented in
version_path/include/elf_target.h.

ELF Relocation Types and Examples

Relocation type

Number Description

R_68K_32

R_68K_16

R_68K_PC32

R_68K_PC16

R_68K_SDA32

1 32 bit absolute address:

move.l _abc,d0

2 16 bit absolute address:

move.l (_abc) .w,d0

4 32 bit PC relative address:

move.l ((_abc).l,pc),dol

5 16 bit PC relative address:

move.l ((_abc).w,pc),dl

180 32 bit Small Data Area (SDA) relative address.
The complete address space can be accessed
through register a5:

move.l ((_abc@sda).1l,a5),d0

625

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Table F-4 ELF Relocation Types and Examples (cont'd)

Relocation type Number Description

R_68K_SDA16 181 16 bit Small Data Area (SDA) relative address.
By using -Xsmall-data=x compiler option,
small variables can be put in the .data and the
.sbss sections and be accessed through register
a5 in a very efficient manner:

move.l ((_abc@sda).w,ab),d0

F.1.7 Line Number Information

The line number information section .line contains the mapping from source line
numbers to machine instruction addresses used by symbolic debuggers. This
information is only available if the -g option is specified to the compiler.

F.1.8 Symbol Table

The symbol table section .symtab is an array of entries containing information
about the symbols referenced in the ELF file. A symbol table entry has the
following structure from the file elf.h:

typedef struct {

ELF32_Word st_name;
ELF32_Addr st_value;
ELF32_Word st_size;

unsigned char st_info;
unsigned char st_other;

E1f32_Half st_shndx;
} E1£32_Sym;
ELF Symbol Table Fields
st_ name

Index into the symbol string table which holds the name of the symbol.

st_value
Value of the symbol:

The alignment requirement of symbols whose section index is
SHN_COMMON.

626

F Object and Executable File Formats
F.1 Executable and Linking Format (ELF)

= The offset from the beginning of a section in relocatable files.
= The address of the symbol in executable files.

st_size
Size of an object.

st_info >>4
Upper four bits define the binding of the symbol:

STB_LOCAL (0) symbol is local to the file
STB_GLOBAL (1) symbol is visible to all object files
STB_WEAK (2) symbol is global with lower precedence

st_info & 15
Lower four bits define the type of the symbol:

STT_NOTYPE (0) symbol has no type

STT_OBJECT (1) symbol is a data object (a variable)
STT_FUNC (2) symbolis a function
STT_SECTION (3) symbol is a section name
STT_FILE (4) symbol is the filename

st_other
Currently not used.

st_shndx
Index of the section where the symbol is defined. Special section numbers
include:

SHN_UNDEF (0x0000) undefined section
SHN_ABS (0xfff1) absolute, non-relocatable symbol
SHN_COMMON (0xfff2) unallocated, external variable

F.1.9 String Table

The string table sections, .strtab and .shstrtab, contain the null terminated names
of symbols in the symbol table and section names. Those symbols point into the
string table through an offset. The first byte of the string table is always zero and
after that all strings are stored sequentially.

627

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

F.2 Common Object File Format (COFF)

This section describes the Common Object File Format (COFF). For further
information on COFF, including the meaning of debugging symbols generated by
the compiler, see Understanding and Using COFF by Gintaras R. Gircys (O'Reilly &
Associates).

F.2.1 Overall Structure

The COFF Object Format is used both for object files (.o extension) and executable
files. Some of the information is only present in object files, other information is
only present in the executable files.

COFF File Components

File header
Contains general information; always present.

Optional header
Contains information about an executable file; usually only present in
executables.

Section header
Contains information about the different COFF sections; one for each section.

Raw data sections
One for each section containing raw data, such as machine instructions and
initialized variables.

Relocation information
Contains information about unresolved references to symbols in other
modules; one for each section having external references. Usually only present
in object files and not in executable files.

Line number information
Contains debugging information about source line numbers; one for each
section if compiled with the -g option.

Symbol table
Contains information about all the symbols in the object file; present if not
stripped from an executable file.

628

F Object and Executable File Formats
F2 Common Object File Format (COFF)

String table
Contains long symbol names.

The following figure shows the COFF file structure:

File Header

Optional Header

Section-1 Header

Section-n Header

Section 1 Contents

Section n Contents

Relocation Information for Section 1

Relocation Information for Section n

Line Number Information for Section 1

Line Number Information for Section n

Symbol Table

String Table

629

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

F.2.2 File Header

The file header contains general information about the object file and has the
following structure from the file filehdr.h:

struct filehdr {

unsigned short f_magic; /* magic */
unsigned short f_nscns; /* number of sections */
long f_timdat; /* date stamp */
long f_symptr; /* fileptr to symtab */
long f_nsyms; /* symtab count */
unsigned short f_opthdr; /* sizeof (optional hdr) */
unsigned short f_flags; /* flags */
}i
COFF Header Fields
£ _magic

Magic number used to identify the file as a COFF file. It usually has the value
0x150 for the MC68000 family of processors. MIT COFF files, however, has the
value 0x195 for the MC68000/10 processors and 0x198 for the
MC68020/30/40/60 processors.

f nscns
Number of sections this file contains.

f_timdat
Creation time of the file represented as a 32 bit value.

f_symptr
File offset of the symbol table.

f nsyms
Number of entries in the symbol table.

f_opthdr
Number of bytes in the Optional Header.

f flags
Bit-field containing the following flags:

F_RELFLG (0x1)
Set if the COFF file does not contain relocation information; normally true
only for executable files.

F_EXEC (0x2)
Set if the file is executable and all references are resolved.

F_LNNO (0x4)

630

F Object and Executable File Formats
F2 Common Object File Format (COFF)

Set if the COFF file does not contain line number information; this
symbolic debugging information can be stripped with the -s option or the
strip program.

F_LSYMS (0x8)
Set if the COFF file does not contain local symbols; these symbols can be
stripped with the -X and -x options to the assembler and linker.

F_AR32W (0x200)
Always set to indicate big-endian byte ordering.

F.2.3 Optional Header

The optional header contains information about an executable file and has the
following structure from the file aouthdr.h:

typedef struct aouthdr {

short magic; /* a.out magic */

short vstamp; /* version stamp */

long tsize; /* .text size */

long dsize; /* .data size */

long bsize; /* .bss size */

long entry; /* entry point */

long text_start; /* fileptr to .text */

long data_start; /* fileptr to .data */
} AQUTHDR;

COFF Optional (Executable) Header Fields
magic
Value 0x10b.

vstamp
Set by the option -VS, but not used by the linker.

tsize
Size of the .text section.

dsize
Size of the .data section.

bsize
Size of the .bss section.

631

User’s Guide, 5.4

entry

Wind River Compiler for 68K/CPU32

Entry point in the executable program where execution will begin. The default
entry point is the symbol start defined in the file function main(). The -e
option can change this to any other symbol in the program.

text_ start

File offset to the .text section in the COFF file.

data_start

File offset to the .data section in the COFF file.

F.2.4 Section Headers

There is one section header for each section in the COFF file, specified by the
f nscns field in the COFF File Header. Section headers have the following
structure from the file scnhdr.h:

struct scnhdr {
char
long
long
long
long
long
long

s_name[8];
s_paddr;
s_vaddr;
s_size;
s_scnptr;
s_relptr;
s_lnnoptr;

unsigned long short s_nreloc;
unsigned long short s_nlnno;

long
Y

s_flags;

#define SCNHDR struct scnhdr
#define SCNHSZ sizeof (SCNHDR)

COFF Section Header Fields

s_name[8]

/*
/*
/*
/*
/*
/*
/*
/*

/*

modified COFF*/
section name */
physical address */

virtual
size of
fileptr
fileptr
fileptr

address */
section */
to raw data*/
to reloc */
to lineno */

/* reloc count */
/* line number count */

flags */

Eight byte null terminated section name. Standard names include .text, .data,

and .bss.

s_paddr

Physical start address of the section. It is usually set to the same value as
s_vaddr, but can be set to a different value with the command in the linker
command language. This can be useful when initialized data is physically
allocated to a ROM address, but moved to a logical address in RAM at start-up.

s_vaddr

Logical start address of the section as allocated by the assembler or linker.

632

F Object and Executable File Formats
F2 Common Object File Format (COFF)

s_size
Size in bytes of the memory allocated to the section.

S_scnptr
File offset to the raw data of the section. Note that the .bss section does not
have any raw data since it will be initialized by the operating system.

s_relptr
File offset to the relocation information of the section.

s_lnnoopt
File offset to the line number information of the section.

s_nreloc
Number of relocation information entries.

s_nlnno
Number of line number information entries.

s_flags
Bit-field containing the following flags:

STYP_TEXT (0x20) set for a .text section.
STYP_DATA (0x40) set for a .data section.
STYP_BSS (0x80) set for .bss section.
STYP_INFO (0x200) set for a .comment section.

The following table shows the correspondence between the type-spec as defined on
422 and the COFF section flags assigned to the output section.

Table F-5 type-spec — COFF Section Flag Correspondence

type-spec Section flags (s_flags)
BSS STYP_BSS
COMMENT STYP_INFO

CONST STYP_DATA

DATA STYP_DATA

TEXT STYP_TEXT

F.2.5 Raw Data Sections

The Raw Data Sections contain the actual raw data for each section.

633

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

COFF section names

.text
Machine instructions, constant data, and strings

.sdata2
Small constant data; see the 5.4.132 Set Size Limit for “small const” Variables
(-Xsmall-const=n), p.116.

.data
Initialized data.

.sdata

Small initialized data; see the 5.4.133 Set Size Limit for “small data” Variables
(-Xsmall-data=n), p.117.

.bss
Uninitialized data; does not have any raw data.

.sbss
Small uninitialized data.

.comment
Comments from #ident directives in C.

.ctors
Code that is to be executed before the main() function.

.dtors
Code that is to be executed when the user program has finished execution.

.eini
The instructions of the .fini code; the .init, .fini, and .eini sections should be
placed after each other in memory.

F.2.6 COFF Relocation Information

The Relocation Information segment contains information about unresolved
references. Since compilers and assemblers do not know at what absolute memory
address a symbol will be allocated, and since they are unaware of definitions of
symbols in other files, every reference to such a symbol will create a relocation
entry. The relocation entry will point to the address where the reference is being
made, and to the symbol table entry that contains the symbol that is referenced.
The linker will use this information to fill in the correct address after it has
allocated addresses to all symbols.

When an offset is added to a symbol in the assembly source,

634

F Object and Executable File Formats
F2 Common Object File Format (COFF)

1wz r3, (var+16) (r0)
move.l wvar+16,d0

that offset is stored in the addressing mode, so that adding the real address of the
symbol with the address field will yield a correct reference.

The relocation segment does not exist in executable files.

A relocation entry has the following structure from the file reloc.h:

struct reloc { /* modified COFF */
long r_vaddr; /* address of reference */
long r_symndx; /* index into symtab */
unsigned short r_type; /* relocation type */
unsigned short r_offset; /* hi word of rel addr */

Y

#define RELOC struct reloc
#define RELSZ sizeof (RELOC)
#define RELSZ 10 /* sizeof (RELOC) */

COFF Relocation Entry Fields

Table F-6

r_vaddr
The relative address of the area within the current section to be patched with
the correct address.

r_symndx
Index into the symbol table pointing to the entry describing the symbol that is
referenced at r_vaddr.

r_type
Type of addressing mode used; it describes whether the mode is absolute or
relative, and the size of the addressing mode. See the table below for relocation

types used by the tools.

COFF Relocation Types

Relocation type Number Description

R_RELWORD 16 16 bit absolute address:

move.l (_abc).w,do0

R_RELLONG 17 32 bit absolute address:

move.l _abc,d0

635

User’s Guide, 5.4

Table F-6 COFF Relocation Types (cont'd)

Wind River Compiler for 68K/CPU32

Relocation type Number

Description

R_PCRWORD 19

R_PCRLONG 20

R_SDAWORD 101

R_SDALONG 102

16 bit PC relative address:

move.l ((_abc).w,pc),d0

32 bit PC relative address:

move.l ((_abc).l,pc),d0l

16 bit Small Data Area (SDA) relative address. By
using the -Xsmall-data=x compiler option, small
variables can be put in the .sdata and the .sbss
sections and be accessed through register a5 in a
very efficient manner:

move.l ((_abc@sda).l,a5),d0

32 bit Small Data Area (SDA) relative address. The
complete address space can be accessed through
register a5:

move.l ((_abc@sda).w,a5),d0

F.2.7 Line Number Information

The line number information segment contains the mapping from source line
numbers to machine instruction addresses used by symbolic debuggers. This
information is only available if the -g option is specified to the compiler.

Line number entries for a section form groups of pairs where the first pair in a
group is a pointer to the function containing the source. After that, every source
line that has generated any instruction has an entry specifying the line number
relative to the beginning of the function, and the corresponding instruction

636

F Object and Executable File Formats
F2 Common Object File Format (COFF)

address. Normally only the .text section has line number information. The
following table demonstrates the layout of the line number entries:

Function Symbol Index 0
Instruction Address Source Line Number
Instruction Address Source Line Number
Function Symbol Index 0
Instruction Address Source Line Number
Instruction Address Source Line Number

A line number entry has the following structure from the file linenum.h:

struct lineno {

union {
long 1_symndx;
long 1_paddr;
} 1_addr;

unsigned long short 1_1lnno;
};

#define LINENO struct lineno
#define LINESZ sizeof (LINENO)
#define LINESZ 6

COFF Line Number Fields

1_symndx

Symbol table index for a new function; only valid if 1_Inno is set to zero.

1_paddr
Instruction address corresponding to the source line 1_Inno.

637

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1 1lnno
Source line relative to the start of the current function.

F.2.8 Symbol Table

The symbol table is an array of entries containing information about the symbols
referenced in the COFF file. A symbol table entry has the following structure from

the file syms.h:
struct syment {
union {
char _n_name[8];
struct {
long _n_zeroes;
long _n_offset;
} _non;
char *_n _nptr[2]
} _n;
long n_value;
short n_scnum;

unsigned short n_type;

char n_sclass;

char N_numaux;

short n_pad;
Y
#define SYMENT struct syment
#define SYMESZ c 20
#define SYMESZ 18
#define n_name _n._n_name
#define n_nptr _n._n nptr[l]
#define n_zeroes _n._n_n._n_zeroes
#define n_offset _n._n n._n offset

COFF Symbol Table Felds

n_name
Name of the symbol if the length is less than or equal to 8 bytes. If it is less than
8 bytes the name is terminated by a null character.

n_zeroes
Zero if a symbol name is longer than 8 bytes. This field overlaps the first 4
bytes of n_name.

n_offset
An offset into the String Table if n_zeroes is zero.

638

F Object and Executable File Formats
F2 Common Object File Format (COFF)

n_value
This pointer allows for overlays.

n_value
A value whose contents depends on the symbol type. Normally it contains the
address or the size of the symbol if the symbol is a common block. A zero value
indicates an undefined symbol if n_scnum is also zero.

n_scnum
Section number of the symbol starting with one. A zero value indicates one of
two things:

If n_value is zero then the symbol is an undefined symbol that must be defined
in another file.

If n_value is not zero then the symbol is a common block of size n_value. All
common blocks with the same name are combined by the linker and put in the
.bss section, unless some other file defines that symbol in a section.

n_type
Type of the symbol; only set if compiled with -g.

n_sclass
Storage class of the symbol. There are over 20 storage classes, but most are
used only with the -g compiler option. The two classes of interest to the linker
are C_EXT, external storage, and C_STAT, static (local to the file) storage.

n_numaux
Number of auxiliary entries used by the symbol.

n_pad
Pad the structure to a multiple of four bytes.

Any auxiliary entries to a symbol are stored immediately after the symbol in the
table. They are mainly used for symbolic debugging (-g option) and are not
discussed here.

F.2.9 Additional Symbols

The compiler and tools use special COFF symbols as follows:

! sn!section-name
Long section-name.

tcd!name

COMDAT-section-name. See 5.4.32 Mark Sections as COMDAT for Linker Collapse
(-Xcomdat), p.74.

639

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1sf!flags
Section flags (a: allocate, w: write, x: execute, b: bss/nocode).

talloalue
Section alignment.

twk 1 symbol-name

Weak symbol. See weak Pragma, p.148.

F.2.10 String Table

The string table contains the null terminated names of symbols longer than eight
characters. Those symbols point into the string table through an offset, n_offset.
The first four bytes of the string table contain the size of the table and after that all
strings are stored sequentially.

640

Compiler -X Options Numeric
List

The compiler -X options are listed in alphabetic order in 5.4 Compiler -X Options,
p-52 and following, with the internal numeric equivalent shown for each option.

However, when -Xshow-configuration=1 is combined with -S or
-Xkeep-assembly-file to create an assembly file, the -X options are shown in
numeric form only.

This appendix lists compiler -X options that have numeric equivalents in numeric
order.

Each option is shown in the form:

-Xn -Xname (page number)

641

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

642

-X2
-X3

-X5

-X6

-X7

-X8

-X9

-X10
-X11
-X12
-X13
-X14
-X15
-X16
-X18
-X19
-X20
-X21
-X22
-X23
-X24
-X25
-X26
-X27
-X28
-X29
-X32
-X34
-X36
-X37
-X38
-X39
-X42
-X43
-X44
-X45
-X54
-X58
-X59
-X60
-X61
-X62
-X63
-X64
-X65

-Xmismatch-warning (104)
-Xfp-min-prec-... (89)
-Xmemory-is-volatile (103)
-Xlocals-on-stack (100)
-Xtest-at-... (123)
-Xdialect-... (79)
-Xenum-is-... (81)
-Xforce-... (87)
-Xstack-probe (118)
-Xpass-source (108)
-Xbit-fields-... (67)
-Xswap-cr-nl (122)
-Xsuppress-warnings (122)
-Xunroll (124)
-Xunroll-size (124)
-Xstring-align (120)
-Xinline (94)
-Xparse-size (107)
-Xbottom-up-init (68)
-Xtruncate (123)
-Xchar-... (70)
-Xblock-count (67)
-Xopt-count (107)

-XO (106)

-Xkill-opt (96)
-Xkill-reorder (96)
-Xrestart (113)
-Xptr-values-in-... (113)
-Xfintrz-... (86)
-Xframe-ptr (90)
-Xalign-off (64)
-Xbit-fields-instr-... (66)
-Xtarget (123)
-Xfloats-in-d0 (87)
-Xfloats-as-gnu (87)
-Xinstr-.. (95)
-Xasm-const-pound... (65)
-Xalign-functions (62)
-Xcode-relative-... (72)
-Xdata-relative-... (76)
-Xcharset-asci (70)
-Xargs-in-regs (64)
-Xpic (109)

-Xident-... (91)

-Xrtc (114)
-Xargs-not-aliased (64)

-X66
-X67
-X68
-X69
-X70
-X71
-X73
-X74
-X75
-X76
-X77
-X78
-X79
-X80
-X81
-X82
-X83
-X84
-X85
-X86
-X87
-X88
-X89
-X90
-X91
-X92
-X93
-X96
-X97
-X98
-X99
-X100
-X101
-X102
-X103
-X104
-X105
-X106
-X115
-X116
-X117
-X118
-X119
-X120
-X121
-X122

-Xclib-optim-off (71)
-Xdollar-in-ident (80)
Xfeedback-frequent (85)
-Xfeedback-seldom (85)
-Xfp-... (88)
-Xunderscore-... (124)
-Xsize-opt (116)
-Xconst-in-... (75)
-Ximport (92)
-Xstruct-min-align (122)
-Xextend-args (84)
-Xkeywords (96)
-Xmac-conventions (100)
-Xstruct-as-... (120)
-Xstatic-addr-... (118)
-Xieee754-pedantic (91)
-Xbss-... (69)

-Xlint (97)
-Xstop-on-warning (119)
-Xwchar (126)
-Xinit-locals (92)
-Xmember-max-align (103)
-Xoptimized-debug-... (107)
-Xinit-value (94)
-Xinit-section (93)
-Xstruct-arg-warning (120)
-Xalign-min (63)
-Xdouble-... (81)
-Xsmall-data (117)
-Xsmall-const (116)
-Xdebug-mode (78)
-Xaddr-data (62)
-Xaddr-sdata (62)
-Xaddr-const (62)
-Xaddr-sconst (62)
-Xaddr-string (62)
-Xaddr-code (62)
-Xaddr-user (62)
-Xlocal-data-area (99)
-Xdebug-struct-... (79)
-Xcpp-no-space (76)
-Xbit-fields-access-... (65)
-Xbool-is-... (68)
-Xcomdat (74)
-Xdynamic-init (81)
-Xsect-pri-... (115)

-X123
-X125
-X129
-X135
-X136
-X137
-X138
-X139
-X143
-X146
-X147
-X152
-X153
-X154
-X155
-X156
-X157
-X158
-X161
-X163
-X165
-X166
-X167
-X170
-X171
-X172
-X173
-X200
-X201
-X202
-X205
-X207
-X213
-X214
-X215
-X216
-X217
-X218
-X219
-X220
-X221
-X222
-X223
-X230

G Compiler -X Options Numeric List

-Xprof-... (110)
-Xfull-pathname (90)
-Xsection-split (115)
-Xbit-fields-compress-... (66)
-Xexplicit-inline-factor (83)
-Xold-inline-asm-cast (106)
-Xlicense-wait (97)
-Xconservative-static-... (75)
-Xswitch-table (122)
-Xstruct-assign-split-max (121)
-Xstruct-assign-split-diff (121)
-Xsection-pad (114)
-Xdebug-dwarf... (77)
-Xintrinsic-mask (95)
-Xpreprocessor-old (110)
-Xmake-dependency (101)
-Xmacro-in-pragma (100)
-Xcpp-dump-symbols (75)
-Xarray-align-min (65)
-Xinline-explicit-force (94)
-Xpreprocessor-lineno-off (110)
-Xlocal-data-area-static-only (100)
-Xvoid-prt-arith-ok (125)
-Xdebug-align (77)
-Xmacro-undefined-warn (100)
-Xincfile-missing-ignore (92)
-Xstderr-fully-buffered (118)
-Xexceptions-... (83)
-Xjmpbuf-size (95)
-Xdigraphs-... (80)

-Xrtti-... (114)
-Ximplicit-templates-... (91)
-Xbool-... (68)

-Xwchar-... (126)
-Xsyntax-warning-... (123)
-Xmax-inst-level (103)
-Xfor-init-scope-... (87)
-Xclass-type-name-... (71)
-Xnamespace-on (106)
-Xpch-automatic (108)
-Xpch-messages (108)
-Xpch-diagnostics (108)
-Xusing-std-... (125)
-Xdialect-c{8,9}9 (79)

643

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

644

Messages

H.1 Introduction 645

H.2 Compiler Messages 646
H.3 Assembler Messages 702
H.4 Linker Messages 702

H.1 Introduction

This appendix provides additional information on messages generated by the
compilers and some of the other tools.

In analyzing messages, remember that a message can be generated for code which
is apparently correct. Such a message is often the result of earlier errors. If a
message persists after all other errors have been cleared, please report the
circumstances to Customer Support.

645

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

H.2 Compiler Messages

H.2.1 Compiler Message Format

Table H-1

Compiler messages have the form:
“filer, line #: severity-level (compiler:error#) : message

Messages have one of four severity-level values as follows. The severity level for each
message is shown in parentheses in the message description; for example, (w) for
a warning message.

NOTE: The severity level of a message can be changed with the -e command-line
option. See 5.3.8 Change Diagnostic Severity Level (-e), p.40. See also option Pragma,
p-142 to put this or other options in, for example, a header file for use in other
source files, or A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.587
to specify options “permanently” in environment variables or configuration files.

Compiler Message Severity Levels

Severity Compilation Object File

Level Type Continues Produced Notes

i Information Yes Yes Usually provides detailed
information for an earlier
message.

w Warning Yes Yes

e Error Yes No

f Fatal No No

In each message, “compiler” identifies the compiler reporting the error: dec for the
C compiler or dplus for the C++ compiler.

Example:

"errl.c", line 2: error (dcc:1525): identifier i not declared

646

H Messages
H.2 Compiler Messages

H.2.2 Errors in asm Macros and asm Strings
Errors in assembly code embedded in C or C++ using asm macros or asm string
statements are caught by the assembler, not by the compiler.

If the -S option is not used, the compiler will generate a temporary assembly file
which is discarded after assembly. To preserve the assembly file for use in
diagnosing errors reported in asm macros or asm strings, either:

» Use the -Xkeep-assembly-file and -Xpass-source command-line options to
generate an annotated assembly file along with the object file.

» Use the -S option to stop after compilation, along with the -Xpass-source
option, and then assemble the file explicitly using das.

H.2.3 C Compiler Message Detail

Numbered messages are issued by the compiler subprogram. Unnumbered
messages are issued by the driver and are listed first.

NOTE: These messages are generated by ctoa (the C compiler) and dtoa (the older
C++ compiler), not by etoa (the current C++ compiler). If you are compiling C++
code without the -Xc++-old option, a different set of C++ diagnostics is generated
(see H.2.4 C++ Messages, p.701). When a message is shared by compilers, the same
number is used for all instances.

(driver) can’t find program program_name
program_name will be the name of some component of the compiler or other
tool. (f)

Possible causes:

» The compiler is not installed properly.

* One of the compiler files has been deleted, hidden, or protected.
= The dtools.conf or other configuration file is incorrect.

(driver) can’t fork
The system cannot start a new process. (f)

(driver) missing comma in -Y option
The -Yc,dir option must include a comma. (f)

647

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

(driver) illegal output name file
Specific output filenames given with the -o option are invalid to avoid
common typing mistakes. (f)

dplus a.c -o b.c # b.c is an illegal output file name

(driver) invalid option unknown
The driver was started with an unrecognizable -W or -Y option. Note: -X
options that are not recognized generate an “unknown option” message, and
unrecognized but otherwise valid non -X options are passed to the linker. (f)

(driver) program tool-name terminated

The given executable has detected an internal error. May result from other
errors reported earlier. If the problem does not appear to be a consequence of
some earlier error, please report it to Customer Support. (f)

1000: (general compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1001: illegal argument type
The operand cannot be used with the operator. (e)

if (1 > pointer)

1003: function takes no arguments
Function was defined without arguments, but was called with arguments. (e)
int fun () {}
main() {
fun (1) ;
}
1004: wrong number of arguments
Number of arguments given does not match prototype or function definition,
(w) in C modules if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise.

int fn(int, int); ... fn(1,2,3);

1006: string in string
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1007: ambiguous conversion -- cannot cast operand
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

648

H Messages
H.2 Compiler Messages

1010: Operator, type-designator, argument must be of pointer or integral type
An operator that requires an integral or pointer type was applied to a different
type.
float £;

f = ~£f;

1012: operator, type-designator, argument must be of pointer or arithmetic type
The operator requires a pointer or arithmetic type operand. (e)
struct S {

int i;
Is;
struct S *p;
*p -> 1 =3; //

1013: left argument must be of integral type

The left operand must be an integral type. (e)

pointer | 3;

1015: type-designator, operator, type-designator, left argument must be of arithmetic

type
The operand to the left of the operator must be of arithmetic type. (e)

pointer * 2;
pointer / 2;

1017: right argument must be of integral type
The right operand must be an integral type. (e)

7 | pointer;

1019: type-designator, operator, type-designator, right argument must be of arithmetic
type
The operand on the right of the operator must be of arithmetic type. (e)
2 * pointer;
2 / pointer;
1025: division by zero
The compiler has detected a source expression that would result in a division
by 0 during target execution. (w)

int z = 0; £fn(10/z);

1028: type-designator [type-designator] requires a pointer and an int
A subscripted expression requires a pointer and an integer. (e)
main() {

int x;
x[31=4;

649

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1030: can’t take address of main
Special rules for the function main() are violated. (e)
int *p;
p = main;
1031: can’t take address of a cast expression
The address operator requires an lvalue for its operand. (e)
int i, *p;
float £;
p = &(int) f;
1032: (anachronism) address of bound member function
The correct way to refer to the address of a member function is to use the “::”
operator. The C method, using the dot “.” operator, causes the compiler to
generate the “anachronism” warning. (w)
class C {
public:

fun();
} ¢

main () {
class C * p;
p= &c.fun; // 0ld way to reference a function

}
1033: can’t take address of expression
Cannot use “&” or other means to find the address of the expression. (e)
int *pointer;
&pointer++;
1034: can’t take address of bit-field expression
The address of bit-fields is not available. (e)
int *p;
struct {
int 1:3;
}s;
p = &s.1i;
1041: returning from function with address of local variable
A return statement should not return the address of a local variable. That stack
area will not be valid after the return. (w)
int 1i;
return &i;

"o

1042: ?"type-designator™:" type-designator, bad argument type(s)
Incompatible types have been used with the conditional operator. (e)

650

H Messages
H.2 Compiler Messages

int i, *pointer, *p;
p = (2>1) ? 1 : pointer;

1043: trying to decrement object of type bool
A a boolean cannot be decremented. (e)

bool b;
b--;

1044: assignment to constant expression
A constant cannot be assigned a value after the constant is defined. (e)

const int i=5;
i=7;

1045: assignment to non-lvalue of type type-designator
The operand being assigned is not an lvalue type. (e)

const ¢ = 5;
c =17;

1046: assignment from type-designator to type-designator
An attempt has been made to assign a type to an incompatible type. (e)
int i, 3;
i=&3;
1047: trying to assign "ptr to const" to "ptr"
A pointer to a const cannot be assigned to an ordinary pointer. (e)

const int *pc; int pi; ... pi = pc;

1050: bad left argument to operator operator not a pointer
The operator requires a pointer for its left operand. (e)

int intl, 3j;
intl -> j=3;

1051: not a class/struct/union expression before ...
The left hand side of a “.” or “.*” or “->" or “->*” operator must be of type class
or pointer to class. (e)

5->a = 128; // 5 is not a pointer to a class

1055: illegal function call
The function call is not valid. (e)

int i;

i();
1056: illegal function definition
A function definition is invalid. (e)

fun(iint 1i);

651

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1057: main() may not be called from within a program
Calling main() is not permitted. (e)
fun () {
main () ;
}
1059: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1060: assignment operator "=" found where "==" expected
Encountered a conditional where the left hand side is assigned a constant
value: (w)
if (i = 0) ... /* should possibly be i == 0) */

1061: illegal cast from fype-designator to type-designator
An attempt is made to perform a cast to an invalid type, i.e., a structure or

array type. (e)
struct a = (struct abc)x;

1063: ambiguous conversion from type-designator to type-designator
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

1074: illegal cast
An attempt is made to perform a cast to an invalid type, i.e., a structure or

array type. (e)

1075: friend declaration outside class/struct/union declaration
The keyword friend is used in a invalid context (e)

friend class foo {
Y

1076: static only allowed inside { } in a linkage specification
Attempt to declare a static object in a one-line linkage specification. (e)

extern "C" static int i; // static + extern at same time?

1077: typedefs cannot have external linkage
Linkage specification ignored for typedef, cannot have "C" or "C++" linkage.

(w)
extern "C" typedef int foo;

1079: identifier name previously declared linkage
The identifier was already declared with another linkage specification. (e)

652

H Messages
H.2 Compiler Messages

int foo;
extern "C" int foo;

1080: inconsistent storage class specification for name
The identifier was already declared, with another storage class. (e)

bar ()

{
int foo; // foo is auto by default
static int foo; // now static

}

1081: illegal storage class
External variables cannot be automatic. Parameters cannot be automatic,
static, external, or typedef. (e)

int fn(i)
static int i; { ... }

1082: illegal storage class
A variable has been declared, but cannot legally be assigned to storage. (e)

register int r; // Outside of any function

1083: only functions can be inline
The inline keyword was applied to a non-function, for example, a variable. (e)

1084: only non-static member functions can be virtual
For example, operators new and delete cannot be virtual.

virtual void *operator new(size_t size){...}

1086: redeclaration of identifier
It is invalid to redeclare a variable on the same block level. (e)

int a; double a;

1087: redeclaration of function
A function was already declared. May be caused by mis-typing the names of
similar functions. (e)

1088: illegal declaration
Common causes and examples: (e)
A scalar variable can only be initialized to a single int i =1, 2;
value of its type.
Functions cannot return arrays or functions. char fn() [10];

Variables cannot be of type void. (Usually caused by void a;
a missing asterisk, e.g. void *p; is correct.)

653

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Only one void is allowed as function argument. int fn(void, void);

An array cannot contain functions.

1089: illegal initializer
An initializer is not of the proper form for the object being initialized. Often
caused by a type mismatch or a missing member in a structure constant. (e)

1090: static/external initializers must be constant expressions
Static initializations can only contain constant expressions. (e)
static int 1 = j+3;

1091: string too long
A string initializer is larger than the array it is initializing. (e)
char str[3] = "abcd";

1092: too many initializers
The number of initializers supplied exceeds the number of members in a
structure or array. (e)

int ar([3] = { 1,2,3,4 };

1094: illegal type for identifier identifier
This can indicate a template was instantiated with the wrong arguments. (e)

template<class T>
class C{};

C<int, int> WrongArgs;

1096: typedef may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1097: function-declaration in wrong context
A function may not be declared inside a struct or union declaration. (e)

struct { int £(); };

1098: only non-static member functions can be string
Only non-static member functions can be const or volatile.
class A {
static foo() const;
Yi
1099: all dimensions must be specified for non-static arrays
For an array in a class all dimensions must be specified, even if the array is not
static. (e)

654

H Messages
H.2 Compiler Messages

1100: member is incomplete
The structure member has an incomplete type, i.e., an empty array or
undefined structure. (e)

struct { int ar([]; }:;

1101: anonymous union member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1102: anonymous unions can’t have member functions
1103: anonymous unions can’t have protected or private members

1104: name of anonymous union member name already defined
An identifier with the same name as an anonymous union member was
already declared in the scope. (e)
int 1i;
static union {
int i; // i already declared
}
1105: anonymous unions in file scope must be static
A special rule for an anonymous unions is violated. (e)

1106: friends can’t be virtual
A friend is not a member of the class; it cannot be virtual. (e)

1107: conversion functions must be members of a class
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1108: member function declared as friend in its own class
Invalid declaration. (e)

class A {
foo(int) ;
friend A::foo(int);
}
1110: identifier identifier is not a member of class class-name

The identifier to the right of :: is not in the class on the left side. (e)

1111: identifier identifier not member of struct/union

The expression on the right side of a “.” or “->" operator is not a member of the
left side’s struct or union type. (e)

655

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1112: member declaration without identifier
A struct or union declaration contains an incomplete member having a type
but no identifier. (w)

struct foo { int; ...};
struct { struct bar { ... }; ... };

1113: identifier name used both as member and in access declaration
A use of the name would be ambiguous. (e)

class A {
public:
int foo;
Y

struct B : private A {
int foo;
A::foo;

}i

1114: array is incompletely specified
An array cannot be declared with an incomplete type. (e)

int al[l]; // No array size

1115: type ... is incomplete
Attempt to access a member in an incomplete type. (e)

1117: identifier identifier not an argument
An identifier that is not in the parameter list was encountered in the
declaration list of an old-style function. (e)

f(a) int b; { ... }

1120: constant expression expected
The expression used in an enumerator list is not a constant. (e)

enum a { b = £(), ¢ };

1121: integer constant expression expected
The size of an array must be computable at compile time. (e)

int ar(fn()];

1123: illegal type of switch-expr
A switch expression is of a non-integral type. (e)

1124: duplicate default labels
A switch has should not have more than one default label.

1125: int constant expected
A bit-field width must be an integer constant. (e)

656

H Messages
H.2 Compiler Messages

1126: case expression should be integral constant
Case expressions must be integral constants. (e)

int 1,3;
switch (i) {
case j:

i = 8;

}

1127: duplicate case constants
A case constant should not occur more than once in a switch statement. (e)

case 1: ... case 1:

1127: duplicate case constants
Duplicate case constants were detected. (e)
main () {
int year,j;
switch (year) {
case 2000:
j=8;
case 2000:
j=9;
}

1128: function must return a value
Found a return statement with no value in a function. (e)

int foo()
{
return; // Must return a value.
}
1129: constructor and destructor may return no value
A constructor or destructor must not return a value. (e)

1130: parameter decl. not compatible with prototype
There is a mismatch between a prototype and the corresponding function
declaration in either number of parameters or parameter types. (e)
int fn(int, int);
int fn(int a, float b) { ... }
1131: multiple initializations
A variable was initialized more than once. (e)

4

static int a ;
5;

static int a

1133: extern objects can only be initialized in file scope
An extern object cannot be initialized inside a function. (e)

657

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

main () {
extern int i=7;

}

1133: extern objects can only be initialized in file scope
Attempt to initialize an extern object in a function. (e)

foo ()
{

extern int one = 1;

}

1134: can’t initialize arguments
It is not valid to attempt to initialize function parameters. (e)

f(i) int i = 5; { ... }

1135: can't init typedefs
A typedef declaration cannot have an initializer. (e)

typedef unsigned int uint = 5;

1136: initialization of automatic aggregates is an ANSI extension
When the compiler is run in PCC compatibility mode on a C module (-Xpcc),
it will report initialization of automatic aggregate types. (w)

£() { int ar([3] = {1,2,3}; ... }
1140: too many parameters for operator ...
Overloaded operator declared with too many parameters. (e)

1141: too few parameters for operator ...
Overloaded operator declared with too few parameters. (e)

1142: second argument to postfix operator "++" or "--" must be of type int
The argument is of the wrong type. (e)
struct A {

operator++ (double); // Arg type must be int
}i

1143: operator->() must return class or reference to class

1144: operator ... can only be overloaded for classes
The operators “,” and “=" and the unary “&” can only be overloaded for
classes. (e)

1145: operator . . . must be a non-static member function
The operators (), [I, and -> must be non-static member functions. These
operators can only be defined for classes. (e)

658

H Messages
H.2 Compiler Messages

1146: non-member operator function must take at least one argument of class or
enum type or reference to class or enum type
A non-member operator function must take at least one argument, which is of
a class or enum type or a reference to a class or enum type. (e)

Date operator+(int i, j){...}

1147: constructors can’t be declared string
Constructors cannot be declared static or virtual.

1148: constructors can’t have a return type
A constructor declaration is invalid. (e)

1149: constructor is illformed, must have other parameters
A constructor declaration is invalid. (e)

1151: can’t have a destructor in a nameless class/struct/union
A nameless class cannot have a destructor since the destructor takes its name
from the class. (e)
class {
~foo();
}i
1152: destructors must have same name as the class/struct/union
The destructor declaration is invalid. (e)

1153: destructors may have no return type
const ~k(){}

1154: destructors can’t be declared string
Destructors cannot be declared static.

1155: destructors may take no arguments
The destructor declaration is invalid. (e)

1156: conversion functions may take no arguments
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1157: conversion to original class or reference to it
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1159: no type found for identifier, can be omitted for member functions only
The identifier has not been declared. (e)

659

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1160: class already has operator delete with number of argument(s)
The delete operator cannot be overloaded. (e)

1161: member operator functions can’t be static
Operator functions in a class cannot be declared static. (e)

1162: member of abstract class
A class member cannot be of abstract type. (e)

1163: unions can’t have virtual member functions
Union cannot have virtual functions as members. (e)

1164: member function of local class must be defined in class definition
Because functions cannot be defined in other functions, any function in a local
class must be defined in the class body. (e)

1165: redeclaration of member identifier
A member occurs more than once in a struct, union, or class. (e)
struct { int ml; int ml; };

1166: member name already declared
Attempt to re-declare a member. (e)
class A {
int a;
int a; // Already declared
Yi
1167: static data member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1168: a local class can’t have static data members
Only non-static members can be used in a local class. (e)

1169: unions can’t have static data members
Union cannot have static data members. (e)

1170: illegal union member
An object of a class with a constructor, a destructor, or a user defined
assignment operator cannot be a member of a union. (e)

1171: illegal storage class for class member
A class member cannot be auto, register, or extern. (e)

1172: parameter has no identifier
When declaring a function, a name as well as a type, must be supplied for each
parameter. (e)

660

H Messages
H.2 Compiler Messages

int fn(int a, int) { ... }

1173: compiler out of sync: probably missing";" or "}

int i int j; missing ’;" after i
dribble £; should be double

1174: ellipsis not allowed as argument to overloaded operator
Cannot declare an overloaded operator with “...” as arguments. (e)

1175: ellipsis not allowed in pascal functions
Functions declared with the pascal keyword are not allowed to have a variable
number of arguments as indicated by an ending ellipsis “...”. (e)

1176: argument 7 to string must be of type size_t
For example, operator delete’s second argument must be of type size_t
void operator delete(void *type, int x){
free(type);
}
1177: string must return void *
For example the operator new must return a void pointer.

int *operator new(size_t size){...}

1179: string takes one or two arguments
For example, operator delete takes one or two arguments (e).

void operator delete(void *type, size_t size, int x){...}

1180: operator delete must have a first argument of type void *
The first argument of delete must be of type void*.
void operator delete(int x) {
free(x);
}
1181: string must return void
For example, operator delete must return void.

int operator delete(void *type){...}

1182: class class-name has no constructor
It is invalid to initialize an object that does not have a constructor by using the
constructor initialization syntax. (e)
struct A {
int b, c;

}i
A a(l,2);

661

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1183: temporary inserted for non-const reference
The compiler made a temporary copy of a variable used in an assignment to a
C++ reference. (w)

void getCount (unsigned int& count)
{

count = 5;

return;

}

signed int x = 100;
getCount (x) ;

In this example, the compiler makes a temporary copy of x and passes the copy
(cast to unsigned int) to getCount. Hence it is the copy of x, and not x itself,
that is modified by getCount; after the function executes, the value of x is still
100, not 5.

1184: temporary inserted for reference return

Vint& constantl ()
{
return 1;

}

1186: const member identifier must have initializer
A constant member of a class must be initialized. (e)

class line{
const int length;

b
1188: jump past initializer
An object cannot be accessed before it has been constructed.

class C
{

public:

int i;

C(int ii) : 4i(ii) {2}
Y

void AllAlarmsOnOff (int function)
{
switch (function)
{
case 1:
C c(0);
break;
default:
c.i =12; // invalid access
break;

662

H Messages
H.2 Compiler Messages

1190: this cannot be used outside a class member function body

1192: mismatching parenthesis, bracket or ? : around expression
Mostly likely, a parenthesis or bracket was left out of an expression, or the “?”
and “:” in a conditional expression where interchanged. (e)

int 1 = (5 + 41; // 1 should have been a)

1193: missing operand for operator
An operand is missing. (e)
i & ;
1194: (compiler error)
The compiler has detected an internal error. May result from other errors

reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

1195: missing operand somewhere before
An operand was left out of an expression. (e)

1196: missing expression inside parenthesis
An expression was expected between the parentheses. (e)

i=(0) ;

1197: missing operand for operator ... inside parenthesis
An operand was left out of an expression. (e)

1198: too many operands inside parenthesis
An operator between the operands is missing. (e)

1199: missing expression inside brackets
An expression was expected between the brackets. (e)

int x[5];
int 1 = x[]; // x must be subscripted

1200: missing operand for operator ... inside brackets
1201: too many operands inside brackets

1202: missing operator before string
An operator is needed before string.

i = (2>1) 3: 4; // Conditional operator needs '?'

1205: operator ? without matching :
Operator “?” must be followed by a “:” . (e)

int 1 = 4 ? 5; // Missing : part

663

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1207: syntax error near token
The parser has found an unexpected token. (e)

if (a == 1 (/* missing ')' */

1208: expression expected
Could not find an expression where it was expected. (e)

if () { // The condition is missing.

}

1209: illegal expression
There was something wrong with the expression. Another error has probably
already been reported. (e)

1210 to 1216: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

For users searching online: 1211, 1212, 1213, 1214, 1215, 1216.

1219: (internal error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1221: don’t know size of object
The sizeof operator is used on an incompletely specified array or undefined
structure, or an array of objects of unknown size is declared. (e)

extern int ar([]; sz = sizeof(ar);
1224: type must have default constructor
The class must have a default constructor. (e)

1227: EOF in comment
The source file ended in a comment. (w) if -Xpcc, (e) otherwise.

1228: too many characters in character constant
A character constant has more than four characters. The limit is four on 32 bit
machines. (e)

tabcd'; /* ok */
'abcde'; /* not ok */

int il

int i2
1229: EOF in character constant

The source file ended at an unexpected place during parsing. (f)

664

H Messages
H.2 Compiler Messages

1230: newline in character constant
Vchar TAB = '\t;

1231: empty character constant
There are no characters in a character constant. If an empty string is desired,
use string quotes . (e)

int i3 = ''; /* This is two single quotes characters. */

1232: too many characters in wide character constant

1234: newline in wide character constant
A newline is in a wide character constant.

Example: in the following, the wide character constant is intended to be L'ab’,
but is broken across two lines.

int 1 = L'a
b';

1235: empty wide character constant
Empty wide character constants are not allowed:
int i = L'';

1236: EOF in string constant
The source file ended at an unexpected place during parsing. (f)

1237: newline in string constant
The end of a line was found while parsing a string constant. Usually caused by
a missing double quote character at the end of the constant. (e)

char * message = "Not everything that counts can be counted.

1238: illegal hex constant

Reported whenever an “x” or “X” is found in a numeric constant and is not
prefixed with a single zero. (e)
i = lxab;

1239: too long constant
A numeric constant is longer than 256 characters. (e)

1240: floating point value (...) out of range
A floating point constant exceeds the range of the representation format. (e)

double d = 1e10000;

1241: floating point overflow
Floating point overflow occurred during constant evaluation. (e)

float £=4E200;

665

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1242: bad octal constant
A numeric constant with a leading zero is an octal constant and can only
contain digits 0 through 7. (w)

i = 078; // '8' is invalid in an octal constant

1243: constant out of range
Constant overflows its type. (e)

int i = 4294967299; // Constant bigger than ULONG_MAX

1243: constant out of range [operator]
A constant is out of the range of the context in which it is used. If the operator
is present, it shows the operator near the use of the invalid constant. (w)

int j = Oxffffffffff;

1244: constant out of range (string)
An invalid constant was used. (w)

const int x=0xfffffffff;
if ((char)c==257)

1245: illegal character: 0n (octal)
The source file contains a character with octal code n that is not defined in the
C language. This can only occur outside of a string constant, character
constant, or comment. (e)

name$from$PLM = 1;

1246: no value associated with token
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1247: syntax error after string, expecting string
The expression is missing a semicolon or some token. (e)
int i

1248, 1249: label identifier already exists
A label can only refer to a single place in a function. (e)

1250: label identifier not defined
The label used in a goto statement is not defined. (e)

1251: label identifier not used
The label is never used. One possible cause is the misspelling of a label. This
message appears if the -Xlint option is used. (w)

666

H Messages
H.2 Compiler Messages

main () {

agian: // typo?
goto again;

}

1252: typedef specifier may not be used in a function definition
Bad use of the typedef specifier. (e)
typedef int foo()

{
}

1253: virtual specifier may only be used inside a class declaration
Function cannot be declared virtual outside class body. (e)
struct A {

foo();
Y

virtual A::foo() {} // Not virtual in the class declaration

1254: redefinition of function
The function is already defined. (e)
int foo() {}
int foo() {}

1255: unions may not have base classes
Union cannot have base classes. (e)

1256: unions can’t be base classes
Union cannot be used as base classes. (e)

1257: inconsistent exception specifications
Two function declarations specify different exceptions. (e)
int foo() throw (double);
int foo() throw (int);
1258: exception handling disabled
Exception handling has been turned off. Use -Xexception=1 to enable it. (e)

1259: rtti disabled
RTTI (run-time type information) can be enabled or disabled through the
-Xrtti-... option. See 5.4.124 Enable Run-time Type Information (-Xrtti, -Xrtti-off),
p-114.

1260: non-unique struct/union reference
In PCC mode (-Xpcc) the compiler attempts to locate a member of another
struct if given an invalid reference. If no unique member can be found, this
error is issued. (e)

667

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

struct a { int i; int m; };

struct b { int m; int n; };
int 1i;

.di->m = 1;
1261: insufficient access rights to member-name in base-class-name base class of
derived-class-name
Attempt to access a member in a private or protected base class. (e)
1264: main can’t be overloaded
Special rules for the function main() are violated. (e)
1265: can’t distinguish function_namel from function_name2

Two overloaded functions cannot be distinguished from each other; they
effectively have the same number and types of arguments in the same order.
©

int foo(int);
int foo(int &);

1266: function function-name already has “C” linkage

extern "C" foo(int);

Only one of a set of overloaded functions can have "C" linkage. (e)
extern "C"

foo (double) ;
1268: only virtual functions can be pure

Pure specifier found after non-virtual function. (e)
class foo {
bar () =

0 // Must be virtual
Y

1269: Identifier is not a struct/class/union member

int 1i;

The identifier is not a member of a structure, class, or union. (e)
i.j = 3;

// j 1s not a member of a structure.
1272: member name used outside non-static member function
Attempt to reference a class member directly in a static member function or an
inlined friend function. That is invalid in a function where keyword this
cannot be used. (e)

1275: error string

This error number can indicate a number of different kinds of errors. In some
cases, this message gives additional information about an error message

displayed above this one. For example, if a function call is ambiguous, this
error prints the names of candidate functions.

668

H Messages
H.2 Compiler Messages

1276: can’t use ... in default argument expression
Class members can only be used in default arguments if they are static.
Function arguments cannot be used in default arguments. Local variables
cannot be used unless they are declared extern. (e)

int foo(int a, int b = a)

{

}

1278: can’t restrict access to identifier
An access declaration cannot restrict access to a member that is accessible in

the base class, nor can an access declaration enable access to a member that is
not accessible in the base class. (e)

1279: can’t enable access to identifier

1281: no function matches call to string
The compiler did not find a match for a class method, or a template function.
This can also indicate that a class does not have a default constructor. (e)
class line{
public:
line() {}
Yi
line 1(5,6);

Second example:

template< class T> T max(T a, T b) {
return(a>b) ? a : b;

main () {
int i;
char c;
max (i, c);

}

1282: can’t resolve function call, possible candidates:
An overloaded function was called, but the function arguments did not match
any prototype. (e)

fun (int 1) {}
fun (char c) {}

main () {
float £;
fun(£f) ;
}

1285: ambiguous reference to identifier, could be candidatel candidate? ...
The identifier could not be resolved unambiguously. The error message is
followed by a list of possible candidates. (e)

669

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

struct A { int a; };
struct B { int a; };
struct C : public A, public B {};

foo ()
{
C c;
c.a = 1; // Which a, A::a or B::a?
}
1288: return type not compatible with ...
A virtual function has a return type that is incompatible with the return type
of the virtual function in the base class. (w)

1292: too many arguments for function style cast to string
Function style casts to a basic type or a union type can only take a single
argument. (e)

int 1 = int (3.4, 5.6);

1293: non-type in new expression
A new expression requires a type.

class list {};

class list * cp;
cp = new lis; // Spelled wrong
1294: type in new expression is abstract
The type in a new expression must not be abstract.

1295: first dimension must be an integral expression
The first dimension of an array type in a new expression must be an integral
expression. (e)

double d;
int *p = new int[d];

1296: can’t create void objects
The type in a new expression was void.

void *p = new void;
1297: type in new expression is incompletely specified

1298: object of abstract class
Attempt to declare an object of an abstract class. (e)

1298: can’t construct object of abstract type
The type in a new expression is of abstract class. (e)

670

H Messages
H.2 Compiler Messages

struct A {
virtual foo() = 0;
Yi
A *p = new A;
1299: can’t construct objects of array type
Array elements in an array allocated with new cannot be given initial values.

(e)

struct A {};
A *p = new A[5](1,2,3,4,5);

1304: already volatile
A variable was declared volatile more than once. (w)

int * volatile volatile foo;

1305 to 1336: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

For users searching online: 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313,
1314,1315,1316,1317,1318,1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327,
1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, and 1336.

1337: EOF in inline function body
The end of the source file was found while parsing an inline function. (f)

1338: arguments do not match template
The actual template argument types must match the declaration exactly. (e)

template<int size>
class foo {

/] ...
}i

foo<7, 7> qux;

1339: arguments do not match template template name
The arguments do not match the template.

template<class T>
class C{};

C<int, int> WrongArgs;

1340: can’t recover from earlier errors
Certain earlier errors have made it impossible for the parser to continue. (f)

671

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1341: compiler out of sync: mismatching parens in inline function
The compiler is unable to parse an inline function. Check the function to see if
the parentheses are nested correctly. (f)

1344: syntax error - unexpected end of file
The parser has found an unexpected token. (e)

1347: identifier name used as template name
The identifier cannot be used as a class, struct, or union tag since it is already
a template name. (e)

template<class T>
class foo {

};

struct foo {
}

1354: "'0" expected in pure specifier
A value other than 0 was found in a pure specifier. (e)
class foo {

virtual bar() = 5; // Should have been 0
}

1355: all dimensions but the first must be positive constant integral expressions
The first dimension of an array may be empty in some contexts. In a
multi-dimensional array, no other dimensions may be empty (and none may
be negative). (e)

int arrayl[-41;

1360: base class expected
Base class not found after “:” or “,” in a class definition. (e)

class A : {}; // The base class is missing

1361: can’t initialize ... with a list
An object of a class which has constructors, bases, or non-public members
cannot be initialized as an aggregate.
struct foo {
private:
int i
public:
int 3, k;
}i

foo bar = { 1, 2, 3 }; // 1 1s private

1362: can’t nest function definitions
Functions cannot be defined inside other functions.

672

H Messages
H.2 Compiler Messages

void fool()
{
void bar() { } // No nesting
}
1367: class class-name used twice as direct base class

Cannot use the same class as a base class more than once. (e)

class A {};
class B : A, A {};

1368: class name expected after ~
Encountered “~” in a class, apparently to declare a destructor, but it was not
followed by the class name. (e)

class foo {

7

Y

1370: class/struct/union cannot be declared specifier
A function specifier is applied to a definition of a class, struct, or union. (e)

inline class foo { /* inline is invalid for a class */

}i

1371: conflicting declaration specifiers: specifier1 specifier2
Illegal mixing of auto, static, register, extern, typedef and/or friend. (e)
extern static int foo;

1372: conflicting type declarations
More than one type specified in a declaration. (e)

int double foo;

1373: enumerator may not have same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1376: function function name is not a member of class class name
A function was not declared, it was misspelled, or the parameters were not
used consistently. (e)
class line{
lint(int 1); // Misspelled
Yi
line::line(int 1) {}
1378: function function name is not found
A function call referred to a function that was not found. (e)

673

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

static int fun();
main () {
fun();

}
1379, 1380: identifier ... declared as struct or class. Use struct or class specifier
identifier ... declared as union. Use union specifier

There was a type mismatch between the declaration and the use of an

identifier. (e)

union u {

}i

struct u foo; // u was a union, cannot also be struct
1381: identifier name not a nested class nor a base class

Something that is not a class was used as a base class. (e)

1383: identifier identifier is not a type
What appeared to be a declaration began with an identifier that is not the name
of a type.

INT I;

1384: identifier name not a direct member
Attempt to initialize a variable that is not a direct member of the class. (e)

struct B { int b; };

struct C : public B {
int c;
C(int i) : c(i), b(i) {} // Can’t initialize b here
}
1385: identifier identifier not a static member of class class name
Invalid declaration. (e)
struct A {
int 1i;

}i
int A::1;

1386: identifier identifier not declared in string
An identifier is used but not declared. Check the identifier for spelling errors.

(e)
1388: identifier identifier not declared
An identifier was used without being declared. (e)

1391: identifier name is not a class
An identifier that is not a class was used before

",
- .

674

H Messages
H.2 Compiler Messages

1394: illegal expression
A break statement is only allowed inside a for, while, do or switch statement.

(e)
A continue is only allowed inside a for, while or do statement. (e)

A default or case label is only allowed inside a switch statement. (e)

1395: illegal function specifier for argument
A parameter cannot be declared inline or virtual.

void foo(inline int);

1397: illegal storage class for class/struct/union
A storage class other than extern is specified for a definition of a class, struct,
or union. (e)

auto class foo {

Y

1403: main can’t be declared string
Special rules for the function main() are violated. (e)

1404: mem initializers only allowed for constructors
Members can only be initialized with the member initializer syntax in
constructors. (e)
class A {

int i;
int foo() : i(4711) {} // Not a constructor
}

1405: missing argument declaration
Argument declaration omitted. (e)
class bar {

foo(, int);
Yi

1410: no default arguments for overloaded operators

Overloaded operators cannot have default arguments. (e)

1411: no redefinition of default arguments
An argument can be given a default value only once in a set of overloaded
functions. (e)

void foo(int
void foo(int

17);
4711) ;

1412: no return type may be specified for conversion functions
The return type of conversion function is implicit. (e)

675

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

class foo {
double operator int(); // Cannot specify type
}
1414: non-extern object name of type type-name must be initialized
A const object must be initialized unless it is extern.

1415: non-extern reference name must be initialized
References and const objects, which are not declared extern, must be
initialized. So must objects of classes that have constructors but no default
constructors. (e)

const struct S &structure;

1417: only functions can have pascal calling conventions
int pascal 1i;

1418: only static constant member of integral type may have initializer
A member that is a static integral type can be initialized; others cannot. (e)
struct {
const int *p =0x3333;
Ys;
1419: operator ... cannot be overloaded
7 7y

It is invalid to overload any of the operators “.” or or “?:".

1420: parenthesized expression-list expected after type typename

1423: redeclaration of symbol ...
A symbol in an enumerated type clashes with an earlier declaration. (e)

1427: static function declared in a function
There is no use declaring a static function inside another function. (e)

void foo()
{

static void bar () ;

bar(); // Call to bar, but where can it be defined?
}

1428: static member ... can’t be initialized
A static class member cannot be initialized in a member initializer. (e)

class A {
static int si;
A(int ii) : si(ii) ()
Yi
1429: string literal expected in asm definition
String missing in an asm statement.

asm() ; // the parentheses should contain an instruction

676

H Messages
H.2 Compiler Messages

1430: subsequent argument without default argument
Only the trailing parameters may have default arguments. (e)

void foo(int = 4711, double);

1431: syntax error - catch handler expected after try
The parser has found an unexpected token. (e)

1432: syntax error - catch without matching try
The parser has found an unexpected token. (e)

1433: syntax error - class key seen after type. Missing ;?
The parser has found an unexpected token. (e)

1434: syntax error - class name expected after :
The parser has found an unexpected token. (e)

1435: syntax error - colon expected after access specifier
The parser has found an unexpected token. (e)

1436: syntax error - declarator expected after ...
The parser has found an unexpected token. (e)

1437: syntax error - declarator expected after type
The parser has found an unexpected token. (e)

1438: syntax error - declarator or semicolon expected after class definition
The parser has found an unexpected token. (e)

1439: syntax error - else without matching if
The parser has found an unexpected token. (e)

1441: syntax error - identifier expected after ...
The parser has found an unexpected token. (e)

1442: syntax error - initializer expected after =
The parser has found an unexpected token. (e)

1444: syntax error - keyword operator must be followed by an operator or a type
specifier
The parser has found an unexpected token. (e)

1446: syntax error - type tag expected after keyword enum
The parser has found an unexpected token. (e)

1454: type defined in return type (forgotten “;”?)
It is illegal to define a type in the function return type. (e)

struct foo {} bar()
{
}

677

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1455: type definition in bad context
A type was defined where it was not allowed. (e)

1456: type definition in condition
Types cannot be defined in conditions. (e)

if (struct foo { int i } bar) {
/] ...
}

1457: type definition not allowed in argument list
Types cannot be defined in argument lists. (e)
int foo(struct bar int a; } barptr);

1460: type expected after new
A new expression requires a type. (e)

p = new;

1461: type expected for ...

No type found in declaration of a variable. (e)

1462: type expected in template parameter
This could indicate a misspelling of a template parameter. (e)

template<classT> ...;
1463: type expected in arg-declaration-clause

An argument type is missing in a function declaration. (e)

class bar {
foo (imt) ;
Yi
1464: type expected in cast
Found something that was not a type in a cast expression. (e)

1465: type expected
Found an expression that was not a type where a type was expected. (e)

1466: type in new expression can’t be string
A type in a new expression cannot be pascal or asm.

1467: type in new expression may not contain class/struct/enum declarations
Cannot declare types in a new expression. Nor can the types used in a new
expression be const, volatile, pascal, or asm. The type used must be
completely specified and cannot have pure virtual functions. (e)

void *p = new enum foo { bar };

1469: unknown language string in linkage specifier: ...
Only "C" and "C++" allowed in linkage specifiers. (e)

678

H Messages
H.2 Compiler Messages

extern "F77 { // Don't know anything about F77 linkage}

1477: already const
A variable was declared const more than once. (w)

int * const const foo;

1479: comma at end of enumerator list ignored
A superfluous comma at the end of a list of enumerators was ignored. (w)

enum foo { bar, };

1480: enumerators can’t have external linkage
extern cannot be specified for enum declarations. (e)

extern enum foo { bar };

1481: function function-name not declared
If the -Xforce-declarations option is used, the compiler will generate this error
message when a function is used before it has been declared. (w)

1484: missing declarator in typedef
No declarator was given in a typedef statement. (e)

typedef class foo {
//

1485: old style function definition
A function was defined using the older K & R C syntax. This is invalid in C++.

(w)

int foo(a, b)
int a, b

{

}

1486: initializer that is a brace-enclosed list may contain only constant
expressions
A variable was initialized using a brace-enclosed list containing an expression
(such as a variable) that cannot be evaluated during compilation.

int 1 = 12;
iﬁéx[]:{l, 2, 3, 1};
This is allowed in C++ but not in C.

1488: redeclaration of parameter identifier
One of a function’s parameters is shadowed by a declaration within the
function, (w) if -Xpcc or -Xk-and-r, (e) otherwise.

fl(int a) { int a; ... }

679

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1489: redundant semicolon ignored
Found an extra semicolon among the members of a function. (w)
class A {

int a;
Yi

1492: virtual specified both before and after access specifier
Syntax error. (w)
class A {};
class B : virtual public virtual A {};

1493: redeclaration of ...

A function has been redeclared to something else. (e)
int i(int);

double 1i(int);

double i(int i) {...}

1494: non-extern object identifier of type type-designator must be initialized
This message may indicate that a const member of a class/structure/union
was not initialized. (e)
class C {

const int ci;
}oc;

1495: non-extern const object name must be initialized

A const object must be initialized unless it is extern.

const char c;

1497: too many declaration levels
An internal stack overflowed. This is unlikely to happen in the absence of
other errors. (f)

1498: internal table-overflow
Internal stack overflowed. May occur with extremely complex, deeply nested
code. To work-around, simplify or modularize the code. If the problem does
not appear to be a consequence of some earlier error, please report it to
Customer Support. (f)

1500: function <function_name> has no prototype
The function function_name was used without a preceding prototype
declaration. In C,

void £();

is a declaration but not a prototype declaration—it declares f to be a function
but says nothing about the number or type of arguments it takes. This warning

680

H Messages
H.2 Compiler Messages

is returned when an attempt has been made to use f without making a
prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1501: function-pointer has no prototype
A function pointer was used but was declared to have a type that lacks a
prototype. In C,

void (*f) ();

declares f to be a function pointer but says nothing about the number or type
of arguments it takes. This warning is returned when an attempt has been
made to use f without making a prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1504: arglist in declaration
An old style function declaration is found in the wrong context. (w)

£f1() { int f2(a,b,c); ... }

1507: end of memory
Ran out of virtual memory during compilation. The compiler first attempts to
skip some optimizations in order to use less memory, however this error can
occur for large functions on machines with limited memory. Note: initialized
arrays require the compiler to hold all initial data and can contribute to this
error. If the problem does not appear to be a consequence of some earlier error,
please report it to Customer Support. (f)

1509: expression involving packed member too complicated
This indicates that the processor does not support “compound assignment”
for volatile members of packed structures.

structl.a |=3; // May have to use structl.a = structl.al3

1511: can’t access short or int bit-fields in packed structures unless the
architecture supports atomic unaligned accesses (-Xmin-align=1)
Packed structures cannot contain bit-fields unless the architecture support
atomic unaligned access. To see if the architecture supports atomic unaligned
access, compile a file with the -S option and then examine the .s assembly file.
Look for the -X93 option in the header. If X93=1, the architecture supports
atomic unaligned access. (e)

681

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

#pragma pack (1)
struct S {
int j:3;
Yi
1513: byte swapped structures can’t contain bit-field
Bit-fields are not allowed in byte-swapped structures. (e)
#pragma pack (,,1l) // Byte swap
struct s {
int j:3;
}
1515: profile information out of date
The file given with the -Xfeedback option is out of date or has an old format.
Re-compile with the -Xblock-count option and create a new profiling file. (e)

1516: parameter parameter name is never used
A parameter to a function is not used. This message appears if the -Xlint
option is used. (w)

fun (int 1) {};

1517: function function name is never used
A function was declared but not used. This message appears if the -Xlint
option is used. In the example, the file consists of one line. (w)

static fun();

1518: variable identifier is never used
A variable is never used. This message appears if the -Xlint option is used. (w)
fun () {
int 1i;
}
1519: expression not used
The compiler has detected all or part of an expression which will never be

used. (w)

a+b; /* statement with no side effects */
a=(10,b+c) ; /* 10 is not used */

S++; / the '*' is not needed: s++; /

Note: the compiler will not issue this warning for an expression consisting
solely of a reference to a volatile variable.

1520: large structure is used as argument

The size of a structure passed as an argument to a function equals or exceeds
the size specified by -Xstruct-arg-warning. (This message is returned only
when the command-line option -Xstruct-arg-warning is used.) (w)

682

H Messages
H.2 Compiler Messages

1521: missing return expression
A function is defined with a return type, but does not return a value. This
message appears if the -Xlint option is used. (w)
float fun(){
return;
}
1522: statement not reached
A statement can never be executed. This message appears if the -Xlint option
is used. (w)
main() {
int never;
return 0;
never=6;
}
1523: can’t recognize storage mode unknown
The storage mode specified in an asm macro is unknown. See 7. Embedding
Assembly Code for more details. (e)

1524: too many enhanced asm parameters
There can be a maximum of 20 parameters and labels used in an asm macro.
See 7. Embedding Assembly Code for details.

1525: identifier identifier not declared
An identifier was not declared. (e)
fun () {
return i;
}
1526: asm macro line too long
A very long line was given in an asm macro. See 7. Embedding Assembly Code
for more details. (e)

1527: non-portable mix of old and new function declarations
A function declaration was made in accordance to an older C standard. In K &
R C, chars and shorts are promoted to int, and floats are promoted to double
just before a call is made to a function. However, in ANSI C, the arguments
match the prototype at the call site. (w)

1528: can’t initialize variable of type type_designator
Some types do not allow initialization. (e)

void a = 1;

1534: only first array size may be omitted
The size of the first dimension of an array can be omitted; all others must be
specified. (e)

683

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

int x[311[1;

1535: illegal width of bit-field
A bit-field width is greater than the underlying type used for the bit-field. (e)

Example for a target with 32 bit integers:
struct { int 1:33; }

1536: bit-field must be int or unsigned
The compiler detected an unsupported bit-field type. (e)

struct { float a:4; };

1541: redeclaration of struct/union/enum ...
A struct, union, or enum tag name was used more than once: (e)

struct tl { ... }; struct tl1 { ... };

1542: redeclaration of member variable name
A member has been declared more than once. (e)

struct{
int i;
int i;
};
1543: negative subscript not allowed
The size of an array cannot be negative. (e)
int ar([-101;

1544: zero subscript not allowed
An array of zero size cannot be declared when compiling for strict ANSI C
(-X7=2, or -Xdialect-strict-ansi). (w)
int x[0];

1546: dangerous to take address of member of packed or swapped structure
Using the address of a packed or byte-swapped structure is not recommended.

(w)

#pragma pack (2,2,1)

ptr = &(structl.i);

1547: can’t take address of object
Trying to take the address of a function, constant, or register variable that is not
stored in memory. (e)

register int r; fn(&r);

1548: can’t do sizeof on bit-field
The sizeof function does not work on bit-fields. (e)

684

H Messages
H.2 Compiler Messages

struct {
int j:3;
} structl;
i = sizeof(structl.j);
1549: illegal value
Only certain expressions can be on the left hand side of an assignment. (e)
atb = 1;
(a ? b:c) =2; /* not valid in C modules*/
1550: can’t push identifier
It is invalid to use an expression of type function or void as an argument. (e)

void *pv; int (*pf) (); fn(*pv, *pf);

1551: argument [identifier] type does not match prototype
The type of an argument to a function is not compatible with its type as given
in the function’s prototype. (w) if -Xpcc or -Xk-and-r or -Xmismatch-warning,
(e) otherwise.

int f(char *), i; ... 1 = f(&i);

1552: initializer type "type" incompatible with object type "type"
The type of an initializer is not compatible with the type of the variable, (w) if
-Xpcc or -Xmismatch-warning, (e) otherwise.

char c; int *ip = &c;

1553: too many errors, good bye
The compiler has found so many errors that it does not seem worthwhile to
continue. (f)

1554: illegal type(s): type-signatures
The operators of an expression do not have the correct or compatible types, (w)
if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise. This message
may also indicate an attempt has been made to find the sum of two pointers.

int *pi, **ppi; ... if (pi =

#illegal types: ptr-to-int =' ptr-to-ptr-to-int

int *p, *q;
p=p+ q; // Attempt to add pointers
#illegal types: ptr-to-int '+' ptr-to-ptr-to-int

1555: not a struct/union reference
The left hand side of a “->” or “.” expression is not of struct or union type. If
-Xpcc is specified the offset of the given member name in another struct or
union is used. (w) if -Xpcc, -Xk-and-r, or -Xmismatch-warning, (e) otherwise.

685

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1556: volatile packed member cannot be accessed atomically

For the selected processor, a packed member cannot be accessed atomically if
it is volatile. (w)

#pragma pack(l, 1)

struct {
volatile int v;
} s
s.v =3; /* generates error 1556 */

1560: unknown pragma
The pragma is not recognized. (w)

#pragma tist
1561: unknown option -Xunknown

The compiler was started with an -X option that is not recognized. (w)
1562: bad #pragma use_section: section section name not defined

A #pragma use_section command has not been correctly given. (w)

#pragma section DATA3 // Correct
#pragma use_section x // Omitted section class name DATA3

1563: bad #pragma [name]
If issued without the name, the compiler did not recognize the pragma. If
issued with a name, there is a problem with either the operands to the pragma
or the context in which it appears. (w)

1564: bad #pragma pack
The #pragma pack statement is not correct. (w)

#pragma pack(1l,2,3,4) // Takes up to three arguments

1565: illegal constant in #pragma pack
An invalid constant has been used in a pack pragma. (w)

#pragma pack(7) // Must use powers of 2 for alignment

1566 to 1572: obsolete messages

Messages numbered 1566 to 1572 should not appear because they refer to
obsolete features.

1573: user’s error string
Error number 1573 can be used to display any string the user chooses when

» the compiler compiles this file, by use of #pragma error string:

#pragma error Now compiling test.c; // compilation continues

» the compiler stops because of an error, by use of error string:

686

H Messages
H.2 Compiler Messages

#error // This terminates the compilation process

1574: can’t open file for input
The given file cannot be opened. (f)

1575: can’t open file for output
The given file cannot be opened. (f)

1577: can’t open profiling file file
The file given with the -Xfeedback=file option cannot be opened. (w)

1578: profile file is of wrong version (file)

The file given with the -Xfeedback option is out of date or has an old format.

Re-compile with the -Xblock-count option and create a new profiling file. (e)

1579: profile file file is corrupted
The file given with the -Xfeedback option is corrupted. Re-compile with the
-Xblock-count option and create a new profiling file. (e)

1580: can’t find current module in profile file ...
No data about the current source file is available in the profiling file. (w)

Possible causes:

* No function in the current file was actually executed during profiling.
» The profiling file belongs to another executable program.

1584: illegal declaration-attribute
A declaration contains an invalid combination of declaration specifiers. (w)

unsigned double foo;

1585: global register register name is already used
The global register has already been reserved. (w)

rl4d
rld

#pragma global_register counter
#pragma global_register kounter

1586: cannot use scratch registers for global register variables
Scratch registers cannot be used for global register variables. (w)

#pragma global_register counters=scratch-register-name

1587: global register register-name is invalid
Found an unrecognized register name in a global_register pragma. (w)

1588: no .cd file specified!
The target description (.cd) file was not specified.

The compiler reads a target description file during initialization (see “Targets,”
Table 2-2). Normally, when the dec command is given, the .cd file is

687

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

automatically specified. To find out the .cd filename for your selected target
configuration, run dcc with the -# option to display all of the commands
generated, and look at the -M option for the ctoa program. (f)

Likely causes:

* The compiler is not installed properly.
* One of the compiler files has been deleted, hidden, or protected.
= The dtools.conf or other configuration file is incorrect.

1589: can’t open .cd file!
See error 1588 for a description of the .cd file and likely causes.

1590: .cd file is of wrong type!
See error 1588 for a description of the .cd file and likely causes.

1591: .cd file is of wrong version!
See error 1588 for a description of the .cd file and likely causes.

1592: cd file file too small?!
See error 1588 for a description of the .cd file and likely causes.

1593: rite error
Write to output file failed. (f)

1595: illegal arg to function name
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1596: test version of compiler: File is too big!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1597: test version of compiler: Can’t continue!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1598: no matching asm pattern exists
While scanning an asm macro, no storage-mode-line matching the given
parameters was found. See 7. Embedding Assembly Code for details.

1599: expression too complex. Try to simplify
Can occur if an expression is too complex to compile. Should not happen on
most modern processors. Can occur on a processor with few registers and no
built-in stack support. (f)

688

H Messages
H.2 Compiler Messages

1600: no table entry found!
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1601: address taken in initializer (PIC)
Position-independent code. A static initializer containing the address of a
variable or string has been found when generating position-independent code.
Such address values cannot be position-independent. (w) or (e) depending on
whether -Xstatic-addr-warning or -Xstatic-addr-error is used.

1602: variable ... is incomplete
A variable is defined with a type that is incomplete. (e)
struct a;
struct a b;
1603: logic error in internal-identification
The compiler has detected an internal error. May result from other errors

reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1604: useless assignment to variable identifier. Assigned value not used
The variable assignment has no effect, since the assigned value is not used.
This message appears if the -Xlint option is used. (w)
fun () {
int i=1;
}
1605: not enough memory for reaching analysis
Certain optimizations, called “reaching analysis”, will be skipped if the host
machine cannot provide enough memory to execute them. The compiler
continues, but produces less than optimal code. (w)

1606: conditional expression or part of it is always true/false
A conditional test is made, but the results will always be the same. This
message appears if the -Xlint option is used. (w)
int main(){
int i = 3;
if (i < 6)
return 4;
}
1607: variable name is used before set
During optimization, the compiler discovers a variable that is used before it is
set. (w)

func() { int a; if (a == 0) ... }

689

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1608: variable identifier might be used before set
A variable may have been used before it was given a value. (w)
fun () {
int i,3;
i=13; // j is used before set
}
1609: illegal option -Dinvalid_name
The preprocessor was invoked with the -D option and an invalid name. Names
must start with a letter or underscore. (w)

1611: argument list not terminated
The end of the source file was found in a macro argument list. (w) if -Xpcc, (e)
otherwise.

1612: EOF inside #if
The source file ended before a terminating #endif was found to match an
earlier #if or #ifdef. If not caused by a missing #endif, then it is frequently
caused by an unclosed comment or unclosed string. (w) if -Xpcc, (e) otherwise.

1617: syntax error in #if
The expression in an #if directive is incorrect, (w) if -Xpcc, (e) otherwise.

#if a *
1618: too complex #if expression

The expression in an #if directive overflowed an internal stack. This is unlikely
to happen in the absence of other errors, (w) if -Xpcc, (e) otherwise.

1619: include nesting too deep
The preprocessor cannot nest header files deeper than 100 levels, (w) if -Xpcc,
(e) otherwise.

1621: can’t find header file unknown
The preprocessor cannot find a file named in an #include directive. (w) if
-Xpcc, (e) otherwise.

1622: found #elif, #else, or endif without #if
Found an #elif, #else, or #endif directive without a matching #if or #ifdef. (w)
if -Xpcc, (e) otherwise.

1623: bad include syntax
The #include directive is not followed by < or " or the filename is too long. (w)
if -Xpcc, (e) otherwise.

690

H Messages
H.2 Compiler Messages

1624, 1625: illegal macro name

illegal macro definition
Macro names and arguments must start with a letter or underscore, (w) if
-Xpcc, (e) otherwise.

1626: illegal redefinition of macro_name
LINE,_FILE_,_DATE_,_ TIME_, defined, and _ STDC__cannot be
redefined, (w) if -Xpcc, (e) otherwise.

1627: macro macro name redefined
The macro was previously defined. (w)

#define PI 3.14
#define PI 3.1416

1629: undefined control

Undefined or unsupported directive found after #, (w) if -Xpcc, (e) otherwise.

#pragmo

1630: illegal assert name
An #assert name must be an identifier and must be preceded by a “#”
character, (w) if -Xpcc, (e) otherwise.

1631: macro identifier: argument mismatch
Either too few or too many arguments supplied when using a macro, (w) if
-Xpcc, (e) otherwise.
#define M(a,b) (a+b)
i=M(1,2,3);
1632: recursive macro macro name
A recursive macro has been detected. The error occurs when the macro
substitution occurs, line 4 in this case: (e)
#define max(A,B) A>B ? A : max(A,B)
main() {
int i=1,3=2,k;
k = max(i,j); // Reports error for this line.
}
1633: parse error
The complier was not able to parse the expression. (e)
x = multiply(y,); // Comma, but no second argument
main (} // Typed } instead of
1635: license error: error message
An error occurred when checking the license for the software tools. The error
message describes the problem (no server for this feature, etc.). Please refer to
your Getting Started manual or contact Customer Support. (f)

691

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1638: illegal error level error level in option option name
The -exn option was used with an invalid error level. The -e option is used for
increasing the severity of error messages for a particular error. (w)

dcc -e99 test.c // 99 is invalid error level

1640: illegal error message number message number
The -exn option was used with an invalid error message number. The -e option
is used for increasing the severity of error messages for a particular error. (w)

dcc -ewl0000 test.c // There is no message number 10000

1641: cannot reduce severity of error message number below error level

% dcc -ewl6l4 test.c
warning (dcc:1641): Cannot reduce severity
of message 1641 below "error"

1643: narrowing or signed-to-unsigned type conversion found: type to type
A type conversion from signed to unsigned, or a narrowing type conversion
has been found. This message appears if the -Xlint option is used. (w)
main() {
int i;
char c;
c = 1ij;
}
1647: non-string method invocation expression on string object expression
This error indicates a mismatch between an invocation and the declaration of
a method.

For example, non-const method invocation in const object. Methods of const
objects must be const.

class C {

int i;

public:
£() {1 =12; }
c() {1

Y
const C c;

main() {
c.f();
}

"x.cpp", line 11: error (1647): non-const method
invocation f() on const object ¢

1650: no profiling information found in database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

692

H Messages
H.2 Compiler Messages

A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found in the database directory. The
normal sequence of events is:

a. A programiscompiled with an -Xprof-type option that adds profiling code
to the program.

b. The program is run and profiling information is collected using the RTA.

c. The program is compiled with the -Xprof-feedback option, and the
compiler uses the profiling information to optimize the code.

Possible causes of the error:

* The wrong database directory was specified.
* The database does not contain profiling data.

1651: can’t find profiling information for function in database
A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found for the function. See error 1650,
above, for a brief explanation of the situations where this error occurs. (w)

Possible causes of the error:

* The module was not compiled with an -Xprof-type option that would add
code for instrumentation.

» The program was not run, and so profiling data was not collected.

1657: initializer method name initializes neither a direct base nor a member
Only classes that are direct bases or virtual bases can be used in a member
initializer. (e)

struct A { A(int); };
struct B : public A { B(int); };

struct C : public B {
C(int 1) : A(i) {} // Can’t initialize A here
i
1663: inline of function does not occur in routine function - try increasing value
of -Xinline
This warning is generated whenever the inline keyword is specified but the
compiler does not inline the function. Increasing the value of -Xinline or
-Xparse-size can help, but there are other reasons for not inlining a function.

1665: long long bit-fields are not supported
long long cannot be used with bit-fields. (w)

693

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

struct {
long long story:3;
}
1671: non-portable behavior: operands of type are promoted to unsigned type
only in non-ANSI mode
When a non-ANSI compilation mode is used, for example, -Xpcc, this warning
appears when the compiler selects an unsigned integral type for an expression
which would have been signed under ANSI mode. This message appears if the
-Xlint option is used. Use -X1int=0x200 to suppress this message. (w)

1672: scope of tag tag is only this declaration/definition
The tag referred to in a parameter list does not have a prior definition. (w)

/* struct bar does not have a definition before this point */
foo(struct bar a);

1674: template argument argument should be pointer/reference to object with
external linkage
Arguments for template functions need to be pointers or references to objects
with external linkage. (e)

template <class T, int& Size>
class Base {

o

class A {

)

static int local_linkage_int;

Base<A, local_linkage_int> ob;

1675: sizeof expression assumed to contain type-id type-id (use "typename")
When a type-id is used in a sizeof expression, the compiler assumes that this
is intended; otherwise a typename should be used instead. (w)

template <class T, int& Size>
class Base {

void incr()
{
Size = Size + sizeof (A);

}
b
1676: class class is abstract because it doesn’t override pure virtual function

A class that has un-overridden pure virtual functions is an “abstract class” and
cannot be instantiated. (i)

694

H Messages
H.2 Compiler Messages

1677: executable executable name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The specified executable was not found.

1678: snapshot snapshot name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The snapshot containing profiling information was not found.

1679: no definition found for inline function function
The template member function referred to has no definition. (w)

1680: delete called on incomplete type type
The delete operator is called on a pointer to a type whose full declaration has
been deferred. (w)

1682: "(unsigned) long long" type is not supported by the ANSI standard
The ANSI standard does not support the long long type. (w; future error)

long long x;

1683: non-int bit-fields are not supported by the ANSI standard
The ANSI standard allows bit-fields of integer type only. (w; future error)

struct foo {
char x:2;

Y

1696: intrinsic function name must have n argument(s)
The number of arguments passed to an intrinsic function is incorrect. (e)

int a, b;
a = __ffl(a, b);

1697: invalid types on arguments to intrinsic function name
An argument of an invalid type is passed to an intrinsic function. (e)

char *ptr;
int a;

a = __ffl(ptr);

1700: implicit intrinsic function name must have n argument(s) - when the
intrinsic is enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the number of arguments
must be the same. (e)

695

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

unsigned int __ffl (unsigned int x, unsigned int y)

{
}

1701: invalid types on prototype to intrinsic function name - when the intrinsic is
enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the prototypes must match.

(e)

unsigned int _ ffl(int a)

{
}

1702: prototype return type of intrinsic function name should be type - when the
intrinsic is enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the return type must match.

(e)

void __ffl(unsigned int a)

{

}

1703: function name matches intrinsic function name - rename function or disable
the intrinsic with -Xintrinsic-mask
A function with the same name as an intrinsic function has been defined. The
function should be renamed or intrinsic functions should be disabled. (w)

unsigned int __ffl (unsigned int x)

{

}

1704: structure or union cannot contain a member with an incomplete type
Structures or unions should not contain fields of incomplete type. (w; future
error)

struct x
{
void a;
Y
1707: invalid pointer cast/assignment from/to __ X mem/__Y mem
The pointer assignment is invalid because it is between locations in two
different memory banks. (e)

1708: cannot take address of an intrinsic function
An intrinsic function, which represents a specific CPU instruction, has no
location in memory.

696

H Messages
H.2 Compiler Messages

1709: unsupported GNU Extension : inline assembler code
The compiler does not translate extended GNU inline assembler syntax (such
as register usage specification). (e)

1710: macro macroname: vararg argument count does not match. expected n or
more but given m
Too few arguments are passed to a vararg macro. (w)

#define TEST INFO_1 (fmt, val, ...) printf (fmt, val, __VA_ARGS_)
TEST_INFO_1("vall = %d, val2 = %d", 12);

1711: undefined identifier identifier used in constant expression
An undefined macro name occurs in a #if preprocessor directive. To disable
this warning, use -Xmacro-undefined-warn. (w)

#if (FooDefl == FooDef2)
...
#endif

1712: only vector literals may be used in vector initializations
Vectors can be initialized only with vector constants. (e)

vector int al2] = {1, 2};

697

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

1713: invalid assert name name

1714: invalid macro name name

1715: no input file given

1716: memory unavailable

1717: unterminated comment

1718: unterminated character or string constant

1719: duplicate parameter name param in macro macro
1720: implicit include file “file” not found

1721: missing ">" in “#include <filename> syntax"
1722: junk after "#include <filename>"

1723: junk after "#include “filename”

1724: "#include" expects <filename> or “filename”
1725: #if nesting too deep

1726: #include file nesting too deep. possible recursion
1727: unmatched condition. block starts on line n
1728: unmatched condition

1729: unbalanced condition

1730: undefined control after expr

1731: EOF inside #... conditional

1732,
1733: illformed macro parameter list in macro macro

1734: invalid macro name name

1735: invalid argument to macro

1736: illformed macro invocation

1737: invalid assert name name

1738: "##" at start of macro definition

1739: "#" precedes non macro argument name or empty argument

1740: macro macro: argument count does not match. expected n but given m

698

1741:
1742:
1743:
1744:
1745:
1746:
1747:
1748:
1749:
1750:
1751:
1752:
1753:
1754:
1755:
1756:
1757:
1758:
1759:
1760:
1761:
1762:
1763:
1764:
1767:
1768:
1769:
1770:

H Messages
H.2 Compiler Messages

redefinition of macro "macro". previously defined here
predefined macro macro redefined

empty token-sequence in "#assert"

no closing ")" in "#assert"

garbage at the end of "#assert"

invalid number in #line

only a string is allowed after #line <num>

string expected after #error

string expected after #ident

directive not understood

"defined" without an identifier

no closing ")" in "defined"

bad digit in number

bad number in #if...

floating point number not allowed in #if...

wide character constant value undefined
undefined escape sequence in character constant
empty character constant

multi-character character constant

octal character constant does not fit in a byte

hex character constant does not fit in a byte
character constant taken as unsigned

garbage at the end of condition argument

illegal identifier identifier in condition

can’t find include file file in the include path
invalid "vector bool" constant, valid values 0, 1 or -1
the called object is not a function

array is too large

699

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

There is a physical limitation on the amount of space that can be allocated for
an array. (e)

1771: reserved identifiers "__FUNCTION_ " and " PRETTY_FUNCTION__" may
only be used inside a function
The special identifiers _ FUNCTION__and _ PRETTY_FUNCTION__, which
return the name of the current function, can be used only within a function. (e)

1772: possible redundant expression
The compiler has encountered a valid but redundant operation, such as x&x.
This message appears if the -Xlint option is used. (w)

1773: quoted section name cannot be empty, set to: default name
Quoted section names cannot be empty (“” or “ "). For example,

.section " ",4,rx
will be changed to:
.section "default_section_name" ,4,rx

where the default section name is determined by context. (w)

1774: asm macro must be completed with "}" in the very first position
An asm macro must conclude with a right brace ("}") in the first column of a
new line. The example below shows a valid asm macro. (e)

asm void setsr (unsigned short value)
{
gmem value;
move.w value,dO
move.w d0,sr
}

1775: Deprecated use of constructor/destructor ignored, use attribute keyword
The compiler encountered an initialization or finalization function declared
with the obsolete prefix _STI__nn_or _STD__nn_. Use the __attribute__
keyword to identify initialization and finalization functions, or specify
-Xinit-section=2 to use old-style initialization and finalization sections. (f)

1776: constructor/destructor priority out of range (number)
The specified priority is out of range. The default range is 0-65535; but if
-Xinit-section=2 is enabled, the range is 0-99. (e)

1777: default constructor/destructor priority out of range, setting to lowest
The priority for default constructors and destructors has been set with
-Xinit-section-default-pri to a value that is out of range. The default range is
0-65535; but if -Xinit-section=2 is enabled, the range is 0-99. (w)

700

H Messages
H.2 Compiler Messages

1778: option -Xc++-old is deprecated and dtoa will be removed in a future
release
-Xc++-o0ld, which invokes an obsolete version of the C++ compiler, will not be
supported indefinitely. Legacy projects should be ported to the latest C++
compiler. See Older Versions of the Compiler, p.232 for more information. (w)

1779: CODE section without execute access mode: section-name
A CODE section has been created with a specified access mode that does not
include execute permission. For example:

#pragma section CODE ".SOME_CODE_SECTION" RW far-code

In this example, RW (read-write) is not a valid access mode, since a CODE
section must allow execution. X (execute) should be added to the access mode.

(e)

1780: non-int bitfields not allowed in packed structures
Bit-fields of type char or short are nonstandard. Depending on the compilation
target, such bit-fields can result in faulty code when they occur in packed
structures. For example:

struct {
unsigned short foo:ll;
} _:::n.:t.:ribute_((packed)) structl
Replace unsigned short with int. (e)
1793: conflicting types for section section:
An attempt has been made to mix types of information in a single object-file

section; for example, constant data (such as a string constant) into a section
reserved for code or variables.

In this example, the compiler assumes from the first statement that the section
.mydata is intended to be of the DATA section class, whereas the second
statement assumes that .mydata will be a CONST section class:

__attribute__ ((section(".mydata")
__attribute_ ((section(".mydata")

) int var = 1;
) const int const_var = 2;

)
)
H.2.4 C++ Messages

The C++ compiler generates additional messages and diagnostics numbered 4xxx
and 5xxx. No further documentation is currently available for these messages. If a
message if unclear, contact Customer Support.

701

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

If you are compiling C++ code with the -Xc++-old option, see H.2.3 C Compiler
Message Detail, p.647 for a list of diagnostics.

The severity of some C++ diagnostics (information, warning, error, or fatal) varies
according to the circumstances under which the message is generated.

H.3 Assembler Messages

Assembler messages have the format:
"filer, line #: severity: message

Three kinds of messages are generated. The severity values for each as they appear
in messages are as follows.

warning
Warning: a message will be printed, assembly will continue, and an output file
will be produced.

error
Error: a message will be printed, assembly will continue, but no output will be
generated.

fatal
Fatal: a message will be printed and assembly aborted.

Assembler messages are intended to be clear in the context of the error and are not
listed here. Please report unclear assembler error messages to Customer Support.

H.4 Linker Messages

H.4.1 Linker Message Format

Linker messages have the format:

DLD.EXE: message

702

H Messages
H.4 Linker Messages

Where relevant, the file and line are included in the message.

The severity level for each message is shown in parentheses in the message
description. A warning (w) generates a diagnostic message, but linking continues
and an output file is produced. An error (e) causes the linker to abort.

H.4.2 Linker Message Detail

"" (0x...) is assigned invalid value: 0x...

Assignment to “.” creates a gap in section data. The size of this gap should not
be negative and should be less 0x4000000. (e)

Absolute section has invalid name: name
Absolute section name must be “.abs.hexNumber”. (e)

An unknown or incorrect option has been provided
The linker does not recognize an option flag that has been passed to it. (w)

Archive file filename does not have symbol table
An archive file must have a symbol table to be usable by the linker. Use dar to
create the table. (e)

ASSERT failed: assertion
(Message may include the assert expression.) Contact Customer Support. (e)

Assignment to symbol "symbol" in the LECL file is ignored

The symbol is defined in an input object file
The linker command file cannot redefine a symbol that is already defined in an
input object file. (w)

Cannot allocate 0x... bytes of memory for "name"
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough
space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Cannot allocate branch island
The linker cannot calculate the address or size of a branch island. The circular
dependencies are too complex. (e)

Cannot calculate address of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

703

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Cannot calculate address of section section
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot calculate OVERFLOW size expression
Complex circular dependencies cannot be resolved. An expression value
depends on the address or size of a symbol or section, which in turn depends
directly or implicitly on the expression value. Example:

X = SIZEOF(Y); Y (DATA) : { . = . + X; }

Linker command language and implicit linking rules constitute an equation
system which can be unsolvable, resulting in this or similar error message. (e)

Cannot calculate size of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot create branch island - section section is too large
Branch islands are created between input sections. If an input section is too
large it might not be possible to create an island for that branch.

Cannot create Branch Island for Arm to Thumb call, function name
Contact Customer Support. (e)

Cannot create Branch Island for Thumb to Arm call, function name
Contact Customer Support. (e)

Cannot create position independent branch island: _ SDA2_BASE_ is undefined
-Xpic-only needs the symbol _ SDA2_BASE_ to be defined. (e)

Cannot evaluate expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate fill value expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate value of symbol symbol
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

704

H Messages
H.4 Linker Messages

Cannot find matching input sections for "..."
Input section specification does not match any input. (w)

Cannot find overflow output section "section"
Invalid section name in OVERFLOW statement. No such section defined in
linker command file. (e)

Cannot get current directory name
Call to getewd() failed. (e)

Cannot rename "filename", error: message
The host operating system reported an error renaming the file. Check the
permissions on the directory where the file resides. This usually means that
you are not permitted to write in that directory. (e)

Cannot write relocation table: relocation type 0x... is not supported by COFF
This can occur when input and output have different formats (ELF to COFF)
and some relocations cannot be converted. (e)

Cannot allocate memory (NEXT)
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough
space to contain a group, section, or NEXT directive, an error message is
generated. (e)

",nn

Cannot calculate size of section "section™: "." (0x...) is assigned invalid value: Ox...

Can’t calculate size of section section: it depends on section address ...

Can’t calculate size of section section: it depends on section address....

The section might require alignment specification
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Can’t create file name

Can't create file name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

Can’t create tempfile name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

705

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Can’t find file: filename
The linker cannot locate the specified file. (e)

Can't find library: libname.a
The linker cannot locate the specified library. (e)

Can’t find output section section
Invalid section name in linker command language expression. (e)

Can’t find section section
Invalid section name in linker command language expression. (e)

Can’t Iseek on name: ...
Possibly an external task has shortened the file. More likely, this represents an
internal error in the dld code. Please collect a test case to reproduce the
problem and contact Customer Support. (e)

Can't open filename: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can’t open tempfile name: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can't search unused sections, main entry symbol "symbol" is undefined
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Can't search unused sections, main entry symbol "symbol" has absolute address
This warning should not be generated since the current linker deletes such
symbols silently. (w)

COMMON object is eclipsed by a function definition:
Function name: name
File: filename

A symbol of type function is defined with the same name as a COMMON
object. (w)

Compression switch function "function" is undefined

PowerPC compressed code only. When -Xmixed-compression is on, symbols
__switch_to_uncompressed and __switch_to_compressed must be defined in
an input object files. (e)

706

H Messages
H.4 Linker Messages

Don’t know where to allocate input section:
no matching input specification found in linker command file.
Section name: section
File: filename

Change linker command file to include explicit instructions on how to link this
section. If the “section name” referred to in the message is .ctors or .dtors, you
may be using an old linker command file that specifies .init and .fini instead
of .ctors and .dtors. (w)

Don’t know where to put COMMONSs! No .bss and no COMMON directive
Found a COMMON variable but linker command file has no .bss nor
COMMON. (e)

Don’t know where to put small COMMONSs! No .sbss and no SCOMMON
directive
Found a small COMMON variable but linker command file has no .sbss nor
SCOMMON. (e)

End of memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Environment variable "RTAPROJECT" must be set
The variable must be set when -Xgenerate-vmap is used. (This option is not
intended to be set by the user.) (e)

Failed to read file name: ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read file name: file is empty
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to read file name from archive name
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: ...

707

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Failed to read from file name(...): ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: end of file
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to write to file name: ...
The host operating system reported a write error. Perhaps the file’s
permissions were changed by another task after dld opened it successfully.
Perhaps the file partition has filled up, leaving insufficient room for the file. (e)

File filename does not have symbol table section

File filename(...) does not have symbol table section
Invalid input file: no symbol table. (e)

File filename has invalid relocation section
File filename(...) has invalid relocation section
Invalid input file: invalid reference to relocation information. (e)

File has wrong byte order, file filename
Invalid ELF header: Byte order neither big-endian nor little-endian. (e)

File has wrong class, file filename
Invalid or unsupported ELF class in input file header. (e)

File has wrong version, file filename
Invalid or unsupported ELF version in input file header. (e)

File is not an ELF file, file filename
Linker assumed file to be ELF but it does not have valid ELF header. (e)

File filename is not of known format
Supported formats are COFF, ELF, archive, and linker command language. (e)

File "filename", section "section", offset Ox...: Invalid relocation:
Input object file has relocation entry which cannot be processed. (e)

File type is not COFF, file filename
Contact Customer Support. (e)

File type is not ELF, file filename
Contact Customer Support. (e)

708

H Messages
H.4 Linker Messages

Generation of relocation entries without a symbol table is not possible
Invalid -s option. (e)

... has BIND address, "> area-name" specification is ignored
Contact Customer Support. (w)

Illegal -B option
-B must be followed by “=". (e)

Illegal expression
Contact Customer Support. (e)

Illegal filename prefix COMMON], only * is allowed
Input specification must be *[COMMON], not xyz.o[COMMON]. (e)

Illegal option option
Option is not recognized. (w or e)

Illegal option -Xoption
Option is not recognized. (e)

Illegal usage of HEADERSZ in LECL file
Contact Customer Support. (e)

Illegal -Y option
-Y must be followed by “,”. (e)

In file "filename", Section "section
Section offset Ox..,
Symbol "symbol"
Invalid relocation entry
Input file has broken symbol table or relocation information. (e)

In file filename, symbol symbol has invalid value:
symbol is undefined (state 0x...), but value is not zero - Ox...
Invalid input file: The symbol table is defective. (w)

In LECL file "filename", line number,
name is not allocable, "> name" specification is ignored
Section or group is not allocatable; see ELF for section attributes. (w)

Input contains mix of little-endian and big-endian object files:
Aborted...
Linking a mix of little-endian and big-endian object files is not supported. (e)

709

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Input contains mix of PPC COFF and ELF object files:
PPC COFF and ELF object files have incompatible calling conventions
Mixing PowerPC COFF and PowerPC ELF is dangerous. (w)

Input files contain code for mixed processors:
Only one file for each processor type is listed
Mixing code generated for different CPU types is dangerous. (w)

Insufficient memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Internal error: cannot calculate COFF header size
Contact Customer Support. (e)

Internal error: cannot calculate ELF header size
Contact Customer Support. (e)

Internal error: can’t ADD symbol to non-hashed table
Contact Customer Support. (e)

Internal error: error counting undefines
Contact Customer Support. (e)

Internal error: illegal output file type
Contact Customer Support. (e)

Internal error: illegal/unsupported output format ...
Contact Customer Support. (e)

Internal error: no output file type set
Contact Customer Support. (e)

Internal error: not relocinfo
Contact Customer Support. (e)

Internal error: output buffer overflow
Contact Customer Support. (e)

Internal error: should not happen
Contact Customer Support. (e)

Invalid archive format, file filename
Archive file has invalid format. (e)

710

H Messages
H.4 Linker Messages

Invalid archive symbol table, file: filename
Invalid input file: The symbol table is defective. (e)

Invalid file header, file filename in archive archive
Contact Customer Support. (e)

Invalid fill pattern alignment, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid fill pattern size, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid option format: option
Valid format is -optionName[=number]. ()

Invalid relocation info:
File "filename”
Section "section”
Section address 0x...size 0Ox...
Relocating reference at address Ox...
Can’t relocate
Input object file has broken relocation information. (e)

Invalid section header in file "filename", section name "name"
Invalid input file: Invalid COMDAT section header. (e)

Invalid value of -Xmax-long-branch= option
The option sets the maximum branch offset which does not need a branch
island. Some targets (like the PowerPC) have short and long branch
instructions. Valid values are 2..0x7fffffff; using the option without a value is
an error. (e)

Invalid value of -Xmax-short-branch= option
Valid values are 2..0x7ffftfff. Using the option without a value is an error. (e)

Machine type not supported, file filename
Machine type not supported, file filename(...)

Invalid input file: unsupported target CPU. (e)

Memory area "area-name" is full
Memory area specified in “> area-name” is full. (e)

Memory area "area-name" is undefined
Invalid name in “> area-name” specification. (e)

Memory block extends over 32 bit address range: ...
memory address + memory size >= 0x100000000. (w)

711

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Next alignment with zero!
Invalid argument of NEXT(). (e)

No main entry point defined
Executable output needs an entry point. (e)

No section names in file filename
Invalid input file: no section names string table. (e)

No string table in file filename
Invalid input file: no string table. (e)

Nothing to link
No object files are given in the command line. (e)

Only one COMMON allowed in LECL file
More than one input specification like *[COMMON] is not allowed in the linker
command file. (e)

Only one SCOMMON allowed in LECL file
More than one input specification like *[SCOMMON] is not allowed in the
linker command file. (e)

Out of memory reading archive archive
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Output file format not specified
Contact Customer Support. (e)

Output section "section" contains mix of compiled for compression and normal
sections: The output section will not be prepared for compression
Mixing compressed and normal code in one section is illegal. (w)

Output sections: have overlapping load addresses
Incompatible specification of output sections. (e)

Output sections: have overlapping run-time addresses
Incompatible specification of output sections. (e)

Overlapping memory block block
Two or more MEMORY directives define the same memory area. (w)

Redeclaration of symbol
More than one definition of a symbol which is not COMMON or weak.

712

H Messages
H.4 Linker Messages

Register number in REGISTER() section specification must be in 0..n range
Invalid register specification. (e)

Relocation error in file filename: section section refers to local symbol symbol in
section section and section section is not taken to output
Linker failed to remove unused sections properly. file a SPR. Contact
Customer Support. (e)

Relocation error in file filename:
section section refers to local symbol symbol at section section and
section section is purged COMDAT section
Linker failed to remove unused COMDAT sections. Contact Customer
Support. (e)

Relocation info is not properly sorted, file filename, section section
Relocation info is not properly sorted, file filename(...), section section

Input file has broken relocation information. (e)

Section .data (DATA) is not defined
COFF output must have a .data section. (e)

Section e_shstrndx is not a SHT_STRTAB in file "filename"

Section e_shstrndx is not a SHT_STRTAB in file "filename(...)"
Invalid input file: invalid ELF header. (e)

Section section extends over 32-bit address range
section address + section size >= 0x100000000. (w)

Section .text (TEXT) is not defined
COFF output must have a .text section. (e)

Symbol "symbol" can’t be declared relative
Symbol is declared as "... @ ... = ...
Section "section" is empty - can’t be used for relative declaration
A section must have some input section to make relative declaration possible.

(w)

Symbol "symbol" can’t be declared relative

Symbol is declared as "... @ ... = ..."

Symbol "symbol" is absolute - can’t be used for relative declaration
Base symbol must be declared inside a section. (w)

Symbol definition "name" not found
Symbol name is used in linker command file but symbol is undefined. (e)

713

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Symbol definitions missing at index index in name
Contact Customer Support. (e)

Symbol "symbol" has unknown binding type
Contact Customer Support. (e)

Symbol symbol has unknown section index
Invalid symbol table in input ELF file. (w)

Symbol symbol has unknown symbol type
Input file has a symbol of an unknown or unsupported type. (e)

Symbol symbol in name is defined in unknown section
Invalid section table in input ELF file. (w)

Symbol symbol is declared with more than one size
Symbol symbol is declared with more than one size (1 and m)

Conflicting definition for a COMMON variable. (w)

Symbol symbol is undefined but not used
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Symbol name missing. Must be defined when using shared libraries.
This message is no longer used. (e)

Symbol or section "name" not found
Invalid name in relative symbol definition in linker command file. (e)

Symbol _SDA_BASE_ is undefined

Symbol _SDA2_BASE_ is undefined

Symbol _SDA3_BASE_ is undefined
The symbol _SDAx_BASE_ is needed to process SDA (Small Data Area)
relocations. (e)

Target architecture is not specified
Unknown target. (e)

Undefined symbol "symbol"

Undefined symbol "symbol" in file "filename"

Undefined symbol "symbol" in file "filename(...)"
An undefined symbol is referenced. (w)

Undefined symbols found - no output written
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough

714

H Messages
H.4 Linker Messages

space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Unknown relocation type in name
Contact Customer Support. (e)

Unsupported file format: "name"
Supported formats are COFF, ELF, archive, and linker command language. (e)

Unsupported file type in archive
Supported formats in archives are COFF and ELF. (e)

Unsupported output file format
Selected combination of object-file format and target is not supported. (e)

Unsupported relocation type ...
Unsupported relocation type in file "filename"
Input file has unsupported relocation type. (e)

Unused symbols search failure, symbol: symbol
The linker failed while attempting to find and delete unused symbols in object
files. This could be caused by a linker bug, or by an object file that is corrupt,
invalid, or in an unsupported format. (e)

Use -Xmixed-compression command line option to enable generation of
compression switches

PowerPC compressed code only. The switches are codes which change the

CPU mode from compressed code to normal code and back. (e)

Value of "." is undefined outside a section or group
Illegal use of “.” in linker command file. (e)

-Xstop-on-warning is on, linking aborted
The linker stopped after issuing a warning because the -Xstop-on-warning
option is enabled. (e)

715

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

716

Symbols

comments in configuration file 589

! binary bitwise or, assembler operator 336

!=binary not equal to, assembler operator 336

'H 169

'L 169

$ assembler hexadecimal constant prefix 325

% binary modulo assembler operator 336

%, assembler binary constant prefix 326

%f format specifier 515

%p conversion, implementation-defined
behavior 608

%S field, with -Xsubtitle 315

%T field with -Xtitle 316

%X conversion, implementation-defined
behavior 608

%x conversion, implementation-defined
behavior 608

& binary bitwise and, assembler operator 336

&& concatenating macro parameter 365

* assembler comment delimiter 320

* binary multiply assembler operator 336

+ binary add assembler operator 336

+ unary assembler add 335

- binary subtract assembler operator 336

- unary assembler negate 335

/ binary divide assembler operator 336

:= expression assembler directive 340

Index

; comment delimiter 320

< binary less than assembler operator 336

<< binary shift left assembler operator 336

<= binary less than or equal to assembler

operator 336

: defines global symbol 321

: expression assembler directive 340

== binary equal to, assembler operator 336

>

> binary greater than assembler operator 336

>= binary greater than or equal to assembler
operator 336

>> binary shift left assembler operator 336

-? command-line options 38

@, assembler octal constant prefix 325

-@ name assembler option, options from file or
variable 304

-@ name common option, options from file or
variable 443

-@ name compiler option, options from file or
variable 52

-@@ name common option, options from file or
variable 583

-@@ name assembler option, options from file or
variable 304

-@@ name common option, options from file or
variable 443

-@@ name compiler option, options from file or
variable 52

-@E common option, redirecting output 444

717

User’s Guide, 5.4

-@E compiler option, redirects output 52
-@E linker option, redirects output 392
-@0O assembler option, redirecting output 304
-@0O common option, redirecting output 444
-@0O compiler option, redirects output 52
-@O linker option, redirects output 392
-# option 304

display linker command lines 391

print command lines as executed 51
-## compiler option, prints command lines 51
-###H# compiler option, prints subprograms 51
@h unary operator 334
@ha high adjust operator 335
@ha unary operator 334
@] unary operator 335
@sda unary operator 335
@sdax unary operator 335
\@ special macro parameter 366
\0 special macro parameter 365
" binary exclusive or, assembler operator 336
| comment delimiter 320
~ unary assembler complement 335
“\” backslash escape sequence 326
“\b’ backspace escape sequence 326
" single quote escape sequence 326
"\f’ form feed escape sequence 326
\n’ line feed (newline) escape sequence 326
"\r’ return escape sequence 326
’\t" horizontal tab escape sequence 326
"\v’ vertical tab escape sequence 326
/ , assembler hexadecimal constant prefix 325

Numerics

0, assembler octal constant prefix 325

0x, assembler hexidecimal constant prefix 325
.2byte assembler directive 340

A4byte assembler directive 340

A

-A compiler option

718

Wind River Compiler for 68K/CPU32

define assertion 38, 134
-A- compiler option
ignore macros and assertions 38
.a file extension, archive library 21
.a files. See libraries, shared libraries
-a linker option, forcing -r to allocate common
variables 393
-A linker option, link files from archive 392
-a option
ddump 456
ab4lconversion function 502
abort function
definiton 502
implementation-defined behavior
calling, assert function 607
flushing and closing files 609
abridged C++ library 238
abs absolute value function 502
.abs.nnnnnnnn section. See sections
absolute
assembler expressions 333
expressions 333
jump, generate with -Xbra-is-gra 612
sections. See sections
variables
accessing at specific addresses 290
accesssing with symbolic debugger 263
absolute (__attribute__ keyword) 154
access function determining file accessiblility 502
access I/ O function
RAM-disk support, checking file
accessibility 288
access modes
COMDAT section, with O access mode 261
defining section accessibility 260
RW, default for use 256
RX, default for use 256
access modes
default values for predefined section
classes 256
in pragma section & pragma use_section 252
read, write, execute 260
accessing variables and functions at specific
addresses 290
acc-mode. See access modes

acos function 503
acosf function 503
ADDR pseudo function 416
address register 220
addressing modes
definitions, table of 258
code generated by compiler for each 264
far-absolute 258, 265
default for use 256
far-code 258, 265
far-data 258, 265
example 259
mode used when referencing a variable 257
near-absolute 258, 265
near-code 258, 265
default for use 256
example 259
near-data 258, 265
default for use 256
operands 613
PC-relative
achieving code position-
independence 269
achieving position-independence using
with -Xcode-relative-xxxx-
all 269
standard 265
default for use 256
definition 258
for CODE section class 258
for data sections, equivalent to far-
absolute 258
table of command-line options that affect the
default 259
table of examples 614
addr-mode. See addressing modes
advance function, definition 503
aliasing
pointer arguments 64
variables, #pragma no_alias 140
.align assembler directive
preventing generation of with -Xalign-off 64
.align assembler directive, definition 341
ALIGN keyword 423
align pragma 137

Index

aligned (__attribute__ keyword) 155
alignment
array 180
classes 181
minimum for target memory access, -
Xalign-min 63
packed structures 144
output sections 403
#pragma align 137
#pragma pack 143
scalar types 178
strings, -Xstring-align 120
structures 181
-Xmember-max-align 151
-Xstruct-max-align 103
unions 181
.alignn assembler directive 341
alloca function
dynamic stack space allocation 159
__alloca intrinsic function 159
alloca intrinsic function 159
allocate
storage 331
ANSI
C
mode invoked with -Xdialect-ansi 80
C standard
additions to 131
conformance to 6
implementation-defined behavior 603
library functions disregarded with -Xclib-
optim-off 71
recommended reference 8
C++ standard
additions to 131
conformance to 6
differences from ANSI C 240
recommended reference 8
compiler limits 601
references 500
standards conformance 6, 595
a.out
default linked output object file 396
naming by default, single executable file 127
archiver, dar 11

719

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

argc argument __asm__ keyword 149
environment 606 asm keyword 149
argc defining for target program with setup 293 allowing in different modes 596
argument address optimization assembler
explanation 208 directives
interprocedural optimizations 215 direct assignment 333
argument passing 190 operand field format 320
C++ 191 embedding within compiled programs 290
class, struct, union 191 error messages 702
floating point 89 GNU, compatibility with 25
hidden, call a function with a return type of macros 165
class, struct, or union 194 mixing C and assembler functions 290
optimization 218 options 300
pointers to members 192 relocation types, table of 265
argv assembler decimal constants 326
argument 606 assembler directives
defining for target program with setup 293 2byte 340
using in init.c 280 assembler macros
using in init.c 280 asm 166,167,168
arrays C++ 168
alignment 180 multiple-body asm macro 169
implementation defined behavior 605 register list line 170
incomplete initialization storage mode for parameters
parsing controlled, -Xbottom-up-init 68 con 169
treatment in different modes 597 lab 169
initialization of automatic arrays in different mem 169
modes 596 reg 169
large initialized and compiler limits 602 ureg 169
size of 180 storage mode line 168
.ascii assembler directive 341 assembler operator precedence, table of 337
.asciz assembler directive 342 assembler supported constants 325
.asciz directive 342 assembly
asctime function code
calling .tzset function 573 generating for each addr-mode 264
definition 504 file
asin function 504 keep 96
asinf function 504 preprocess 109
asm temporary 96
macro 168 output 39,128
See also assembler macros including source, -Xpass source 108
string statement .section directive 253
disabling optimizations 173 assert
strings 165 function
asm keyword definition 504
See assembler macros implementation-defined behavior 607

720

macro, <assert.h>, standard header files
preprocessor directive 134
assertions
See also assert, -A compiler option
dumping symbol information 75
assignment
command 427
command in section-definition 421
pop optimization 210

494

statements, with -WD complier option 47

assignment statements
configuration files 582
configuration language, definition 591
atan function 505
atan2 function 505
atan2f function 506
atanf function 505
atexit function
definition 506
exit function 513
atof function 506
atoi function 506
atol function 507
__attribute__ keyword 153
attribute specifiers 153
auto storage class 605
automatic variables 138

-B option
ddump 456
b, assembler binary constant suffix 326
backslash escape sequence, ‘\" 326
backspace escape sequence, '\b’ 326
backward compatibility 232
balign assembler directive 342
base
pointers using with
-Xdata-relative-far 76
-Xdata-relative-near 77
basic data types, table of 178
-Bd, -Bt options 393
big-endian byte ordering 631

Index

binary operators, table of 336
binary representation of data 160
binding (VxWorks shared libraries) 399
bit-fields
char type 180
definiton 180
enum type 180
implementation-defined behavior 605
int plain, sign of 235
int type 180
long long

not permitted in long long variables

type not allowed 180
long type 180
making signed with signed keyword 1
plain treating as

signed with -Xbit-fields-signed 67

unsigned with -Xbit-fields-unsigned 67

80

reducing size with -Xbit-fields-compress-...

short type 180

blanks in macro arguments, -Xmacro-arg-space-

off 313

.blkb assembler directive 342

bool
__bool preprocessor predefined macro
type. See type, bool

bra instruction 306

branch
complex optimization 212
optimization, replace return 218
PC-relative

131

using -Xcode-relative-near and -Xcode-

relative-far options 269

using -Xcode-relative-near-all and -Xall-

far-code relative options

269

predicting in feedback optimization 219

with tail recursion 206
branch islands
explanation 385
-Xbranch-islands-off disabling 400
-Xmax-long-branch limiting 16-bit
branches 403

-Xpic-only making position-independent 404

break statement, configuration language 594

bsearch function 507

721

151

User’s Guide, 5.4

bsect assembler directive 342

.bss assembler directive 342

.bss section. See sections

BSS section type 422

_ BSS_START, __BSS_END symbols
initializing static variables to zero 280
using in clearing static uninitialized

variables 413

-Bsymbolic linker option 394

BTEXT section class. See section classes

BUFSIZ constant
defining required size of buf 557
defining, stdio.h function 498
with setvbuf 558

building, rebuilding, the libraries

byte assembler directive 342

byte ordering 179

byte-swapping using #pragma pack 143

490

C

C++ compeatibility
exception handling 384
functions 239

driver program, dcc 10

function calls, optimization of 71

standard, recommended reference 8

standards conformance 6

to C++ migration 239

.C file extension, C++ source 21

-C option 38
ddump 457
-c option

during separate compilation 128
stopping after assembly, producing object
-Xkeep-object-file 96

C++
argument passing 191
calling C functions 239
classes 181
code, #pragma inline vs. keyword, linkage
driver program, dplus 10
exception-handling

722

Wind River Compiler for 68K/CPU32

207

and C functions 384
stack-unwinding 384
features and compatibility 237
library 48
abridged 238
complete 238
nonstandard functions
standard
conformance to 6
recommended reference 8
standards conformance 6
-c, compiler option
stopping after assembly 21
C89 standard 79, 595
C99 standard 72,79, 595
calling conventions 189
GNU
default on compilers interfacing with tool
set 121
-Xfloats-as-gnu 87
using Macintosh conventions for pascal
functions 100
calloc function
definition 507
free function 520
implementation-defined behavior 609
realloc function 552
case
label, implementation-defined behavior
statement, configuration language 594
catch C++ keyword 83, 203
catch keyword
disabling exceptions 83
flagging as error 242
if user-defined identifier, may necessitate
modification of program 240
.cc file extension, C++ source 21
ceil function 507, 508
ceilf function 508
char type
See basic data types, table of
bit-fields 180

239

606

signed 179
unsigned 179
character

constants
escape sequences, table of 327
constructing internal representation 604
entering integral constants 325
escape sequences for 326
replacing macro arguments in 598
swap, -Xswap-cr-nl 122
I/0 function 287
implementation-defined behavior 604
Newline 327
signed, -Xchar-signed 70
unsigned, -Xchar-unsigned 70
character constants, assembler 325
chario.c file 287
__CHAR_UNSIGNED__ preprocessor predefined
macro 131
_chgsign function 508
CIE (Common Information Entry) 78
class
auto storage 605
definition, type_info 243
instantiation, -Ximplicit-templates-off 91
library
abridged C++ 482
C++ iostream.a 481, 482
libcomplex.a
C++ complex math class library 13
directory location 484
supplied with tools 481
libstlstd.a
directory location 485
member
function 244
name qualifiers 187
name mangling 244
register storage 605
templates 241
virtual function table generation, key
functions 185
with destructors 83
class C++ keyword 240
classes
alignment 181
argument passing 191
C++ 181

Index

derived
adding virtual base pointers 184
using the virtual function table
pointer 184
internal data representation 181
local 187
meanings
if inside a function but outside any
class 186
if outside any function and any class 186
if outside any function but inside a C++
class definition 187
if within a local C++ class and inside a
function 187
return type 194
storage
as permitted by scope 187
different classes allowed 186
virtual base
C++ 182
virtual base, with constructors and
destructors 192
clearerr function 508
clock function
definition 508
implementation-defined behavior 609
use in clock.c 289
CLOCKS_PER_SEC constant
clock function 508
defining, time.h function 498
close function
definition 509
RAM-disk support, closing a file 288
cmp instruction 307
code
generating options, controlling 274
generating with -Xfintrz-off 86
location, #pragma section 147
relative addressing
far-code addr-mode 258
near-code addr-mode 258
using to achieve PIC 258
CODE section class. See section classes
COFF
file

723

User’s Guide, 5.4

components, table of 628
header fields, table of 630
optional (executable) header fields, table
of 631
section header fields, table of 632
structure 629, 630
symbol table fields, table of 638
format 400
input files 405
line number
entry layouts, table of 637
entry structure 637
fields, table of 637
object module format 296
alignment information not supported 356
crt0.o startup module and libraries, parallel
to ELF 14, 485
embedded mnemonics 25
padding 330
section alignment and size 330
selecting, -Xobject-format 314
optional header from file aouthdr.h 631
output 406
relocation
entry fields, table of 635
entry structure 635
information 634
types, table of 635
section header
specifying, f_nscns field 632
structure 632
string table 640
symbol table entry structure 638
symbols, additional supported 639
.coment section. See sections
.comm assembler directive
declaring COMMON sections with 381
definition 343
external symbols 322
indicating use of with string COMM 253
vs. Jcomm 351
COMM section. See sections
command-line length limit 36
command-line options
in embedded environment 265

724

Wind River Compiler for 68K/CPU32

quoting strings 35
that affect the default addr-mode, table of 259
command-line options, writing 34
command-line order 391
commands
dar 445
das 300
dbcent 451
ddump 455
comment delimiters in assembler 320
COMMENT section. See sections
.comment section. See sections
comments
configuration language, token 589
linker command file 417
common
symbols 323
tail optimization 210
Common Information Entry (CIE) 78
COMMON section. See sections
COMMON sections. See sections
communicating with the target hardware 290
compatibility
C++ 232
compatibility modes
ANSI 595
for C programs, table of for ANSI, Strict ANSI,
K&R, and PCC 596
K&R 595
PCC 595
Strict ANSI 595
table of features 595
compilation
conditional 134
disabling exception handling 83
four stages 127
if speed is crucial 199
older programs, -Xmemory-is-volatile 104
problems 231
separate 128
speed vs. optimization, trade-off 198
stopping, -Xstop-on-warning 119
without optimization corrects execution,
possible causes 234
-Xlint, warnings for suspicious constructs 227

compile function, definition 509
compile regular expression 509
compiler
backward compatibility 232
C++-to-assembly 21
code written for older UNIX 232
compatibility with
older compilers using setjmp /
longjmp 203
others 6
creating temporary objects not visible 247
C-to-assembly 21
emulating UNIX behavior 596
environment variables 16
flag keywords: try, catch and throw as
errors 242
interfacing with the GNU tool set 121
invoking 33
options 37
-X options 52
producing optimized code 200
register use, table of 194
time
options 275
pragmas 275
compiler frontend 72
compiler limits 601
components of installation 9
conditional branches 612
conf directory, contains linker command files 286
configuration files
assignment statements 582
default.conf
changing/ overriding variables stored
in 29
definition 586
exit statement 592
standard version shipped with tools 584
using 11
default.conf, editing 29
dtools.conf
configuration variables 588
description 11
exit statement 592
simplified structure, table of 586

Index

standard version shipped with tools 584
hierarchy of three 584
nesting 593
processing at startup 583
reading at startup 11
relation to command lines and environment
variables 582
site-dependent defaults 582
standard
name, location 584
shipped with tools 587
user.conf
dtools.conf configuration file, simplified
structure 586
providing own 585
variable evaluation, table of 591

configuration language

comments, token 589
how to write 585
options 589
purpose and effect 588
statements 589
break 594
case 594
else
if statement 592
syntax 589
endsw 594
error definiton 592
exit 592
if
defintion 592
syntax 589
with _ ERROR__ function 160
include 585
with dtools 585
print 593
switch 593
string constants 590
variables
$$, expandsto $ 591
$*, dtools.conf, simplified structure 586
$*, evalutating entire command 591
$, evaluatating value of a variable 590
$, introducing variables 589

725

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

DCONFIG
setting, -WC option 582
definitor explanation 590
DENVIRON
avoiding altering dtools -t option 585
default library search path controlled
by 585
dtools.conf 585
editing default.conf to change 29
overriding with environment variable
of same name 15
setting, -t option 582
-tsets 29
DFLAGS
definition 587
DFP
avoiding altering dtools -t option 585
dtools.conf, simplified structure 586
editing default.conf to change 29
evaluating in configuration files 591
overriding with environment variable
of same name 15, 16
setting, -t option 582

-tsets 29
DOBJECT
avoiding altering dtools, -t
option 585

dtools.conf, simplified structure 586
editing default.conf to change
settings 29
overriding with environment variable
of same name 15
setting, -t option 582
-tsets 29
DTARGET
avoiding altering dtools, -t
option 585
editing default.conf to change 29
overriding with environment variable
of same name 15
setting, -t option 582
-tsets 29
with -Xinst-x 95
simplified structure 586
UAFLAGS1

726

definition 588
dtools.conf, simplified structure 586
UAFLAGS2
definition 588
dtools.conf, simplified structure 586
UFLAGS1
definition 587
dtools.conf, simplified structure 586
overriding options set by 588
UFLAGS2
definition 587
dtools.conf, simplified structure 586
occuring after $*, in dtools.conf 588
ULFLAGS1
definiton 588
dtools.conf, simplified structure 586
ULFLAGS2
definition 588
dtools.conf, simplified structure 586
configuration language, assignment statements,
definition 591
configuration, target. See target configuration
_ CONFIGURE_EMBEDDED 491
_ CONFIGURE_EXCEPTIONS 491
conformance to C and C++ standards 6, 595
CONST
section class
-Xconst-in-text mask bits 266
const
data, -Xstrings-in-text in embedded
development 275
global, default linkage in C and C++ 240
keyword
and compatibility mode 596
help optimizer 201
variable
faster access using -Xconst-in-text=0 and -
Xcode-relative-far 73
moving from "text" to "data" 266
with -Xdata-relative-far 76
with -Xdata-relative-near 77
CONST section class. See section classes
constants
$, assembler hexadecimal prefix 325
%, assembler binary prefix 326

@, assembler octal prefix 325
/ , assembler hexadecimal prefix 325
0, assembler octal prefix 325
0x, assembler hexidecimal prefix 325

and variable propagation optimization 212

assembler character 325
assembler decimal 326
b, assembler binary suffix 326
binary representation of 160
BUFSIZ
defining required size of buf 557
defining, stdio.h function 498
setvbuf 558
character
escape sequences 326
CLOCKS_PER_SEC
clock function 508
CLOCKS_PER_SEC, defining, time.h
function 498
DOMAIN 541
EDOM
errno setting, acos function 503
errno setting, asin function 504
errno setting, atan2 function 505

errno setting, matherr function 541

ENTER 527
EOF
defining, studio.h function 498
fscanf function 522
scanf function 554
sscanf function 561
ungetc function 573
ERANGE
setting, exp function 514
setting, matherr function 541
EXIT_FAILURE
defining, stdlib.h function 498
providing, exit function 513
EXIT_SUCCESS
defining, stdlib.h function 498
providing, exit function, successful
termination 513
FIND
hsearch function 527
floating point

Index

assembler support 325
format 326
HUGE_VAL 497,514
defining, <math.h> header file 494
HUGE_VAL_F 497
integer 325
integral 325
_IOFBF 558
_IOLBF 558
_IONBF 558
LC_ALL 557
LC_COLLATE
setlocale function 557
strcoll function 562
LC_MONETARY 557
LC_NUMERIC 557
LC_TIME 557
locating vs. .data sections 266
locating with -Xonst-in-text, -Xconst-in-
data 75
MB_CUR_MAX 542
NULL
defining, stddef.h function 498
defining, stdio.h function 498
defining, stdlib.h function 498
defining, string.h function 498
0, assembler octal suffix 326
O_APPEND
defining, fentlh function 496
O_NDELAY
defining, fentlh function 496
O_RDONLY
defining, fentlh function 496
setting values, open function 546
O_RDWR
defining, fentlh function 496
values of, open function 546
OVERFLOW 541
O_WRONLY
defining , fentlh function 496
values, open function 546
PLOSS 541
q, assembler octal suffix 326
RAND_MAX 552
SEEK_CUR 538

727

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

SEEK_END 538 crt0.s startup module
SEEK_SET 538 details 278
short initialized data in .sdata2 330 overview 276
SING 541 crtlibso.c startup module
static data 62 details 278
supported by assembler 325 overview 276
TLOSS 541 ctime function 511
UNDERFLOW 541 ctoa preprocessor 21
constructor (__attribute__keyword) 155 ctoa subprogram 11
constructors ctordtor.c startup module
default priority 93 details 278
global C++ 93 overview 276
mangling 245 ctype functions
missing calls to 247 isalnum 607
operator 240 isalpha 607
with avoiding setjmp, longjmp functions 247 isentr 607
control code generation options 274 isdigit 607
copying initial values from "rom" to "ram" 279 isgraph 607
_copysign function 509 islower 607
cos function 509 isprint 607
cosf function 510 ispunct 607
cosh function 510 isspace 607
coshf function 510 isupper 607
__cplusplus preprocessor predefined macro isxdigit 607
definition 132 table of 607
using with #ifdef directives 239 test for characters 607
.cpp file extension, C++ source 21 .cxx file extension, C++ source 21

Cpp preprocessor
defaults 21
with -W compiler option 48 D

creat function
<fentl.h>, standard header file 494
definition 510
fdopen function 516

-D linker option 394
-D option 301

RAM-disk support, opening file 288 d d?ump 457
cross execution environment 26 + OS(;OH 161
cross reference table in link map 396 cump

-d option

cross/libc.a library
ELF standard C libraries 12
location 484
cross-module optimization 71, 204
crt0.o startup module 12
default overridden, -W sfile compiler
option 390
specify non-standard, -W's 47

ddump 457,461
.d1line assembler directive, using to suppress, -
Xdebug-mode 78
dar
archiver 11
building archive libraries 388
commands
-pprint 446

728

-d delete 446
examples 449
-m move 446
modifiers, table of 447
-q quick append 447
-qf quick update 447
-rreplace 446, 447
-s symbol table update 447
syntax 445
-t table of contents 447
-V version 447
-x extract 447
das
assembler, locating executable 10
command 300
das preprocessor 21
data
basic types 177
binary representation of 160
char, size and alignment 178

constant
short initialized in .sdata2 330
static 62

-Xstrings-in-text in embedded
development 275

double, size and alignment 178
enum, same as int 178
float, size and alignment 178
global

pure_function pragma 146

-Xaddr-const 62

-Xaddr-data 62

-Xaddr-sconst 62

-Xaddr-sdata 62
initialized

containing in particular section, with

istring 253

in .data section 329
int

size, alignment, and range 178
internal representation 177
locating

in constant vs. .data sections 266

initialized vs. uninitialized 262
long double, size and alignment 178

Index

long long, size and alignment 178
long, size and alignment 178
non-constant static 62
pointers, size and alignment 178
ptr-to-member-fn, size and alignment 179
reference, size and alignment 179
register in basic reordering 220
relative addressing
far-data addr-mode 258
modes, using to achieve PID 258
near-data addr-mode 258
with a5 register and -Xsmall-data 265
relocation 269
short
initialized in .sdata section 329
uninitialized in .sbss section 329
short, size and alignment 178
signed char, size and alignment 178
static 146
storing in big-endian order 179
type size 180
types, table of C/C++ 177
uninitialized
.bss section 329, 342
containing in particular section, with
ustring 253
unsigned
char, size and alignment 178
int, size and alignment 178
long long, size and alignment 178
long, size and alignment 178
short, size and alignment 178
volatile 275
data
preserved registers, d2 - d7 194
ptr-to-member, type, size and alignment 179
temporary registers, d0-d1 194
.data assembler directive 344
DATA section class. See section classes
.data section. See sections
database
cross-module optimization 205
_ DATA_END, _ DATA_RAM, _ DATA_ROM
symbols, copy initial values from "rom" to
"ram" 279

729

User’s Guide, 5.4

_ DATA_END, _ DATA_RAM, _ DATA_ROM
symbols, copy initial values from "rom" to
"ram", in bubble.dld 413
_ DATE__ preprocessor predefined macro
precompiled headers 249
_ DATE__ preprocessor predefined macro 132
dbent
command syntax 451
dbent.out file
default 453
environment variable. See environment
variables
examples 453
generating profiling information 11
options 452
-f profile file 452
read from 452
-h high line limit 452
-1 low line limit 452
-n number every line 452
-t most frequent lines 452
-V version 452
required functions
_ dbexit 454
__dbini 454
dbent.out
using if DBCNT is not set 452
with -Xfeedback compiler option 85
__dbexit function, required for dbent 454
__dbini function, required for dbent 454
dc.b assembler directive 343
_ DCC__ preprocessor predefined macro 132
DCC reference 500
dcc. See driver program, dcc
dc.l assembler directive 344
DCONFIG environment variable. See environment
variables
_ DCPLUSPLUS__ preprocessor predefined
macro 132
dctrl program
displaying -t options 46
locating executable 11
setting default target 24
alternatives 29

730

Wind River Compiler for 68K/CPU32

setting default target configuration
variables 15
dc.w assembler directive 344
DCXXOLD 233
ddump
commands
+t symbol table, dump with upper
limit 460
+z line number information, dump with
upper limit 461
-a archive header, dump 456
-B binary format, converting to 456
-C difference file, generate 457
-c string table, dump 457
commands, table of 456
converting -I COFF to IEEE 695 458
-D DWARF debugging information,
dump 457
examples 462
-F demangle names 457
-f file header, dump 457
-g global symbols, dump 457
-Hhex and ASCIIL, dump 457
-h section headers, dump 457
-1line number information, dump 458
-m write Motorola S-records of a given
type 459
modifiers, table of 461
-N symbol table, dump 458
-o optional header, dump 459
-p write a plain ASCII file in
hexadecimal 459
-R converting to Motorola S-Records 459
-r relocation information, dump 460
-s section contents, dump 460
-S size of sections, display 460
syntax 455
-t symbol table, dump 460
-T symbol table, remove 460
-u write a binary file 459
-v do not output the .bss or .sbss
section 459
-V version 460
-w set the line width of S-records 460
-z line number information, dump 461

converter utility 295, 296
object file converter and dumper 11
ddump -F
demangling utility 246
debugging
Common Information Entry 78
-D option 457
DWARF 41, 77,301, 306, 457, 623
-g option 41, 301
generating debug information for unreferenced
types 79
local variables, unused 78
selecting levels, DFLAGS 587
declarations
force, -Xforce 87
in header files 237
declarators, implementation-defined behavior 606
declared symbol, definition of 321
default
acc-mode, values for section classes 256
addr-mode
options that change 258
values for section classes 256
istring / ustring values for section classes 256
tab size, -Xtab-size 316
default.conf
default configuration information stored by
dctrl program 15
DENVIRON configuration variable setin 585
default.conf configuration file
changing/ overriding variables stored in 29
definition 586
exit statement 592
standard version shipped with tools 584
using 11
default.dld linker command file 285
component in conf subdirectory 11
default overridden, -W m compiler option 390
example use of 390
_ HEAP_START, _ HEAP_END defined in
default.dld 282
overriding -Bd and -Bt options 394
present in conf directory 409
_SDATA_BASE_ defined in 195
serving as model 409

Index

__SP_END must define in for stack
checking 281
-Wm option 47
default.Ink. See default.dld
#define preprocessor directive 39
defined
symbol, definition of 321
variables, types, and constants 496498
delay register saving optimization 214
delete
array operators 242
C++ keyword 240
operator 193
demangling utility, ddump -F 246
DENVIRON environment variable. See environment
variables
deprecated (__attribute__keyword) 156
derived class
adding virtual base pointers 184
using the virtual function table pointer 184
destructor (__attribute__ keyword) 156
destructors
default priority 93
increasing efficiency with -Xexceptions-off 83
mangling 245
missing calls to 247
operator 240
used prior to program termination 240
DFLAGS environment variable. See environment
variables
DFP environment variable. See configuration
language: variables
__diab_alloc_mutex 292
DIABLIB environment variable. See environment
variables
__diab_lib_error function
defining in src/lib_err.c 285
handling errors from library function 284
__diab_lock_mutex 292
_DIAB_TOOL preprocessor predefined macro 132
__diab_unlock_mutex 292
difftime function 511
direct
assignment statements
definition and syntax 321

731

User’s Guide, 5.4

function for embedding machine code 175
directives
See preprocessor directives
#ident in .comment 623
#pragma, use with asm macro 168
directories
conf, contains linker command files 286
src, source files 286
structure 9
disabling optimization, -g, (-Xoptimized-debug-
off) 107
disassembler, windiss 467
div
part of stdlib.h header file 498
div function
definition 511
div_t type 498,511
.dld file extension, linker 21
dld linker, locating executable 10
dld preprocessor 21
dmake
“make” utility 11, 465
executable, installation 465
requires startup directory 466
using 466
DMALLOC_CHECK environment variable. See
environment variables
DMALLOC_INIT environment variable. See
environment variables
DOBJECT environment variable
setting object format, -Xobject-format 314
DOBJECT environment variable. See environment
variables
DOMAIN constant 541
.double float-constant, . . . assembler directive
definition 344
dplus
See driver program, dplus
template instantiation 241
drand48 function
definiton 511
lcong48 function 534
srand48 function 560
driver program
dcc for C, locating executable 10

732

Wind River Compiler for 68K/CPU32

dplus for C++, locating executable 10
invoking 33
main program flow 19
renaming to access different version 14
table of subprograms and stopping options 21
verbose mode, -v 46
-W control meaning of source file extension 50
ds.b assembler directive 344
.dsect assembler directive 344
DTARGET configuration variable
with -Xinstr-x 95
DTARGET environment variable. See environment
variables
dtoa preprocessor 647
dtoa subprogram 11
dtools.conf configuration file
$DENVIRON.conf 585
configuration variables 588
description 11
exit statement 592
simplified structure, table of 586
standard version shipped with tools 584
dumper ddump 11
dup function
definition 512
fdopen function 516
DWAREF, debug information 41, 77, 301, 306, 457,
623
Common Information Entry 78
dynamic
casts 243
stack space allocation, alloca 159
_ DYNAMIC_ symbol created by linker 379
dynamic_cast expression 243

E

-E compiler option
vs. -P compiler option 45
-E complier option
write source to standard output 39
-e linker option
default entry point address 394
-e option 40

and -Xmismatch-warning 41, 104
ecvt function 512
_edata and edata symbols created by linker 379
EDG (Edison Design Group) 72
Edison Design Group 72
EDOM constant
errno setting, acos function 503
errno setting, asin function 504
errno setting, atan2 function 505
errno setting, matherr function 541
.eject assembler directive 344

ELF

files
header fields, table of 619
input 405
relocation entry fields, table of 625
section header fields, table of 621
structure, typical 618
symbol fields, table of 626

format 402

header structure 618

object files

convert ing to Motorola S-Records, ddump
command -R 459
object module format 296
absolute sections 331
crt0.o startup module 12
embedded mnemonics 25
libraries 12
.org assembler directive, using with 353
section alignment 330
selecting, -Xobject-format 314
overall structure 617
program header
fields, table of 620
structure 620
relocation
entry structure 624
selecting information format 402
types, table of 625
section header structure 621
symbol table section structure 626
typical sections, table of 623
#elif preprocessor directive 135
.else assembler directive 345, 348

Index

else statement, configuration language
if statement 592
syntax 589
.elsec assembler directive 345
definition 345
equivalent to .else, .endif, .endc 348
.elseif assembler directive
definition 345
equivalent to .else, .endif, .endc 348
embedded
addressing modes, table of 614
assembly code 165, 166
See also asm string statement
See also assembler macros
methods, table of 166
environment 603
compile time options 274
features facilitating access to the
hardware 290
functions, table of 286
hardware exception handling 284
linker command file 285
miscellaneous functions 289
operating system calls 286
profiling 294
raise function 284
setup program 293
src directory, source files 286
startup and termination 276
using in 273
volatile keyword 291
encoding modifiers, table of type 246
_end and end symbols created by linker 379
.end assembler directive 345
.endc assembler directive 345
definition 345
equivalent to .else, .elsec, .endif 348
.endif assembler directive
definition 345
equivalent to .else, .elsec, .endc 348
#endif preprocessor directive 598
.endm assembler directive 346
.endof.section-name symbol created by linker 378
endsw statement, configuration language 594
ENTER constant 527

733

User’s Guide, 5.4

.entry assembler directive 346
entry point symbols 324
enum
equivalent to int 82
size of in C, C++ 240
type bit-field 180
enumeration
implementation-defined behavior 605
size of, See -Xenum-is-. . .
environment
embedded 603
implementation-defined behavior 606
variables
See configuration variables
DOBJECT
setting object format, -Xobject-
format 314
variables. See environment variables
environment variable MAKESTARTUP,
defining 466
environment variables
compiler 16
configuration language 588
dbent
naming the profile data file 453
DCONFIG
changing location of main file 585

Wind River Compiler for 68K/CPU32

overriding 583
recognized by compiler, description 16
DCXXOLD 17,233
DENVIRON
recognized by compiler, description 16
DFLAGS
dtools.conf, simplified structure 586
evaluating in configuration files 591
recognized by compiler, definition 16
using when difficult to change scripts,
makefiles, add an option 199
DEFP. See configuration language: variables
DIABLIB
recognized by compiler, definition 16
DIABTMPDIR 17
DMALLOC_CHECK
malloc function 539
DMALLOC_INIT

734

malloc function 539
DOBJECT
overriding, -WDDOBJECT 303
recognized by compiler, description 16
-WDDOBJECT, assembler option 303
DTARGET
overriding, -WDDTARGET 303
overriding, -WDDTARGET assembler
option 303
recognized by compiler, description 16
pointers to 607
relationship to command lines, configuration
files 582
specify with setup program 280
TMPDIR 448

EOF constant

defining, studio.h function 498
fscanf function 522

scanf function 554

sscanf function 561

ungetc function 573

.equ assembler directive 346

defining a symbol 321
definition 346

ERANGE

constant
setting, expfunction 514

ERANGE constant

setting, matherr function 541
value of errno 608

erf function 512

erfc function 513

erfcf function 513

erff function 512

errno variable 494, 496, 501, 503, 504, 505, 514, 517,

522,541, 546, 608
See also multi-tasking
support
__errno_fn 501
library functions set on error 284
preserving 501

__errno_fn function 501
error

caught by library function 284
compilation

caused by using try, catch or throw
keyword 83
generating time with _ ERROR__
function 160
-Xstop-on-warning 119
compiler flags keywords try, catch and throw as
errors 242
fatal 161
generated if
address of variable, function, string used
by static initializer, -Xstatic-addr-

error 118
double precision operation used, -Xdouble-
error 81

no environment variable or file found, -
@name 52,304
no matching storage-mode-line
found 170
generated with
#error string 161
exception handling 242
generating
illegal structure references 598
missing parameter name after # in macro
declaration 598
generating if
no environment variable or file found, -
@name 444
parameters redeclared in outer level of
function 599
pointers and integers mismatched 597
prototypes and arguments do not
match 597
output, standard 42
preprocessor, treatment of 598
standard
output, assert function 607
redirect to file, -@E 52
redirecting to file, -@E 304, 392, 444
treat warnings as, -Xlint 227
undervalue 608
.error assembler directive 346
__ERROR__ function, produces compile-time error
or warning 160
error messages 645

Index

error pragma 137
#error preprocessor directive 135
error statement
configuration language, definition 592
_etext and etext symbols created by linker 379
etoa preprocessor 21
__ETOA__ preprocessor predefined macro 132
etoa subprogram 11
_ ETOA_IMPLICIT_USING_STD preprocessor
predefined macro 132
_ ETOA_NAMESPACES preprocessor predefined
macro 132
.even assembler directive 346
using instead of .align assembler directive 64
exception handling 242, 284
and C functions 384
stack unwinding 384
exceptions
disable with -Xexceptions-off in C++ 83
enable with -Xexceptions in C++ 83
-Xjmpbuf-size in C++ 95
_ EXCEPTIONS__ preprocessor predefined
macro 132
execution environment
cross 26
tp 72
simple 26
execution problems 234
exit
function 498, 502, 506, 513
implementation-defined behavior 609
statement, configuration language 592
_exit function 513
in _exit.c termination module 289
_exit.c
profile in an embedded environment 295
termination module, overview 276
exit.c and _exit.c termination module
details 280
overview 276
EXIT_FAILURE constant
defining,h stdlib.h function 498
providing, exit function 513
.exitm assembler directive 347
EXIT_SUCCESS constant

735

User’s Guide, 5.4

defining, stdlib.h function 498
providing, exit function, successful
termination 513
exp function 514
expf function 514
.export assembler directive 322, 323, 347
declaring ordinary external symbols 322
export keyword 242
expressions
absolute 333
evaluation precedence 337
float 89,597
linker command file 415
precedence change with parentheses 333
relocatable 333
terms 333
typeid 243
typeinfo& 243
extend
instruction 216
optimization 216
extended keyword, synonym for long double 96,
149
.extern
references, making available to linker using
.global assembler directive 348
extern
“C” use to avoid name mangling 239, 244
keyword 381
variable 187
.extern assembler directive 347
external symbols
common 322
examples 323
global undefined, if not defined in same
file 323
ordinary 322
.externassembler directive 347

F

-F option
ddump 457
-foption 394

736

Wind River Compiler for 68K/CPU32

ddump 457
fabs function 514
fabsf function 514
far-absolute addressing mode 265
See addressing modes
far-code addressing mode 265
far-data addressing mode 265
fclose function 515
fentl function 496, 515
definition under <fcntl.h> header file 494
RAM-disk support, getting information about a
file 288
fevt function 515
fdopen function 515
feedback optimization 219
feof function
definiton 516
ferror function 516
fflush function 516
fgetc function 516
fgetpos function 517
fgets function 517
file assembler directive 347
file extensions
.a, archive library 21
.C, C++source 21
.cc, C++ source 21
.cpp, C++ source 21
.cxx, C++ source 21
dld, linker 21
i, proprocessed source 21
.0, object module 21
.0, preprocessed source 21
.s, assembly source 21
__FILE__ preprocessor predefined macro 132, 505
FILE structure 519, 521, 570
fileno function 517
files
absolute vs. relative pathnames,
implementation-defined
behavior 606
a.out, during compile and link 127
header 42,493
search order 606

initialize in setup.c in embedded
environment 293
input 300
stderr 521,553
declaring, stdio.h function 498
stdin 526, 554
declaring, stdio.h function 498
stdout 402,547, 550, 551
declaring, stdio.h function 498
temporary, DIABTMPDIR 17
types 519
.0 21,96
s 96,166
fill assembler directive 347
finalalization
.dtors section, -Xinit-section 93
fini section, -Xinit-section 93
finalization 93
default priority 93
FIND constant, hsearch function 527
fini section
in crt0.s 279
_finite function 517
fintrz instruction 86
float assembler directive 347
float expressions 89, 597
floating point
- Xfp-min-prec-long-double 89
arguments 89

conformance to IEEE754 standard 84

constants 325
default 25
hardware

libraries 14, 485

single and double precision values

with long double data type 178
with -Xfloats-in-d0 87
IEEE, .float assembler directive 347

implementation defined behavior 605

libefp.a
hardware library 484
stubs library 13, 484
method selection 45
register

not saved by interrupt function 140

Index

selecting type of support, -t option 25
software
emulation

with long double data type 178

with -Xfloats-as-gnu 87
libraries 13,14
single and double precision values

specifying with environment variable DFP 16

supporting 23
types
alignments 177
ranges 177
sizes 177
value

193

with fintrz instruction to truncate 87

with -Xfloats-in-d0 87
-Xextend-args 84
-Xfp-float-only 88
-Xfp-long-double-off 88
-Xfp-min-prec-float 89
-Xfp-min-prec-long-double 89
-Xieee754-pedantic 91
-Xuse-double

See -Xfp-min-prec-double 89

See -Xfp-min-prec-long-double 89
-Xuse-float

See -Xfp-min-prec-float 89

float-to-integer conversion 86

floor function 518

floorf function 518

fmod function 518

fmodf function 518

fopen function 294, 519

for statement, scope of initialization part 87
form feed escape sequence, '\f' 326

fpos_t type, defining, stdio.h function 498
fprintf function 519, 574

implementation-defined behavior 608

fputc function 520
fputs function 520
frame pointer, a6, point to current stack frame 195
frame_info section

description 384
sorting 406
unused 405

737

User’s Guide, 5.4

fread function 520
free function 520, 539
thread-safe 292
Freescale
Embedded mnemonics, -Xmnem-emb 314,
318
freopen function 521
frexp function 521
frexpf function 521, 545
friend C++ keyword 240
frontend, compiler 72
fscanf function 522,574
implementation-defined behavior 608
fseek function 522,553
fsetpos function 522
fstat function 523
ftel function 523
implementation-defined behavior 608
__FUNCTION__ predefined identifier 132
function-level optimization 4
function-like macros 39
functions
See individual functions
locating specific address 290
modifying errno marked by REERR 501
name encoding with the types of all
arguments 191
no return promised, #pragma no_return 202
no side effects promised, #pragma
no_side_effects 142
pointers, absolute 258
#pragma interrupt 140
pure promised, #pragma pure_function 146
standards and definitions, table of 500
templates 241
fwrite function, definition 523

G

-g option 41, 301
ddump 457, 459
line number information
COFF 636
line number information ELF 626

738

Wind River Compiler for 68K/CPU32

symbolic debugging 639
gamma function 523, 524
gap in memory, fill value 341
gap in section
creating 427
filling 425
GCC options. See GNU compiler options
gevt function 524
getc function 517, 524, 573
getchar function 525
getenv function 293, 525
defining target environment variables for 293
implementation-defined behavior 607
getopt function 525
getpid function 289, 525
gets function 526
getw function 526
global
common subexpression elimination
optimization 213
construction and destruction of objects 240
constructors C++ 93
data
#pragma pure_function 146
-Xaddr-const 62
-Xaddr-data 62
-Xaddr-sconst 62
-Xaddr-sdata 62
function
indicator ‘F’ in mangled names 244
optimization 5
no_side_effects pragma promises no
modification of variable 142
optimization 6
register assignments 138
variables
absolute sections 263, 290
allocating to register 138
constructors 240
destructors 240
modifying with asm macro 168
optimizing in conditionals 69
vs. local 200
-Xsmall-const 116
-Xsmall-data 117

.global assembler directive 322, 323, 348
declaring ordinary external symbols 322
_ GLOBAL_OFFSET_TABLE_ symbol created by
linker 379
global_register pragma
preserve across function calls 138
variable used to control allocation 138
.globl assembler directive 322, 323, 348
declaring ordinary external symbols 322
gmtime function 526
GNU
/VxWorks object module format 25
assembler compatibility 25
assembler/linker/libraries 25
calling conventions 87,121
-Xfloats-as-gnu 87
GNU compatibility
GNU local symbols 324
enabling, -Xgnu-locals-on 309
nm 459
phony targets 101
GNU compiler options
translating 236
-Xgcc-options-... 90
GNU extended syntax
assigning variables to registsers 160
inline assembler 166
GNU local symbols
disabling, -Xgnu-locals-off 309
_gp and __gp symbols created by linker 379
GROUP definition 426

H

@h unary operator 334
-H option 42, 301, 309
ddump 457
-h option
ddump 457, 459
h option
ddump 457
-h, --help command-line options 38
@ha unary operator 334
__hardfp preprocessor predefined macro 132

Index

hardware
floating point
with long double data type 178
with -Xfloats-in-d0 87
See also floating point
hardware exception handling in an embedded
environment 284
_HAS_TRADITIONAL_IOSTREAMS preprocessor
macro 239
_HAS_TRADITIONAL_STL preprocessor
macro 239
hcreate function 527
hdestroy function 527
hdrstop pragma 138, 248, 249
header
field %T title, -Xtitle option 316
files 42,493
C++ 237
declarations in 237
missing standard 232
precompiled 247
search order 606
specify search path ,-I option 42
standard, table of 493
treat #include as #import 92
typeinfo.h C++ 243
string
default format, -Xheader-format 310
format specifications, -Xheader-
format 310
HEADERSZ pseudo function, definition 416
heap, sbrk function manages 282
__HEAP_START, _ HEAP_END define heap for
sbrk function 282
in bubble.c 413
hole in memory, fill value 341
hole in section
See gap in section
horizontal tab escape sequence, ‘\t" 326
host_dir subdirectory 10
name under version_path 9
hsearch function 527
HUGE_VAL constant 497, 514
defining, <math.h> header file 494
HUGE_VAL_F constant 497

739

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

hypot function 527
hypotf function 528

i file extensions, preprocessed source 21
-l option 42, 51, 302, 606

ddump 458

-ioption 43,138

-i filel=file2 change name of header file 43,232

-I@ option 43
IV O functions, table of 288
#ident

directives in C in .comment 623
preprocessor directive 136, 139
strings 91

.dent assembler directive 348
ident pragma 139
identifiers 169

See symbols

implementation defined behavior 604
maximum length, -Xtruncate 123
underscores added to, -Xunderscore-... 124
user-defined 240

-Xtruncate 123

IEEE 695 object format 296

ddump commands -1 458

IEEE floating point

conformance to IEEE754 standard 84
.double assembler directive 344
float assembler directive 347

.if assembler directive 345, 348
#if preprocessor directive 135

implementation-defined behavior 606

if statement

configuration language
definition 592
syntax 589
with _ ERROR__ function 160

.ifc assembler directive 349
.ifdef assembler directive 349

#ifdef preprocessor directives

136, 239

if-else clause optimization 219
.ifendian assembler directive 349

740

.ifeq assembler directive 349
.ifge assembler directive 349
.ifgt assembler directive 349
.ifle assembler directive 350
.iflt assembler directive 350
.ifnc assembler directive 350
.ifndef assembler directive 350
.ifne assembler directive 350
implementation

specific behavior in code 235

implementation-defined behavior 603-609

abort function 607, 609
absolute vs. relative pathnames 606
arrays 605
bit-fields 605
characters 604
declarators 606
enumerations 605
environment 606

main function C++ 606
floating point 605
fprintf 608
fscanf 608
ftell 608
getenv function 607
identifiers 604
#if preprocessor directive 606
implementation of library functions 607-609
integers 604
library functions

%p conversion 608

%X conversion 608

%x conversion 608

assert 607
calloc 609
clock 609

denoting range of characters 608
exit 609

malloc 609

NULL macro 607

perror message 608

realloc 609

remove 608

rename 608

setenv 609

Index

strerror message 608 containing in particular section, with
system 609 istring 253
pointers 605 in .data section 329
preprocessor directives 606 initializers for static variables 270
qualifiers 605 __init_main function 278, 279, 289
registers 605 inline
struct members 605 C++ keyword 240
union members 605 optimization 202
statements, case labels 606 keyword 96, 149, 207
structures 605 pragma 139, 202, 207
switch statements 606 inline assembly. See asm string statement and
unions 605 assembler macros
.import assembler directive 350, 351 __inline__keyword 149
#import preprocessor directive 136 inlining 198
.incbin assembler directive 350 changing options to increase 199
__inchar function 287 cross-module optimization 204
include optimization 207, 215, 219
subdirectory, standard header files 12 activating with the -XO option 197
.include assembler directive 351 -Xexplicit-inline-factor controls expansion 83
#include preprocessor directive 43 -Xparse-size 107
See also #import preprocessor directive -Xsize-opt option 116
treat as #import directive 92 input file 300
include statements, configuration language 585 input/output
definition 593 basic character input/output
dtools 585 environ part of -t option, simple 26
including source in assembly code 108 library, part of simple/libc.a 484
INF floating point constant 327 RAM-disk
info pragma 139 environ part of -t option, cross 26
#info preprocessor directive 136 library, part of cross/libc.a 484
#inform preprocessor directive 136 installation
#informing preprocessor directive 136 components 9
.init section default pathnames, table of 10
incrtd.s 279 install_path directory 9
init.c startup module instantiation
overview 276 class, -Ximplicit-templates-off 91
init.c startup module, details 279 explicit 402
initialization of templates, -Ximplicit-templates-off 91
constructors 93 Instruction Set Simulator - see windiss 467
.ctors section, -Xinit-section 93 instructions
default priority 93 bit-field accessing 66
.init section, -Xinit-section 93 -Xbit-field-instr 67
local variables, -Xinit-locals 92 bra 306
run-time 282 cmp 307
initialized data conventions, table of 612
extend 216

741

User’s Guide, 5.4

fintrz 86
link
frame pointer save with 190
with -Xframe-ptr 90
mnemonics 611
moveml 90
tst 220
int bit-fields 180
plain, sign of 235
integers
constants 325
implementation defined behavior 604
long 604
mismatched 597
mixing different types in an expression 597
types
alignments 177
magic, preceding virtual base classes 184
ranges 177
sizes 177
integral constants 325
intermodule optimization. See cross-module
optimization
internal data representation 177
classes 181
for aggregates 181
for non-aggregates 181
interprocedural optimizations 107, 198, 199, 215,
602
interrupt
keyword 96, 150
pragma 140, 150
interrupt functions 263
locating at absolute addresses 290
#pragma interrupt 140
__interrupt__ keyword 150
intrinsics
__alloca() function 159
alloca() function 159
invisible objects in optimized code 247
invoke
amacro 367
the compiler 33
_IOFBF constant 558
_IOLBF constant 558

742

Wind River Compiler for 68K/CPU32

_IONBF constant 558
iostream C++ class library 13, 484
iostream.a C++ class library 481, 482
irand48 function 528
isalnum ctype function 607
isalnum function 528
isalpha ctype function 607
isalpha function 528
isascii function 529
isatty function 529
RAM-disk support 288
isentr ctype function 607
iscntrl function 529
isdigit ctype function 607
isdigit function 529
isgraph ctype function 607
isgraph function 529
islowe function 530
islower ctype function 607
_isnan function 530
isprint ctype function 607
isprint function 530
ispunct ctype function 607
ispunct function 530
isspace ctype function 607
isspace function 530
isupper ctype function 607
isupper function 531
isxdigi function 531
isxdigit ctype function 607

J

jO function 531

jOf function 531

j1 function 532

j1f function 532
jmpbuf type 497

jn function 532

jnf function 532
jrand48 function 533

K

K&R mode 68,79, 596, 598
kernel mode. See VxWorks
kernel trap 86
key function for a virtual function table 185
keywords
asm 165, 596
using to embed assembly code 290
catch
disabling exceptions 83
flagging as error 242

if user-defined identifier, may necessitate
modification of program 240

catch C++ 83,203, 240
const
compatibility mode 596
help optimizer 201
delete C++ 240

extended as synonym for long double 96, 149

extern 381
friend C++ 240
inline 96, 207
C++ 240
optimization, C++ 202
interrupt 96, 150
namespace C++ 106
new C++ 240
operator 240
__packed__ 151
specify structure padding 151
specifying structure padding 143
packed 96,151,179
pascal 96,152,195
private 187, 240
protected 187, 240
public 187, 240
recognize new 96
register 100
- Xargs-in-regs 64
has priority 187
using to declare variables 203
with function prototypes 191
signed
and compatibility mode 596

Index

in basic data types 177
using to make bit-fields signed 180
static 201, 381
template C++ 240
this C++ 240
throw C++ 83,203, 240, 242
try C++ 83,203, 240, 242
try, disabling exceptions 83
__typeof__ 152
unsigned, in basic data types 177
using C++ 106
virtual C++ 240
void 240
volatile 103, 201, 234
compatibility mode 596
in an embedded environment 291
use for variables 275
kill function 289, 533
krand48 function 533

L

%I unary operator 335
-1 linker option
specify library or process file 44
-L option 44, 302, 312, 344
.eject assembler directive 344
list assembler directive to turn on listing
lines 351
search path for -1 395
-loption 302, 312, 395
ddump 458
.eject assembler directive 344
example 389
Jistassembler directive to turn on listing
lines 351
specifying file extension 312
use with-YL 398
use with-YP 399
use with-YU 399
-l optionl 399
-l:crt0.0 startup module
specifyng with -YP option 389
13tol function 533, 539

743

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

164a function 534 libimpfp.a compiler support library 13, 481, 484

labels 319 libimpl.a compiler support library 13,481, 484
See also local symbols libios.a math library 13, 484
"start”, in crt0.s 278 libm.a math library 14, 482, 484
colon optional 319 libpthread.a thread library 14, 482, 484
for branch instructions, generating 324 libram.a RAM disk I/O library 13, 26, 28, 286, 482,
unique, generating in macros 366 484

labs absolute value function 534 libraries

LC_ALL constant 557 abridged C++ 238, 482

LC_COLLATE constant ANSI C, functions disregarded, -Xclib-optim-
setlocale function 557 off 71
strcoll function 562 basic character input output, part of libc.a 484

LC_MONETARY constant 557 C++

Ient assembler directive 351 iostream class 482

LC_NUMERIC constant 557 nonstandard 239

Jcomm assembler directive 343, 351 selecting 238
indicating use of with string COMM 253 COFF root directory 14

lcong4 function 528 exception handling 284

lcong48 function 511, 534, 538, 545 floating point

LC_TIME constant 557 hardware 14,485

__LDBL__ preprocessor predefined macro 132 libcfp.a 484

ldexp function 534 software 13,14

ldexpf function 534 stubs, libcfp.a 13, 484

Idiv function 498, 535 function, raise 284

Idiv_t type 498 iostream C++ class 13, 484

_lessgreater function 535 iostream.a, C++ iostream class 481

Ifind function 535 -L option specifying path for -1 395

libc.a libc.a 12,377
library 377 standard C library master file 12,483
standard C library master file 12, 483 libefp.a, floating point 13, 480, 484

libc.a library libchar.a, basic character I/O 13, 26, 28, 286,
-ttof-:cross option 288 480, 484

libcfp.a floating point library 13, 480, 484 libcomplex.a

libchar.a basic character I/O library 13, 26, 28, 286, directory location 484

480, 484 supplied with tools 481

libcomplex.a libcomplex.a, C++ complex math class 13
C++ complex math class library 13 libd.a, additional standard C++ 13,481, 484
directory location 484 libdk*.a, thread sub-libraries 14,482,484
supplied with tools 481 libdold.a, additional standard C++ 481

libd.a C++ additional standard library 13, 481, 484 libg.a, debugger 13

libdk*.a thread sub-library 14, 482, 484 removing dependency 78

libdold.a C++ additional standard library 481 libi.a standard C 13, 481, 484

libg.a debugger library 13 libimpfp.a, compiler support 13,481, 484
removing dependency 78 libimpl.a, compiler support 13,481, 484

libi.a standard C library 13, 481, 484 libios.a, math 13, 484

744

libm.a, math 14, 482,484
libpthread.a, thread 14, 482, 484
libram.a, RAM disk I/O 13, 26, 28, 286, 482,
484
libstl.a 13,482
libstlabr.a 482
rebuilding 491
libstlstd.a 13, 482
rebuilding 491
libstlstd.a, math
directory location 485
libwindiss.a support for instruction-set
simulator 13
libwindiss.a supporting instruction set
simulator 484
missing symbols 48
object (archives) 10,11
RAM-disk input output, part of libc.a 484
rebuilding 490
search paths 28
selecting with environ part of -t option 26
shared
.a and .so files 407
-Bsymbolic option 394
-rpath option 397
-soname option 397
-Xbind-lazy option 399
-Xdynamic option 401
-Xexclude-libs option 402
-Xexclude-symbols option 402
-Xpic option 109
-Xshared option 406
-Xstatic option 407
windiss/libwindiss.a with RAM disk I/O 482
libstl.a library 13, 482
libstlabr.a library 482
rebuilding 491
libstlstd.a
directory location 485
libstlstd.a library 13, 482
rebuilding 491
libstlstd.a math library 485
libwindiss.a library support for instruction-set
simulator 13
libwindiss.a library supporting instruction set

Index

simulator 484
license, waiting for 97
#line directive 249
line feed (newline) escape sequence, ‘\n 326
__LINE__ preprocessor predefined macro 132, 505
Jine section 626
link
instruction
frame pointer save with 190
with -Xframe-ptr 90
link
function
definition 535
RAM-disk support, causing two filenames
to point to same file 288
linkage and storage allocation 186-187
linker
See also default.dld linker command file
COFF
specifications, sections required 423
symbols, additional supported 639
command file
assignment
definition 427
in section-definition 421
comments 417
default set, -Wm option 47
default.dld, example use of 390
definiton 285
example 411
expressions 415
GROUP definition 426
_ _HEAP_START, _ HEAP_END defined
in 282
identifiers, as symbols 414
MEMORY 416,417
numbers 414
order of sections 421
section-definition 418
address specification 423
ALIGN specification 423
area specification 425
fill specification 425
LOAD specification 423
OVERFLOW specification 425

745

User’s Guide, 5.4

section-contents 419
STORE statement 425
type specification 422
SECTIONS 416,418
GROUP used within 418
STORE statement, in section-
definition 421
structure 416
symbols 414
using -Xstack-probe option 281
command language, aligning sections 356

command language, memory allocation 268

dld, locating executable 10
error messages 702
example 127
options 391
resolving .comm symbols 323
sections, required 423
lint facility, -Xlint 97, 227, 587
__lint preprocessor predefined macro 133, 496
list assembler directive 351
list file
line length
Jlen assembler directive 352
.psize assembler directive 354
-Xllen 313
page break margin, -Xpage-skip 314
page length
Jent assembler directive 351
.psize assembler directive 354
-Xplen 314
preventing generation, -Xlist-off 312
literals as operands 328
__LITTLE_ENDIAN__ preprocessor predefined
macro 132
little-endian, #pragma pack 143
Alen assembler directive 352
Jlong assembler directive 352
-Im option 501
Ink preprocessor 21
LOAD directive 431
local
optimization 5
symbols 324
generic style 324

746

Wind River Compiler for 68K/CPU32

GNU style 324
disabling, -Xgnu-locals-off 309
enabling, -Xgnu-locals-on 309
variable 190, 208
local data area 267
and #pragma weak 148
localeconv function 536, 557
localtime function 536
location
alter with Z = 331
code and variables, #pragma section 147
configuration files, change standard 584
counter 330
alignment, specifying, -Xdefault-align
option 346
header files, version_path/include 493
log function 536
log10 function 537
log10f function 537
_logb function 536
logf function 537
long
integers 604
type bit-fields 180
Jong assembler directive 352
long float 596
long long
C dialects 596
constant, specify with LL or ULL suffix 151
parameters in asm macros 169
longjmp function 497, 537, 557
avoiding for safety 247
avoiding to improve optimization 203
definition under <setjmp.h> header file 495
with -Xjumpbuf-size 95
loops
count-down optimization 213
invariant code motion optimization 217
maximum
nodes for loop unrolling 124
size defined 213
statics optimization 217
strength reduction optimization 212
testing, -Xtest-at-bottom, -Xtest-at-top and -
Xtest-at both 123

unrolling
optimization 198, 199, 213, 219
-Xsize-opt 116
-Xunroll-size 198
Ipragma.h 40, 45
Ipragma.h file 71
Irand4 function 560
Irand48 function 534, 538
Isearch function 535, 538
Iseek function 538, 569
RAM-disk support, positioning file
pointer 288
Itol3 function 539

M

-Moption 44
-m option 395
ddump 459
-m2 option 395
-m4 option 395
m68k preprocessor predefined macro 133
machine instruction statements, operand field
format 320
.macro assembler directive 352
macros 363
See also preprocessor predefined macros
\@ special parameter 366
\0 special parameter 365
assembler 165,363
assert, <assert.h>, standard header files 494
assert, assert function 505
command-line -D option) 39
concatenating parameters 365
defining 364
dumping symbol information 75
function-like 39
in pragmas 100
invoking 367
labels, generating unique 366
NARG symbol 366
object-like 39
parameters
names, separating from text 365

Index

referencing by name 364
referencing by number 365
va_arg 497
va_end 497
vararg 162
va_start 497,574,575
magic integer, preceding virtual base classes 182,
184
main function 279
define arguments for in embedded
environment 293
in setup.c in embedded environment 293
.init code executing before 623
n setup.c in embedded environment 293
three ways to define 606
MAKESTARTUP environment variable,
defining 466
mallinfo function 539
malloc function 520, 539, 552
call with sbrk 282
checking free list 282
__diab_lib_err called by 284
implementation-defined behavior 609
initializing allocated space 282
old definition with <cmalloc.h> header file, use
dlib.h> instead 494
thread-safe 292
__malloc_set_block_size function 540
mallopt function 540
mangling
See name mangling
static data members 244
MATH functions require math library 501
matherr function 540
matherrf function 541
MB_CUR_MAX constant 542
mblen function 541
mbstowcs function 542
mbtowc function 542
mc68k preprocessor predefined macro 133
mem declaration under <string.h> header file 495
mem, storage mode 169
members
alignment 181
functions 192

747

User’s Guide, 5.4

class name encoded in name 191
constructors 192
destructors 192
pointers to 192
static 187
struct 180
memccpy function 542
memchr function 542
mememp function 543
memcpy function 543
memfile.c, create with setup program 293
memmove function 543
memory
hole, fill value 341
MEMORY command 416,417
memset function 543
messages 645
.mexit assembler directive 352
minor transformations optimization 214
MIT
addressing modes, table of 614
mnemonics, -Xmnem-mit 314, 318
mix C and assembler functions 290
mktemp function 544
mktime function 544
mnemonics
instruction 611
MIT, -Xmnem-mit 314, 318
Motorola (Freescale) Embedded, -Xmnem-
emb 314,318
type specify with DOBJECT 16
modf function 544
modff function 544
Motorola
Embedded mnemonics, -Xmnem-emb 314,
318
S-Record, ddump commands -R 459
S-Record, object module format 296
moveml instruction 90
mrand48 function 534, 545, 560
multiple-body asm macro 169
multi-tasking support 292
errno variable, not re-entrant 292
malloc and free must be thread-safe 292

748

Wind River Compiler for 68K/CPU32

N

N noload access mode 261
-N option 396

ddump 458

place .data immediately after .text 393
-n option

ddump 461

n$ local symbols 324
.name assembler directive 353
name mangling 239, 243
avoid in function names 290
demangle names with ddump -F = 246
for cross-module optimization 206
table of type encodings for C++ 245
namespace C++ keyword 106
namespaces
compiler implementation 243
mangling 244
NAN floating point constant 327
NARG macro symbol 366
NDEBUG preprocessor predefined macro 505
near-absolute addressing mode 265
near-code addressing mode 265
See addressing modes
near-data addressing mode 265
See addressing modes
new
array operator 242
C++ keyword 240
new compiler frontend 72
Newline character 327
NEXT pseudo function
definition 416
_nextafter function 545
nm (GNU utility) 459
no_alias pragma 140, 202
nodes
inlining functions 94
loop unrolling 125
__nofp preprocessor predefined macro 133
.nolist assembler directive 353
NOLOAD 423
noload access mode 261
__no_malloc_warning 521, 553

Index

non-scratch register, storage modes in assembler R command 459
macros 169 dar archives 446
non-static member function 192 keeping 96
non-virtual libraries (archives) 10, 11
member function 181 object module format
no_pch pragma 248 COFF 296
no_return pragma 202 embedded mnemonics 25
no_return pragma function -Xobject-format 314
no return promised, #pragma no_return 141 ELF 296
noreturn, no_return (__attribute__ keyword) 156 embedded mnemonics 25
no_side_effects (__attribute__keyword) 157 -Xobject-format 314
no_side_effects pragma 142, 202 GNU/VxWorks 25
nrand48 function 545 IEEE 695 296
NULL Motorola S-Record 296
constant selecting with -t option 25
defining, stblib.h function 498 object-like macros 39
defining, stddef.h function 498 offsetof function 546
defining, stdio.h function 498 O_NDELAY constant
defining, string.h function 498 defining,fentlh function 496
macro, implementation-defined behavior 607 opcodes
pointer 178 assembler directives 319
dereferences 235 case sensitivity in D-AS 320
null pointer-to-member function 185 instructions 319
null-terminated array of pointers 607 syntax rules 319
open function 294, 496, 516, 546

calling with create function 288
o definition under <fentl.h> header file 494
RAM-disk support, opening file 288
operand field 342
operands
addressing modes 613
field, syntax rules 320
length 611
spaces between
allowing, -Xspace-on 315
disallowing, -Xspace-off 315
operator keyword 240

O COMDAT access mode 261
.0 file extension 21
keeping object files 96
object module 21
-O option 44, 49, 50, 97, 128, 199, 234
optimize code 44
with environment variable DFLAGS 16
-o option 44, 127, 300, 302, 396
ddump 458, 461

operators
example 389 P assembler
0, assembler octal constant suffix 326 recedence 337
O_APPEND constant binaf
defining, fentlh function 496 thle of 336
ob]ecf’gles compound (like +=) not allowed for volatile

members in packed structures 144

converter and dumper, ddump 11 constructor 240

converting to Motorola S-Records, ddump -

749

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

delete 193 -Xargs-not aliased 64
delete array 242 examples 221
destructor 240 expose uninitialized variables 234
new array 242 extend 216
precedence failure with parameter modifications in asm
assembler, table of 337 macros 167
sizeof 126, 161 feedback 219
defining, stddef.h function 498 find auto increment / decrement 221
defining, stdio.h function 498 for size, -Xsize-opt 116
defining, stdlib.h function 498 function-level 4
defining, string.h function 498 global 5,6
optimization common subexpression elimination 213,
cross-module (intermodule, whole 222
program) 71,204 guidelines for 199
disabling with asm string statements 173 hints 197-203
optimizations if-else clause 219
access static and global variables inlining 4, 198, 207, 215, 219
conservatively 75 activating with the -XO option 197
argument function 222
address 208 interprocedural 107, 198, 199, 215, 602
passing 218 register allocations 4
assignment 210 invoke 44
basic reordering 220 levels 602
branch local 5
replace return 218 loop
branch complex 212 count-down 213, 222
C function calls 71 invariant code motion 217
coding techniques 200 statics 217
common tail 210 strength reduction 212, 222
complex branch 221 unrolling 198, 199, 213, 219
constant and variable propagation 212, 222 merge moves 221
control via parameter setting 85 minor transformations 214
delay register saving 214 peephole 11, 220, 221
delete tst 220 program-level 4
device driver failure 103 reaching analysis 4
disable with register, coloring 215, 222
alloca 160 remove entry and exit code 216, 221
setjimp and longjmp 203 replace return with branch 218
volatile keyword 201 selecting levels of, DFLAGS 587
-Xkill-opt 96, 206 space vs. speed 198
-Xkill-reorder 96, 219 static function 218
disabling with structure members 209
-g or -Xoptimized-debug-off 107 tail call 210
effectiveness 201 tail recursion 206
enable 128 target-dependent 219

750

done by reorder program 219
target-independent 206
undefined variable propagation 214
unused assignment deletion 214, 221

use scratch registers for variables 216, 221

variable live range 211

vs. compilation speed 198

-Xargs-not-aliased 64

-Xblock-count and -Xfeedback used as

guide 198

-Xlint 227

-Xlocal-data-area, operation 267

-Xrestart, start over 113
optimized code, invisible objects 247
optimizer

recompile without -O option 234

remove _ ERROR__ function 160
options

appearing more than once 34

assembler 300

case sensitivity 35

compiler 37,52

-Xoptions 52

disabling 53

displaying 38, 45, 51

linker 391

pragma 142

quoting on command line 35

writing on command line 34
O_RDONLY constant

defining, fentlh function 496

setting values, open function 546
O_RDWR constant

defining, fentlLh function 496

values of, open function 546
.org assembler directive 331, 353

in location counters 331
__outchar function 287
output

assembly 39, 128

standard, redirect to file, -@E 52
OVERFLOW

constant 541

specification 425
OVERLAY 423

Index

O_WRONLY constant
defining, fentlh function 496
values of, open function 546

P

-P compiler option
preprocessor, stopping after 21
-P option 38, 45
-p option
ddump 459, 461
-p2 option
ddump 457
.p2align assembler directive 353
pack pragma 143
packed (__attribute__ keyword) 157
_ packed__ keyword 151
specify structure padding 143, 151
packed keyword 96, 151, 179
pad sections 330
.page assembler directive 353
.pagelen assembler directive 353
pascal
function 195
keyword 195
pascal keyword 96, 152
pattern expressions 421
PCC mode 80, 598
PCH files 248
pedantic mode (C/C++) 119
perror
function 546
message, implementation-defined
behavior 608
PIC initializers 270
pipe function 516
.plen assembler directive 354
PLOSS constant 541
pointers
arithmetic 125
base using with
-Xdata-relative-far 76
-Xdata-relative-near 77
basic data type, size and alignment 178

751

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

frame, a6 195 versus inline keyword in C++ 207
implementation-defined behavior 605 interrupt 140, 150, 284
NULL 178 compiler option for embedded
stack 195 development 275
to members macros 100
argument passing 192 no_alias 140, 202
as arguments and return types 192 no_pch 248
to static member function 181 no_return 141, 202
pointers to members types no_side_effects 142, 202
explanation 184 pack for structures 143, 275
port programs 292, 595-599 pure_function 146
position-independent code (PIC) 118 section
achieve using code relative addressing C++ limitations 252
modes 258 section 147
address initializer causing compiler to generate sections 380
-Xstatic-addr-error 118 compiler option for embedded
-Xstatic-addr-warning 118 development 275
generate with enable data-relative addressing
-Xcode-relative-... 72,275 modes 265
use to provide load-time allocation 269 in hardware exception handling 284
position-independent code and data (PIC and use to specify a variable be placed at an
PID) 268 absolute address 290
position-independent data (PID) use_section 251
achieve using data relative addressing weak 148
modes 258 COMDAT symbol may be treated as 382
generate with precedence, assembler operators 337
-Xdata-relative-... 275 precompiled headers 247
generate with -Xdata-relative-... 76 predefined macros
POSIX reference 500 See preprocessor predefined macros
pow function 547 preprocessor 49
powf function 547 assembly files 109
#pragma no_side_effects cpp
example 202 defaults 21
pragmas 137-149 with -W compiler option 48
align for structures 137 ctoa 21
compile-time 275 dtoa 647
control code generation 274 errors, treatment of 598
directives, use with asm macro 168 selecting 110
error 137 preprocessor directives 137-149
global_register, preserve across function #align 137
calls 138 #assert 134
hdrstop 138, 248, 249 #define 39
ident 139 #elif 135
info 139 #endif 598
inline 139, 202, 207 #error 135

752

#ident 136, 139

#if 135, 606

#ifdef 136,239
implementation-defined behavior 606
#import 136

#include 43

See also #import preprocessor directive

treat as #import directive 92
#info 136
#inform 136
#informing 136
#pack 143
#pragma

See pragmas
#unassert 134
#undef 46
#warn 137
#warning 137

preprocessor predefined macros

__bool 131
_ CHAR_UNSIGNED__ 131
__cplusplus

definiton 132
__DATE__ 132
_DCC__ 132
__DCPLUSPLUS__ 132
defaults predefined in dtools 586
_DIAB_TOOL 132
__ETOA__ 132
_ ETOA_IMPLICIT_USING_STD 132
__ETOA__NAMESPACES 132
_ EXCEPTIONS__ 132
__FILE__ 132,505
__FUNCTION__ 132
__hardfp 132
_LDBL__ 132
_LINE__ 132,505
__lint 133,496
__LITTLE_ENDIAN__ 132
__m68k 133
mo68k 133
macro arguments replacing in strings
__mc68k 133
name, defining with -D option 39
NDEBUG 505

Index

_nofp 133

_ PRETTY_FUNCTION__ 133

_ RTTI 133
SBRK_SIZE
See sbrk function 282
_ SIGNED_CHARS__ 133
__softfp 133
_STDC__ 133
_ STRICT_ANSI__ 133
suppress extra spaces 76
_TIME__ 133
_ wchar_t 134
preprocessors
das 21
did 21
etoa 21
Ink 21
preserved registers
address, a2 -a4 194
data, d2 -d7 194

in different stack layouts 190
preserved registers data, d2 -d7 194
_ PRETTY_FUNCTION__ predefined

identifier 133

.previous assembler directive 354
print statement, configuration language 593

printf function 515, 547
private keyword 187,240

_ PROCEDURE_LINKAGE_TABLE_ symbol

created by linker 379
profiling

in an embedded environment 294

-Xblock-count 67
-Xfeedback 85
-Xprof-exec, with RTA 111

-Xprof-feedback, with RTA 111
-Xprof-snapshot, with RTA 113
profiling information generating, dbent

program-level optimization 4
programs
port existing 292
598 reorder 219

setup.c, initializes arguments, variables, and

files in an embedded
environment 293

7563

User’s Guide, 5.4

protected keyword 187, 240
prototypes
force, -Xforce-prototypes 87
placement of sections 264
.psect assembler directive 354
.psize assembler directive 354
ptrdiff_t type 498
public keyword 187, 240
pure, pure_function (__attribute__keyword) 157
pure_function pragma 146
putc function 520, 550
putchar function 550
putenv function 551
puts function 551
putw function 551

Q

q, assembler octal constant suffix 326

gsort function 551

qualifiers, implementation-defined behavior 605
quoting command-line values 35

R

-R assembler option 302
-R linker option 397
-R option
ddump 459
-r option 396
ddump 459, 460
-12 option 396
-3 option 396
-r4 option 396
-r5 option 396
raise function 552
in embedded environment 284
RAM-disk files 288,292
rand function 552
RAND_MAX constant 552
raw data sections 633
table of 633

754

Wind River Compiler for 68K/CPU32

.rdata assembler directive 354
read function 501, 552
RAM-disk support, reading buffer 288
realloc function 520, 552
implementation-defined behavior 609
rebuilding the libraries 490
REENT functions are reentrant 501
reentrant library functions (multi-tasking
support) 292
REERR functions modify errno 501
register keyword 100
function prototypes 191
has priority 187
using to declare variables 203
-Xargs-in-regs 64
register list line 170
registers 194
$28 set to _SDA_BASE_ 195
a5 setto _SDA_BASE_ 195
address 220
assigning variables to 160
attribute 599
coloring optimization 215
data in basic reordering 220
global assignments 138
1/0, in absolute sections 263, 290
implementation-defined behavior 605
lower preserved 138
non-scratch, storage modes in assembler
macros 169
reserved, compiler using only addressing
modes that are relative to 269
scratch 140
use for variables 216
storage class 605
struct members, implementation-defined
behavior 605
temporary
address, a0 -al 194
data, d0-d1 194
tracking 107
union members, implementation-defined
behavior 605
use, table of 194
variables 138

Index

regular expressions 421 control with -Xrtti, -Xrtti-off 114
in SECTIONS command 421 RW access mode. See access modes
relocatable expressions 333 RX access mode. See access modes
relocation
data 269
information, selecting format 402 S
types, table of 265
remove
entry and exit code optimization 216
unused sections 405
remove function 553
implementation-defined behavior 608
rename function 553
implementation-defined behavior 608

s files, assembly source 21, 96, 166
-Soption 44, 45, 96, 128, 129
compiler, stopping after 21
ddump 460
generate assembly file 166
-s option 397
ddump 460

reorder suppress symbol table information 378
optimizer subprogram 44, 49, 50, 97 sbrk function 282, 413, 554
program

.sbss
assembler directive 354
section 329, 379
-R, -v suppressing 459
.sbss section
"small" common blocks appended to 382

input assumed to be correct 220
target-dependent optimization 219
reserved
registers, compiler using only addressing
modes that are relative to 269
storage 331

symbols 322 .sbss section. See sections
restrictions for position-independent code .S:c:ilj ?ziﬂl:éir dg;zttlve 355
(PIC) 270 -

scanf function 554, 575

SCOMMON sections 382
explicit placement 420

SCONST section class 117

result passing
See return results
return escape sequence, '\r’ 326

return results ol sectl :
194 text" or "data" 266

1
class -Xconst-in-data same as -Xconst-in-text=0 267
struct 194 . .
. -Xconst-in-text mask bits 266
union 194

SCONST section class. See section classes

rewind function 553 R
scope of for statement initialization part 87

rodata assembler directive 354 tch rewist 140
-rpath linker option 397 Scratch register

rtp execution environment (VxWorks) 27 use for variables 216
@sda unary operator 335

RTP. See VxWorks

RTTI _SDA_BASE_ symbol

. . . See Small Data Area, SDA_BASE_ 195
See run-time type information

. created by linker 380
;i"l;lr"igreprocessor predefined macro 133 See Small Data Area, SDA_BASE. 195

error checking, -Xrtc 114 _SDA_BASE_, _ SDA_BASE_ symbols created by

initialization 282 linker 379

. . . .sdata
run-time type information

assembler directive 355

7565

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

section 329
pointed toby a5 379
_sdata and sdata symbols created by linker
SDATA section class 117
-Xconst-in-text=5 as default 257
SDATA section class. See section classes
.sdata2
assembler directive 355
section 330
@sdax unary assembler operator
search path
header files 42
ibrary files 395
libraries 28
.section
assembler directive 330, 355
section
.data
with a5 register and -Xdata-relative-near or
-Xdata-relative-far option 194
section (__attribute__ keyword) 157
.section assembler directive
aligning ELF 330
using istring 253
section classes
BTEXT
alternative specifications 422
CODE, default attributes 256
CONST
alternative specifications
default attributes 256
value of RW 261
with const variables 266
with -Xconst-in-text option 266
DATA
alternative specifications 422
locating initialized vs. uninitialized 262
with linker created symbol, _edata 379
DATA, default attributes 256
SCONST
default attributes
value of RW 261
SDATA
default attributes 256
STRING

379

335

422

256

756

default attributes 256
with -Xconst-in-text mask bits 266
TEXT
alternative specifications 422
user-defined 256
section classes CONST
-Xconst-in-data same as -Xconst-in-text=0 267
.section n assembler directive 356
section .warning 383
section-definition
See linker command file, section-definition 418
.sectionlink assembler directive 357
sections
.abs.nnnnnnnn
absolute sections 331
definition 353
producing, .org 331
absolute, advantages 263
align, using linker command language 356
alignment of output sections 403
.bss
clearing using init.c 279
common blocks appended to 381
common blocks appending to 381
common symbols allocating 321, 323
common symbols allocating for use by
linker 321
controlling allocation of uninitialized
variables 69
displaying size, ddump -S 460
holding common blocks not defined in .text
or .data 377
holds common blocks not defined in .text or
.data 377
Jcomm assembler directive allocating 351
linker allocating storage for common
symbols 323
-R, -v suppressing 459
switching output 342
-Xlocal-data-area may suppress

storage 99
classes
CONST
const-in-text mask bits 266
SCONST

"text" or "data" 266
section 117
-Xconst-in-text mask bits 266
SDATA
section 117
-Xconst-in-text=5 as default 257
STRING
"text" or "data" 266
value of RW 261
user-defined 254
-X options direct addressing mode 259
COMDAT
definition COMDAT sections. See sections
COMDAT
‘0’ type in .section assembler directive 356
incremental linking, -r5 397
treatment by linker 382
with implicit templates 241
COMM, allocation of static variables 256
COMMENT
linker, specifications 422
.comment
with -s linker option 397
.comment, appending character string, .ident
assembler directive 348
COMMON
explicit placement 420
COMMON, linker 381
.data
allocation of
static variables 256
allocation of user-defined sections 256
copying initial values to, using init.c 279
displaying size, ddump -S 460
using -Bd to allocate 393
using -N to allocate immediately after
text 396
using -N to place immediately after
text 393
with a5 register and the -Xshort-a5-relative
or -Xlong-a5-relative option 194
with -Xbss-off compiler option 69
-Xlocal-data-area 99
.data:a5 register as a pointer to 269
fini

Index

incrt0.s 279
frame_info 384
init
in crt0.s 279
line 626
order, ensuring with GROUP 426
padding and fill 330
placement, with prototypes 264
pragma 147
predefined 254
raw data 633
table of 633
removing unused 405
restrictions on use of -Xcode-relative-near-
all 269
.sbss 329, 379
"small" common blocks appending 382
allocating 355
allocation of static variables 256
-R, -v suppressing 459
SCOMMON 382
explicit placement 420
.sdata 329
pointed toby a5 379
.sdata2 330
shstrtab string table 627
strtab string table 627
symtab 626
text
allocation of
const variables 256
allocation of functions 256
displaying size, ddump -S 460
line number information 637
use -N to allocate immediately before
.data 396
use with -Bt 393
-Xstrings-in-text 275
types
BSS 422
TEXT 379
SECTIONS command
and regular expressions in 421
SECTIONS command 416,418
GROUP used within 418

757

User’s Guide, 5.4

seed4 function 511
seed48 function 528, 538, 545, 556
SEEK_CUR constant 538
SEEK_END constant 538
SEEK_SET constant 538
select
target 299
target configuration 23, 29
separate compilation 128
.set (equ) assembler directive 357
.set (let) assembler directive 357
.set assembler directive 357
alternative to .equ 357
instead of .equ 346
symbol, define 321
symbol, define, alternative to .equ
directive 357
.set option assembler directives available 357
setbuf function 556
setenv function, implementation-defined
behavior 609
setjmp function 497, 537, 557
avoiding for safety 247
avoiding to improve optimization 203
definition under <setjmp.h> header file 495
with -Xjumpbug-size 95
setjmp function, compatibility 599
setlocale function 557
setup program
initialize arguments, variables and files in an
embedded environment 293
output used by init.c 280
setvbuf function 558
shared libraries
.aand .so files 407
-Bsymbolic option 394
-rpath option 397
-soname option 397
-Xbind-lazy option 399
-Xdynamic option 401
-Xexclude-libs option 402
-Xexclude-symbols option 402
-Xpic option 109
-Xshared option 406
-Xstatic option 407

758

Wind River Compiler for 68K/CPU32

short
initialized data in .sdata section 329
uninitialized data in .sbss section 329
.short assembler directive 358
short type bit-fields 180
shstrtab string table section 627
SIGABRT signal 502
sig_atomic_t type 497
sigimpbuf type 497
siglongjmp function 497
signal function 289, 558
signed keyword
and compatibility mode 596
in basic data types 177
using to make bit-fields signed 180
_ SIGNED_CHARS__ preprocessor predefined
macro 133
sigsetjmp function 497
sigset_t type 497
simple execution environment 26
simple libc.a subdirectory 484
simple target execution environment, basic character
input/output 26
simple/libc.a subdirectory 12
simulator windiss 467
sin function 558
sinf function 559
SING constant 541
single quote escape sequence,” 326
sinh function 559
sinhf function 559
.size assembler directive 358
size of
character constant in C and C++ 240
enum in C, C++ 240
sizeof
operator 126, 161
defining, stddef.h function 498
defining, stdio.h function 498
defining, stdlib.h function 498
SIZEOF pseudo function
definition 416
.sizeof.section-name symbol created by linker 379
size_t type
stddefh 498

stdlib.h 498
string.h 498
.skip assembler directive 331, 358
skip size, p. 34 342
Small Constant Area, -Xsmall-const defines variable
size 275
small constant static variables 116
Small Data Area 380
fast access even with -Xdata-relative-far 76
_SDA_BASE_ symbol
defined by linker 195
with -Xdata-relative-far 260, 270
with -Xsmall-data defines variable size 275
.so files. See libraries, shared libraries
__softfp preprocessor predefined macro 133
software floating point
See also floating point
with long double data type 178
with -Xfloats-as-gnu 87
-soname linker option 397
sorted sections, input section order, definition 383
source, including in assembly code, -Xpass-
source 108
.space assembler directive 358
space optimization 210
spaces between operands
allowing, -Xspace-on 315
not allowed, -Xspace-off 315
special register names, table of 613
__SP_END symbol, stack end initialized to 281
in bubble.c 413
__sp_grow function 281
__SP_INIT symbol, stack start initialized to 281
in bubble.c 413
sprintf function 559, 575
sqrt function 560
sqrtf function 560
srand function 560
srand48 function 511, 528, 538, 545, 560
src
directory, source files 286
subdirectory 12
S-Record object module format 296
-ss option 397
sscanf function 560, 576

Index

ssize_t type
defining, stdio.h function 498
stack
checking
__rtc_error function called on
overflow 281
__SP_END symbol 281
__sp_grow function 281
frame layout 190
initialization, by _ SP_INIT symbol 281
in bubble.c 413
layout 190
overflow check, -Xstack-probe 118
pointer 195
standard
header files, table of 493
standard
addressing mode 265
See addressing modes
standards
C++, conformance to 6
conformance to 6, 595
"start" label in crt0.s 278
.startof.section-name symbol created by linker 379
startup
and termination 276
crt0.o 12
crt0.s 276
module
See crt0.0 startup module
startup module
-l:ert0.0, specifying with -YP option 389
statements
asm string, disabling optimizations 173
assignment with -WD compiler option 47
configuration language
break 594
case 594
exit 592
include
definition 593
print 593
switch 593
for initialization part scope 87
switch, implementation-defined behavior 606

759

Index

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

switch, table vs. compares 122 reg 169
static ureg 169
allocate variables 186 mode line 168
data 146 reserve 331
function optimization 218 STORE statement 421
function, outside any function, but inside a C++ str* declaration under <string.h> header file 495
class definition 187 strcat function 561
member 187 strchr function 561
mangling 244 strcmp function 538, 561, 567
member function 181 strcoll function 557, 562, 567
objects 240 strcpy function 562
variables 138 strespn function 562
constructors 240 strdup function 562
destructors 240 strerror function 563
initializers 270 strftime function 557, 563
modify with asm macro 168 Strict ANSI
vs. local 200 Cmode 80
static C/C++mode 119
keyword 201, 381 _ STRICT_ANSI__ macro 133
static const variable string assembler directive 358
with -Xcode-relative-far 73 string constants 75
_ STDC__macro 133 configuration language 590
stderr 521,553 -Xcharset-ascii 70
buffering 118 -Xswap-cr 122
declaring,stdio.h function 498 STRING section class
redirect to file, -@E 52 "text" or "data" 266
stdin file 526, 554 value of RW 261
declaring, stdio.h function 498 with -Xconst-in-text mask bits 266
stdio function 529 -Xconst-in-data same as -Xconst-in-text=0 267
_STD__n termination functions 282 STRING section class. See section classes
stdout file 402, 547, 550, 551 strings
declaring, stdio.h function 498 alignment, -Xstring-align 120
stdout redirect to file, -@E 52 #ident 91
step function 509, 561 location, -Xconst-in-... 75
sterror messages, implementation-defined quoting on command line 35
behavior 608 strlen function 564
_stext and stext symbols created by linker 379 strncat function 564
_STI__n initialization functions 282 strncmp function 564
stop on warning 407 strncpy function 565
storage strpbrk function 565
classes, as permitted by scope 186, 187 strrchr function 565
mode for assembler macro parameters strspn function 565
con 169 strstr function 566
lab 169 strtab string table section 627
mem 169 strtod function 566

760

strtok function 566
strtol function 567
strtoul function 567
struct
lconv 536
member 180
return type 194
scope in C++ versus C 240
structure member alignment
-Xstruct-min-align, set minimum 122
structures
_ packed__ keyword 151
align pragma 137
alignment 181
alignment of members
changing with -Xbit-fields-compress-
.. 66
-Xmember-max-align 103
-Xstruct-max-align 103
-Xstruct-min-align 122
assignment, -Xstruct-assign-split-... 121
byte-swapping 151
enum uses smallest type in packed 144
illegal references, error treatment of 598
implementation-defined behavior 605
initialization, -Xbottom-up-init 68
initialized, warning in PCC mode 596
initializers, incomplete parsing 597
maximum alignment 143, 151
members
to registers optimization 209
minimum alignment 143, 151
pack pragma 143
packed keyword 143, 151
padding 143
See also __packed__ keyword
minimize 181
with a zero-length bit-field 180

reducing size with -Xbit-fields-compress-...

return from functions
-Xstruc-as-static 120
-Xstruct-as-arg 120

return type 194

size 181
argument, -Xstruc-arg-warning 120

66

Index

volatile
member access not atomic in packed
structures 144

strxfrm function 557, 567
.strz assembler directive 358
subdirectories

host_dir 10
name under version_path 9
include, standard header files for user
programs 12
target 12

subprograms run by driver program, table of 21
.subtitle assembler directive 359

subtitle, defining, -Xsubtitle 315

SVID reference 500

swab function 568

switch statements

configuration language 593
implementation-defined behavior 606

.symbol assembler directive 357
symbol table

including
all locals, -Xstrip-locals-off 315
certain locals, -Xstrip-temps-off 315
suppressing
all locals, -Xstrip-locals 315
certain locals, -Xstrip-temps 315

symbols

"declared" when the assembler recognizes itas a
symbol of the program 321
"defined" when a value is associated with
it 321
.comm treating as undefined global 323
common
declaring, .comm assembler directive 322
storage allocated by linker 323
created by linker 378
entry point 324
external
common 322
examples 323
ordinary 322
forcing linker to define 398
global
defining with =: 321

761

User’s Guide, 5.4

undefined, if not defined in same file 323
GNU style 324
linker command file 414
local
generic style 324
GNU style 324
n$ 324
renaming in linker output 397
reserved 322
restrictions 320
syntax rules 320
undefined
flagged in symbol table 323
underscores added, -Xunderscore-... 124
valid characters 320

Wind River Compiler for 68K/CPU32

changing, dctrl 29
ddump 460
setting configuration variables 582
table of values 24
tab stops, default, -Xtab-size 316
tail call optimization 210
tail recursion optimization 206
tan function 568
tanf function 568
tanh function 568
tanhf function 569
target
communicating with 290
configuration
selecting 23,29

.symtab section 626
syntax
assembler lines 317
comments 320
constants, integral = 325
direct assignment statements 321
external symbols 322
floating point constants 326
format of an assembly language line 317
labels 319
local symbols 324
generic style 324
GNU style 324
opcode 319
operand field 320
symbols 320
SYS functions provided by system 501
sys_errlist variable 546
sys_nerr variable 546
system function, implementation-defined
behavior 609

T

-T option 302
ddump 460
+t option
ddump 460
-t option 45, 303, 398, 585

762

examples 27

configuration, changing the default 29

dependent optimization 219

environment variables 292

input/output support, selecting with environ
part of -t option 26

operating system support, special configuration
file selecting with environ part of -t
option 26

predefined files 292

processor, selecting 24

program arguments 292

select 299

subdirectory 12

target-dependent options

Refer to target User’s Manual
Refer to release notes

tdelete function 569
tell function 569
templates

C++ keywords 240

class 241

function 241

instantiation
indplus 241
-Ximplicit-templates-off 91

tempnam function 569
temporary

address registers, a0 -al 194
assembly file 96

data registers, d0 -d1 194
files, DIABTMPDIR environment variable 17
text assembler directive 359
.text section
displaying size, ddump -S 460
line number information 637
use -N to allocate immediately before
.data 396
use with -Bt 393
-Xstrings-in-text 275
TEXT section class. See section classes
.text section. See sections
TEXT section type 379
tfind function 570
this C++ keyword 240
thread-safe operation (multi-tasking support) 292
throw C++ keyword 83, 203, 240, 242
time function 289, 544, 570
_ TIME__ macro
precompiled headers 249
_ TIME__macro 133
title assembler directive 359
title, defining, -Xtitle 316
TLOSS constant 541
TMPDIR environment variable 448
tmpfile function 570
tmpnam function 570
toascii function 571
tolower function 571
toupper function 571
try
C++ keyword 240, 242
try C++ keyword 83, 203
try keyword
disabling exceptions 83
tsearch function 572
tst instructions 220, 611
.ttl assembler directive 359
-ttof 45
-ttof assembler, compiler, linker option 24
-ttof option
target processor component 26
-ttof-:cross option, part of libc.a library 288
twalk function 572
.type assembler directive 359

Index

typedef scope in C++ versus C 240
typeid expression 243
type_info class definition 243
typeinfo& expressions 243
typeinfo.h C++ header file 243
__typeof _ keyword 152
types 497
bool
- Xbool-off disables 68
__bool preprocessor predefined
macro 131
set type for 68
defining, fpos_t function 498
div_t 498,511
generate debug information for unreferenced

types 79
identification, typeid 243
jmpbuf 497
Idiv_t 498

ptfdiff 498
sig_atomic_t 497
sigimpbuf 497
sigset_t 497
size_t
defining, stdio.h function 498
stddefh 498
stdlib.h 498
stringh 498

VISIT 572
wchar, __wchar_t preprocessor predefined
macro 134

tzset function 573

U

-U option 46
-uoption 398

ddump 458, 459, 461
.uhalf assembler directive 360
.ulong assembler directive 360
#unassert preprocessor directive 134
#undef preprocessor directive 46
undefined

global symbol 323

763

User’s Guide, 5.4

symbols, flagging in the symbol table 323
variable propagation optimization 214
UNDERFLOW constant 541
ungetc function 573
uninitialized data
.Jbss section 329
containing in particular section, with
ustring 253
unions
alignment 181
implementation-defined behavior 605
initialized, warning in PCC mode 596
return type 194
size 181
UNIX
addressing modes, table of 614
configuration variable DCONFIG 16
default installation pathname 10
directory separator character 591
environment variable DIABTMPDIR 17
reference 500
setting environment variables 15
standard name, location of main configuration
file 584
unlink function 573
RAM-disk support, removing a file 289
_unordered function 573
unsigned
keyword, in basic data types 177
long long variable type 151
unused assignment deletion optimization 214
use scratch registers for variables optimization 216
user
modifications 276
user.conf configuration file
description 11
dtools.conf configuration file, simplified
structure 586
user-defined section class 254
user-defined section class. See section classes
use_section pragma 251
.ushort assembler directives 360
using C++ keyword 106
.uword assembler directive 360

764

Wind River Compiler for 68K/CPU32

\'

-V option 46, 303, 398
ddump 460
-v option 46
ddump 457,459, 461
va_arg macro 497
va_end macro 497
va_list type 497
values
floating point, single and double precision 193
floating point, with fintrz instruction to
truncate 87
floating point, with -Xfloats-in-d0 87
vararg macros 162
variable live range optimization 211
variables
absolute, accessing at specific addresses 290
absolute, accesssing with symbolic
debugger 263
access at specific addresses 290
allocation on stack, -Xlocals-on-stack 100
automatic 138
binary representation of 160
configuration language 590
conservative access of static and global
variables 75
const
faster access using -Xconst-in-text=0 and -
Xcode-relative-far 73
moving from "text" to "data" 266
with -Xdata-relative-near 77
with-Xdata-relative-far 76
constructor 240
destructor 240
embedded environment, initialize in

setup.c 293
errno 494, 496, 501, 503, 504, 505, 514, 517, 522,
541, 546, 608
__errno_fn 501
preserving 501
extern 187

global
absolute sections 263, 290
allocating to register 138

modifying with asm macro 168
optimizing in conditionals 69
vs.local 200
-Xsmall-const 116
-Xsmall-data 117
global_register pragma used to control
allocation 138
initial values
copying from "rom" to "ram" 279
initialization of locals, -Xinit-locals 92
local 190, 208
locating initialized vs. uninitialized 262
locating specific address 290
location, #pragma section 147
long long 151
__no_malloc_warning 553
register 138, 187
small constant static 116
static 138
modify with asm macro 168
vs.local 200
static const
with -Xcode-relative-far 73
sys_errlist 546
sys_nerr 546
unsigned long long 151
volatile 103
va_start macro 497,574,575
version number, displaying 46
version_path 9
directory 43
subdirectories & important files 10
vertical tab escape sequence, '\v’ 326
viprintf function 574
vfscanf function 574
virtual
base class 182
one extra argument added for each 192
function table 182,184
generation, key functions 185
virtual base class
pointers, added to a derived class 184
virtual C++ keyword 240
virtual function table
array of pointers to functions 184

Index

VISIT type 572
void keyword 240
void pointers
arithmetic 125
volatile
data 275
keyword 103, 201, 234, 291
and compatibility mode 596
inline assembler 167,173
use for variables 275
member access not atomic in packed
structures 144
vprintf function 574
-VS option 398
vscanf function 575
vsprintf function 575
vsscanf function 575
-VV option 46
VxWorks
C libraries 27
C++ libraries 238
execution environment 27
kernel mode 27
RTP applications
-Bsymbolic option 394
-rpath option 397
-soname option 397
-Xbind-lazy option 399
-Xdynamic option 401
-Xexclude-libs option 402
-Xexclude-symbols option 402
-Xpic option 109
-Xshared option 406
-Xstatic option 407
rtp execution environment 27
user mode 27

W

-Waoption 46
-W as option 46
-W D option 46
-Wloption 47
-W1d option 47

765

User’s Guide, 5.4

-W m option changes default linker command
file 47,390
-w option 51
ddump 460

-W s option changes default startup file 47,278,390

-W x,arguments option 49
-W x.ext compiler option 50
-W xfilename option 48
#warn preprocessor directive 137
#warning preprocessor directive 137
.warning assembler directive 360
warning messages 645
.warning section 383
-WC option 590
DCONFIG 585
default DCONFIG if not used 16
setting configuration language variables 582
specify configuration file 48
use for DCONFIG 48
vs. -WDDCONFIG 583
__wchar_t preprocessor predefined macro 134
wcstombs function 147, 576
wctomb function 576
-WD environment_variable command-line option
overriding values of variables 30
-WD option 48, 303, 583, 590, 591
overriding environment variable value 15
setting configuration language variable 582
-WD variable option
overriding configuration variable 29
-WDDCONEFIG option equivalent to -WC 583
-WDDENVIRON option
setting library search path 26
-WDDOBJECT option 303
-WDDOBJECT option setting -Xobject-format 314
-WDDOBJECT option, setting -Xobject-format 314
.weak assembler directive 360
weak pragma 148
COMDAT symbol may be treated as 382
whole-program optimization. See cross-module
optimization
.width assembler directive 361
windiss
compiling 469
disassembler mode

766

Wind River Compiler for 68K/CPU32

batch 473
interactive 474
execution environment, pseudo-value 486
simulator and disassembler 467
simulator mode
-b load binary file 470
-d debug using mask 470
-e entry point 471
-E specify endianity 471
-h load hex file 471
-M memory mask 472
-m memory specification 471
-ma automatic memory allocation 472
-mm memory map 472
-N windows priority 472
-q quiet mode 472
-s clock speed 472
-S stack address 472
-t target processor 472
-V print version 473
windiss/libwindiss.a library 482
Windows
configuration variable DCONFIG 16
directory separator character 591
environment variables
DIABTMPDIR 17
setting 15
installation 10
-Wm compiler option 285
.word assembler directive 361
write function 576
RAM-disk support, writing a buffer 289

X

-Xx option
ddump 458
-X options
- Xblock-count 67
disable 53
switch-table 122
-X 304,398
-x 303
-X default-align assembler option 64

-Xa

See -Xdialect-k-and-r 80
-Xabs-ind-long 305
-Xabs-ind-word 305
-Xaddr-... 62
Xaddr 274
-Xaddr-code 259, 260
-Xaddr-const 259, 260
-Xaddr-data 258, 260
-Xaddr-sdata 259, 260
-Xaddr-string 258, 260
-Xaddr-user 259, 260
-Xalign-... 62
-Xalign-... 63
-Xalign-fill-text 305
-Xalign-min

packed structures 144
-Xalign-off 64
-Xalign-power2 305, 341
-Xalign-value 305, 341
-Xall-far-code-relative

See -Xcode-relative-far-all 73
-Xall-long-pc-relative

See -Xcode-relative-far-all 73
-Xall-near-code-relative

See -Xcode-relative-near-all 74
-Xall-short-pc-relative

See -Xcode-relative-near-all 74
-Xansi

See -Xdialect-k-and-r 80
-Xargs-... 64,191
-Xarray-align-min 65
-Xascii-charset

See -Xcharset-ascii 70
-Xasm-const-pound 65
-Xasm-debug-... 306
-Xauto-align 306
-Xauto-comment-... 306
-Xbig-switch-table 65
-Xbind-lazy 399
-Xbitfield-compress

See --Xbit-fields-compress 66
-Xbit-field-instr-... 66
-Xbitfield-no-optim

See -Xbit-fields-access-as-... 66

Index

-Xbit-fields-... 65, 66, 67
-Xbit-fields-signed 180, 235
-Xblock-count 11, 85, 219, 294
D-BCNT requirement 452
__dbini and __dbexit functions
requirement 454
-Xbool-is-... 68
-Xbool-off 131
-Xbottom-up-init 68
-Xbra-is-... 306
-Xbranch-islands... 400
-Xbss-... 69
-Xbss-common-off 381
-Xc
See -Xdialect-strict-ansi 80
-Xc++-abr 69
-Xc++-old 69
old preprocessor 110
-Xcga-min-use 69
-Xchar-... 70,178,179
-Xcharset-ascii 70
-Xcheck-input-patterns 400
-Xcheck-overlapping 400
-Xclass-type-name-visible 71
-Xclib-optim-off 71

-Xcmo-... 71

and cross-module optimization 205
-Xemp-... 307
-Xcnew 72

-Xcode-absolute... 72
-Xcode-absolute-far 259
-Xcode-absolute-near 259
-Xcode-relative-... 275
-Xcode-relative-far 72, 260, 269, 270
-Xcode-relative-far-all 260, 269, 270
-Xcode-relative-near 72, 259, 269
-Xcode-relative-near-all 259, 269
-Xcoff 296, 400
-Xcomdat
in table of options related to template
instantiation 241
run-time type information collapsed
by 114
-Xcomdat-info-file 74
-Xcommon-align 401

767

User’s Guide, 5.4

-Xcompress-symbols 401
-Xcompress-symbols-... 401
-Xconservative-static-live 75
-Xconst-in-... 75
-Xconst-in-data 267
-Xconst-in-text 257, 261, 266, 267, 275
-Xcpp-dump-symbols 75

old preprocessor 110
-Xcpp-no-space 76
-Xcpu-... 307
-Xdata-absolute... 76
-Xdata-absolute-far 260
-Xdata-absolute-near 260
-Xdata-relative-... 76,275
-Xdata-relative-far 194, 260, 269, 270
-Xdata-relative-near 194, 260, 269
-Xdebug-... 78
-Xdebug-align 77
-Xdebug-dwarf... 77
-Xdebug-inline-on 78
-Xdebug-local-all 78
-Xdebug-local-cie 78
-Xdefault-align 307, 330, 346
-Xdialect-... 79
-Xdialect-ansi 133, 595

See -Xfp-min-prec-long-double 89
-Xdialect-c89 79
-Xdialect-c99 79
-Xdialect-k-and-r 79, 596
-Xdialect-pcc 203, 596
-Xdialect-strict-ansi 80, 133, 166, 191, 595
-Xdigraphs-... 80
-Xdisp-... 308, 310
-Xdollar-in-ident 80, 274
-Xdont-die 401
-Xdont-link 401
-Xdynamic 401
-Xdynamic-init 81
-Xelf 296, 402
-Xelf-rela-... 402
-Xenum-is-... 81,178
-Xenum-is-int 179
-Xenum-is-small 178, 179
-Xexception

See -Xexceptions-off 83

768

Wind River Compiler for 68K/CPU32

-Xexceptions 242
-Xexceptions-... 83
-Xexclude-libs 402
-Xexclude-symbols 402
-Xexplicit-inline-factor 83
-Xexpl-instantiations 402

in table of options related to template

instantiation 242

-Xextend-args 84, 89
-Xextern-in-place 403
-Xfar-code-relative

See -Xcode-relative-far 73
-Xfar-data-relative

See -Xdata-relative-far 76
-Xfeedback 85,219, 294, 295
-Xfeedback-... 85

-Xfintrz-... 86
-Xfloats-... 87
-Xforce 87

-Xforce-prototypes 87
-Xforeign-as-1d 88
-Xfor-init-scope-... 87
-Xfp-... 88,89
-Xfp-fast 84
-Xfp-normal 84
-Xfp-pedantic 84
-Xfpu-... 309
-Xframe-info 89
-Xframe-ptr 90, 190
-Xfull-pathname 90
-Xgcc-options-... 90
-Xgenerate-paddr 403
-Xgenerate-vmap 403
-Xglobals-volatile 103
-Xgnu-locals-... 309
-Xgnu-locals-off 325
-Xheader-... 309, 310
-Xheader-format 315, 316
-Xhi-mark
See -Xfeedback-frequent 86
-Xident-... 91
-Xieee754-pedantic 91
-Ximplicit-templates-... 91
in table of options related to template
instantiation 241

-Ximport 92
-Xincfile-missing-ignore 92
-Xind16-range-off 310
-Xind16-range-on 310
-Xindex-long 311
-Xindex-word 311
-Xinit-... 92
-Xinit-section-default-pri 93
-Xinit-value 94
-Xinline 94, 198

inlining method 207
-Xinline-explicit-force 94
-Xinstr-00 95
-Xinstr-20 95
-Xintrinsic-mask 95
-Xjmpbuf-size 95
-Xk-and-r

See -Xdialect-k-and-r 79
-Xkeep-assembly-file 96
-Xkeep-object-file 96
-Xkeywords 96,152, 195
-Xkill-opt 96, 206
-Xkill-reorder 96, 219
-Xlabel-colon 311, 319, 339

-Xlabel-colon, allowing assembler directives to

start in column one 174
-Xlabel-colon-off 311, 339
-Xleading-underscore

See -Xunderscore-... 124
-Xlicense-wait 97
-Xline-format 311
-Xlint 97,227

-Xlist-... 312
-Xlist-file-extension=... 312
-Xllen 313

-Xlocal-data-area 99, 267
-Xlocal-data-area-static-only 100
-Xlocals-on-stack 100, 187
-Xlocal-struct

See Xlocal-data-area 99
-Xlo-mark

See -Xfeedback-seldom 86
-Xlong-a5-relative

See -Xdata-relative-far 76
-Xlong-pc-relative

Index

See -Xcode-relative-far 73
-Xmac-conventions 100
-Xmacro-arg-space-... 313, 367
-Xmacro-in-pragma 100

old preprocessor 110
-Xmacro-undefined-warn 100
-Xmake-dependency 101

old preprocessor 110
-Xmake-dependency-... 102

old preprocessor 110
-Xmax-inst-level 103
-Xmax-short-branch 403
-Xmember-max-align 103, 143, 275
-Xmemory-is-volatile 103, 275
-Xmin-align

See -Xalign-min 63
-Xmismatch-warning 104, 597

and -e option 41, 104
-Xmmu-68030 313
-Xmmu-68040 313
-Xmmu-68060 313
-Xmmu-68851 313
-Xmmu-all 313
-Xmmu-none 313
-Xmnem-all 313
-Xmnem-diab 314
-Xmnem-emb 313,318
-Xmnem-mit 313, 318
-Xname-... 104
-Xnamespace-... 106
-Xnear-code-relative

See -Xcode-relative-near 73
-Xnear-data-relative

See -Xdata-relative-near 77
-Xno-align compiler option 346
-Xno-bool

See -Xbool-off 68
-Xno-bss

See -Xbss-off 69
-Xno-common

See -Xbss-common-off 69
-Xno-diagraphs

See -Xdigraphs-off 80
-Xno-double

See -Xfp-float-only 88

769

User’s Guide, 5.4

-Xno-ident

See -Xident-off 91
-Xno-implicit-templates

See -Ximplicit-templates... 92
-Xno-long-double

See -Xfp-long-double-off 88
-Xno-optimized-debug

See -X optimized-debug ... 107
-Xno-recognize-lib

See -Xclib-optim-off 71
-Xno-rtti

See -Xrtti-... 114
-Xno-wchar

See -Xwchar-t-... 126
-XO 16,44, 49,50, 85,97, 106, 107, 114, 123, 199

inlines functions 207

sets -Xinline 94
-Xobject-format 314
-Xold-align 403
-Xold-inline-asm-casting 106
-Xold-scoping

See -Xfor-init-scope-... 87
-Xopt-count 107
-Xoptim-all 314
-Xoptimized-debug-... 107
-Xoptimized-load 404
-Xoptim-off 314
-Xpage-skip 314
-Xparse-size 107, 198, 602
-Xpass-source 39, 108, 129
-Xpcc

See -Xdialect-pcc 80
-Xpch-... 108
-Xpic 109
-Xpic-only 404
-Xplen 314
-Xpointers-volatile 103
-Xpragma-section-... 109
-Xprefix-underscore-... 404
-Xprefix-underscore-coff 405
-Xprefix-underscore-elf 405
-Xprepare-compress 315
-Xpreprocess-assembly 109
-Xpreprocessor-lineno-off 110
-Xpreprocessor-old 110

770

Wind River Compiler for 68K/CPU32

-Xprof-all 110
-Xprof-all-fast 110
-Xprof-count 110
-Xprof-coverage 110
-Xprof-exec 111
-Xprof-feedback 111
-Xprof-snapshot 113
-Xprof-time 111
-Xprof-time-fast 111
-Xptr-values-in-... 113
-Xptr-values-in-a0 193
-Xput-const-in-text 76
-Xremove-unused-sections 405
-Xrescan-... 405
-Xrescan-libraries 388
-Xrestart 113
Xrtc 114
-Xrtc=4 equivalent to -Xstack-probe 118
~Xrtti-... 114
-Xsection-align 406
-Xsection-pad 114
-Xsection-split 115
-Xsect-pri-... 115
-Xshared 406
-Xshort-a5-relative

See -Xdata-relative-near 77
-Xshort-pc-relative

See -Xcode-relative-near 73
-Xshow-configuration 116
-Xshow-inst 116
-Xshow-target 116
-Xsigned-bitfields

See -Xbit-fields-signed 67
-Xsigned-char

See -Xchar-signed 70
-Xsize-opt 116, 199, 275
-Xsmall-const 116, 256, 275
-Xsmall-data 99, 117, 256, 265, 275, 379
-Xsort-frame-info 406
-Xspace-... 315
-Xspace-off 317,339

implicitly set by -Xauto-comment-on 306
-Xstack-delay 117
-Xstack-delay-off 117
-Xstack-probe 118, 275, 281

-Xstatic 407
-Xstatic-addr-... 118
-Xstatics-volatile 103
-Xstderr-fully-buffered 118
-Xstop-on-redeclaration 407
-Xstop-on-warning 119, 407
-Xstrict-ansi 119

See -Xdialect-strict-ansi 80
-Xstrict-bitfield-promotions 119
-Xstring-align 120
-Xstrings-in-text 267
-Xstrip-... 315
-Xstruct-... 120
-Xstruct-as-arg 120
-Xstruct-as-args 193
-Xstruct-as-gnu 120, 193
-Xstruct-as-static 120, 194
-Xstruct-best-align 181
-Xstruct-max-align

See -Xmember-max-align 103
-Xstruct-min-align 122, 275
-Xsubtitle 315
-Xsuppress-dot-... 407
-Xsuppress-path 408
-Xsuppress-section-names 407
-Xsuppress-underscore-... 408
-Xsuppress-warnings 122
-Xswap-cr-nl 122
-Xsyntax-warning-... 123
-Xt

See -Xdialect-k-and-r 79
-Xtab-size 316
-Xtarget 123
-Xtest-at-... 123
-Xtitle 316
-Xtrailing-underscore

See -Xunderscore-... 124
-Xtruncate 123
-Xunderscore-... 124
-Xunroll 124,213
-Xunroll-size 124,198, 213
-Xunsigned-bit-fields

See -Xbit-fields-unsigned 67
-Xunsigned-bitfields

See -Xbit-fields-unsigned 67

Index

-Xunsigned-char
See -Xchar-unsigned 70
-Xunused-sections-... 408
-Xuse-double
See -Xfp-min-prec-double 89
See -Xfp-min-prec-long-double 89
-Xuse-float
See -Xfp-min-prec-float 89
-Xuse-fmove-to-fpc
See -Xfintrz-is-fmove-to-fpcr 86
-Xuse-.init
See -Xinit-section 93
-Xusing-std-... 125
-Xvoid-ptr-arith-ok 125
-Xwchar-off 134
-Xwchar_t-... 126
xdef assembler directive 322, 323, 361
declaring ordinary external symbols 322
xref assembler directive 361, 381

Y

-YIoption 51
-Y L option 51
-Y L option, search path for -1 395, 398
-y option
ddump 462
-Y P option 51
-Y P option, search path for -1 389, 395, 398
-Y U option 51
-Y U option, search path for -1 395, 398
y0 function 577
yOf function 577
y1 function 577
y1f function 577
-YI option 43
yn function 578
ynf function 578
yvalsh 239

771

Wind River Compiler for 68K/CPU32
User’s Guide, 5.4

Z

+z option
ddump 461

-z option
ddump 461

772

	Wind River Compiler for 68K/CPU32 User's Guide
	Contents
	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Overview of the Tools
	Important Compiler Features and Extensions
	High Performance Optimizations
	Portability

	1.3 Documentation
	This User’s Guide
	Additional Documentation

	2 Configuration and Directory Structure
	2.1 Components and Directories
	2.2 Accessing Current and Other Versions of the Tools
	2.3 Environment Variables
	2.3.1 Environment Variables Recognized by the Compiler

	3 Drivers and Subprogram Flow
	4 Selecting a Target and Its Components
	4.1 Selecting a Target
	4.2 Selected Startup Module and Libraries
	4.3 Alternatives for Selecting a Target Configuration

	Part II Wind River Compiler
	5 Invoking the Compiler
	5.1 The Command Line
	5.2 Rules for Writing Command-Line Options
	Same Option More Than Once
	Command-Line Options are Case-sensitive
	Spaces In Command-Line Options
	Quoting Values
	Unrecognized Options, Passing Options to the Assembler or Linker
	Length Limit

	5.3 Compiler Command-Line Options
	5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)
	5.3.2 Ignore Predefined Macros and Assertions (-A-)
	5.3.3 Define Assertion (-A assertion)
	5.3.4 Pass Along Comments (-C)
	5.3.5 Stop After Assembly, Produce Object (-c)
	5.3.6 Define Preprocessor Macro Name (-D name=definition)
	5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)
	5.3.8 Change Diagnostic Severity Level (-e)
	5.3.9 Generate Symbolic Debugger Information (-g)
	5.3.10 Print Pathnames of Header Files (-H)
	5.3.11 Specify Directory for Header Files (-I dir)
	5.3.12 Control Search for User-Defined Header Files (-I@)
	5.3.13 Modify Header File Processing (-i file1=file2)
	5.3.14 Specify Directory For -l Search List (-L dir)
	5.3.15 Specify Library or Process File (-l name)
	5.3.16 Specify Pathname of Target-Spec File (-M target-spec)
	5.3.17 Optimize Code (-O)
	5.3.18 Specify Output File (-o file)
	5.3.19 Stop After Preprocessor, Produce Source (-P)
	5.3.20 Stop After Compilation, Produce Assembly (-S)
	5.3.21 Select the Target Processor (-t tof:environ)
	5.3.22 Undefine Preprocessor Macro Name (-U name)
	5.3.23 Display Current Version Number (-V, -VV)
	5.3.24 Run Driver in Verbose Mode (-v)
	5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)
	5.3.26 Define Configuration Variable (-W Dname=value)
	5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)
	5.3.28 Specify Linker Command File (-W mfile)
	5.3.29 Specify Startup Module (-W sfile)
	5.3.30 Substitute Program or File for Default (-W xfile)
	5.3.31 Pass Arguments to Subprogram (-W x,arguments)
	5.3.32 Associate Source File Extension (-W x.ext)
	5.3.33 Suppress All Compiler Warnings (-w)
	5.3.34 Set Detailed Compiler Control Options (-X option)
	5.3.35 Specify Default Header File Search Path (-Y I,dir)
	5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)
	5.3.37 Specify Search Directory for crt0.o (-Y S,dir)
	5.3.38 Print Subprograms With Arguments (-#, -##, -###)
	5.3.39 Read Command-Line Options from File or Variable (-@name, -@@name)
	5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	5.4 Compiler -X Options
	5.4.1 Option Defaults
	5.4.2 Compiler -X Options by Function
	5.4.3 Set Addressing Mode for Sections (-Xaddr-...)
	5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n)
	5.4.5 Specify Minimum Alignment for Single Memory Access to Multi-byte Values (-Xalign-min=n)
	5.4.6 Do Not Generate .align Directive (-Xalign-off)
	5.4.7 Pass argument in register (-Xargs-in-regs)
	5.4.8 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)
	5.4.9 Specify Minimum Array Alignment (-Xarray-align-min)
	5.4.10 Disable ‘#’ Prefix for Assembly Numeric Constants (-Xasm-const-pound...)
	5.4.11 Specify Jump-table for Switch Statements (-Xbig-switch-table)
	5.4.12 Disable Bit-field Access Optimization (-Xbit-fields-access-as-byte, -Xbit-fields-access-as-type)
	5.4.13 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)
	5.4.14 Accessing bit-fields (-Xbit-field-instr-...)
	5.4.15 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)
	5.4.16 Insert Profiling Code (-Xblock-count)
	5.4.17 Set Type for Bool (-Xbool-is-...)
	5.4.18 Control Use of Bool, True, and False Keywords (-Xbool-...)
	5.4.19 Parse Initial Values Bottom-up (-Xbottom-up-init)
	5.4.20 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections (-Xbss-off, -Xbss-common-off)
	5.4.21 Use Abridged C++ Libraries (-Xc++-abr)
	5.4.22 Use Old C++ Compiler (-Xc++-old)
	5.4.23 Optimize Global Assignments in Conditionals (-Xcga-min-use)
	5.4.24 Generate Code Using ASCII Character Set (-Xcharset-ascii)
	5.4.25 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)
	5.4.26 Use Old for Scope Rules (-Xclass-type-name-visible)
	5.4.27 Disregard ANSI C Library Functions (-Xclib-optim-off)
	5.4.28 Enable Cross-module Optimization (-Xcmo-...)
	5.4.29 Use the ‘new’ Compiler Frontend (-Xcnew)
	5.4.30 Use Absolute Addressing for Code (-Xcode-absolute...)
	5.4.31 Generate Position-independent Code (PIC) (-Xcode-relative...)
	5.4.32 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)
	5.4.33 Maintain Project-wide COMDAT List (-Xcomdat-info-file)
	5.4.34 Optimize Static and Global Variable Access Conservatively (-Xconservative-static-live)
	5.4.35 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)
	5.4.36 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)
	5.4.37 Suppress Preprocessor Spacing (-Xcpp-no-space)
	5.4.38 Use Absolute Addressing for Code (-Xdata-absolute...)
	5.4.39 Generate Position-independent Data (PID) (-Xdata-relative...)
	5.4.40 Align .debug Sections (-Xdebug-align=n)
	5.4.41 Select DWARF Format (-Xdebug-dwarf...)
	5.4.42 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)
	5.4.43 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)
	5.4.44 Generate Local CIE for Each Unit (-Xdebug-local-cie)
	5.4.45 Disable debugging information Extensions (-Xdebug-mode=mask)
	5.4.46 Disable Debug Information Optimization (-Xdebug-struct-...)
	5.4.47 Specify C Dialect (-Xdialect-...)
	5.4.48 Disable Digraphs (-Xdigraphs-...)
	5.4.49 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)
	5.4.50 Control Use of Type “double” (-Xdouble...)
	5.4.51 Generate Initializers for Static Variables (-Xdynamic-init)
	5.4.52 Specify enum Type (-Xenum-is-...)
	5.4.53 Enable Exceptions (-Xexceptions-...)
	5.4.54 Control Inlining Expansion (-Xexplicit-inline-factor)
	5.4.55 Force Precision of Real Arguments (-Xextend-args)
	5.4.56 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic)
	5.4.57 Optimize Using Profile Data (-Xfeedback=file)
	5.4.58 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent, -Xfeedback-seldom)
	5.4.59 Set Floating Point Rounding Mode (-Xfintrz-on, -Xfintrz-is-fmove-to-fpcr, -X-fintrz-off)
	5.4.60 Select Convention for Returning Floating Point Values (-Xfloats-...)
	5.4.61 Use Old for Scope Rules (-Xfor-init-scope-...)
	5.4.62 Generate Warnings on Undeclared Functions (-Xforce-declarations, -Xforce-prototypes)
	5.4.63 Suppress Assembler and Linker Parameters (-Xforeign-as-ld)
	5.4.64 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)
	5.4.65 Specify Minimum Floating Point Precision (-Xfp-min-prec...)
	5.4.66 Generate .frame_info for C functions (-Xframe-info)
	5.4.67 Generate Link Instruction (-Xframe-ptr)
	5.4.68 Include Filename Path in Debug Information (-Xfull-pathname)
	5.4.69 Control GNU Option Translator (-Xgcc-options-...)
	5.4.70 Treat All Global Variables as Volatile (-Xglobals-volatile)
	5.4.71 Do Not Pass #ident Strings (-Xident-off)
	5.4.72 Enable Strict implementation of IEEE754 Floating Point Standard (-Xieee754-pedantic)
	5.4.73 Control Template Instantiation (-Ximplicit-templates...)
	5.4.74 Treat #include As #import (-Ximport)
	5.4.75 Ignore Missing Include Files (-Xincfile-missing-ignore)
	5.4.76 Initialize Local Variables (-Xinit-locals=mask)
	5.4.77 Control Generation of Initialization and Finalization Sections (-Xinit-section)
	5.4.78 Control Default Priority for Initialization and Finalization Sections (-Xinit-section-default-pri)
	5.4.79 Define Initial Value for -Xinit-locals (-Xinit-value=n)
	5.4.80 Inline Functions with Fewer Than n Nodes (-Xinline=n)
	5.4.81 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)
	5.4.82 Limit Instructions to 68000 (-Xinstr-00, -Xinstr-20)
	5.4.83 Enable Intrinsic Functions (-Xintrinsic-mask)
	5.4.84 Set longjmp Buffer Size (-Xjmpbuf-size=n)
	5.4.85 Create and Keep Assembly or Object File (-Xkeep-assembly-file, -Xkeep-object-file)
	5.4.86 Enable Extended Keywords (-Xkeywords=mask)
	5.4.87 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)
	5.4.88 Wait For License (-Xlicense-wait)
	5.4.89 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)
	5.4.90 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)
	5.4.91 Restrict Local Data Area Optimization to Static Variables (-Xlocal-data-area-static-only)
	5.4.92 Do Not Assign Locals to Registers (-Xlocals-on-stack)
	5.4.93 Use Macintosh Calling Conventions for Pascal Functions (-Xmac-convention)
	5.4.94 Expand Macros in Pragmas (-Xmacro-in-pragma)
	5.4.95 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)
	5.4.96 Show Make Rules (-Xmake-dependency)
	5.4.97 Specify Dependency Name or Output File (-Xmake-dependency-...)
	5.4.98 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)
	5.4.99 Set Maximum Structure Member Alignment (-Xmember-max-align=n)
	5.4.100 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)
	5.4.101 Warn On Type and Argument Mismatch (-Xmismatch-warning)
	5.4.102 Specify Section Name (-Xname-...)
	5.4.103 Disable C++ Keywords namespace and Using (-Xnamespace-...)
	5.4.104 Enable Extra Optimizations (-XO)
	5.4.105 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)
	5.4.106 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)
	5.4.107 Disable Most Optimizations With -g (-Xoptimized-debug-...)
	5.4.108 Specify Optimization Buffer Size (-Xparse-size)
	5.4.109 Output Source as Comments (-Xpass-source)
	5.4.110 Use Precompiled Headers (-Xpch-...)
	5.4.111 Generate Position-Independent Code for Shared Libraries (-Xpic)
	5.4.112 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)
	5.4.113 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)
	5.4.114 Preprocess Assembly Files (-Xpreprocess-assembly)
	5.4.115 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off)
	5.4.116 Use Old Preprocessor (-Xpreprocessor-old)
	5.4.117 Generate Profiling Code for the RTA Run-Time Analysis Tool Suite (-Xprof-...)
	5.4.118 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)
	5.4.119 Optimize Using RTA Profile Data (-Xprof-feedback)
	5.4.120 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)
	5.4.121 Select Convention for Returning Pointer Values from Functions (-Xptr-values-in-...)
	5.4.122 Restart Optimization From Scratch (-Xrestart)
	5.4.123 Generate Code for the Run-Time Error Checker (-Xrtc=mask)
	5.4.124 Enable Run-time Type Information (-Xrtti, -Xrtti-off)
	5.4.125 Pad Sections for Optimized Loading (-Xsection-pad)
	5.4.126 Generate Each Function in a Separate CODE Section Class (-Xsection-split)
	5.4.127 Disable Generation of Priority Section Names (-Xsect-pri-...)
	5.4.128 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)
	5.4.129 Print Instantiations (-Xshow-inst)
	5.4.130 Show Target (-Xshow-target)
	5.4.131 Optimize for Size Rather Than Speed (-Xsize-opt)
	5.4.132 Set Size Limit for “small const” Variables (-Xsmall-const=n)
	5.4.133 Set Size Limit for “small data” Variables (-Xsmall-data=n)
	5.4.134 Delay Popping Stack After Function Call (-Xstack-delay=n, -Xstack-delay-off)
	5.4.135 Enable Stack Checking (-Xstack-probe)
	5.4.136 Diagnose Static Initialization Using Address (-Xstatic-addr-...)
	5.4.137 Treat All Static Variables as Volatile (-Xstatics-volatile)
	5.4.138 Buffer stderr (-Xstderr-fully-buffered)
	5.4.139 Terminate Compilation on Warning (-Xstop-on-warning)
	5.4.140 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)
	5.4.141 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions)
	5.4.142 Align Strings on n-byte Boundaries (-Xstring-align=n)
	5.4.143 Warn on Large Structure (-Xstruct-arg-warning=n)
	5.4.144 Select Convention for Returning Structures and Unions (-Xstruct-as-...)
	5.4.145 Control Optimization of Structure Member Assignments (-Xstruct-assign-split-...)
	5.4.146 Set Minimum Structure Member Alignment (-Xstruct-min-align=n)
	5.4.147 Suppress Warnings (-Xsuppress-warnings)
	5.4.148 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl)
	5.4.149 Set Threshold for a Switch Statement Table (-Xswitch-table...)
	5.4.150 Disable Certain Syntax Warnings (-Xsyntax-warning-...)
	5.4.151 Select Target Processor (-Xtarget)
	5.4.152 Specify Loop Test Location (-Xtest-at-...)
	5.4.153 Truncate All Identifiers After m Characters (-Xtruncate)
	5.4.154 Append Underscore to Identifier (-Xunderscore-...)
	5.4.155 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)
	5.4.156 Runtime Declarations in Standard Namespace (-Xusing-std-...)
	5.4.157 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)
	5.4.158 Define Type for wchar (-Xwchar=n)
	5.4.159 Control Use of wchar_t Keyword (-Xwchar_t-...)

	5.5 Examples of Processing Source Files
	5.5.1 Compile and Link
	5.5.2 Separate Compilation
	5.5.3 Assembly Output
	5.5.4 Precompiled Headers

	6 Additions to ANSI C and C++
	6.1 Preprocessor Predefined Macros
	6.2 Preprocessor Directives
	#assert and #unassert Preprocessor Directives
	#error Preprocessor Directive
	#ident Preprocessor Directive (C only)
	#import Preprocessor Directive
	#info, #inform, and #informing Preprocessor Directives
	#warn and #warning Preprocessor Directives

	6.3 Pragmas
	align Pragma
	error Pragma
	global_register Pragma
	hdrstop Pragma
	ident Pragma
	info Pragma
	inline Pragma
	interrupt Pragma
	no_alias Pragma
	no_pch Pragma
	no_return Pragma
	no_side_effects Pragma
	option Pragma
	pack Pragma
	pure_function Pragma
	section Pragma
	use_section Pragma
	warning Pragma
	weak Pragma

	6.4 Keywords
	__asm and asm Keywords
	__attribute__ Keyword
	extended Keyword (C only)
	__inline__ and inline Keywords
	__interrupt__ and interrupt Keywords (C only)
	long long Keyword
	__packed__ and packed Keywords
	pascal Keyword (C only)
	__typeof__ Keyword (C only)

	6.5 Attribute Specifiers
	absolute Attribute (C only)
	aligned(n) Attribute
	constructor, constructor(n) Attribute
	deprecated, deprecated(string) Attribute (C only)
	destructor, destructor(n) Attribute
	noreturn, no_return Attribute
	no_side_effects Attribute
	packed Attribute
	pure, pure_function Attribute
	section(name) Attribute

	6.6 Intrinsic Functions
	6.7 Other Additions
	C++ Comments Permitted
	Dynamic Memory Allocation with alloca
	Binary Representation of Data
	Assigning Global Variables to Registers
	__ERROR__ Function
	sizeof Extension
	vararg Macros

	7 Embedding Assembly Code
	7.1 Introduction
	7.2 asm Macros
	Comments in asm Macros
	Examples of asm Macros

	7.3 asm String Statements
	7.4 Reordering in asm Code
	7.5 Direct Functions

	8 Internal Data Representation
	8.1 Basic Data Types
	8.2 Byte Ordering
	8.3 Arrays
	8.4 Bit-fields
	8.5 Classes, Structures, and Unions
	8.6 C++ Classes
	Pointers to Members
	Virtual Function Table Generation-Key Functions

	8.7 Linkage and Storage Allocation

	9 Calling Conventions
	9.1 Introduction
	9.2 Stack Layout
	9.3 Argument Passing
	9.4 C++ Argument Passing
	Pointer to Member as Arguments and Return Types
	Member Function
	Constructors and Destructors

	9.5 Returning Results
	Class, Struct, and Union Return Types

	9.6 Register Use
	9.7 Pascal Functions (C Only)

	10 Optimization
	10.1 Optimization Hints
	What to Do From the Command Line
	What to Do With Programs

	10.2 Cross-Module Optimization
	10.3 Target-Independent Optimizations
	Tail Recursion (0x2)
	Inlining (0x4)
	Argument Address Optimization (0x8)
	Structure Members to Registers (0x10)
	Assignment Optimization (0x80)
	Tail Call Optimization (0x100)
	Common Tail Optimization (0x200)
	Variable Live Range Optimization (0x400)
	Constant and Variable Propagation (0x800)
	Complex Branch Optimization (0x1000)
	Loop strength reduction (0x2000)
	Loop Count-Down Optimization (0x4000)
	Loop Unrolling (0x8000)
	Global Common Subexpression Elimination (0x10000)
	Undefined variable propagation (0x20000)
	Unused assignment deletion (0x40000)
	Minor Transformations to Simplify Code Generation (0x80000)
	Delayed register saving (0x100000)
	Register Coloring (0x200000)
	Interprocedural Optimizations (0x400000)
	Remove Entry and Exit Code (0x800000)
	Use Scratch Registers for Variables (0x1000000)
	Extend Optimization (0x2000000)
	Loop Statics Optimization (0x4000000)
	Loop Invariant Code Motion (0x8000000)
	Replace Return with Branch (0x10000000)
	Static Function Optimization (0x20000000)
	Live-Variable Analysis (0x40000000)
	Local Data Area Optimization (0x80000000)
	Feedback Optimization

	10.4 Target-Dependent Optimizations
	Basic Reordering (0x1)
	Delete TST (0x2)
	General Peephole Optimization (0x8)
	Find Auto-Increment / Decrement (0x10)
	Merge Moves (0x40)
	Simple Scheduling Optimization (0x1000)

	10.5 Example of Optimizations

	11 The Lint Facility
	11.1 Introduction
	11.2 Examples

	12 Converting Existing Code
	12.1 Introduction
	12.2 Compilation Issues
	Older C Code
	Older Versions of the Compiler

	12.3 Execution Issues
	12.4 GNU Command-Line Options

	13 C++ Features and Compatibility
	13.1 Header Files
	13.2 C++ Standard Libraries
	Nonstandard Functions

	13.3 Migration From C to C++
	13.4 Implementation-Specific C++ Features
	Construction and Destruction of C++ Static Objects
	Templates
	Exceptions
	Array New and Delete
	Type Identification
	Dynamic Casts in C++
	Namespaces
	Undefined Virtual Functions

	13.5 C++ Name Mangling
	Demangling utility

	13.6 Avoid setjmp and longjmp
	13.7 Precompiled Headers
	PCH Files
	Limitations and Trade-offs
	Diagnostics

	14 Locating Code and Data, Addressing, Access
	14.1 Controlling Access to Code and Data
	section and use_section Pragmas
	Section Classes and Their Default Attributes

	14.2 Addressing Mode - Functions, Variables, Strings
	14.3 Access Mode - Read, Write, Execute
	14.4 Local Data Area (-Xlocal-data-area)
	14.5 Position-Independent Code and Data (PIC and PID)
	Generating Initializers for Static Variables With Position-Independent Code
	Relationship Between Position-Independence and “Small” Areas

	15 Use in an Embedded Environment
	15.1 Introduction
	15.2 Compiler Options for Embedded Development
	15.3 User Modifications
	15.4 Startup and Termination Code
	15.4.1 Location of Startup and Termination Sources and Objects
	15.4.2 Notes for crt0.s
	15.4.3 Notes for crtlibso.c and ctordtor.c
	15.4.4 Notes for init.c
	15.4.5 Notes for Exit Functions
	15.4.6 Stack Initialization and Checking
	15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()
	15.4.8 Run-time Initialization and Termination

	15.5 Hardware Exception Handling
	15.6 Library Exception Handling
	15.7 Linker Command File
	15.8 Operating System Calls
	15.8.1 Character I/O
	15.8.2 File I/O
	15.8.3 Miscellaneous Functions

	15.9 Communicating with the Hardware
	15.9.1 Mixing C and Assembler Functions
	15.9.2 Embedding Assembler Code
	15.9.3 Accessing Variables and Functions at Specific Addresses

	15.10 Reentrant and “Thread-Safe” Library Functions
	15.11 Target Program Arguments, Environment Variables, and Predefined Files
	15.12 Profiling in An Embedded Environment
	15.13 Support for Multiple Object Formats

	Part III Wind River Assembler
	16 The Wind River Assembler
	16.1 Selecting the Target
	16.2 The das Command
	16.3 Assembler Command-Line Options
	Show Option Summary (-?)
	Define Symbol Name (-Dname=value)
	Generate Debugging Information (-g)
	Include Header in Listing (-H)
	Set Header Files Directory (-I path)
	Generate Listing File (-l, -L)
	Set outpUt File (-o file)
	Remove the Input File on Termination (-R)
	Specify Assembler Description (.ad) File (-T ad-file)
	Select Target (-ttof:environ)
	Print Version Number (-V)
	Define Configuration Variable (-WDname=value)
	Select Object Format and Mnemonic Type (-WDDOBJECT=object-format)
	Select Target Processor (-WDDTARGET=target)
	Discard All Local Symbols (-x)
	Discard All Symbols Starting With .L (-X)
	Print Command-Line Options on Standard Output (-#)
	Read Command-Line Options from File or Variable (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	16.4 Assembler -X Options
	Select Default Absolute Address Mode (-Xabs-ind-long, -Xabs-ind-word)
	Specify Value to Fill Gaps Left by .align or .alignn Directive (-Xalign-fill-text)
	Interpret .align Directive (-Xalign-value, -Xalign-power2)
	Generate Debugging Information (-Xasm-debug-...)
	Align Program Data Automatically Based on Size (-Xauto-align)
	Allow Comments Without Comment Character (-Xauto-comment-...)
	Select bra Instruction (-Xbra-is-rel, -Xbra-is-jra)
	Select 68K cmp Instruction (-Xcmp-normal, -Xcmp-swap)
	Set Instruction Type (-Xcpu-...)
	Set Default Value for Section Alignment (-Xdefault-align)
	Select Default Displacement Size (-Xdisp-...)
	Set FPU Type (-Xfpu-...)
	zEnable Local GNU Labels (-Xgnu-locals-...)
	Include Header in Listing (-Xheader...)
	Set Header Format (-Xheader-format="string")
	Select Default Address Register Indirect Mode (-Xind16-range-off, -Xind16-range-on)
	Select Default Index Size (-Xindex-long, -Xindex-word)
	Set Label Definition Syntax (-Xlabel-colon...)
	Set Format of Assembly Line in Listing (-Xline-format="string")
	Generate a Listing File (-Xlist-...)
	Specify File Extension for Assembly Listing (-Xlist-file-extension="string")
	Set Line Length of Listing File (-Xllen=n)
	Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)
	Set MMU Type (-Xmmu-68xxx, -Xmmu-all, -Xmmu-none)
	Set Mnemonics Type (-Xmnem-all, -Xmnem-emb, -Xmnem-mit)
	Set Output Object Format (-Xobject-format=form)
	Select Branch Size Optimizations (-Xoptim-...)
	Set Page Break Margin (-Xpage-skip=n)
	Set Lines Per Page (-Xplen=n)
	Limit Length of Conditional Branch (-Xprepare-compress=n)
	Enable Spaces Between Operands (-Xspace-...)
	Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)
	Set Subtitle (-Xsubtitle="string")
	Set Tab Size (-Xtab-size=n)
	Set Title (-Xtitle="string")

	17 Syntax Rules
	17.1 Format of an Assembly Language Line
	Labels
	Opcode
	Operand Field
	Comment

	17.2 Symbols
	17.3 Direct Assignment Statements
	17.4 Reserved symbols
	17.5 External Symbols
	17.6 Local Symbols
	Generic Style Locals
	GNU-Style Locals

	17.7 Constants
	Integral Constants
	Floating Point Constants
	String Constants
	Literals as operands

	18 Sections and Location Counters
	18.1 Program Sections
	18.2 Location Counters

	19 Assembler Expressions
	20 Assembler Directives
	20.1 Introduction
	20.2 List of Directives
	symbol[:] = expression
	symbol[:] =: expression
	.2byte
	.4byte
	.align expression
	.alignn expression
	.ascii "string"
	.asciz "string"
	.balign expression
	.blkb expression
	.bss
	.bsect
	.byte expression ,...
	.comm symbol, size [,alignment]
	dc.b expression
	dc.l expression
	dc.w expression
	ds.b size
	.data
	.double float-constant ,...
	.dsect
	.eject
	.else
	.elseif expression
	.elsec
	.end
	.endc
	.endif
	.endm
	.entry symbol ,...
	symbol[:] .equ expression
	.error "string"
	.even
	.exitm
	.extern symbol ,...
	.export symbol ,...
	.file "file"
	.fill count,[size[,value]]
	.float float-constant ,...
	.global symbol ,...
	.globl symbol ,...
	.ident "string"
	.if expression
	.ifendian
	.ifeq expression
	.ifc "string1","string2"
	.ifdef symbol
	.ifge expression
	.ifgt expression
	.ifle expression
	.iflt expression
	.ifnc "string1","string2"
	.ifndef symbol
	.ifne expression
	.import symbol ,...
	.incbin "file"[,offset[,size]]
	.include "file"
	.lcnt expression
	.lcomm symbol, size [,alignment]
	.list
	.llen expression
	.llong expression ,...
	.long expression ,...
	name.macro [parameter ,...]
	.mexit
	.name "file"
	.nolist
	.org expression
	.p2align expression
	.page
	.pagelen expression
	.plen expression
	.previous
	.psect
	.psize page-length [,line-length]
	.rdata
	.rodata
	.sbss [symbol, size [,alignment]]
	.sbttl "string"
	.sdata
	.sdata2
	.section name, [alignment], [type]
	.section n
	.sectionlink section-name
	.set option
	.set symbol, expression
	symbol[:] .set expression
	.short expression ,...
	.size symbol, expression
	.skip size
	.space expression
	.string "string"
	.strz "string"
	.subtitle "string"
	.text
	.title "string"
	.ttl "string"
	.type symbol, type
	.uhalf
	.ulong
	.ushort
	.uword
	warning "string"
	.weak symbol ,...
	.width expression
	.word expression, ...
	.xdef symbol ,...
	.xref symbol ,...
	.xopt

	21 Assembler Macros
	21.1 Introduction
	21.2 Macro Definition
	Separating Parameter Names From Text
	Generating Unique Labels
	NARG Symbol

	21.3 Invoking a Macro
	21.4 Macros to “Define” Structures

	22 Example Assembler Listing

	Part IV Wind River Linker
	23 The Wind River Linker
	23.1 The Linking Process
	Linking Example

	23.2 Symbols Created By the Linker
	23.3 .abs Sections
	23.4 COMMON Sections
	23.5 COMDAT Sections
	23.6 Sorted Sections
	23.7 Warning Sections
	23.8 .frame_info sections
	23.9 Branch Islands

	24 The dld Command
	24.1 The dld Command
	Linker Command Structure

	24.2 Defaults
	24.3 Order on the Command Line
	24.4 Linker Command-Line Options
	Show Option Summary (-?, -?X)
	Read Options From an Environment Variable or File (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)
	Link Files From an Archive (-A name, -A...)
	Allocate Memory for Common Variables When Using -r (-a)
	Set Address for Data and tExt (-Bd=address, -Bt=address)
	Bind Function Calls to Shared Library (-Bsymbolic)
	Define a Symbol At An Address (-Dsymbol=address)
	Define a Default Entry Point Address (-e symbol)
	Specify “fill” Value (-f value, size, alignment)
	Specify Directory for -l search List (-L dir)
	Specify Library or File to Process (-lname, -l:filename)
	Generate link map (-m, -m2, -m4)
	Allocate .data Section Immediately After .text Section (-N)
	Change the Default Output File (-o file)
	Perform Incremental Link (-r, -r2, -r3, -r4, -r5)
	Rename Symbols (-R symbol1=symbol2)
	Search for Shared Libraries on Specified Path (-rpath)
	Do Not Output Symbol Table and Line Number Entries (-s, -ss)
	Specify Name for Shared Library (-soname)
	Select Target Processor and Environment (-t tof:environ)
	Define a Symbol (-u symbol)
	Print version number (-V)
	Print Version Number (-VS value)
	Do Not Output Some Symbols (-X)
	Specify Search Directories for -l (-Y L, -Y P, -Y U)

	24.5 Linker -X options
	Use Late Binding for Shared Libraries (-X)
	Enable/Disable Branch Island Generation (-Xbranch-islands...)
	Check Input Patterns (-Xcheck-input-patterns)
	Check for Overlapping Output Sections (-Xcheck-overlapping)
	Use COFF Format for Output File (-Xcoff...)
	Align Common Symbols (-Xcommon-align=n)
	Remove Multiple Structure Definitions (-Xcompress-symbols)
	Force Linker to Continue After Errors (-Xdont-die)
	Do Not Create Output File (-Xdont-link)
	Use Shared Libraries (-Xdynamic)
	Use ELF Format for Output File (-Xelf)
	ELF Format Relocation Information (-Xelf-rela-...)
	Do Not Export Symbols from Specified Libraries (-Xexclude-libs)
	Do Not Export Specified Symbols (-Xexclude-symbols)
	Write Explicit Instantiations File (-Xexpl-instantiations)
	Generate Executable for Conversion to IEEE-695 (-Xextern-in-place)
	Store Segment Address in Program Header (-Xgenerate-paddr)
	Generate RTA Information (-Xgenerate-vmap)
	Limit Short Branch Island Generation (-Xmax-short-branch)
	Do Not Align Output Section (-Xold-align)
	Pad Input Sections to Match Existing Executable File (-Xoptimized-load)
	Make Branch Islands Position-Independent (-Xpic-only)
	Add Leading Underscore “_” to All Symbols (-Xprefix-underscore...)
	Remove Unused Sections (-Xremove-unused-sections)
	Re-scan Libraries (-Xrescan-libraries...)
	Re-scan Libraries Restart (-Xrescan-restart...)
	Align Sections (-Xsection-align=n)
	Build Shared Libraries (-Xshared)
	Sort .frame_info Section (-Xsort-frame-info)
	Link to Static Libraries (-Xstatic)
	Stop on Redeclaration (-Xstop-on-redeclaration)
	Stop on Warning (-Xstop-on-warning)
	Suppress Leading Dots “.” (-Xsuppress-dot...)
	Suppress Section Names (-Xsuppress-section-names)
	Suppress Paths in Symbol Table (-Xsuppress-path)
	Suppress Leading Underscores ‘_’ (-Xsuppress-underscore-...)
	Remove/Keep Unused Sections (-Xunused-sections...)

	25 Linker Command Language
	25.1 Example “bubble.dld”
	25.2 Syntax Notation
	25.3 Numbers
	25.4 Symbols
	25.5 Expressions
	25.6 Command File Structure
	25.7 MEMORY Command
	25.8 SECTIONS Command
	Section-Definition
	GROUP Definition

	25.9 Assignment Command
	25.10 Examples

	Part V Wind River Compiler Utilities
	26 Utilities
	26.1 Common Command-Line Options
	Show Option Summary (-?)
	Read Command-Line Options from File or Variable (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	27 D-AR Archiver
	27.1 Synopsis
	27.2 Syntax
	27.3 Description
	27.3.1 dar Commands

	27.4 Examples

	28 D-BCNT Profiling Basic Block Counter
	28.1 Synopsis
	28.2 Syntax
	28.3 Description
	28.3.1 dbcnt Options

	28.4 Files
	28.4.1 Output File for Profile Data

	28.5 Examples
	28.6 Coverage
	28.7 Notes

	29 D-DUMP File Dumper
	29.1 Synopsis
	29.2 Syntax
	29.3 Description
	29.3.1 ddump commands

	29.4 Examples

	30 dmake Makefile Utility
	30.1 Introduction
	30.2 Installation
	30.3 Using dmake

	31 WindISS Simulator and Disassembler
	31.1 Synopsis
	31.2 Simulator Mode
	31.2.1 Compiling for the WindISS Simulator
	31.2.2 Simulator Mode Command and Options

	31.3 Batch Disassembler Mode
	31.3.1 Syntax (Disassembler Mode)
	31.3.2 Description

	31.4 Interactive Disassembler Mode
	31.4.1 Syntax (Interactive Disassembler Mode)
	31.4.2 Description

	31.5 Examples

	Part VI C Library
	32 Library Structure, Rebuilding
	32.1 Introduction
	32.2 Library Structure
	32.2.1 Libraries Supplied
	32.2.2 Library Directory Structure
	32.2.3 libc.a
	32.2.4 Library Search Paths

	32.3 Library Sources, Rebuilding the Libraries
	32.3.1 Sources
	32.3.2 Rebuilding the Libraries
	32.3.3 C++ Libraries

	33 Header Files
	33.1 Files
	33.1.1 Standard Header Files

	33.2 Defined Variables, Types, and Constants
	errno.h
	fcntl.h
	float.h
	limits.h
	math.h
	mathf.h
	setjmp.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	time.h

	34 C Library Functions
	34.1 Format of Descriptions
	34.1.1 Operating System Calls
	34.1.2 References

	34.2 Reentrant Versions
	34.3 Function Listing
	a64l()
	abort()
	abs()
	access()
	acos()
	acosf()
	advance()
	asctime()
	asin()
	asinf()
	assert()
	atan()
	atanf()
	atan2()
	atan2f()
	atexit()
	atof()
	atoi()
	atol()
	bsearch()
	calloc()
	ceil()
	ceilf()
	_chgsign()
	clearerr()
	clock()
	close()
	compile()
	_copysign()
	cos()
	cosf()
	cosh()
	coshf()
	creat()
	ctime()
	difftime()
	div()
	drand48()
	dup()
	ecvt()
	erf()
	erff()
	erfc()
	erfcf()
	exit()
	_exit()
	exp()
	expf()
	fabs()
	fabsf()
	fclose()
	fcntl()
	fcvt()
	fdopen()
	feof()
	ferror()
	fflush()
	fgetc()
	fgetpos()
	fgets()
	fileno()
	_finite()
	floor()
	floorf()
	fmod()
	fmodf()
	fopen()
	fprintf()
	fputc()
	fputs()
	fread()
	free()
	freopen()
	frexp()
	frexpf()
	fscanf()
	fseek()
	fsetpos()
	fstat()
	ftell()
	fwrite()
	gamma()
	gammaf()
	gcvt()
	getc()
	getchar()
	getenv()
	getopt()
	getpid()
	gets()
	getw()
	gmtime()
	hcreate()
	hdestroy()
	hsearch()
	hypot()
	hypotf()
	irand48()
	isalnum()
	isalpha()
	isascii()
	isatty()
	iscntrl()
	isdigit()
	isgraph()
	islower()
	_isnan()
	isprint()
	ispunct()
	isspace()
	isupper()
	isxdigit()
	j0()
	j0f()
	j1()
	j1f()
	jn()
	jnf()
	jrand48()
	kill()
	krand48()
	l3tol()
	l64a()
	labs()
	lcong48()
	ldexp()
	ldexpf()
	ldiv()
	_lessgreater()
	lfind()
	link()
	localeconv()
	localtime()
	log()
	_logb()
	logf()
	log10()
	log10f()
	longjmp()
	lrand48()
	lsearch()
	lseek()
	ltol3()
	mallinfo()
	malloc()
	__malloc_set_block_size()
	mallopt()
	matherr()
	matherrf()
	mblen()
	mbstowcs()
	mbtowc()
	memccpy()
	memchr()
	memcmp()
	memcpy()
	memmove()
	memset()
	mktemp()
	mktime()
	modf()
	modff()
	mrand48()
	_nextafter()
	nrand48()
	offsetof()
	open()
	perror()
	pow()
	powf()
	printf()
	putc()
	putchar()
	putenv()
	puts()
	putw()
	qsort()
	raise()
	rand()
	read()
	realloc()
	remove()
	rename()
	rewind()
	sbrk()
	_scalb()
	scanf()
	seed48()
	setbuf()
	setjmp()
	setlocale()
	setvbuf()
	signal()
	sin()
	sinf()
	sinh()
	sinhf()
	sprintf()
	sqrt()
	sqrtf()
	srand()
	srand48()
	sscanf()
	step()
	strcat()
	strchr()
	strcmp()
	strcoll()
	strcpy()
	strcspn()
	strdup()
	strerror()
	strftime()
	strlen()
	strncat()
	strncmp()
	strncpy()
	strpbrk()
	strrchr()
	strspn()
	strstr()
	strtod()
	strtok()
	strtol()
	strtoul()
	strxfrm()
	swab()
	tan()
	tanf()
	tanh()
	tanhf()
	tdelete()
	tell()
	tempnam()
	tfind()
	time()
	tmpfile()
	tmpnam()
	toascii()
	tolower()
	_tolower()
	toupper()
	_toupper()
	tsearch()
	twalk()
	tzset()
	ungetc()
	unlink()
	_unordered()
	vfprintf()
	vfscanf()
	vprintf()
	vscanf()
	vsprintf()
	vsscanf()
	wcstombs()
	wctomb()
	write()
	y0()
	y0f()
	y1()
	y1f()
	yn()
	ynf()

	Part VII Appendices
	A Configuration Files
	A.1 Configuration Files
	A.2 How Commands, Environment Variables, and Configuration Files Relate
	A.2.1 Configuration Variables and Precedence
	A.2.2 Startup

	A.3 Standard Configuration Files
	A.3.1 DENVIRON Configuration Variable
	A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables
	A.3.3 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2 Configuration Variables

	A.4 The Configuration Language
	A.4.1 Statements and Options
	A.4.2 Comments
	A.4.3 String Constants
	A.4.4 Variables
	A.4.5 Assignment Statement
	A.4.6 Error Statement
	A.4.7 Exit Statement
	A.4.8 If Statement
	A.4.9 Include Statement
	A.4.10 Print Statement
	A.4.11 Switch Statement

	B Compatibility Modes: ANSI, PCC, and K&R C
	C Compiler Limits
	D Compiler Implementation Defined Behavior
	D.1 Introduction
	D.2 Translation
	D.3 Environment
	D.4 Library functions

	E Assembler Coding Notes
	E.1 Instruction Mnemonics
	E.2 Operand Addressing Modes
	E.2.1 Registers
	E.2.2 Expressions

	F Object and Executable File Formats
	F.1 Executable and Linking Format (ELF)
	F.1.1 Overall Structure
	F.1.2 ELF Header
	F.1.3 Program Header
	ELF Program Header Fields

	F.1.4 Section Headers
	F.1.5 Special Sections
	F.1.6 ELF Relocation Information
	ELF Relocation Entry Fields

	F.1.7 Line Number Information
	F.1.8 Symbol Table
	ELF Symbol Table Fields

	F.1.9 String Table

	F.2 Common Object File Format (COFF)
	F.2.1 Overall Structure
	COFF File Components

	F.2.2 File Header
	COFF Header Fields

	F.2.3 Optional Header
	COFF Optional (Executable) Header Fields

	F.2.4 Section Headers
	COFF Section Header Fields

	F.2.5 Raw Data Sections
	COFF section names

	F.2.6 COFF Relocation Information
	COFF Relocation Entry Fields

	F.2.7 Line Number Information
	COFF Line Number Fields

	F.2.8 Symbol Table
	COFF Symbol Table Felds

	F.2.9 Additional Symbols
	F.2.10 String Table

	G Compiler -X Options Numeric List
	H Messages
	H.1 Introduction
	H.2 Compiler Messages
	H.2.1 Compiler Message Format
	H.2.2 Errors in asm Macros and asm Strings
	H.2.3 C Compiler Message Detail
	H.2.4 C++ Messages

	H.3 Assembler Messages
	H.4 Linker Messages
	H.4.1 Linker Message Format
	H.4.2 Linker Message Detail

	Index

