
Wind River Compiler
for SPARC

USER’S GUIDE

®

5.4

Wind River Compiler for SPARC User's Guide

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Compiler for SPARC User’s Guide, 5.4

27 Apr 06
Part #: DOC-15804-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

PART I: INTRODUCTION

1 Overview ... 3

1.1 Introduction ... 3

1.2 Overview of the Tools .. 3

Important Compiler Features and Extensions 4
High Performance Optimizations .. 4
Portability .. 6

1.3 Documentation ... 7

This User’s Guide ... 7
Additional Documentation ... 8

2 Configuration and Directory Structure .. 9

2.1 Components and Directories ... 9

2.2 Accessing Current and Other Versions of the Tools .. 14

2.3 Environment Variables .. 15

2.3.1 Environment Variables Recognized by the Compiler 15

Wind River Compiler for SPARC
User’s Guide, 5.4

iv

3 Drivers and Subprogram Flow .. 17

4 Selecting a Target and Its Components ... 21

4.1 Selecting a Target .. 21

4.2 Selected Startup Module and Libraries ... 24

4.3 Alternatives for Selecting a Target Configuration ... 25

PART II: WIND RIVER COMPILER

5 Invoking the Compiler .. 29

5.1 The Command Line .. 29

5.2 Rules for Writing Command-Line Options ... 30

Same Option More Than Once ... 30
Command-Line Options are Case-sensitive ... 31
Spaces In Command-Line Options .. 31
Quoting Values ... 31
Unrecognized Options, Passing Options to the Assembler or Linker 32
Length Limit .. 32

5.3 Compiler Command-Line Options ... 33

5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help) 34

5.3.2 Ignore Predefined Macros and Assertions (-A-) 34

5.3.3 Define Assertion (-A assertion) .. 34

5.3.4 Pass Along Comments (-C) ... 34

5.3.5 Stop After Assembly, Produce Object (-c) ... 35

5.3.6 Define Preprocessor Macro Name (-D name=definition) 35

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E) 35

5.3.8 Change Diagnostic Severity Level (-e) .. 36

5.3.9 Generate Symbolic Debugger Information (-g) 37

5.3.10 Print Pathnames of Header Files (-H) ... 38

 Contents

v

5.3.11 Specify Directory for Header Files (-I dir) .. 38

5.3.12 Control Search for User-Defined Header Files (-I@) 39

5.3.13 Modify Header File Processing (-i file1=file2) 39

5.3.14 Specify Directory For -l Search List (-L dir) .. 40

5.3.15 Specify Library or Process File (-l name) .. 40

5.3.16 Specify Pathname of Target-Spec File (-M target-spec) 40

5.3.17 Optimize Code (-O) .. 40

5.3.18 Specify Output File (-o file) ... 40

5.3.19 Stop After Preprocessor, Produce Source (-P) 41

5.3.20 Stop After Compilation, Produce Assembly (-S) 41

5.3.21 Select the Target Processor (-t tof:environ) ... 41

5.3.22 Undefine Preprocessor Macro Name (-U name) 42

5.3.23 Display Current Version Number (-V, -VV) ... 42

5.3.24 Run Driver in Verbose Mode (-v) ... 42

5.3.25 Pass Arguments to the Assembler (-W a,arguments,
-W :as:,arguments) ... 42

5.3.26 Define Configuration Variable (-W Dname=value) 42

5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments) 43

5.3.28 Specify Linker Command File (-W mfile) ... 43

5.3.29 Specify Startup Module (-W sfile) ... 43

5.3.30 Substitute Program or File for Default (-W xfile) 44

5.3.31 Pass Arguments to Subprogram (-W x,arguments) 45

5.3.32 Associate Source File Extension (-W x.ext) ... 46

5.3.33 Suppress All Compiler Warnings (-w) .. 47

5.3.34 Set Detailed Compiler Control Options (-X option) 47

5.3.35 Specify Default Header File Search Path (-Y I,dir) 47

5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U) 47

5.3.37 Specify Search Directory for crt0.o (-Y S,dir) 47

5.3.38 Print Subprograms With Arguments (-#, -##, -###) 47

Wind River Compiler for SPARC
User’s Guide, 5.4

vi

5.3.39 Read Command-Line Options from File or Variable (-@name,
-@@name) .. 48

5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file) 48

5.4 Compiler -X Options .. 48

5.4.1 Option Defaults .. 49

5.4.2 Compiler -X Options by Function .. 50

5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore) 56

5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n) 57

5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n) .. 57

5.4.6 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased) 58

5.4.7 Specify Minimum Array Alignment (-Xarray-align-min) 58

5.4.8 Change bit-field type to reduce structure size
(-Xbit-fields-compress-...) .. 58

5.4.9 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned) .. 59

5.4.10 Insert Profiling Code (-Xblock-count) ... 60

5.4.11 Set Type for Bool (-Xbool-is-...) ... 60

5.4.12 Control Use of Bool, True, and False Keywords (-Xbool-...) 60

5.4.13 Parse Initial Values Bottom-up (-Xbottom-up-init) 60

5.4.14 Control Allocation of Uninitialized Variables in “COMMON”
and bss Sections (-Xbss-off, -Xbss-common-off) 61

5.4.15 Use Abridged C++ Libraries (-Xc++-abr) ... 61

5.4.16 Use Old C++ Compiler (-Xc++-old) .. 62

5.4.17 Optimize Global Assignments in Conditionals (-Xcga-min-use) 62

5.4.18 Generate Code Using ASCII Character Set (-Xcharset-ascii) 62

5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned) 63

5.4.20 Use Old for Scope Rules (-Xclass-type-name-visible) 63

5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off) 63

5.4.22 Enable Cross-module Optimization (-Xcmo-...) 64

 Contents

vii

5.4.23 Use the ‘new’ Compiler Frontend (-Xcnew) ... 64

5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat) 65

5.4.25 Maintain Project-wide COMDAT List (-Xcomdat-info-file) 65

5.4.26 Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-live) ... 66

5.4.27 Locate Constants With “text” or “data” (-Xconst-in-text,
-Xconst-in-data) .. 66

5.4.28 Dump Symbol Information for Macros or Assertions
(-Xcpp-dump-symbols) ... 66

5.4.29 Suppress Preprocessor Spacing (-Xcpp-no-space) 67

5.4.30 Align .debug Sections (-Xdebug-align=n) .. 67

5.4.31 Select DWARF Format (-Xdebug-dwarf...) ... 67

5.4.32 Generate Debug Information for Inlined Functions
(-Xdebug-inline-on) .. 68

5.4.33 Emit Debug Information for Unused Local Variables
(-Xdebug-local-all) .. 68

5.4.34 Generate Local CIE for Each Unit (-Xdebug-local-cie) 68

5.4.35 Disable debugging information Extensions (-Xdebug-mode=mask) 68

5.4.36 Disable Debug Information Optimization (-Xdebug-struct-...) 69

5.4.37 Specify C Dialect (-Xdialect-...) ... 69

5.4.38 Disable Digraphs (-Xdigraphs-...) .. 70

5.4.39 Allow Dollar Signs in Identifiers (-Xdollar-in-ident) 70

5.4.40 Control Use of Type “double” (-Xdouble...) ... 70

5.4.41 Generate Initializers for Static Variables (-Xdynamic-init) 71

5.4.42 Specify enum Type (-Xenum-is-...) ... 71

5.4.43 Enable Exceptions (-Xexceptions-...) .. 72

5.4.44 Control Inlining Expansion (-Xexplicit-inline-factor) 73

5.4.45 Force Precision of Real Arguments (-Xextend-args) 73

5.4.46 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic) ... 74

5.4.47 Optimize Using Profile Data (-Xfeedback=file) 74

Wind River Compiler for SPARC
User’s Guide, 5.4

viii

5.4.48 Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom) .. 75

5.4.49 Use Old for Scope Rules (-Xfor-init-scope-...) 76

5.4.50 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes) ... 76

5.4.51 Suppress Assembler and Linker Parameters (-Xforeign-as-ld) 76

5.4.52 Convert Double and Long Double (-Xfp-long-double-off,
-Xfp-float-only) ... 77

5.4.53 Specify Minimum Floating Point Precision (-Xfp-min-prec...) 77

5.4.54 Generate .frame_info for C functions (-Xframe-info) 78

5.4.55 Include Filename Path in Debug Information (-Xfull-pathname) 78

5.4.56 Control GNU Option Translator (-Xgcc-options-...) 78

5.4.57 Treat All Global Variables as Volatile (-Xglobals-volatile) 79

5.4.58 Do Not Pass #ident Strings (-Xident-off) .. 79

5.4.59 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic) ... 79

5.4.60 Control Template Instantiation (-Ximplicit-templates...) 80

5.4.61 Treat #include As #import (-Ximport) ... 80

5.4.62 Ignore Missing Include Files (-Xincfile-missing-ignore) 80

5.4.63 Initialize Local Variables (-Xinit-locals=mask) 81

5.4.64 Control Generation of Initialization and Finalization Sections
(-Xinit-section) .. 81

5.4.65 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri) ... 82

5.4.66 Define Initial Value for -Xinit-locals (-Xinit-value=n) 82

5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n) 82

5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force) 83

5.4.69 Enable Intrinsic Functions (-Xintrinsic-mask) 83

5.4.70 Set longjmp Buffer Size (-Xjmpbuf-size=n) .. 84

5.4.71 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file) .. 84

 Contents

ix

5.4.72 Enable Extended Keywords (-Xkeywords=mask) 84

5.4.73 Disable Individual Optimizations (-Xkill-opt=mask,
-Xkill-reorder=mask) ... 85

5.4.74 Wait For License (-Xlicense-wait) ... 85

5.4.75 Generate Warnings On Suspicious/Non-portable Code
(-Xlint=mask) .. 86

5.4.76 Allocate Static and Global Variables to Local Data Area
(-Xlocal-data-area=n) ... 87

5.4.77 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only) .. 88

5.4.78 Do Not Assign Locals to Registers (-Xlocals-on-stack) 88

5.4.79 Expand Macros in Pragmas (-Xmacro-in-pragma) 88

5.4.80 Warn On Undefined Macro In #if Statement
(-Xmacro-undefined-warn) ... 88

5.4.81 Show Make Rules (-Xmake-dependency) ... 88

5.4.82 Specify Dependency Name or Output File (-Xmake-dependency-...) 90

5.4.83 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n) 90

5.4.84 Set Maximum Structure Member Alignment
(-Xmember-max-align=n) .. 91

5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile) 91

5.4.86 Warn On Type and Argument Mismatch (-Xmismatch-warning) 92

5.4.87 Specify Section Name (-Xname-...) .. 92

5.4.88 Disable C++ Keywords namespace and Using (-Xnamespace-...) 93

5.4.89 Enable Extra Optimizations (-XO) ... 93

5.4.90 Use Old Inline Assembly Casting(-Xold-inline-asm-casting) 94

5.4.91 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n) 94

5.4.92 Disable Most Optimizations With -g (-Xoptimized-debug-...) 95

5.4.93 Specify Optimization Buffer Size (-Xparse-size) 95

5.4.94 Output Source as Comments (-Xpass-source) 95

5.4.95 Use Precompiled Headers (-Xpch-...) .. 96

5.4.96 Treat All Pointer Accesses As Volatile (-Xpointers-volatile) 96

Wind River Compiler for SPARC
User’s Guide, 5.4

x

5.4.97 Control Interpretation of Multiple Section Pragmas
(-Xpragma-section-...) .. 96

5.4.98 Preprocess Assembly Files (-Xpreprocess-assembly) 97

5.4.99 Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off) ... 97

5.4.100 Use Old Preprocessor (-Xpreprocessor-old) ... 97

5.4.101 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...) .. 97

5.4.102 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec) . 99

5.4.103 Optimize Using RTA Profile Data (-Xprof-feedback) 99

5.4.104 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot) 100

5.4.105 Restart Optimization From Scratch (-Xrestart) 100

5.4.106 Generate Code for the Run-Time Error Checker (-Xrtc=mask) 101

5.4.107 Enable Run-time Type Information (-Xrtti, -Xrtti-off) 101

5.4.108 Pad Sections for Optimized Loading (-Xsection-pad) 101

5.4.109 Generate Each Function in a Separate CODE Section Class
(-Xsection-split) ... 102

5.4.110 Disable Generation of Priority Section Names (-Xsect-pri-...) 102

5.4.111 Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n) ... 103

5.4.112 Print Instantiations (-Xshow-inst) .. 103

5.4.113 Show Target (-Xshow-target) .. 103

5.4.114 Optimize for Size Rather Than Speed (-Xsize-opt) 103

5.4.115 Select Software Floating Point Emulation (-Xsoft-float) 104

5.4.116 Enable Stack Checking (-Xstack-probe) .. 104

5.4.117 Diagnose Static Initialization Using Address (-Xstatic-addr-...) 104

5.4.118 Treat All Static Variables as Volatile (-Xstatics-volatile) 104

5.4.119 Buffer stderr (-Xstderr-fully-buffered) .. 105

5.4.120 Terminate Compilation on Warning (-Xstop-on-warning) 105

5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi) 105

 Contents

xi

5.4.122 Ignore Sign When Promoting Bit-fields
(-Xstrict-bitfield-promotions) ... 105

5.4.123 Align Strings on n-byte Boundaries (-Xstring-align=n) 106

5.4.124 Warn on Large Structure (-Xstruct-arg-warning=n) 106

5.4.125 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...) .. 106

5.4.126 Set Minimum Structure Member Alignment (-Xstruct-min-align=n) 107

5.4.127 Suppress Warnings (-Xsuppress-warnings) ... 107

5.4.128 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl) 107

5.4.129 Set Threshold for a Switch Statement Table (-Xswitch-table...) 107

5.4.130 Disable Certain Syntax Warnings (-Xsyntax-warning-...) 108

5.4.131 Select Target Processor (-Xtarget) ... 108

5.4.132 Specify Loop Test Location (-Xtest-at-...) .. 108

5.4.133 Truncate All Identifiers After m Characters (-Xtruncate) 109

5.4.134 Append Underscore to Identifier (-Xunderscore-...) 109

5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n) 110

5.4.136 Runtime Declarations in Standard Namespace (-Xusing-std-...) 110

5.4.137 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok) 111

5.4.138 Define Type for wchar (-Xwchar=n) .. 111

5.4.139 Control Use of wchar_t Keyword (-Xwchar_t-...) 111

5.5 Examples of Processing Source Files .. 111

5.5.1 Compile and Link ... 112

5.5.2 Separate Compilation .. 113

5.5.3 Assembly Output ... 114

5.5.4 Precompiled Headers .. 114

6 Additions to ANSI C and C++ .. 115

6.1 Preprocessor Predefined Macros ... 115

Wind River Compiler for SPARC
User’s Guide, 5.4

xii

6.2 Preprocessor Directives ... 118

#assert and #unassert Preprocessor Directives 118
#error Preprocessor Directive ... 119
#ident Preprocessor Directive (C only) ... 120
#import Preprocessor Directive .. 120
#info, #inform, and #informing Preprocessor Directives 120
#warn and #warning Preprocessor Directives 121

6.3 Pragmas .. 121

align Pragma ... 121
error Pragma ... 121
global_register Pragma .. 122
hdrstop Pragma .. 122
ident Pragma ... 123
info Pragma ... 123
inline Pragma .. 123
interrupt Pragma .. 124
no_alias Pragma ... 124
no_pch Pragma ... 125
no_return Pragma .. 125
no_side_effects Pragma ... 126
option Pragma .. 126
pack Pragma .. 127
pure_function Pragma ... 130
section Pragma .. 131
use_section Pragma .. 131
warning Pragma ... 131
weak Pragma ... 132

6.4 Keywords ... 133

__asm and asm Keywords .. 133
__attribute__ Keyword .. 133
extended Keyword (C only) .. 133
__inline__ and inline Keywords ... 133
__interrupt__ and interrupt Keywords (C only) 134
long long Keyword .. 135
__packed__ and packed Keywords ... 135
pascal Keyword (C only) ... 136
__typeof__ Keyword (C only) .. 136

 Contents

xiii

6.5 Attribute Specifiers .. 137

absolute Attribute (C only) ... 138
aligned(n) Attribute ... 139
constructor, constructor(n) Attribute .. 139
deprecated, deprecated(string) Attribute (C only) 140
destructor, destructor(n) Attribute .. 140
noreturn, no_return Attribute .. 140
no_side_effects Attribute .. 141
packed Attribute ... 141
pure, pure_function Attribute .. 141
section(name) Attribute ... 141

6.6 Intrinsic Functions ... 142

6.7 Other Additions .. 144

C++ Comments Permitted .. 144
Dynamic Memory Allocation with alloca ... 144
Binary Representation of Data ... 145
Assigning Global Variables to Registers ... 145
__ERROR__ Function .. 145
sizeof Extension .. 146
vararg Macros ... 147

7 Embedding Assembly Code .. 149

7.1 Introduction ... 149

7.2 asm Macros .. 151

Comments in asm Macros ... 154
Examples of asm Macros ... 155

7.3 asm String Statements ... 156

7.4 Reordering in asm Code .. 158

7.5 Direct Functions .. 159

8 Internal Data Representation .. 161

8.1 Basic Data Types ... 161

Wind River Compiler for SPARC
User’s Guide, 5.4

xiv

8.2 Byte Ordering .. 163

8.3 Arrays ... 164

8.4 Bit-fields ... 164

8.5 Classes, Structures, and Unions ... 165

8.6 C++ Classes .. 165

Pointers to Members .. 168
Virtual Function Table Generation—Key Functions 169

8.7 Linkage and Storage Allocation .. 170

9 Calling Conventions ... 173

9.1 Introduction ... 173

9.2 Stack Layout .. 173

9.3 Argument Passing ... 175

9.4 C++ Argument Passing .. 176

Pointer to Member as Arguments and Return Types 177
Member Function ... 177
Constructors and Destructors ... 177

9.5 Returning Results .. 178

Class, Struct, and Union Return Types .. 178

9.6 Register Use ... 178

10 Optimization ... 181

10.1 Optimization Hints .. 181

What to Do From the Command Line ... 182
What to Do With Programs ... 184

10.2 Cross-Module Optimization .. 188

 Contents

xv

10.3 Target-Independent Optimizations .. 190

Tail Recursion (0x2) .. 190
Inlining (0x4) ... 191
Argument Address Optimization (0x8) ... 192
Structure Members to Registers (0x10) ... 193
Assignment Optimization (0x80) .. 194
Tail Call Optimization (0x100) .. 194
Common Tail Optimization (0x200) .. 194
Variable Live Range Optimization (0x400) .. 195
Constant and Variable Propagation (0x800) ... 196
Complex Branch Optimization (0x1000) .. 196
Loop strength reduction (0x2000) ... 196
Loop Count-Down Optimization (0x4000) ... 197
Loop Unrolling (0x8000) .. 197
Global Common Subexpression Elimination (0x10000) 197
Undefined variable propagation (0x20000) ... 198
Unused assignment deletion (0x40000) ... 198
Minor Transformations to Simplify Code Generation (0x80000) 198
Register Coloring (0x200000) ... 198
Interprocedural Optimizations (0x400000) .. 199
Remove Entry and Exit Code (0x800000) .. 199
Use Scratch Registers for Variables (0x1000000) 199
Extend Optimization (0x2000000) ... 200
Loop Statics Optimization (0x4000000) ... 200
Loop Invariant Code Motion (0x8000000) .. 201
Live-Variable Analysis (0x40000000) ... 201
Local Data Area Optimization (0x80000000) .. 201
Feedback Optimization ... 201

10.4 Target-Dependent Optimizations ... 202

Basic Reordering (0x1) ... 203
General Peephole Optimization (0x8) ... 203
Peephole Reaching Analysis (0x20) ... 203
Merge Common Block Entry or Exit Code (0x200) 203
Additional Loop Optimizations (0x400) ... 203
Delay Slot Optimization (0x1000) .. 204
Leaf Optimization (0x2000) ... 204

10.5 Example of Optimizations .. 204

Wind River Compiler for SPARC
User’s Guide, 5.4

xvi

11 The Lint Facility .. 209

11.1 Introduction ... 209

11.2 Examples .. 210

12 Converting Existing Code ... 213

12.1 Introduction ... 213

12.2 Compilation Issues ... 213

Older C Code .. 214
Older Versions of the Compiler .. 214

12.3 Execution Issues .. 216

12.4 GNU Command-Line Options ... 218

13 C++ Features and Compatibility ... 219

13.1 Header Files ... 219

13.2 C++ Standard Libraries ... 220

Nonstandard Functions ... 221

13.3 Migration From C to C++ .. 221

13.4 Implementation-Specific C++ Features ... 222

Construction and Destruction of C++ Static Objects 222
Templates ... 223
Exceptions ... 224
Array New and Delete ... 224
Type Identification ... 225
Dynamic Casts in C++ ... 225
Namespaces ... 225
Undefined Virtual Functions .. 225

13.5 C++ Name Mangling ... 225

Demangling utility ... 228

 Contents

xvii

13.6 Avoid setjmp and longjmp ... 229

13.7 Precompiled Headers ... 229

PCH Files ... 230
Limitations and Trade-offs .. 231
Diagnostics .. 231

14 Locating Code and Data, Access ... 233

14.1 Controlling Access to Code and Data ... 233

section and use_section Pragmas ... 233
Section Classes and Their Default Attributes 237

14.2 Access Mode — Read, Write, Execute ... 238

14.3 Local Data Area (-Xlocal-data-area) .. 244

15 Use in an Embedded Environment ... 247

15.1 Introduction ... 248

15.2 Compiler Options for Embedded Development .. 248

15.3 User Modifications ... 249

15.4 Startup and Termination Code .. 250

15.4.1 Location of Startup and Termination Sources and Objects 252

15.4.2 Notes for crt0.s .. 252

15.4.3 Notes for crtlibso.c and ctordtor.c .. 252

15.4.4 Notes for init.c .. 253

15.4.5 Notes for Exit Functions .. 254

15.4.6 Stack Initialization and Checking .. 255

15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk() 255

15.4.8 Run-time Initialization and Termination .. 256

15.5 Hardware Exception Handling .. 257

Wind River Compiler for SPARC
User’s Guide, 5.4

xviii

15.6 Library Exception Handling ... 257

15.7 Linker Command File .. 258

15.8 Operating System Calls ... 259

15.8.1 Character I/O .. 260

15.8.2 File I/O .. 261

15.8.3 Miscellaneous Functions ... 262

15.9 Communicating with the Hardware ... 263

15.9.1 Mixing C and Assembler Functions .. 263

15.9.2 Embedding Assembler Code .. 263

15.9.3 Accessing Variables and Functions at Specific Addresses 263

15.10 Reentrant and “Thread-Safe” Library Functions ... 265

15.11 Target Program Arguments, Environment Variables, and Predefined Files 266

15.12 Profiling in An Embedded Environment .. 268

PART III: WIND RIVER ASSEMBLER

16 The Wind River Assembler .. 273

16.1 Selecting the Target .. 273

16.2 The das Command .. 274

16.3 Assembler Command-Line Options ... 274

Show Option Summary (-?) .. 275
Define Symbol Name (-Dname=value) ... 275
Generate Debugging Information (-g) .. 275
Include Header in Listing (-H) ... 275
Set Header Files Directory (-I path) ... 276
Generate Listing File (-l, -L) .. 276
Set outpUt File (-o file) ... 276
Remove the Input File on Termination (-R) .. 276
Specify Assembler Description (.ad) File (-T ad-file) 276

 Contents

xix

Select Target (-ttof:environ) ... 277
Print Version Number (-V) .. 277
Define Configuration Variable (-WDname=value) 277
Select Object Format and Mnemonic Type

(-WDDOBJECT=object-format) ... 277
Select Target Processor (-WDDTARGET=target) 277
Discard All Local Symbols (-x) ... 277
Discard All Symbols Starting With .L (-X) .. 278
Print Command-Line Options on Standard Output (-#) 278
Read Command-Line Options from File or Variable (-@name,

-@@name) ... 278
Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file) 278

16.4 Assembler -X Options ... 279

Specify Value to Fill Gaps Left by .align or .alignn Directive
(-Xalign-fill-text) .. 279

Interpret .align Directive (-Xalign-value, -Xalign-power2) 279
Generate Debugging Information (-Xasm-debug-...) 279
Align Program Data Automatically Based on Size (-Xauto-align) 279
Set Instruction Type (-Xcpu-...) ... 280
Set Default Value for Section Alignment (-Xdefault-align) 280
Enable Local GNU Labels (-Xgnu-locals-...) ... 280
Include Header in Listing (-Xheader...) ... 280
Set Header Format (-Xheader-format="string") 281
Set Label Definition Syntax (-Xlabel-colon...) 281
Set Format of Assembly Line in Listing (-Xline-format="string") 282
Generate a Listing File (-Xlist-...) .. 283
Specify File Extension for Assembly Listing

(-Xlist-file-extension="string") ... 283
Set Line Length of Listing File (-Xllen=n) ... 283
Enable Blanks in Macro Arguments (-Xmacro-arg-space-...) 283
Set Page Break Margin (-Xpage-skip=n) ... 284
Set Lines Per Page (-Xplen=n) .. 284
Limit Length of Conditional Branch (-Xprepare-compress=n) 284
Treat Semicolons As Statement Separators (-Xsemi-is-newline) 284
Enable Spaces Between Operands (-Xspace-...) 284
Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...) 285
Set Subtitle (-Xsubtitle="string") .. 285
Set Tab Size (-Xtab-size=n) .. 285
Set Title (-Xtitle="string") .. 285

Wind River Compiler for SPARC
User’s Guide, 5.4

xx

17 Syntax Rules ... 287

17.1 Format of an Assembly Language Line .. 287

Labels ... 288
Opcode ... 289
Operand Field ... 289
Comment ... 289

17.2 Symbols .. 290

17.3 Direct Assignment Statements .. 291

17.4 External Symbols .. 291

17.5 Local Symbols ... 292

Generic Style Locals ... 293
GNU-Style Locals ... 293

17.6 Constants .. 293

Integral Constants .. 294
Floating Point Constants ... 295
String Constants ... 295

18 Sections and Location Counters .. 297

18.1 Program Sections .. 297

18.2 Location Counters ... 298

19 Assembler Expressions .. 301

20 Assembler Directives ... 305

20.1 Introduction ... 305

20.2 List of Directives ... 306

symbol[:] = expression ... 306
symbol[:] =: expression .. 306
.2byte .. 306

 Contents

xxi

.4byte .. 306

.align expression ... 307

.alignn expression ... 307

.ascii "string" .. 307

.asciz "string" ... 308

.balign expression ... 308

.blkb expression .. 308

.bss .. 308

.bsect ... 308

.byte expression ,... ... 308

.comm symbol, size [,alignment] ... 309
dc.b expression ... 309
dc.l expression .. 309
dc.w expression .. 310
ds.b size .. 310
.data .. 310
.double float-constant ,... ... 310
.dsect ... 310
.eject .. 310
.else ... 310
.elseif expression ... 311
.elsec ... 311
.end ... 311
.endc ... 311
.endif .. 311
.endm ... 311
.entry symbol ,... ... 311
symbol[:] .equ expression .. 312
.error "string" ... 312
.even ... 312
.exitm .. 312
.extern symbol ,... .. 312
.export symbol ,... ... 313
.file "file" ... 313
.fill count,[size[,value]] .. 313
.float float-constant ,... ... 313
.global symbol ,... .. 313
.globl symbol ,... .. 313
.ident "string" .. 314
.if expression ... 314
.ifendian ... 314
.ifeq expression ... 315
.ifc "string1","string2" ... 315

Wind River Compiler for SPARC
User’s Guide, 5.4

xxii

.ifdef symbol .. 315

.ifge expression ... 315

.ifgt expression .. 315

.ifle expression .. 315

.iflt expression ... 315

.ifnc "string1","string2" ... 316

.ifndef symbol ... 316

.ifne expression ... 316

.import symbol ,... ... 316

.incbin "file"[,offset[,size]] ... 316

.include "file" ... 316

.lcnt expression ... 317

.lcomm symbol, size [,alignment] .. 317

.list .. 317

.llen expression ... 317

.llong expression ,... .. 318

.long expression ,... ... 318
name.macro [parameter ,...] .. 318
.mexit .. 318
.name "file" .. 318
.nolist .. 318
.org expression .. 319
.p2align expression ... 319
.page ... 319
.pagelen expression .. 319
.plen expression .. 319
.previous .. 319
.psect ... 320
.psize page-length [,line-length] ... 320
.rdata ... 320
.rodata .. 320
.sbss [symbol, size [,alignment]] .. 320
.sbttl "string" .. 321
.sdata .. 321
.sdata2 .. 321
.section name, [alignment], [type] ... 321
.section n .. 322
.sectionlink section-name .. 322
.set option .. 323
.set symbol, expression .. 323
symbol[:] .set expression ... 323
.short expression ,... .. 324
.size symbol, expression .. 324

 Contents

xxiii

.skip size .. 324

.space expression .. 324

.string "string" ... 324

.strz "string" ... 324

.subtitle "string" .. 325

.text ... 325

.title "string" ... 325

.ttl "string" .. 325

.type symbol, type .. 325

.uhalf .. 326

.ulong ... 326

.ushort .. 326

.uword .. 326
warning "string" ... 326
.weak symbol ,... ... 326
.width expression ... 327
.word expression, 327
.xdef symbol ,... ... 327
.xref symbol ,... .. 327
.xopt .. 327

21 Assembler Macros ... 329

21.1 Introduction ... 329

21.2 Macro Definition .. 330

Separating Parameter Names From Text .. 331
Generating Unique Labels .. 332
NARG Symbol .. 332

21.3 Invoking a Macro ... 333

21.4 Macros to “Define” Structures ... 333

Wind River Compiler for SPARC
User’s Guide, 5.4

xxiv

22 Example Assembler Listing .. 337

PART IV: WIND RIVER LINKER

23 The Wind River Linker ... 341

23.1 The Linking Process ... 342

Linking Example .. 343

23.2 Symbols Created By the Linker ... 346

23.3 .abs Sections .. 347

23.4 COMMON Sections ... 348

23.5 COMDAT Sections ... 349

23.6 Sorted Sections .. 349

23.7 Warning Sections .. 350

23.8 .frame_info sections ... 351

24 The dld Command .. 353

24.1 The dld Command .. 353

Linker Command Structure .. 354

24.2 Defaults .. 356

24.3 Order on the Command Line ... 357

24.4 Linker Command-Line Options .. 357

Show Option Summary (-?, -?X) .. 358
Read Options From an Environment Variable or File (-@name,

-@@name) ... 358
Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file) 358
Link Files From an Archive (-A name, -A...) .. 358
Allocate Memory for Common Variables When Using -r (-a) 359

 Contents

xxv

Set Address for Data and tExt (-Bd=address, -Bt=address) 359
Bind Function Calls to Shared Library (-Bsymbolic) 360
Define a Symbol At An Address (-Dsymbol=address) 360
Define a Default Entry Point Address (-e symbol) 360
Specify “fill” Value (-f value, size, alignment) 360
Specify Directory for -l search List (-L dir) ... 361
Specify Library or File to Process (-lname, -l:filename) 361
Generate link map (-m, -m2, -m4) .. 361
Allocate .data Section Immediately After .text Section (-N) 362
Change the Default Output File (-o file) ... 362
Perform Incremental Link (-r, -r2, -r3, -r4, -r5) 362
Rename Symbols (-R symbol1=symbol2) ... 363
Search for Shared Libraries on Specified Path (-rpath) 363
Do Not Output Symbol Table and Line Number Entries (-s, -ss) 363
Specify Name for Shared Library (-soname) .. 363
Select Target Processor and Environment (-t tof:environ) 364
Define a Symbol (-u symbol) .. 364
Print version number (-V) ... 364
Do Not Output Some Symbols (-X) ... 364
Specify Search Directories for -l (-Y L, -Y P, -Y U) 364

24.5 Linker -X options .. 365

Use Late Binding for Shared Libraries (-X) .. 365
Check Input Patterns (-Xcheck-input-patterns) 365
Check for Overlapping Output Sections (-Xcheck-overlapping) 366
Force Linker to Continue After Errors (-Xdont-die) 366
Do Not Create Output File (-Xdont-link) .. 366
Use Shared Libraries (-Xdynamic) ... 366
Use ELF Format for Output File (-Xelf) .. 367
ELF Format Relocation Information (-Xelf-rela-...) 367
Do Not Export Symbols from Specified Libraries (-Xexclude-libs) .. 367
Do Not Export Specified Symbols (-Xexclude-symbols) 367
Write Explicit Instantiations File (-Xexpl-instantiations) 367
Store Segment Address in Program Header (-Xgenerate-paddr) 368
Generate RTA Information (-Xgenerate-vmap) 368
Do Not Align Output Section (-Xold-align) ... 368
Pad Input Sections to Match Existing Executable File

(-Xoptimized-load) .. 368
Add Leading Underscore “_” to All Symbols (-Xprefix-underscore) 369
Remove Unused Sections (-Xremove-unused-sections) 369
Re-scan Libraries (-Xrescan-libraries...) ... 369
Re-scan Libraries Restart (-Xrescan-restart...) 370
Align Sections (-Xsection-align=n) .. 370

Wind River Compiler for SPARC
User’s Guide, 5.4

xxvi

Build Shared Libraries (-Xshared) .. 370
Sort .frame_info Section (-Xsort-frame-info) .. 370
Link to Static Libraries (-Xstatic) .. 371
Stop on Redeclaration (-Xstop-on-redeclaration) 371
Stop on Warning (-Xstop-on-warning) .. 371
Suppress Leading Dots “.” (-Xsuppress-dot) 371
Suppress Section Names (-Xsuppress-section-names) 371
Suppress Paths in Symbol Table (-Xsuppress-path) 371
Suppress Leading Underscores ‘_’ (-Xsuppress-underscore) 372
Remove/Keep Unused Sections (-Xunused-sections...) 372

25 Linker Command Language .. 373

25.1 Example “bubble.dld” ... 374

25.2 Syntax Notation .. 376

25.3 Numbers ... 377

25.4 Symbols .. 377

25.5 Expressions .. 378

25.6 Command File Structure ... 379

25.7 MEMORY Command ... 380

25.8 SECTIONS Command ... 381

Section-Definition ... 381
GROUP Definition ... 389

25.9 Assignment Command .. 389

25.10 Examples .. 390

 Contents

xxvii

PART V: WIND RIVER COMPILER UTILITIES

26 Utilities .. 405

26.1 Common Command-Line Options ... 405

Show Option Summary (-?) .. 405
Read Command-Line Options from File or Variable

(-@name, -@@name) .. 405
Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file) 406

27 D-AR Archiver ... 407

27.1 Synopsis ... 407

27.2 Syntax ... 407

27.3 Description .. 408

27.3.1 dar Commands ... 408

27.4 Examples .. 411

28 D-BCNT Profiling Basic Block Counter .. 413

28.1 Synopsis ... 413

28.2 Syntax ... 413

28.3 Description .. 414

28.3.1 dbcnt Options .. 414

28.4 Files ... 415

28.4.1 Output File for Profile Data .. 415

28.5 Examples .. 415

28.6 Coverage ... 416

28.7 Notes ... 416

Wind River Compiler for SPARC
User’s Guide, 5.4

xxviii

29 D-DUMP File Dumper ... 417

29.1 Synopsis ... 417

29.2 Syntax .. 417

29.3 Description .. 418

29.3.1 ddump commands ... 418

29.4 Examples .. 423

30 dmake Makefile Utility .. 425

30.1 Introduction ... 425

30.2 Installation ... 425

30.3 Using dmake .. 426

31 WindISS Simulator and Disassembler ... 427

31.1 Synopsis ... 427

31.2 Simulator Mode .. 428

31.2.1 Compiling for the WindISS Simulator .. 429

31.2.2 Simulator Mode Command and Options ... 429

31.3 Batch Disassembler Mode .. 433

31.3.1 Syntax (Disassembler Mode) .. 433

31.3.2 Description .. 433

31.4 Interactive Disassembler Mode ... 434

31.4.1 Syntax (Interactive Disassembler Mode) .. 434

31.4.2 Description .. 434

31.5 Examples .. 435

 Contents

xxix

PART VI: C LIBRARY

32 Library Structure, Rebuilding ... 439

32.1 Introduction ... 439

32.2 Library Structure .. 440

32.2.1 Libraries Supplied .. 440

32.2.2 Library Directory Structure .. 443

32.2.3 libc.a ... 445

32.2.4 Library Search Paths .. 446

32.3 Library Sources, Rebuilding the Libraries .. 449

32.3.1 Sources ... 449

32.3.2 Rebuilding the Libraries .. 450

32.3.3 C++ Libraries .. 451

33 Header Files .. 453

33.1 Files ... 453

33.1.1 Standard Header Files ... 453

33.2 Defined Variables, Types, and Constants .. 455

errno.h .. 456
fcntl.h ... 456
float.h ... 456
limits.h ... 456
math.h .. 456
mathf.h ... 457
setjmp.h .. 457
signal.h ... 457
stdarg.h .. 457
stddef.h .. 457
stdio.h ... 457
stdlib.h ... 458
string.h ... 458
time.h ... 458

Wind River Compiler for SPARC
User’s Guide, 5.4

xxx

34 C Library Functions ... 459

34.1 Format of Descriptions .. 459

34.1.1 Operating System Calls ... 460

34.1.2 References .. 460

34.2 Reentrant Versions ... 461

34.3 Function Listing .. 462

a64l() .. 462
abort() .. 462
abs() ... 462
access() .. 462
acos() ... 463
acosf() .. 463
advance() .. 463
asctime() .. 464
asin() .. 464
asinf() ... 464
assert() ... 464
atan() ... 465
atanf() .. 465
atan2() ... 465
atan2f() .. 466
atexit() ... 466
atof() .. 466
atoi() .. 466
atol() .. 467
bsearch() .. 467
calloc() ... 467
ceil() ... 467
ceilf() .. 468
_chgsign() ... 468
clearerr() .. 468
clock() .. 468
close() .. 469
compile() ... 469
_copysign() ... 469
cos() ... 469
cosf() .. 470
cosh() ... 470
coshf() .. 470

 Contents

xxxi

creat() ... 470
ctime() ... 471
difftime() ... 471
div() ... 471
drand48() .. 471
dup() .. 472
ecvt() .. 472
erf() .. 472
erff() ... 472
erfc() .. 473
erfcf() ... 473
exit() ... 473
_exit() ... 473
exp() ... 474
expf() ... 474
fabs() .. 474
fabsf() .. 474
fclose() ... 475
fcntl() ... 475
fcvt() .. 475
fdopen() .. 475
feof() .. 476
ferror() ... 476
fflush() ... 476
fgetc() .. 476
fgetpos() .. 477
fgets() ... 477
fileno() ... 477
_finite() .. 477
floor() ... 478
floorf() ... 478
fmod() .. 478
fmodf() .. 478
fopen() ... 479
fprintf() .. 479
fputc() .. 480
fputs() .. 480
fread() .. 480
free() .. 480
freopen() ... 481
frexp() .. 481
frexpf() .. 481
fscanf() ... 482

Wind River Compiler for SPARC
User’s Guide, 5.4

xxxii

fseek() .. 482
fsetpos() ... 482
fstat() ... 483
ftell() .. 483
fwrite() .. 483
gamma() .. 483
gammaf() .. 484
gcvt() .. 484
getc() .. 484
getchar() .. 485
getenv() ... 485
getopt() .. 485
getpid() .. 485
gets() .. 486
getw() .. 486
gmtime() ... 486
hcreate() .. 487
hdestroy() .. 487
hsearch() .. 487
hypot() ... 487
hypotf() ... 488
irand48() .. 488
isalnum() ... 488
isalpha() .. 488
isascii() .. 489
isatty() ... 489
iscntrl() .. 489
isdigit() .. 489
isgraph() .. 489
islower() .. 490
_isnan() .. 490
isprint() ... 490
ispunct() .. 490
isspace() .. 490
isupper() .. 491
isxdigit() .. 491
j0() .. 491
j0f() ... 491
j1() .. 492
j1f() ... 492
jn() .. 492
jnf() ... 492
jrand48() .. 493

 Contents

xxxiii

kill() ... 493
krand48() .. 493
l3tol() ... 493
l64a() .. 494
labs() .. 494
lcong48() ... 494
ldexp() ... 494
ldexpf() .. 494
ldiv() .. 495
_lessgreater() .. 495
lfind() ... 495
link() .. 495
localeconv() .. 496
localtime() ... 496
log() ... 496
_logb() ... 496
logf() .. 497
log10() ... 497
log10f() .. 497
longjmp() .. 497
lrand48() ... 498
lsearch() ... 498
lseek() .. 498
ltol3() ... 499
mallinfo() .. 499
malloc() ... 499
__malloc_set_block_size() .. 500
mallopt() ... 500
matherr() ... 500
matherrf() ... 501
mblen() .. 501
mbstowcs() ... 502
mbtowc() ... 502
memccpy() .. 502
memchr() .. 502
memcmp() .. 503
memcpy() .. 503
memmove() .. 503
memset() ... 503
mktemp() .. 504
mktime() ... 504
modf() .. 504
modff() .. 504

Wind River Compiler for SPARC
User’s Guide, 5.4

xxxiv

mrand48() ... 505
_nextafter() ... 505
nrand48() .. 505
offsetof() .. 505
open() .. 506
perror() .. 506
pow() ... 506
powf() .. 507
printf() ... 507
putc() ... 510
putchar() ... 510
putenv() .. 510
puts() ... 511
putw() .. 511
qsort() .. 511
raise() ... 512
rand() ... 512
read() ... 512
realloc() ... 512
remove() .. 513
rename() .. 513
rewind() .. 513
sbrk() ... 513
_scalb() .. 514
scanf() .. 514
seed48() ... 516
setbuf() .. 516
setjmp() ... 517
setlocale() .. 517
setvbuf() .. 518
signal() ... 518
sin() .. 518
sinf() ... 519
sinh() .. 519
sinhf() .. 519
sprintf() ... 519
sqrt() .. 520
sqrtf() ... 520
srand() ... 520
srand48() ... 520
sscanf() .. 520
step() .. 521
strcat() .. 521

 Contents

xxxv

strchr() ... 521
strcmp() ... 521
strcoll() .. 522
strcpy() .. 522
strcspn() .. 522
strdup() ... 522
strerror() .. 523
strftime() ... 523
strlen() ... 524
strncat() ... 524
strncmp() .. 524
strncpy() .. 525
strpbrk() .. 525
strrchr() ... 525
strspn() .. 525
strstr() .. 526
strtod() .. 526
strtok() ... 526
strtol() .. 527
strtoul() ... 527
strxfrm() .. 527
swab() .. 528
tan() ... 528
tanf() .. 528
tanh() ... 528
tanhf() .. 529
tdelete() ... 529
tell() ... 529
tempnam() .. 529
tfind() .. 530
time() ... 530
tmpfile() .. 530
tmpnam() .. 530
toascii() .. 531
tolower() ... 531
_tolower() ... 531
toupper() ... 531
_toupper() ... 532
tsearch() .. 532
twalk() ... 532
tzset() ... 533
ungetc() ... 533
unlink() ... 533

Wind River Compiler for SPARC
User’s Guide, 5.4

xxxvi

_unordered() .. 533
vfprintf() ... 534
vfscanf() .. 534
vprintf() ... 534
vscanf() .. 535
vsprintf() ... 535
vsscanf() .. 535
wcstombs() ... 536
wctomb() ... 536
write() .. 536
y0() ... 537
y0f() .. 537
y1() ... 537
y1f() .. 537
yn() ... 538
ynf() ... 538

PART VII: APPENDICES

A Configuration Files .. 541

A.1 Configuration Files .. 541

A.2 How Commands, Environment Variables, and Configuration Files Relate 542

A.2.1 Configuration Variables and Precedence .. 542

A.2.2 Startup .. 543

A.3 Standard Configuration Files ... 544

A.3.1 DENVIRON Configuration Variable ... 545

A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables 547

A.3.3 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2
Configuration Variables .. 548

A.4 The Configuration Language ... 548

A.4.1 Statements and Options .. 549

A.4.2 Comments ... 549

A.4.3 String Constants ... 550

 Contents

xxxvii

A.4.4 Variables .. 550

A.4.5 Assignment Statement ... 551

A.4.6 Error Statement ... 552

A.4.7 Exit Statement ... 552

A.4.8 If Statement ... 552

A.4.9 Include Statement ... 553

A.4.10 Print Statement ... 553

A.4.11 Switch Statement .. 553

B Compatibility Modes: ANSI, PCC, and K&R C 555

C Compiler Limits .. 561

D Compiler Implementation Defined Behavior 563

D.1 Introduction ... 563

D.2 Translation ... 564

D.3 Environment .. 566

D.4 Library functions .. 567

E Assembler Coding Notes .. 571

E.1 Instruction Mnemonics ... 571

E.2 Operand Addressing Modes .. 572

E.2.1 Registers ... 572

E.2.2 Expressions .. 572

F Object and Executable File Format .. 573

F.1 Executable and Linking Format (ELF) .. 573

F.1.1 Overall Structure .. 573

Wind River Compiler for SPARC
User’s Guide, 5.4

xxxviii

F.1.2 ELF Header ... 574

F.1.3 Program Header ... 576

ELF Program Header Fields ... 576

F.1.4 Section Headers .. 577

F.1.5 Special Sections ... 579

F.1.6 ELF Relocation Information .. 580

ELF Relocation Entry Fields ... 580

F.1.7 Line Number Information ... 581

F.1.8 Symbol Table ... 581

ELF Symbol Table Fields ... 581

F.1.9 String Table .. 582

G Compiler -X Options Numeric List .. 583

H Messages .. 587

H.1 Introduction ... 587

H.2 Compiler Messages .. 588

H.2.1 Compiler Message Format .. 588

H.2.2 Errors in asm Macros and asm Strings .. 589

H.2.3 C Compiler Message Detail .. 589

H.2.4 C++ Messages ... 643

H.3 Assembler Messages .. 644

H.4 Linker Messages ... 644

H.4.1 Linker Message Format ... 644

H.4.2 Linker Message Detail ... 645

Index .. 659

1

PAR T I

Introduction

1 Overview ... 3

2 Configuration and Directory Structure 9

3 Drivers and Subprogram Flow 17

4 Selecting a Target and Its Components 21

Wind River Compiler for SPARC
User’s Guide, 5.4

2

3

 1
Overview

1.1 Introduction 3

1.2 Overview of the Tools 3

1.3 Documentation 7

1.1 Introduction

This manual describes all tools in the Wind River Compiler toolkit (formerly
known as the Diab Compiler) for the SPARC family of microprocessors, including
SPARClite. It includes detailed information about each tool, optimization hints,
and guidelines for porting existing code to the compilers and assembler.

For introductory information, including an example program, see the Getting
Started manual.

1.2 Overview of the Tools

The compiler suite includes high-performance C and C++ tools designed for
professional programmers. Besides the benefits of state-of-the-art optimization,

Wind River Compiler for SPARC
User’s Guide, 5.4

4

they reduce time spent creating reliable code because the compilers and other tools
are themselves fast, and they include built-in, customizable checking features that
will help you find problems earlier.

With hundreds of command-line options and special pragmas, and a powerful
linker command language for arranging code and data in memory, the tools can be
customized to meet the needs of any device software project. Special options are
provided for compatibility with other tools and to facilitate porting of existing
code.

Important Compiler Features and Extensions

■ Many compiler controls and options for greater flexibility over compiler
operation and code generation.

■ Many features and extensions targeted for the device programmer. See 15. Use
in an Embedded Environment.

■ Optimizations and features tailored individually for each processor type
within the SPARC microprocessor family. See 4.3 Alternatives for Selecting a
Target Configuration, p.25 for information on how to specify the target
processor.

■ Extensive compile-time checking to detect suspicious and nonportable
constructs. See 11. The Lint Facility.

■ Powerful profiling capabilities to locate bottlenecks in the code. The profiling
information can also automatically be used as feedback to the compiler,
enabling even more aggressive optimizations. See 10. Optimization, and the
discussion of D-BCNT in 28. D-BCNT Profiling Basic Block Counter.

■ C++ templates, exceptions, and run-time type information.

High Performance Optimizations

A wide range of optimizations, some of which are unique to the Wind River
Compiler, produce fast and compact code as measured by independent
benchmarks. Special optimizations include superior interprocedural register
allocations, inlining, and reaching analysis.

Optimizations fall into three categories: local, function-level, and program-level, as
listed next. See 10. Optimization.

1 Overview
1.2 Overview of the Tools

5

1
■ Local optimizations within a block of code:

Constant folding
Integer divide optimization
Local common sub-expression elimination
Local strength reduction
Minor transformations
Peep-hole optimizations
Switch optimizations

■ Function global optimizations within each function:

Auto increment/decrement optimizations
Automatic register allocation
Complex branch optimization
Condition code optimization
Constant propagation
Dead code elimination
Delayed branches optimization
Delayed register saving
Entry/exit code removal
Extend optimization
Global common sub-expression elimination
Global variable store delay
Lifetime analysis (coloring)
Link register optimization
Loop count-down optimization
Loop invariant code motion
Loop statics optimization
Loop strength reduction
Loop unrolling
Memory read/write optimizations
Reordering code scheduling
Restart optimization
Branch-chain optimization
Space optimization
Split optimization
Structure and bit-field member to registers
Tail recursion
Tail jump optimization
Undefined variable propagation
Unused assignment deletion

Wind River Compiler for SPARC
User’s Guide, 5.4

6

Variable location optimization
Variable propagation

■ Program global optimizations across multiple functions:

Argument address optimization
Function inlining
Glue function optimization
Interprocedural optimizations
Literal synthesis optimization
Local data area optimization
Profiling feedback optimization

Portability

The compiler implements the ANSI C++ standard (ISO/IEC FDIS 14882) as
described in 13. C++ Features and Compatibility. Exceptions, templates, and
run-time type Information (RTTI) are fully implemented.

For C modules, the compiler conforms fully to the ANSI X3.159-1989 standard
(called ANSI C), with extensions for compatibility with other compilers to simplify
porting of legacy code.

Standard C programs can be compiled with a strict ANSI option that turns off the
extensions and reduces the language to the standard core. Alternatively, such
programs can be gradually upgraded by using the extensions as desired. See
BCompatibility Modes: ANSI, PCC, and K&R C, p.555 for operational details when
compiling in different modes.

Wind River tools produce identical binary output regardless of the host platform
on which they run. The only exceptions occur when symbolic debugger
information is generated (that is, when -g options are enabled), since path
information differs from one build environment to another.

1 Overview
1.3 Documentation

7

11.3 Documentation

This User’s Guide

This guide contains all information necessary to use the tools effectively. Please see
the table of contents for a detailed overview.

This manual does not explain the C or C++ language. SeeAdditional Documentation,
p.8 below, for references to standard works.

Table 1-1 User’s Guide Parts

Part Contents

Part I. Introduction Overview, configuration, directory structure,
subprograms, selecting a target for compilation.

Part II. Wind River Compiler The compilers, including invocation, options,
additions to C and C++ for device
programming, internal data representation,
calling conventions, and optimizations.

Part III. Wind River Assembler The assembler, including invocation, options,
syntax rules, expression syntax, and all
assembler directives. See manufacturer’s
manuals for details on SPARC instructions.

Part IV. Wind River Linker The linker, including invocation, options, the
linker command language, and object module
format.

Part V. Wind River Compiler
Utilities

The D-AR library archiver; the D-DUMP utility
for converting and examining object,
executable, and archive files; and others.

Part VI. C Library The structure of the C libraries provided with
the compiler for use in different environments,
and the details of the functions in the libraries.

Part VII. Appendices Configuration files, limits, implementation-
defined behavior, assembler coding notes, object
modules format details, -X options by number,
and messages.

Wind River Compiler for SPARC
User’s Guide, 5.4

8

Additional Documentation

Changes made for this release and information developed after publication of this
manual may be found in the release notes.

The following C++ references are recommended: the ANSI C++ standard
(ISO/IEC FDIS 14882), The C++ Programming Language by Bjarne Stroustrup, The
Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne Stroustrup, and
The C++ Standard Template Library by P.J. Plauger et al.

For C, see the ANSI C standard X3.159-1989 and The C Programming Language by
Brian Kernighan and Dennis Ritchie (K&R).

The following manuals from Fujitsu may be consulted for details about
microprocessor architecture and instructions:

■ SPARC Architecture Manual Version 8

■ SPARClite User’s Guide

9

 2
Configuration and Directory

Structure

2.1 Components and Directories 9

2.2 Accessing Current and Other Versions of the Tools 14

2.3 Environment Variables 15

2.1 Components and Directories

All files are located in subdirectories of a single root directory. The following
terminology is used throughout this manual to refer to that root and related
subdirectories:

■ install_path represents the full pathname of the root directory. The root
directory contains version_path subdirectories, each acting as a sub-root for all
files related to a single version of the compiler. This allows multiple versions
of the tools to reside on the same file system.

■ version_path is the name of the complete path for a single version of the
compiler.

■ host_dir is the name of a subdirectory under version_path containing directories
specific to a single type of host, e.g. Win32 or SUNS (Sun Solaris). This permits
tools for different types of systems to reside on a single networked file system

These names for a default installation depend on the host file system. The
following table assumes that the version number is 5.3.x and shows examples for

Wind River Compiler for SPARC
User’s Guide, 5.4

10

common installations. For other systems, see the installation procedures shipped
with the media.

The following table lists the subdirectories of version_path and important files
contained in them.

Table 2-1 Example Default Installation Pathnames

System Default version_path Default with host_dir

UNIX /usr/lib/diab/5.3.x /usr/lib/diab/5.3.x/host

HP-UX /usr/lib/diab/5.3.x/HPUX

Solaris /usr/lib/diab/5.3.x/SUNS

Linux /usr/lib/diab/5.3.x/LINUX386

PCs C:\diab\5.3.x C:\diab\5.3.x\op-sys

Windows C:\diab\5.3.x\WIN32

NOTE: In this manual, instructions and examples for Windows apply to all
supported versions of Microsoft Windows.

Also, in cases where the Windows and UNIX pathnames are identical except for
the path separator character, only one pathname is shown using the UNIX
separator “/”.

Table 2-2 Version_path Subdirectories and Important Files

Subdirectory or File Contents or Use

Programs:

host_dir/bin/ Programs intended for direct use by the user:

dcc Main driver—assumes C libraries and headers.

dplus Main driver—assumes C++ libraries and headers.

das The assembler. A separate SPARC-specific description file
controls assembly.

dld The linker. Generates executable files from one or more object
files and object libraries (archives).

2 Configuration and Directory Structure
2.1 Components and Directories

11

2

dar D-AR archiver. Creates an object library (archive) from one or
more object files.

dbcnt D-BCNT basic block counter. Generates profiling information
from files compiled with -Xblock-count.

dctrl Utility to set default target for compiler, assembler, and linker.

ddump D-DUMP object file utility. Examines or converts object files, e.g.
ELF to Motorola S-Records.

dmake “make” utility; extended features are required to re-build the
libraries. Not for use with VxWorks development tools.

flexlm*
lm*

Programs and files for the license manager used by all Wind
River tools.

reorder This program is started by the driver. It reschedules the
instruction sequence to avoid stalls in the processor pipeline
and does some peephole optimizations. See 10. Optimization.

host_dir/lib/ Programs and files used by programs in bin.

ctoa
etoa, dtoa

C and C++ compilers. A separate SPARC-specific description
file directs code generation. (The preferred C++ compiler is
etoa; dtoa is an older version.)

Configuration, header, and source files

conf/ Configuration files for compilers, assembler, and linker.

dtools.conf
default.conf
user.conf

Configuration files read by the compiler drivers at startup,
primarily to supply command-line options. See A. Configuration
Files for details. Other .conf files for particular boards or
operating systems may also be present.

default.dld Default linker command file. Other sample .dld linker
command files are also found here. See 24.2 Defaults, p.356 in
the Linker section of this manual.

dmake/ dmake startup files. See 30. dmake Makefile Utility.

example/ Example files used in the Getting Started manual and elsewhere.

Table 2-2 Version_path Subdirectories and Important Files (cont’d)

Subdirectory or File Contents or Use

Wind River Compiler for SPARC
User’s Guide, 5.4

12

include/ Standard and other header files for use in user programs, plus
HP/SGI STL library header files.

libraries/ Library sources and build files. See 32.3 Library Sources, Rebuilding
the Libraries, p.449 for details.

pdf/ PDF form for all manuals.

relhist/ Older Release Notes.

src/ Source code for replacement routines for system calls. These
functions must be modified before they can be used in an embedded
environment. See 15. Use in an Embedded Environment.

SPARC startup module and libraries

SPARCE/ ELF library and startup code directories .

crt0.o Start up code to initialize the environment and then call main.
The source for crt0.o is src/crtsparc/crt0.s.

libc.a
cross/libc.a
simple/libc.a

ELF standard C libraries. Each libc.a is actually a short text file
of -l options listing other libraries to be included. A libc.a file is
selected based on the library search path (See 4.2 Selected Startup
Module and Libraries, p.24).

SPARCE/libc.a is a generic C library with no input/output
support. It includes sublibraries libi.a, libcfp.a, libimpl.a,
libimpfp.a, all described below.

SPARCE/simple/libc.a includes the above four sublibraries
plus libchar.a providing basic character I/O.

SPARCE/cross/libc.a includes the above four sublibraries plus
libram.a, which adds RAM-disk-based file I/O.

For details, see 32.2 Library Structure, p.440.

libchar.a Basic character input/output support for stdin and stdout
(stderr and named files are not supported); an alternative to
libram.a.

libram.a Adds to libchar.a RAM-disk-based file I/O for stdin and stdout
only; an alternative to libchar.a.

Table 2-2 Version_path Subdirectories and Important Files (cont’d)

Subdirectory or File Contents or Use

2 Configuration and Directory Structure
2.1 Components and Directories

13

2

libi.a General library containing standard ANSI C functions.

libimpl.a Utility functions called by compiler generated or runtime code,
typically for constructs not implemented in hardware, e.g.,
low-level software floating point support, multiple register save
and restore, and 64-bit integer support.

libd.a Additional standard library functions for C++ (libc.a is also
required).

libg.a Functions to generate debug information for some debug
targets.

windiss/libwindiss.a Support library for Wind ISS instruction-set simulator when
supplied. Note: implicitly also uses cross/libc.a.

Floating point-specific libraries and sub-libraries

SPARCEN ELF floating point stubs for floating point support of “None”.

libcfp.a Stubs to avoid undefined externals.

libimpfp.a Empty file required by different versions of libc.a.

libstl.a, libstlstd.a Support library for C++. Includes iostream and complex math
classes.

SPARCES/ ELF software floating point libraries:

libcfp.a Floating point functions called by user code.

libcomplex.a C++ complex math class library.

libimpfp.a Conversions between floating point and other types.

libios.a C++ iostream class library.

libm.a Math library.

libpthread.a Unsupported implementation of POSIX threads for use with
the example programs. Text file which includes sub-libraries
libdk*.a.

SPARCEV/ ELF vector floating point libraries:

Table 2-2 Version_path Subdirectories and Important Files (cont’d)

Subdirectory or File Contents or Use

Wind River Compiler for SPARC
User’s Guide, 5.4

14

2.2 Accessing Current and Other Versions of the Tools

The driver (dcc or dplus) automatically finds the subprograms it calls (it is
modified with the directory selected during installation). Thus, running the
compiler requires only that driver be accessed in any of the usual ways:

■ Add version_path/host_dir/bin to your path for UNIX or
version_path\host_dir\bin for Windows.

■ Create an alias or batch file that includes the complete path directly.

■ Copy dcc or dplus to an existing directory in your path, e.g., /usr/bin on UNIX.

If the tools are installed on a remote server, Windows users should map a drive
letter to the remote directory where they reside and use that drive letter when
setting their path variable.

You can invoke an older copy of a driver as follows:

■ Rename the main driver for the older version. For example, to execute version
4.4a of the C++ driver, rename dplus in the bin directory for version 4.4a
dplus44a. Then access dplus44a in any of the usual ways described above.

■ Modify your path to put the directory containing the desired version before
the directory containing any other version. The driver command will then
access the desired version.

■ Create an alias or batch file that includes the complete path of the desired
version.

SPARCEH/ ELF hardware floating point versions of the floating point libraries
above, for SPARC only, not SPARClite.

Table 2-2 Version_path Subdirectories and Important Files (cont’d)

Subdirectory or File Contents or Use

2 Configuration and Directory Structure
2.3 Environment Variables

15

2

2.3 Environment Variables

The configuration information which controls default operation of the tools is
usually stored as configuration variables in default.conf in the conf subdirectory of
the version_path directory by the dctrl program. These configuration variables
include DTARGET, DFP, DOBJECT, and DENVIRON. However, if an environment
variable having the same name as a configuration variable is set, the value of the
environment variable will override the value stored in default.conf. (This can in
turn be overridden by using a -t or -WD option on the command line when
invoking a tool.)

The method used to set environment variables depends on the operating system as
shown in the following table.

2.3.1 Environment Variables Recognized by the Compiler

This section describes the environment variables recognized by the compiler.

DCONFIG
Specifies the configuration file used to define the default behavior of the tools.
documents the configuration file. If neither DCONFIG nor the -WC option is
used (see A.2.2 Startup, p.543), the drivers use:

version_path/conf/dtools.conf (UNIX)
%version_path%\conf\dtools.conf (Windows)

DTARGET
DOBJECT

NOTE: This section is for unusual cases. It is usually sufficient to override the
default setting by using the -t option on a command line when invoking a tool, or
to use one of the other methods, all as described under 4.3 Alternatives for Selecting
a Target Configuration, p.25.

Table 2-3 Setting Environment Variables

System Command

UNIX variable=value;export variable

Windows set variable=value

Wind River Compiler for SPARC
User’s Guide, 5.4

16

DFP
DENVIRON

These four environment variables specify, respectively, the target processor,
object file format and mnemonic type, floating point method, and execution
environment. They may be used to override the values set in default.conf (and
will in turn be overridden by a -t option on the command line). DENVIRON
may also refer to an additional configuration file, for example to set options for
a particular target operating system. For details, see:

■ 4.3 Alternatives for Selecting a Target Configuration, p.25.
■ 4.1 Selecting a Target, p.21 for valid settings for the four variables.
■ A.3.1 DENVIRON Configuration Variable, p.545 regarding DENVIRON.

DFLAGS
Specifies extra options for the drivers and is a convenient way to specify -XO,
-O or other options with an environment variable (e.g., to avoid changing
several makefiles or to override options given in a configuration file). The
options in DFLAGS are evaluated before the options given on the command
line. See A.3 Standard Configuration Files, p.544, especially Figure A-2 for
details.

DIABLIB
Formerly used to tell the compiler and drivers where to look for the tools. If
DIABLIB is defined, it should be set to the version_path selected during
installation. If DIABLIB is not defined, the compiler and drivers are found on
the user’s path variable or from an absolute directory path specified on the
command line.

DIABTMPDIR
Specifies the directory for all temporary files generated by all tools in the tool
suite.

DCXXOLD
If set to YES, tells the compiler to use the old C++ parser (-Xc++-old option) by
default.

NOTE: DIABLIB is deprecated and is maintained for backward compatibility
only.

17

 3
Drivers and Subprogram Flow

The Wind River tools are most easily invoked using the dcc and dplus driver
programs. Depending on the input files and options on the command line, the
driver may run up to five subprograms: the C preprocessor, either or both
compilers, the assembler, and the linker.

The following figure shows the subprogram flow graphically for a C file. A C++
file is processed similarly except dplus invokes the C++ etoa compiler instead of
ctoa. The subprograms and the stopping options are described following the figure.

Wind River Compiler for SPARC
User’s Guide, 5.4

18

Driver command lines are described in detail in 5. Invoking the Compiler. The
general form is:

The driver determines the starting subprogram to be applied to each input-file
based on the file’s extension suffix; for example, by default a file with extension .s
is assembled and linked but not preprocessed or compiled. Command-line options
may be used to stop processing early. The subprograms and stopping options are
as follows.

Figure 3-1 Subprogram Flow and Intermediate Files

C sources
file.c

Assembler
sources

Libraries

libx.a

Preprocessor

cpp

C Compiler

ctoa

Assembler

das

Linker

dld

file.i

file.s

file.o

a.out

Stopping
Option

-P

-S

-c

dcc [options] [input-files] Assumes Wind River C libraries.

dplus [options] [input-files] Assumes Wind River C++ libraries.

3 Drivers and Subprogram Flow

19

3

Table 3-1 Driver Subprograms, Default Input and Output Extensions, and Stopping Options

Sub-
program

Default
Input
Extension

Stopping
Option

Default
Output
Extension Function and Stopping Option

cpp -P .i The preprocessor; takes a C or C++
module as input and processes all #
directives. This program is included in
the main compiler program. The -P
option halts the driver after this phase,
producing a file with the .i suffix. (The
.i file is not produced unless -P is used.)

ctoa .c -S .s The C-to-assembly compiler; consists of
several internal stages (parser,
optimizer, and code generator), and
generates assembly source from
preprocessed C source.

etoa .cpp
.cxx
.cc
.C (capital, UNIX)

-S .s The C++-to-assembly compiler;
generates assembly source from
preprocessed C++ source.

das .s -c .o The assembler; generates linkable
object code from assembly source.

dld .o

.a

.dld

.lnk

(object)

(archive)

(commands)

a.out

(default)
The linker; generates an executable file
from one or more object files and object
libraries, as directed by a .dld linker
command file (obsolete: .lnk). The
default output name is a.out if the -o
outputfile option is not given.

Wind River Compiler for SPARC
User’s Guide, 5.4

20

21

 4
Selecting a Target and Its

Components

4.1 Selecting a Target 21

4.2 Selected Startup Module and Libraries 24

4.3 Alternatives for Selecting a Target Configuration 25

4.1 Selecting a Target

The compiler, assembler, and linker all require specification of a target configuration.

A complete target configuration specifies the target processor, the type of floating
point support, the object module format (ELF), and the execution environment
(default libraries for input/output and target operating system support). To
determine the current default, execute the command:

dcc -Xshow-target

or print the file default.conf in the version_path/conf subdirectory.

The easiest methods for selecting a target configuration are as follows. The first
method is preferred. For special cases or more details, see 4.3 Alternatives for
Selecting a Target Configuration, p.25.

Wind River Compiler for SPARC
User’s Guide, 5.4

22

■ Use the -ttof or -ttof:environ option when invoking the compiler, assembler, or
linker. The table below describes this option.

■ Invoke the dctrl command with the -t option to set the defaults used when no
-t option is present on the compiler, assembler, or linker command line. Note
that this sets the default for all users.

The tof:environ string given with the -t option has four parts, as follows. See
4.2 Selected Startup Module and Libraries, p.24 for examples.

Table 4-1 -t Option Values

t Target processor, a several-character code — see the Notes following the
table (sets DTARGET):

SPARClite SPARClite

SPARC8
=SPARC

SPARC

o Object format (sets DOBJECT): E for ELF

f Floating point support — one character (sets DFP):

H for Hardware floating point (SPARC only, not SPARClite).S for
Software floating point emulation provided with the compiler —
default on targets without internal floating point.

N for No floating point support (minimizes the required runtime).

4 Selecting a Target and Its Components
4.1 Selecting a Target

23

4

Notes for the Target Processor Component of the -t Option

■ In the -ttof option, “t” is the part not including the final two parts, each of
which is always a single character (the o and f parts).

■ Each target in the table which is not preceded by an “=” sign causes the
invoked tool to operate in a manner unique to that target. The unique
operating characteristics are selected via the options used to invoke the tool
plus the options which the tool extracts from the built-in configuration files.

To see the options associated with a particular -t option, invoke a compiler
driver with the -t option, the -# option (causes the driver to show the
command line used to invoke each tool), and the -Wa, -# option (causes the
assembler, when invoked by the driver, to show options which it extracts from
the configuration files).

■ This table may not be up-to-date. Invoke dctrl -t to construct any valid -t
option supported by the tools as installed, or look in SPARC.conf for a
complete list of target processor codes.

VxWorks Application Development

To build VxWorks applications, specify the appropriate execution environment
with the -t option. Usually this will be :rtp for user (real-time process) mode or

environ Execution environment (sets DENVIRON). Determines paths searched
for libraries (see 4.2 Selected Startup Module and Libraries, p.24). Two
standard values used with the libraries delivered with the tools are:

cross to include libram.a for RAM-disk input/output

simple to include libchar.a for basic character input/output

environ may also be the name of a target operating system supported
by Wind River. In this case, in addition to specifying the library search
path, the value will be used to include a special configuration file,
environ.conf in the conf subdirectory, to set options required by the
target operating system. For further details, see A.3.1 DENVIRON
Configuration Variable, p.545, VxWorks Application Development, p.23,
and the release notes and available application notes for particular
target operating systems.

environ is optional. If not given by -t, a -WDDENVIRON option, or a
DENVIRON environment variable, the value set by dctrl is used.

Table 4-1 -t Option Values (cont’d)

Wind River Compiler for SPARC
User’s Guide, 5.4

24

:vxworksx.x for kernel mode. For example, -tSPARCEN:rtp selects user mode,
while -tSPARCEN:vxworks6.2 selects VxWorks 6.2 kernel mode. For more
information, see the documentation that accompanied your VxWorks
development tools.

4.2 Selected Startup Module and Libraries

The parts of -ttof:environ option (or its equivalents as described in 4.1 Selecting a
Target, p.21) are used to construct a directory name and to select the desired startup
module and libraries per Table 4-1.

Examples:

The library archive files themselves, and the detailed mechanics for selection of the
appropriate subdirectories and libraries, are fully described in 32.2 Library
Structure, p.440.

NOTE: If you specify a VxWorks execution environment (:rtp or :vxworksx.x), the
standard C libraries linked to your application will be different from the
compiler’s native C libraries documented in this manual.

Specifying a VxWorks execution environment turns on -Xieee754-pedantic by
default.

-t Option Startup Module, Libraries

-tSPARCliteEN:simple SPARCE/crt0.o

SPARCE/simple/libc.a with SPARCEN/libcfp.a and
SPARCE/libchar.a

SPARC, ELF objects, no floating point, character
input/output

-tSPARCliteES:cross SPARCE/crt0.o

SPARCE/cross/libc.a with SPARCES/libcfp.a and
SPARCE/libram.a

SPARC, ELF objects, software floating point,
RAM-disk input/output

4 Selecting a Target and Its Components
4.3 Alternatives for Selecting a Target Configuration

25

4

Briefly, the main driver programs select the startup module and libraries by
invoking the linker with the following partial command line, using UNIX path
notation, written on multiple lines and spaced for readability, and where f is as
described above:

dld -Y P,version_path/SPARCEf/environ : version_path/SPARCEf :
version_path/SPARCE/environ : version_path/SPARCE ...

-l:crt0.o ... -lc

The -Y P option sets a list of directories. Then the -l:crt0.o option causes the linker
to look in those directories for file crt0.o, the startup file, without modification,
while the -lc option causes the linker to construct filename libc.a and look in those
directories for it.

4.3 Alternatives for Selecting a Target Configuration

There are five ways to change the target configuration. As noted at the beginning of
this chapter, the first method is preferred, especially when multiple engineers work with
multiple targets. This section is provided for backward compatibility and special
cases.

Using -t sets four configuration variables: DTARGET for the processor, DOBJECT for
the object module format, DFP for the type of floating point support, and
DENVIRON for the target execution environment.

These configuration variables are stored in version_path/conf/default.conf. A
configuration variable may be overridden by an environment variable of the same
name, or by a -t or -WD variable option on the command used to invoke the
compiler, assembler, or linker. The environment variable is checked first and then
the command line; the last instance found is used.

Change the target for a single invocation of a tool by using the -t option on the
command line; this applies to dcc, dplus, das, and dld. The -t option takes one of
the tof or tof:environ codes described in 4.1 Selecting a Target, p.21 and displayed by
the dctrl -t program (see below).

Example:

dplus -ttof -c file.cpp

Other methods involve changing or overriding four configuration variables stored
in the configuration file default.conf. (See A.3 Standard Configuration Files, p.544.)

Wind River Compiler for SPARC
User’s Guide, 5.4

26

■ The default target configuration is set and may be changed any time by using
the dctrl program with the -t option:

dctrl -t

This interactive program prompts you for the desired target processor, object
format, floating point support, and target execution environment. If you
already know the exact target configuration you want, you can skip the
interactive program by specifying the target after -t on the command line:

dctrl -ttof:environ

Upon success, dctrl displays the new default target and modifies default.conf.

■ Manually edit the default.conf configuration file to change the default settings
for any of the DTARGET (the processor), DOBJECT (object module format),
DFP (floating point support), and DENVIRON (target execution environment)
configuration variables.

■ Set any of the DTARGET, DFP, DOBJECT, and DENVIRON environment
variables. This overrides the values of the configuration variables having these
names in default.conf.

■ Use the command-line option -WD environment_variable (see 5.3.26 Define
Configuration Variable (-W Dname=value), p.42). This overrides both the values
of the variables in default.conf and any environment variables. Example:

dplus -WDDTARGET=newtarget -c file.cpp

NOTE: For additional explanation, and order of precedence when more than one
of these methods is used, See A. Configuration Files, and especially
A.2.1 Configuration Variables and Precedence, p.542.

27

PAR T II

Wind River Compiler

5 Invoking the Compiler .. 29

6 Additions to ANSI C and C++ 115

7 Embedding Assembly Code 149

8 Internal Data Representation 161

9 Calling Conventions ... 173

10 Optimization .. 181

11 The Lint Facility .. 209

12 Converting Existing Code 213

13 C++ Features and Compatibility 219

14 Locating Code and Data, Access 233

15 Use in an Embedded Environment 247

Wind River Compiler for SPARC
User’s Guide, 5.4

28

29

 5
Invoking the Compiler

5.1 The Command Line 29

5.2 Rules for Writing Command-Line Options 30

5.3 Compiler Command-Line Options 33

5.4 Compiler -X Options 48

5.5 Examples of Processing Source Files 111

5.1 The Command Line

As noted in 3. Drivers and Subprogram Flow, the compiler is best executed via one of
the driver programs as follows:

where:

dcc
dplus

Invokes the main driver program for the compiler suite. See 2.2 Accessing
Current and Other Versions of the Tools, p.14 for details on how the driver
program is found.

dcc [options] [input-files] Assumes Wind River C libraries.

dplus [options] [input-files] Assumes Wind River C++ libraries.

Wind River Compiler for SPARC
User’s Guide, 5.4

30

Both the dcc and dplus drivers are used in examples this manual. Please
substitute dcc for dplus if you are using only the C compiler.

options
Command-line options which change the behavior of the tools. See the
remainder of this chapter for details. Options and filenames may occur in any
order.

input-files
A list of pathnames, each specifying a file, separated by whitespace. The suffix
of each filename indicates to the driver which actions to take. See Table 3-1 for
details.

For example, process a single C++ file, stopping after compilation, with standard
optimization:

dplus -O -c file.cpp

The form -@name can also be used for either options or input-files. The name must
be that of an environment variable or file (a path is allowed), the contents of which
replace -@name. See A.2 How Commands, Environment Variables, and Configuration
Files Relate, p.542 for details.

5.2 Rules for Writing Command-Line Options

Same Option More Than Once

Options can come from several sources: the command line, environment variables,
configuration files, and so forth as described in A.2 How Commands, Environment
Variables, and Configuration Files Relate, p.542.

If an option appears more than once from whatever source, the final instance is
taken unless noted otherwise in the individual option descriptions in the next
sections.

5 Invoking the Compiler
5.2 Rules for Writing Command-Line Options

31

5

Command-Line Options are Case-sensitive

Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. This is true even on Windows; however filenames on Windows
remain case-insensitive as usual.

Spaces In Command-Line Options

For easier reading, command-line options may be shown with embedded spaces
in documentation, although they are not typically written this way in use. In
writing options on the command line, space is allowed only following the option
letter, not elsewhere. For example:

-D DEBUG=2

is valid, and is exactly equivalent to:

-DDEBUG=2

However,

-D DEBUG = 2

is not valid because of the spaces around the “=”.

Quoting Values

When a command-line option can take a string as a value, it does not require
quotes. For example:

-prof-feedback=rta-db -Xname-code=.code

Enclosing the value in quotes has no effect. Thus,

-DSTRING="test"

is equivalent to:

-DSTRING=test

Using “\” to escape the quotes will pass the quotes into the compiler. Given file
test.c containing:

void main() {
printf(STRING);

}

compiling with:

dcc test.c -DSTRING="test"

Wind River Compiler for SPARC
User’s Guide, 5.4

32

the printf statement becomes:

printf(test);

(and will fail because test is undefined). But compiled with:

dcc test.c -DSTRING=\"test\"

the printf statement becomes:

printf("test");

Unrecognized Options, Passing Options to the Assembler or Linker

Ordinary options beginning with a letter other than “X” and which are not listed
in this section are automatically passed by the driver to the linker. All -X options
are processed first by the compiler.

When invoking the dcc or dplus driver program, it is sometimes important to pass
an option explicitly to the assembler or linker—for example, a -X option or an
option identified by the same letter as a driver or compiler option. The driver
options -W a,arguments and -W l,arguments pass arguments to the assembler and
linker respectively.

Length Limit

The length of the command line is limited by the drivers’ 1000-byte internal buffer.
To pass longer commands to the tools, see 5.3.39 Read Command-Line Options from
File or Variable (-@name, -@@name), p.48.

The following example is written on several lines for clarity. The individual
options shown are fully documented in this chapter or in the 16.4 Assembler -X
Options, p.279 and in 24.5 Linker -X options, p.365.

dcc -D DEBUG=2 -XO
-Wa,-DDEBUG=3
-Wl,-Xdont-die
-Llibs
-WA.asm
f.c a.asm

-D DEBUG=2 -XO

The driver invokes the compiler with these options. A space is allowed after
the option letter -D.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

33

5

-Wa,-DDEBUG=3

The driver invokes the assembler with the option -DDEBUG=3, perhaps for use
in the a.asm file. Without the -Wa, the driver would have passed this option to
the compiler, resetting DEBUG to 3.

No space is allowed after the -D because it would have ended the -Wa option;
-W a, -DDEBUG=3 would also have been valid.

-Wl,-Xdont-die

The driver invokes the linker with the option -Xdont-die. Without the -Wl, the
driver would have passed this linker option -Xdont-die to the compiler.

-Llibs

This option is not recognized by the driver as a driver or compiler option, so it
is passed to the linker.

-WA.asm

Instructs the driver that files having the extension .asm are to be preprocessed
and then assembled. If this extension is a project standard, it can more
conveniently be set in user configuration file user.conf as follows (see
A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.547):

UFLAGS1=-WA.asm

f.c a.asm

An input file to be compiled (f.c) and, because of the -WaA.asm option, an
input file to be preprocessed and assembled (a.asm).

The next sections document the command-line options recognized by the driver
and compiler.

5.3 Compiler Command-Line Options

This section shows all general command-line options. New options added after
publication may also be in the most recent release notes.

Wind River Compiler for SPARC
User’s Guide, 5.4

34

5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)

-?
-h
--help

Show synopsis of commonly used compiler options. Available for other tools
(assembler, linker) as well.

-??
-h?

Show synopsis of less frequently used options.

-?W
-hW

Show synopsis of -W options (see 5.3.25 Pass Arguments to the Assembler
(-W a,arguments, -W :as:,arguments), p.42).

-?X
-hX

Show synopsis of -X options (see 5.4 Compiler -X Options, p.48).

-?Xstring
Show synopsis of -X options whose names contain the specified string. For
example, entering dcc -?Xbss returns information about -Xbss-off and
-Xbss-common-off.

5.3.2 Ignore Predefined Macros and Assertions (-A-)

-A-

Cause the preprocessor to ignore all predefined macros and assertions.

5.3.3 Define Assertion (-A assertion)

-A pred(ident1)(ident2)
Cause the assertion pred(ident) to be defined. See #assert and #unassert
Preprocessor Directives, p.118.

5.3.4 Pass Along Comments (-C)

-C

Cause the C processor to pass along all comments. Useful only in conjunction
with -E or -P.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

35

5

-C is not necessary when -Xpass-source is used to output source as comments
when generating assembly output because in that case the source code is taken
before preprocessing.

5.3.5 Stop After Assembly, Produce Object (-c)

-c

Stop after the assembly step and produce an object file with default file
extension .o (unless modified by -o, see 5.3.18 Specify Output File (-o file), p.40).

5.3.6 Define Preprocessor Macro Name (-D name=definition)

-D name [=definition]
Define the preprocessor macro name as if by the #define directive. If no
definition is given, the value 1 is used.

Macros may be either function-like macros or object-like macros. Function-like
macros take arguments; this sample macro converts inches to centimeters:

dcc -DIN_TO_CM(x)=((x)*2.54) foo.c

Note that, to prevent unexpected results, both the argument and the entire
macro expression should be enclosed in parentheses.

Object macros do not take arguments:

dcc -DYEAR_LENGTH=366 bar.c

See 5.2 Rules for Writing Command-Line Options, p.30, for rules about using
spaces, quotations, and the like on the command line.

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)

-E

Run only the preprocessor on the named files and send the output to the
standard output. All preprocessor directives are removed except for
line-number directives used by the compiler to generate line-number
information. (To suppress line-number information, use

NOTE: The preprocessor may be used with any language supported by Wind
River.

Wind River Compiler for SPARC
User’s Guide, 5.4

36

-Xpreprocessor-lineno-off.) The source files do not require any particular
suffix.

When -E is invoked, the preprocessor implicitly includes the lpragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
lpragma.h, see 5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off),
p.63.

See also 5.3.19 Stop After Preprocessor, Produce Source (-P), p.41.

5.3.8 Change Diagnostic Severity Level (-e)

-esn[,n...]
For each of one or more diagnostic message numbers n in the
comma-separated list, change the severity level of the message to s where s is
one of:

i

Information, equivalent to ignore.

w

Warning.

e

Error (continue compilation).

f

Fatal error (terminate immediately).

Each diagnostic message has the form:

"file", line #: severity-level (compiler:error #): message

Example:

"err1.c", line 2: warning (dcc:1025): division by zero

To raise the severity level of this message from “warning” to “error”, invoke the
compiler with the option -ee1025. To reduce the level to “ignore”, use -ei1025.

NOTE: Some messages have a minimum severity level. The severity level of a
message may be raised above its minimum but not lowered below it. Attempting
to do so will generate warning 1641.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

37

5
5.3.9 Generate Symbolic Debugger Information (-g)

The several -gn options enable generation of varying levels of debugging
information. If optimization options are also present (-O or -XO), optimization will
be affected as described.

-g

Same as -g2.

-g0

Do not generate symbolic debugger information. This is the default. No effect
on optimization.

-g1

Generate symbolic debugger information, but leave out line number
information. No effect on optimization.

-g2

Generate symbolic debugger information.

Do most target-independent optimizations, but do not do the following
optimizations, since most object formats have no way to describe them.
Hexadecimal numbers indicate the mask for -Xkill-opt (5.4.73 Disable
Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask), p.85).

■ Function inlining (Inlining (0x4), p.191)
■ Structure member optimization (Structure Members to Registers (0x10),

p.193)
■ Split optimization (Variable Live Range Optimization (0x400), p.195)
■ Complex Branch Optimization (0x1000), p.196
■ Loop Count-Down Optimization (0x4000), p.197
■ Minor Transformations to Simplify Code Generation (0x80000), p.198
■ Live-Variable Analysis (0x40000000), p.201

Also, disable most target-dependent optimizations: option -g2 also disables
basic reordering and all peephole optimizations (see 203).

See 10. Optimization for details on these optimizations (the optimizations are
ordered by the hex values in that chapter).

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.4.86 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.92.

Wind River Compiler for SPARC
User’s Guide, 5.4

38

See also -Xoptimized-debug-off (5.4.92 Disable Most Optimizations With -g
(-Xoptimized-debug-...), p.95) on how to disable optimizations which interfere
with debugging.

g3

Generate symbolic debugger information and do all optimizations. Highly
optimized code can be difficult to debug. For example, there is no way to break
on inlined functions (except at the assembly level). Hence, when debugging is
required, -g2 is usually a better choice.

5.3.10 Print Pathnames of Header Files (-H)

-H

Print the pathnames of all header files to the standard error output.

5.3.11 Specify Directory for Header Files (-I dir)

-I dir
Add dir to the list of directories to be searched for header files. A full pathname
is allowed. More than one -I option can be given.

For an #include “file” directive, search for the file in the following locations:

■ First, the directory of the file containing the include directive. Thus, if an
#include directive includes a path, that path defines the current directory
for #include directives in the included file. Example (using UNIX
notation):

Assume file f1.c contains:

#include "p1/h1.h"
#include "h3.h"

and file h1.h contains:

#include "h2.h"

The search for h2.h will begin in directory p1; the search for h3.h will begin
in the directory containing f1.c.

NOTE: The -gn options may also be specified at the beginning of a source files
using:

#pragma option -gn

5 Invoking the Compiler
5.3 Compiler Command-Line Options

39

5

■ Second, directories given by the -I dir option, in the order encountered.

■ Third, the directory given by either:

any -Y I option appearing prior to the -I option

– or –

version_path/include (UNIX)
version_path\include (Windows)

(The -Y I option effectively replaces the version_path directory.)

For an #include <file> directive, search only the second and third locations.

5.3.12 Control Search for User-Defined Header Files (-I@)

-I@

C only. Search for user-defined header files (those enclosed in double quotes
(") in the order specified only by -I options (modified by -Y I options if any).
That is, do not search the current directory by default; search the current
directory only when an -I@ option is encountered. Example:

dcc -Iabc -I@ -Idef file.c

will result in a search order of:

the directory abc
the current directory
the directory def

5.3.13 Modify Header File Processing (-i file1=file2)

-i file1=file2
Substitute file2 for file1 in an #include directive.

-i file1=
Ignore any #include directive for file1.

-i =file2
Include file2 before processing any other source file.

The -i option is disabled by -P.

Wind River Compiler for SPARC
User’s Guide, 5.4

40

5.3.14 Specify Directory For -l Search List (-L dir)

This is a linker option. See Specify Directory for -l search List (-L dir), p.361.

5.3.15 Specify Library or Process File (-l name)

This is a linker option. See Specify Library or File to Process (-lname, -l:filename), p.361.

5.3.16 Specify Pathname of Target-Spec File (-M target-spec)

-M target-spec

Specify the pathname of the target-spec file to the compiler (see target.cd in
Table 2-2). This file contains the target description and is read by the compiler
at startup. If the -M option is set more than once, the final setting is used.

5.3.17 Optimize Code (-O)

-O
Optimize code. Either this or -XO must be present to enable optimization and
to invoke the reorder program. See the -XO option in 5.4.89 Enable Extra
Optimizations (-XO), p.93 for the difference between these options and
10. Optimization for more information about optimizations.

This option can also be specified at the beginning of a source file using:

#pragma option -O

5.3.18 Specify Output File (-o file)

-o file
Output to the given file instead of the default. This option works with the -P,
-S and -c options as well as when none of these are specified. When compiling
file.ext the following filenames are used by default if the -o option is not given:

NOTE: This option is primarily for use by Wind River.

-P file.i
-S file.s
-c file.o

5 Invoking the Compiler
5.3 Compiler Command-Line Options

41

5

5.3.19 Stop After Preprocessor, Produce Source (-P)

-P

Stop after the preprocessor step and produce a source file with default file
extension .i (unless modified by -o).

Unlike with the -E option, the output will not contain any preprocessing
directives, and the output does not go to standard out (see -o for the output
filename). The source files do not require any particular suffix.

When this option is used, the compiler driver does not invoke the assembler
or linker. Thus, any switches intended for the assembler or linker must be
given separately on command lines which invoke them. The -P option also
disables -i.

When -P is invoked, the preprocessor implicitly includes the lpragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
lpragma.h, see 5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off),
p.63.

5.3.20 Stop After Compilation, Produce Assembly (-S)

-S

Stop after the compilation step and produce an assembly source code file with
the default file extension .s (unless modified by -o). If
-Xshow-configuration=1 is enabled, the assembly file contains a list of options
in effect during compilation.

5.3.21 Select the Target Processor (-t tof:environ)

-t tof:environ
Select the target processor with t (a several character code), the object format
with o (a one letter code), the floating point support with f (H for hardware, S
for software, and N for none), and libraries suitable for the target environment
with environ.

To determine the proper tof, execute dctrl -t to interactively display all valid
combinations. See also 4.2 Selected Startup Module and Libraries, p.24.

not -P, -S, or -c a.out

Wind River Compiler for SPARC
User’s Guide, 5.4

42

5.3.22 Undefine Preprocessor Macro Name (-U name)

-U name

Undefine the preprocessor macro name as if by the #undef directive.

5.3.23 Display Current Version Number (-V, -VV)

-V

Display the current version number of the driver.

-VV

Display the current version number of the driver and the version number of all
subprograms. Do not complete the compilation.

5.3.24 Run Driver in Verbose Mode (-v)

-v

Run the main drive program in verbose mode, printing a message as each
subprogram is started.

5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)

-W a,arg1[,arg2...]
-W :as:,arg1[,arg2...]

Pass the arguments to the assembler. Example:

-Wa,-l or -W:as:,-l

Pass the option “-l” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.26 Define Configuration Variable (-W Dname=value)

-W Dname=value
Set a configuration variable equal to a value for use during configuration file
processing.

More than one -WD option can be used to set several variables. The effect is as
if an assignment statement for each such -WD variable had been added to the
beginning of the main configuration file.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

43

5

5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)

-W l,arg1[,arg2...]
-W :ld:,arg1[,arg2...]

Pass the arguments to the linker.

Any option which is not recognized by the driver or compiler is automatically
passed to the linker. -Wl may be used to pass options to third-party linkers in
cases where such an option resembles a driver or compiler option. See
5.4.51 Suppress Assembler and Linker Parameters (-Xforeign-as-ld), p.76. Example:

-Wl,-m or -W:ld:,-m

Pass the option -m to the linker to get a link map.

5.3.28 Specify Linker Command File (-W mfile)

-W mfile
Use the given linker command file instead of the default
version_path/conf/default.dld.

5.3.29 Specify Startup Module (-W sfile)

-W sfile
Use the given object file instead of the default startup file (crt0.o). Additional
object files to be loaded along with the startup file and before any other files
can be given separated by commas.

NOTE: To suppress use of the default.lnk file, specify just -Wm with no file on
the command line.

NOTE: To provide a crt0.s file or substitute to be assembled on the command
line, or to use an existing non-default crt0.o file or substitute, specify just -Ws
with no name to suppress use of the default.

Wind River Compiler for SPARC
User’s Guide, 5.4

44

5.3.30 Substitute Program or File for Default (-W xfile)

-W xfile
Use the given program or file instead of the default program or file for the case
indicated by x. Some cases take the form -W xname=value. x is one of the
following:

:as:, a
The assembler.

C
The configuration file to be used. The default is dtools.conf
(DTOOLS.CON for Windows) in the version_path/conf subdirectory.

:cpp:, p
The C preprocessor. The preprocessor is incorporated in the compiler, so
this becomes a synonym for 0.

:c:
The C compiler.

:c++:
The C++ compiler.

c
Pass the string following the -Wc exactly as is as an option to the linker.
More than one option can be given following -Wc, separated by commas.
For example, -Wc-lc,-lproj would cause the linker to search for missing
symbols in libraries libc.a and libproj.a.

The linker -l option is the more usual way to specify libraries.

D
See 5.3.26 Define Configuration Variable (-W Dname=value), p.42.

d
The C++ library. The default is -ld. See “c” for the meaning of -ld and
additional rules.

:ld:, l
The linker.

L
The object converter; will execute after the linker.

m
See 5.3.28 Specify Linker Command File (-W mfile), p.43.

NOTE: Except for the common cases -W m and -W s documented above, this
option is primarily for use by Wind River.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

45

5

s
See 5.3.29 Specify Startup Module (-W sfile), p.43.
The compiler implied by the extension of the source file.

1
The reorder program. Specifying -W1 with no substitute program name
will disable the reorder program.

2 - 6
Other filter programs. -W1 and -W2 execute if -O or -XO is given and
process the output from the compiler. -W3 and -W4 also process the output
from the compiler. -W5 and -W6 process the input to the assembler.
Example:

-W:ld:/usr/lib/dcc/3.6e/bin/dld

Use an old version of the linker.

5.3.31 Pass Arguments to Subprogram (-W x,arguments)

-W x,arg1[,arg2...]
Pass the arguments to the subprogram designated by x. x is one of the
following:

:cpp:, p
The preprocessor. The preprocessor is incorporated in the compiler, so this
becomes a synonym for 0.

0
The compiler implied by the extension of the source file.

:c:
The C compiler.

:c++:
The C++ compiler.

a, :as:
The assembler. See 5.3.25 Pass Arguments to the Assembler (-W a,arguments,
-W :as:,arguments), p.42.

l, :ld:
The linker. See 5.3.27 Pass Arguments to Linker (-W l,arguments, -W
:ld:,arguments), p.43.

L
The object converter. Usually not implemented. If given, it will execute
after the linker.

l

Wind River Compiler for SPARC
User’s Guide, 5.4

46

The reorder program.

2 - 6
Other filter programs; usually not implemented. -W1 and -W2 are only
executed if -O or -XO is given. They process the output from the compiler.
-W3 and -W4 are always executed if given and process the output from the
compiler. -W5 and -W6 process the input to the assembler.

Example:

-W:as:,-l or -Wa,-l

Pass the option “-l” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.32 Associate Source File Extension (-W x.ext)

-W x.ext
Associate a source file extension with a tool; that is, indicate to the main driver
program dcc or dplus which tool should be invoked for an input file with a
particular extension. ext specifies the extension and x specifies a tool, as
follows:

0
The compiler implied by the extension of the source file.

:c:
The C compiler.

:c++:
The C++ compiler.

:as: a
The assembler.

:pas:, A
Preprocessor and assembler: both the preprocessor and assembler will be
applied to the source. Allows use of preprocessor directives with assembly
language.

Example:

-W:as:.asm

Specify that file.asm is an assembly source file.

5 Invoking the Compiler
5.3 Compiler Command-Line Options

47

5

5.3.33 Suppress All Compiler Warnings (-w)

-w

Suppress all compiler warnings. (Does not apply to assembler or linker.)

5.3.34 Set Detailed Compiler Control Options (-X option)

See 5.4 Compiler -X Options, p.48.

5.3.35 Specify Default Header File Search Path (-Y I,dir)

-Y I,dir
Use dir as the default directory to search for header files specified with the -I
option. A full pathname is allowed. Must occur prior to a -I option to be
effective for that option.

5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)

These are linker options. See Specify Search Directories for -l (-Y L, -Y P, -Y U), p.364.

5.3.37 Specify Search Directory for crt0.o (-Y S,dir)

Use dir as the default directory to search for crt0.o. This option is provided as a
convenience for older makefiles; users should use the -W sfile option instead, as it
enables you to specify both the search directory and the name of the startup file.
See 5.3.29 Specify Startup Module (-W sfile), p.43.

5.3.38 Print Subprograms With Arguments (-#, -##, -###)

-#

Print subprogram command lines with arguments as executed.

-##

Print subprogram command line with arguments without actually executing
them.

Wind River Compiler for SPARC
User’s Guide, 5.4

48

-###

Print subprogram command lines with arguments inside quotes without
executing them.

5.3.39 Read Command-Line Options from File or Variable (-@name, -@@name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the driver first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then the driver tries to open a file with
given name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the driver
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@O=file
Redirect any output to standard output to the given file.
Use of “+” instead of “=” will append the output to the file.

5.4 Compiler -X Options

Compiler command-line -X options provide fine control over many aspects of the
compilation process when behavior other than the default is needed.

Most -X options can be set either by name (-Xname) or by number (-Xn). Options
can be set to a value m, given in decimal, octal (leading 0), or hexadecimal (leading
0x), by using an equal sign: -Xname=m or -Xn=m. Some options can be set to an
unquoted string, e.g. -Xfeedback=file.

5 Invoking the Compiler
5.4 Compiler -X Options

49

5

Many options have multiple names corresponding to different values. For
example, -Xchar-signed is equivalent to -X23=0, and -Xchar-unsigned is
equivalent to -X23=1. Please note that if a value is provided, it is always dominant,
regardless of which name is used. Thus, -Xchar-signed=1 is equivalent -X23=1,
which is equivalent to -Xchar-unsigned. Internally, the name is translated to its
number (23 in this case), and then the value is assigned regardless of which name
was used.

5.4.1 Option Defaults

If an option is not provided, it defaults to a value of 0 unless otherwise stated. If an
option which takes a value is provided without one, then the value 1 is used unless
otherwise stated. Therefore, the following three forms are all equivalent:

-Xtest-at-top -X6 -X6=1

However, if neither option -Xtest-at-top nor -X6 had been given, the value of option
-X6 would default to 0, which is equivalent to -Xtest-at-bottom.

To turn off an option which is on by default, or which was set using an
environment variable or -@ option, and for which there is no name for the “=0”
case, set it to zero: -Xname=0.

To determine the default for an option, compile a test module without the option
using the -S and -Xshow-configuration=1 options and examine the resulting .s
assembly language file. All -X options used are given in numeric form near the
beginning of the file. An option not present defaults to 0.

G. Compiler -X Options Numeric List lists all options having numeric equivalents in
numeric order.

-X options can also be specified at the beginning of a source file using:

#pragma option -X...

The remainder of this section shows all general -X options in both forms (name and
number).

As noted above, the -X options used for a compilation are given as comments in
the assembly listing in numeric form. These include both options specified by the
user and also some options generated by the compiler. Some of the latter may be
undocumented and are present for use by Customer Support.

Wind River Compiler for SPARC
User’s Guide, 5.4

50

5.4.2 Compiler -X Options by Function

Below is a list of functional groups of -X options. This is followed by the -X options
in each functional group.

■ C++, p.55
■ Checking and Profiling, p.50
■ Debugging, p.50
■ Diagnostic and Lint, p.51
■ Driver, p.51
■ Instruction, p.52
■ Memory, p.52
■ Optimization, p.52
■ Output, p.53
■ Precompiled Headers, p.54
■ Sections, p.54
■ Syntax, p.54
■ Type, p.55

Checking and Profiling

■ 5.4.10 Insert Profiling Code (-Xblock-count), p.60

■ 5.4.47 Optimize Using Profile Data (-Xfeedback=file), p.74

■ 5.4.48 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom), p.75

■ 5.4.106 Generate Code for the Run-Time Error Checker (-Xrtc=mask), p.101

Debugging

■ 5.4.30 Align .debug Sections (-Xdebug-align=n), p.67

■ 5.4.31 Select DWARF Format (-Xdebug-dwarf...), p.67

■ 5.4.32 Generate Debug Information for Inlined Functions (-Xdebug-inline-on), p.68

■ 5.4.33 Emit Debug Information for Unused Local Variables (-Xdebug-local-all), p.68

■ 5.4.34 Generate Local CIE for Each Unit (-Xdebug-local-cie), p.68

■ 5.4.35 Disable debugging information Extensions (-Xdebug-mode=mask), p.68

■ 5.4.36 Disable Debug Information Optimization (-Xdebug-struct-...), p.69

■ 5.4.55 Include Filename Path in Debug Information (-Xfull-pathname), p.78

■ 5.4.63 Initialize Local Variables (-Xinit-locals=mask), p.81

5 Invoking the Compiler
5.4 Compiler -X Options

51

5

■ 5.4.66 Define Initial Value for -Xinit-locals (-Xinit-value=n), p.82

■ 5.4.92 Disable Most Optimizations With -g (-Xoptimized-debug-...), p.95

■ 5.4.116 Enable Stack Checking (-Xstack-probe), p.104

Diagnostic and Lint

■ 5.4.40 Control Use of Type “double” (-Xdouble...), p.70

■ 5.4.50 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes), p.76

■ 5.4.75 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask), p.86

■ 5.4.80 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn), p.88

■ 5.4.86 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.92

■ 5.4.117 Diagnose Static Initialization Using Address (-Xstatic-addr-...), p.104

■ 5.4.119 Buffer stderr (-Xstderr-fully-buffered), p.105

■ 5.4.120 Terminate Compilation on Warning (-Xstop-on-warning), p.105

■ 5.4.124 Warn on Large Structure (-Xstruct-arg-warning=n), p.106

■ 5.4.127 Suppress Warnings (-Xsuppress-warnings), p.107

Driver

■ 5.4.16 Use Old C++ Compiler (-Xc++-old), p.62

■ 5.4.51 Suppress Assembler and Linker Parameters (-Xforeign-as-ld), p.76

■ 5.4.56 Control GNU Option Translator (-Xgcc-options-...), p.78

■ 5.4.62 Ignore Missing Include Files (-Xincfile-missing-ignore), p.80

■ 5.4.71 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file), p.84

■ 5.4.81 Show Make Rules (-Xmake-dependency), p.88

■ 5.4.82 Specify Dependency Name or Output File (-Xmake-dependency-...), p.90

■ 5.4.94 Output Source as Comments (-Xpass-source), p.95

■ 5.4.98 Preprocess Assembly Files (-Xpreprocess-assembly), p.97

■ 5.4.100 Use Old Preprocessor (-Xpreprocessor-old), p.97

■ 5.4.113 Show Target (-Xshow-target), p.103

Wind River Compiler for SPARC
User’s Guide, 5.4

52

Instruction

■ 5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore), p.56

■ 5.4.69 Enable Intrinsic Functions (-Xintrinsic-mask), p.83

■ 5.4.115 Select Software Floating Point Emulation (-Xsoft-float), p.104

Memory

■ 5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n), p.57

■ 5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n), p.57

■ 5.4.7 Specify Minimum Array Alignment (-Xarray-align-min), p.58

■ 5.4.30 Align .debug Sections (-Xdebug-align=n), p.67

■ 5.4.41 Generate Initializers for Static Variables (-Xdynamic-init), p.71

■ 5.4.57 Treat All Global Variables as Volatile (-Xglobals-volatile), p.79

■ 5.4.64 Control Generation of Initialization and Finalization Sections (-Xinit-section),
p.81

■ 5.4.65 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri), p.82

■ 5.4.84 Set Maximum Structure Member Alignment (-Xmember-max-align=n), p.91

■ 5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.91

■ 5.4.118 Treat All Static Variables as Volatile (-Xstatics-volatile), p.104

■ 5.4.96 Treat All Pointer Accesses As Volatile (-Xpointers-volatile), p.96

■ 5.4.123 Align Strings on n-byte Boundaries (-Xstring-align=n), p.106

■ 5.4.126 Set Minimum Structure Member Alignment (-Xstruct-min-align=n), p.107

Optimization

■ 5.4.6 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased), p.58

■ 5.4.17 Optimize Global Assignments in Conditionals (-Xcga-min-use), p.62

■ 5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off), p.63

■ 5.4.22 Enable Cross-module Optimization (-Xcmo-...), p.64

■ 5.4.44 Control Inlining Expansion (-Xexplicit-inline-factor), p.73

5 Invoking the Compiler
5.4 Compiler -X Options

53

5

■ 5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n), p.82

■ 5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.83

■ 5.4.73 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask),
p.85

■ 5.4.78 Do Not Assign Locals to Registers (-Xlocals-on-stack), p.88

■ 5.4.89 Enable Extra Optimizations (-XO), p.93

■ 5.4.91 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n), p.94

■ 5.4.93 Specify Optimization Buffer Size (-Xparse-size), p.95

■ 5.4.105 Restart Optimization From Scratch (-Xrestart), p.100

■ 5.4.114 Optimize for Size Rather Than Speed (-Xsize-opt), p.103

■ 5.4.125 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...), p.106

■ 5.4.132 Specify Loop Test Location (-Xtest-at-...), p.108

■ 5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.110

Output

■ 5.4.14 Control Allocation of Uninitialized Variables in “COMMON” and bss
Sections (-Xbss-off, -Xbss-common-off), p.61

■ 5.4.28 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols),
p.66

■ 5.4.54 Generate .frame_info for C functions (-Xframe-info), p.78

■ 5.4.58 Do Not Pass #ident Strings (-Xident-off), p.79

■ 5.4.62 Ignore Missing Include Files (-Xincfile-missing-ignore), p.80

■ 5.4.81 Show Make Rules (-Xmake-dependency), p.88

■ 5.4.82 Specify Dependency Name or Output File (-Xmake-dependency-...), p.90

■ 5.4.94 Output Source as Comments (-Xpass-source), p.95

■ 5.4.99 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off),
p.97

■ 5.4.110 Disable Generation of Priority Section Names (-Xsect-pri-...), p.102

■ 5.4.109 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p.102

Wind River Compiler for SPARC
User’s Guide, 5.4

54

■ 5.4.111 Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n), p.103

■ 5.4.134 Append Underscore to Identifier (-Xunderscore-...), p.109

Precompiled Headers

■ 5.4.95 Use Precompiled Headers (-Xpch-...), p.96

Sections

■ 5.4.14 Control Allocation of Uninitialized Variables in “COMMON” and bss
Sections (-Xbss-off, -Xbss-common-off), p.61

■ 5.4.27 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data),
p.66

■ 5.4.30 Align .debug Sections (-Xdebug-align=n), p.67

■ 5.4.76 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n),
p.87

■ 5.4.77 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only), p.88

■ 5.4.87 Specify Section Name (-Xname-...), p.92

■ 5.4.97 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...),
p.96

■ 5.4.108 Pad Sections for Optimized Loading (-Xsection-pad), p.101

Syntax

■ 5.4.13 Parse Initial Values Bottom-up (-Xbottom-up-init), p.60

■ 5.4.29 Suppress Preprocessor Spacing (-Xcpp-no-space), p.67

■ 5.4.23 Use the ‘new’ Compiler Frontend (-Xcnew), p.64

■ 5.4.37 Specify C Dialect (-Xdialect-...), p.69

■ 5.4.38 Disable Digraphs (-Xdigraphs-...), p.70

■ 5.4.39 Allow Dollar Signs in Identifiers (-Xdollar-in-ident), p.70

■ 5.4.61 Treat #include As #import (-Ximport), p.80

■ 5.4.69 Enable Intrinsic Functions (-Xintrinsic-mask), p.83

■ 5.4.72 Enable Extended Keywords (-Xkeywords=mask), p.84

5 Invoking the Compiler
5.4 Compiler -X Options

55

5

■ 5.4.79 Expand Macros in Pragmas (-Xmacro-in-pragma), p.88

■ 5.4.100 Use Old Preprocessor (-Xpreprocessor-old), p.97

■ 5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.105

■ 5.4.128 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl), p.107

■ 5.4.133 Truncate All Identifiers After m Characters (-Xtruncate), p.109

■ 5.4.137 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok), p.111

Type

■ 5.4.8 Change bit-field type to reduce structure size (-Xbit-fields-compress-...), p.58

■ 5.4.9 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned), p.59

■ 5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.63

■ 5.4.18 Generate Code Using ASCII Character Set (-Xcharset-ascii), p.62

■ 5.4.40 Control Use of Type “double” (-Xdouble...), p.70

■ 5.4.42 Specify enum Type (-Xenum-is-...), p.71

■ 5.4.45 Force Precision of Real Arguments (-Xextend-args), p.73

■ 5.4.46 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic), p.74

■ 5.4.90 Use Old Inline Assembly Casting(-Xold-inline-asm-casting), p.94

■ 5.4.52 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only), p.77

■ 5.4.53 Specify Minimum Floating Point Precision (-Xfp-min-prec...), p.77

■ 5.4.59 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic), p.79

■ 5.4.122 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions), p.105

■ 5.4.138 Define Type for wchar (-Xwchar=n), p.111

■ 5.4.139 Control Use of wchar_t Keyword (-Xwchar_t-...), p.111

C++

■ 5.4.11 Set Type for Bool (-Xbool-is-...), p.60

■ 5.4.12 Control Use of Bool, True, and False Keywords (-Xbool-...), p.60

■ 5.4.15 Use Abridged C++ Libraries (-Xc++-abr), p.61

Wind River Compiler for SPARC
User’s Guide, 5.4

56

■ 5.4.16 Use Old C++ Compiler (-Xc++-old), p.62

■ 5.4.20 Use Old for Scope Rules (-Xclass-type-name-visible), p.63

■ 5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.65

■ 5.4.25 Maintain Project-wide COMDAT List (-Xcomdat-info-file), p.65

■ 5.4.38 Disable Digraphs (-Xdigraphs-...), p.70

■ 5.4.43 Enable Exceptions (-Xexceptions-...), p.72

■ 5.4.49 Use Old for Scope Rules (-Xfor-init-scope-...), p.76

■ 5.4.54 Generate .frame_info for C functions (-Xframe-info), p.78

■ 5.4.60 Control Template Instantiation (-Ximplicit-templates...), p.80

■ 5.4.70 Set longjmp Buffer Size (-Xjmpbuf-size=n), p.84

■ 5.4.83 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n), p.90

■ 5.4.88 Disable C++ Keywords namespace and Using (-Xnamespace-...), p.93

■ 5.4.95 Use Precompiled Headers (-Xpch-...), p.96

■ 5.4.107 Enable Run-time Type Information (-Xrtti, -Xrtti-off), p.101

■ 5.4.112 Print Instantiations (-Xshow-inst), p.103

■ 5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.105

■ 5.4.130 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.108

■ 5.4.136 Runtime Declarations in Standard Namespace (-Xusing-std-...), p.110

■ 5.4.138 Define Type for wchar (-Xwchar=n), p.111

■ 5.4.139 Control Use of wchar_t Keyword (-Xwchar_t-...), p.111

The sections that follow present -X options in alphabetic order.

5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore)

-Xadd-underscore
-X34

Prefix an underscore to function names only. Concatenation of underscore is
useful when compiling libraries, to avoid using the same namespace as user
programs.

5 Invoking the Compiler
5.4 Compiler -X Options

57

5

5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n)

-Xalign-functions=n
-X54=n

Align each function on an address boundary divisible by n (which must be
greater than or equal to the default alignment for the target microprocessor). If
n is absent, the option has no effect. This option is designed for targets having
some type of burst-mode memory access, for example a target that can fetch
multiple instructions if aligned on a 32-byte boundary.

5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)

-Xalign-min=n
-X93=n

Set the minimum alignment required by the target processor to access a
multi-byte value (e.g., short, long) in memory as an atomic unit, that is, in a
single memory access. This option is set automatically by the compiler based
on the target processor and should seldom be set by the user.

Technical details: if the target processor can access objects at any alignment
with a single instruction, n is set to 1. For a processor which requires that
multi-byte objects be aligned on even-byte boundaries for direct access, n is set
to 2. Unaligned objects on such a processor must be accessed byte-by-byte. For
a processor that requires 4-byte objects be on a 4-byte boundary, n is set to 4
(2-byte objects aligned on 2-byte boundaries can still be accessed with a single
instruction).

The default value of n equals the maximum alignment restriction as given in
the manufacturer’s documentation for the processor. Note that it may differ
among processors in a family. As of this writing, the default is 8 for SPARC.

NOTE: This option does not change how data is aligned; it changes the
instructions which the compiler generates to access multi-byte unaligned
objects.

NOTE: If -Xalign-min is > 1, in a packed structure (a) bit-fields members are
not allowed, (b) volatile members will not be accessed atomically, and (c)
compound operators (for example, “+=”) cannot be used with volatile
members. See Restrictions and Additional Information, p.128 for details.

Wind River Compiler for SPARC
User’s Guide, 5.4

58

Synonym: -Xmin-align=n; also, -Xunaligned-slow is a synonym for
-Xalign-min=8.

5.4.6 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)

-Xargs-not-aliased
-X65

Assume that pointer arguments to a function are not aliased with each other,
nor with any global data. This enables greater optimization. Example:

int g;

func(int* a1, int* a2);

void main () {
int i = 1;
int j = 2;

func(&i,&j); /* OK */
func(&i,&i); /* not OK */
func(&i,&g); /* not OK */

}

See also no_alias Pragma, p.124.

5.4.7 Specify Minimum Array Alignment (-Xarray-align-min)

-Xarray-align-min=n
-X161=n

Align arrays on the larger of n or the default alignment for the type of the array
elements. n should be a power of 2. When this option is used, values given for
-Xstring-align are ignored.

5.4.8 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)

-Xbit-fields-compress
-X135=1
-Xbit-fields-compress-off
-X135=0

C only. Change the type of a bit-field if possible to generate more compact
storage. The default is off.

The algorithm is as follows:

Examine all structure members before assigning offsets. Record:

5 Invoking the Compiler
5.4 Compiler -X Options

59

5

BitFieldMaxAlign = maximum alignment of any bit-field.

NonBitFieldMaxAlign = maximum alignment of any non bit-field.

WidthMaxBitField = number bits in largest bit-field.

IF BitFieldMaxAlign > NonBitFieldMaxAlign THEN

NewType = unsigned integer type having the same alignment as that of
the NonBitFieldMaxAlign.

IF WidthMaxBitField <= bits in NewType THEN

Change the type of each unsigned bit-field larger than NewType to
NewType and each signed bit-field larger than NewType to signed
NewType.

This option is intended for legacy code. The same effect may be achieved in
new code by using the smallest types having the required alignments.

Synonym: -Xbitfield-compress.

5.4.9 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)

-Xbit-fields-signed
-X12=0

C only. Handle bit-fields without the signed or unsigned keyword as signed
integers.

Synonym: -Xsigned-bitfields.

-Xbit-fields-unsigned
-X12

C only. Treat bit-fields without the signed or unsigned keyword as unsigned
integers. This is the default setting.

Synonym: -Xunsigned-bitfields.

See also 5.4.122 Ignore Sign When Promoting Bit-fields
(-Xstrict-bitfield-promotions), p.105.

Wind River Compiler for SPARC
User’s Guide, 5.4

60

5.4.10 Insert Profiling Code (-Xblock-count)

-Xblock-count
-X24

Insert code in the compiled program to keep track of the number of times each
basic block (the code between labels and branches) is executed. See
28. D-BCNT Profiling Basic Block Counter for details, and also 5.4.47 Optimize
Using Profile Data (-Xfeedback=file), p.74.

5.4.11 Set Type for Bool (-Xbool-is-...)

-Xbool-is-char
-X119=44

Implement type bool as a plain char. This is the default.

-Xbool-is-int
-X119=4

C++ only. Implement type bool as a signed int. This may produce less code on
some architectures but will require more data space.

5.4.12 Control Use of Bool, True, and False Keywords (-Xbool-...)

-Xbool-on
-X213=0

Enable the bool, true, and false keywords. This is the default.

-Xbool-off
-X213

C++ only. Disable the bool, true, and false keywords.

Synonym: -Xno-bool.

5.4.13 Parse Initial Values Bottom-up (-Xbottom-up-init)

-Xbottom-up-init
-X21

C only. Both K&R and ANSI C specify that structure and array initializations
with missing braces should be parsed top-down, however some C compilers
parse these bottom-up instead. Example:

5 Invoking the Compiler
5.4 Compiler -X Options

61

5

struct z { int a, b; };
struct x {

struct z z1[2];
struct z z2[2];

} x = { {1,2},{3,4} };

Should be parsed according to ANSI & K&R as:

{ { {1,2},{0,0} } , { {3,4},{0,0} } };

-Xbottom-up-init causes bottom-up parsing:

{ {1,2},{3,4} } , { {0,0},{0,0} } };

This option is set when -Xdialect-pcc is set.

5.4.14 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections
(-Xbss-off, -Xbss-common-off)

-Xbss-common-off
-X83=3

Disable use of the “COMMON” feature so that the compiler or assembler will
allocate each uninitialized public variable in the .bss section for the module
defining it, and the linker will require exactly one definition of each public
variable. See 23.4 COMMON Sections, p.348.

Synonym: -Xno-common.

-Xbss-off
-X83=1

Put all variables in the .data section instead of allocating uninitialized
variables in the .bss section.

Synonym: -Xno-bss.

5.4.15 Use Abridged C++ Libraries (-Xc++-abr)

-Xc++-abr

Link to the abridged C++ libraries. Automatically disables exception-handling
(-Xexceptions=off). See 13.2 C++ Standard Libraries, p.220.

Wind River Compiler for SPARC
User’s Guide, 5.4

62

5.4.16 Use Old C++ Compiler (-Xc++-old)

-Xc++-old

Invoke the older C++ compiler that preceded version 5.0. Useful for compiling
legacy code that is not ANSI-compliant. See Older Versions of the Compiler,
p.214.

5.4.17 Optimize Global Assignments in Conditionals (-Xcga-min-use)

-Xcga-min-use=n
When a global variable is accessed repeatedly within a conditional statement,
the compiler can replace the global variable with a temporary local copy
(which can be stored in a register), then reassign the local variable to the global
variable when the conditional finishes execution.

If conditional global assignment is enabled, the compiler determines whether
to copy a global variable by estimating the number of times the global variable
is accessed within the conditional block at runtime. (The exact number of
accesses may depend on factors, such as the value of a loop counter, that
cannot be known at compile time.) If the global variable is accessed n or more
times, the compiler performs the optimization. The default value of n is 20.

Conditional global assignment is enabled by default (-Xcga-min-use=20)
whenever optimizations are enabled (-O or -XO). To disable conditional global
assignment, set n to 0 (-Xcga-min-use=0). Conditional global assignment is
never performed on variables declared or treated as volatile (see 5.4.85 Treat
All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.91) and should be
used with caution in multi threaded environments.

5.4.18 Generate Code Using ASCII Character Set (-Xcharset-ascii)

-Xcharset-ascii
-X60=1

Generate code using the ASCII character set. All strings and character
constants are converted to ASCII. The default is to use the same character
system as the host machine.

Synonym: -Xascii-charset.

5 Invoking the Compiler
5.4 Compiler -X Options

63

5

5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)

-Xchar-signed
-X23=0

Treat variables declared char without either of the keywords signed or
unsigned as signed characters.

Synonym: -Xsigned-char.

-Xchar-unsigned
-X23

Treat variables declared char without either of the keywords signed or
unsigned as unsigned characters.

Synonym: -Xunsigned-char.

The default setting is signed. See also Table 8-1 and __SIGNED_CHARS__ in
6.1 Preprocessor Predefined Macros, p.115.

In C++, plain char, signed char and unsigned char are always treated as
different types, but this option defines how arithmetic with plain char is done.

5.4.20 Use Old for Scope Rules (-Xclass-type-name-visible)

-Xclass-type-name-visible
-X218=1

C only. Direct the compiler not to hide struct or union names when other
identifiers with the same names are declared in the same scope. For example,
consider the following statement:

struct S {...} S[10];

With or without this option, the form struct S may always be used later to
declare additional variables of type struct S. However, without the option,
sizeof(S) will refer to the size of the array, while with this option, sizeof(S) will
refer to the size of the structure.

5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off)

-Xclib-optim-off
-X66

Direct the compiler to disregard all knowledge of ANSI C library functions.

By default, the compiler automatically includes, before all other header files,
the file lpragma.h, which contains pure_function, no_return, and

Wind River Compiler for SPARC
User’s Guide, 5.4

64

no_side_effects pragmas and other statements that allow optimization of calls
to C library functions. (If the default include directory version_path/include
exists, the compiler looks for lpragma.h only in this directory. If
version_path/include does not exist, the compiler searches for lpragma.h in
other user-specified directories.)

The option disables use of lpragma.h.

Synonym: -Xno-recognize-lib.

5.4.22 Enable Cross-module Optimization (-Xcmo-...)

-Xcmo-gen=name

Generate a database, in file name, for cross-module optimization.

-Xcmo-use=name

Compile with cross-module optimization using information in database name;
update database.

-Xcmo-exclude-inline=list

Combined with -Xcmo-use, tells the compiler not to inline specified functions.
list is a comma-delimited list of functions which should not be inlined across
modules. For C++, use mangled function names.

-Xcmo-verbose

Combined with -Xcmo-gen or -Xcmo-use, lists all functions that are inlined
across modules. Useful for tracking dependencies.

These options enable cross-module optimization, which allows the compiler to
optimize calls between functions in different source files. See 10.2 Cross-Module
Optimization, p.188 for details. Cross-module optimization is disabled by default.

5.4.23 Use the ‘new’ Compiler Frontend (-Xcnew)

-Xcnew

Compile using a compiler frontend derived from one produced by the Edison
Design Groupd. By default, invoking -Xcnew also invokes -Xdialect-c99.
Supported only with the :rtp execution environment.

5 Invoking the Compiler
5.4 Compiler -X Options

65

5

5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)

-Xcomdat
-X120

C++ only. Mark all generated sections as COMDAT. The linker automatically
collapses identical COMDAT sections to a single section in memory. This is the
default.

By default, the compiler automatically generates a section for each
instantiation of each member function or static class variable in a template in
each module where the member function or variable is used. Given -Xcomdat,
the compiler marks all implicit template instantiations as COMDAT and the
linker collapses identical instances.

-Xcomdat-off

Generate all template instantiations and inline functions required as static
entities in the resulting object file. If a template is used in more than one
module, -Xcomdat-off results in multiple instances of static member function
variables or static class variables, instead of a single instance as is likely
intended; to avoid this, enable -Ximplicit-templates-off.

See 5.4.60 Control Template Instantiation (-Ximplicit-templates...), p.80 and
Templates, p.223 for details.

If a section is present in both COMDAT and non-COMDAT forms, the linker
will treat symbols in the COMDAT section as weak. See weak Pragma, p.132 for
details on weak symbols.

5.4.25 Maintain Project-wide COMDAT List (-Xcomdat-info-file)

-Xcomdat-info-file=filename
C++ only. When -Xcomdat is enabled, generate and maintain (in filename) a list
of COMDAT entries across modules. The list is automatically updated and
checked for consistency with each build. This option speeds up builds and
reduces object-file size in projects that make extensive use of templates. Since
COMDAT sections are ultimately collapsed by the linker, this option has no
effect on the final executable file.

Wind River Compiler for SPARC
User’s Guide, 5.4

66

5.4.26 Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-live)

-Xconservative-static-live
-X139

Make optimizations of static and global variable accessing less aggressive; for
example, do not delete assignments to such variables in infinite loops from
which there is no apparent return.

5.4.27 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)

-Xconst-in-text=mask
-X74=mask

-Xconst-in-data
-X74=0

Locate data in the CONST (mask bit 0x1), and STRING (mask bit 0x4) section
classes according to the given mask bit: if 1, locate in a “text” section (the
default), else if 0, locate in a “data” section.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xconst-in-text=0x5. Undefined mask bits are ignored.

The default value of this option is given in Moving initialized Data From “text”
to “data”, p.243.

-Xconst-in-data and -Xstrings-in-text are historical shortcuts for locating all
“constants” (CONST, and STRING classes, not just “const” or string data) in
“data” sections (mask=0) or “text” sections (mask=0xff) respectively.

The exact name of the “text” and “data” sections depends on the target. See the
discussion in 14. Locating Code and Data, Access for exact section names and
examples, as well as Moving initialized Data From “text” to “data”, p.243.

When STRING is in a text section, identical string constants will be stored only
once. This is the default in version 3.6 and later.

5.4.28 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)

-Xcpp-dump-symbols=mask
-X158=mask

Dump symbol information for macros, assertions, or both. To show macros, set
bit 0 (the LSB) of mask to 1. To show assertions, set bit 1 to 1. To show line

5 Invoking the Compiler
5.4 Compiler -X Options

67

5

numbers, set bit 2 to 0. The default mask is 7 (show macros and assertions, no
line numbers).

5.4.29 Suppress Preprocessor Spacing (-Xcpp-no-space)

-Xcpp-no-space
-X117

C only. Do not insert spaces around macro names and arguments during
preprocessing.

5.4.30 Align .debug Sections (-Xdebug-align=n)

-Xdebug-align[=n]
Align .debug sections on specified boundaries. n is a power of 2; e.g.,
-Xdebug-align=3 aligns .debug sections on 8-byte boundaries. If n is omitted,
alignment defaults to 4-byte boundaries.

Without this option, .debug sections are aligned on byte boundaries.

5.4.31 Select DWARF Format (-Xdebug-dwarf...)

-Xdebug-dwarf1
-X153=1

Generate DWARF 1.1 debug information.

-Xdebug-dwarf2
-X153=2

Generate DWARF 2 debug information. This is the default.

-Xdebug-dwarf3
-X153=3

Generate DWARF 3 debug information.

-Xdebug-dwarf2-extensions-off

Suppress vendor-specific extensions in DWARF 2 and DWARF 3 debug
information.

Wind River Compiler for SPARC
User’s Guide, 5.4

68

5.4.32 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)

-Xdebug-inline-on

Generate debugging information for all inlined functions. Works with DWARF
2 and DWARF 3 only. Can result in very large executables. This option is
disabled by default.

5.4.33 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)

-Xdebug-local-all

Emit debugging information for all local variables, even variables that are
never used. This option is disabled by default.

5.4.34 Generate Local CIE for Each Unit (-Xdebug-local-cie)

-Xdebug-local-cie

Generate a local Common Information Entry (CIE) for each unit. This option,
which eliminates the dependency on the debug library libg.a, is applicable
only with DWARF 2 or DWARF 3 debug information.

5.4.35 Disable debugging information Extensions (-Xdebug-mode=mask)

-Xdebug-mode=mask
-X99=mask

Disable extensions to debugging information per bits in mask. May be
necessary for other vendors’ assemblers or for debuggers which cannot
process the extensions.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xdebug-mode=0x6. Undefined mask bits are ignored.

0x2
Information regarding executable code in a header file (DWARF1, ELF).

0x4
Use of .d1line assembler directive (DWARF1, ELF).

0x10
Line number information for asm statements (DWARF1, DWARF2,
DWARF3).

0x40
Use of .d1_line_start and .d1_line_end assembler directives (DWARF1).

5 Invoking the Compiler
5.4 Compiler -X Options

69

5

0x100
Column information (DWARF 2 and DWARF 3, C++).

5.4.36 Disable Debug Information Optimization (-Xdebug-struct-...)

-Xdebug-struct-all
-X116=1

Force generation of type information for typedef, struct, and union, and class
types, even when such types are not referenced in a file.

-Xdebug-struct-compact
-X116=0

Do not output types which are not used in debug information. This is the
default, and it generates more compact but still complete version of debug
information.

5.4.37 Specify C Dialect (-Xdialect-...)

-Xdialect-c89
-X230=0

Follow the C89 standard for C. See Table B-1 for details.

-Xdialect-c99
-X230=1

Follow the C99 standard for C. See Table B-1 for details.

Only a subset of the C99 standard is supported.

-Xdialect-k-and-r
-X7=0

Follow the “C standard” as defined by the original K&R C reference manual,
but with all the new ANSI C features added. Where K&R and ANSI differ,
-Xdialect-k-and-r follows K&R. See Table B-2 for details.

Synonyms: -Xk-and-r, -Xt.

-Xdialect-ansi
-X7=1

Follow the ANSI C standard with some additions. See Table B-2 for details.
This is the default.

Synonyms: -Xansi, -Xa.

Wind River Compiler for SPARC
User’s Guide, 5.4

70

-Xdialect-strict-ansi
-X7=2

Strictly follow the ANSI C and C++ standards. See Table B-2 for details. For
C++, see 5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.105.

Synonym: -Xstrict-ansi, -Xc.

-Xdialect-pcc
-X7=3

Follow the C standard as defined by the UNIX System V.3 C compiler. See
Table B-1 for details.

Synonym: -Xpcc.

5.4.38 Disable Digraphs (-Xdigraphs-...)

-Xdigraphs-on
-X202=0

C++ only. Enable digraphs. If digraphs are enabled, the compiler recognizes
the following keywords as digraphs: bitand, and, bitor, or, xor, compl,
and_eq, or_eq, xor_eq, not, and not_eq. This is the default.

-Xdigraphs-off
-X202

Disable digraphs.

Synonym: -Xno-digraphs.

5.4.39 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)

-Xdollar-in-ident
-X67

Allow dollar sign characters, “$”, in identifiers.

5.4.40 Control Use of Type “double” (-Xdouble...)

-Xdouble-avoid
-X96=3

C only. Force all double constants to single precision and generation of only
single precision instructions.

-Xdouble-error
-X96=1

5 Invoking the Compiler
5.4 Compiler -X Options

71

5

Generate an error if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

-Xdouble-warning
-X96=2

Generate a warning if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

5.4.41 Generate Initializers for Static Variables (-Xdynamic-init)

-Xdynamic-init=2
-X121=2

Extends the -Xdynamic-init=1 option to generate code in the initialization
section for all initializers, not just addresses.

5.4.42 Specify enum Type (-Xenum-is-...)

-Xenum-is-best
-X8=2

Use the smallest signed or unsigned integer type permitted by the range of
values for an enumeration, that is, the first of signed char, unsigned char,
short, unsigned short, int, unsigned int, long, or unsigned long sufficient to
represent the values of the enumeration constants. (long long is not available
for enumerated types.) Thus, an enumeration with values from 1 through 128
will have base type unsigned char and require one byte. (Using the packed
keyword on an enumerated type yields the same result as -Xenum-is-best.)

-Xenum-is-int
-X8

This is the default. For C modules, the enum type is always equivalent to int.
For C++, each enum type is equivalent to int if the range will fit, or unsigned
int if it will not; if the range will not fit into either, a warning is issued and
unsigned int is used.

-Xenum-is-short
-X8=3

Each enum type is always equivalent to signed short if the range will fit, or
unsigned short if it will not. If the range will not fit into either, a warning is
issued and unsigned short is used.

Wind River Compiler for SPARC
User’s Guide, 5.4

72

-Xenum-is-small
-X8=0

Use the smallest signed integer type permitted by the range of values for an
enumeration, that is, the first of signed char, short, int, or long sufficient to
represent the values of the enumeration constants. Thus, an enumeration with
values from 1 through 128 will have base type short and require two bytes.

-Xenum-is-unsigned
-X8=4

Use the smallest unsigned integer type permitted by the range of values for an
enumeration, that is, the first of unsigned char, unsigned short, unsigned int,
or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte.

5.4.43 Enable Exceptions (-Xexceptions-...)

-Xexceptions-off
-X200=0

C++ only. Disable exceptions. Compiling a program with any of the keywords
try, catch, or throw will cause a compilation error. (But throw() is still allowed
in function declarations to indicate that new or delete will not throw
exceptions.) Compiling with this option will reduce stack space and increase
execution speed when classes with destructors are used.

Synonym: -Xno-exception.

-Xexceptions
-X200

C++ only. Enable exceptions. This is the default.

For mixed C/C++ programs, see also 5.4.54 Generate .frame_info for C functions
(-Xframe-info), p.78.

Synonym: -Xexception.

NOTE: If modules compiled with different -Xenum-is-... options are mixed in a
program, compatibility problems may result.

When an enumerated type occurs within a packed structure, the default behavior
is to use the smallest possible integer type for the enumeration constants
(-Xenum-is-best). To override this behavior, specify -Xenum-is-short or
-Xenum-is-unsigned.

5 Invoking the Compiler
5.4 Compiler -X Options

73

5

5.4.44 Control Inlining Expansion (-Xexplicit-inline-factor)

-Xexplicit-inline-factor
-Xexplicit-inline-factor=n
-X136=n

Limits the inlining in a function (explicit and implicit) to an expansion of n
times (measured in nodes where, roughly, each operator or operand counts as
one node).

Given a function f, the compiler first inlines all functions explicitly declared
inline which f calls, as well as any other small functions which can be inlined
based on the other inlining optimization controls. It then divides the new size
of the function (number of nodes) by the size with no inlining. If the result is
<= n, it looks for new inlining opportunities in the resulting code and repeats
the cycle. Once an expansion of n times is exceeded, inlining stops.

If -Xexplicit-inline-factor is specified with no value, n defaults to 3. If
-Xexplicit-inline-factor is not specified, the default value is 0 (which means no
limit) for C and 3 for C++.

See also 5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force),
p.83.

5.4.45 Force Precision of Real Arguments (-Xextend-args)

-Xextend-args
-X77

Make all floating point arguments use the precision given by whichever of
-Xfp-min-prec-double, -Xfp-min-prec-long-double, or -Xfp-min-prec-float is
in force (all are settings of -X3), even if prototypes are used. (If none of the -X3
options are also given, the default is -Xfp-min-prec-double as that is
equivalent to -X3=0).

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid
missing any such functions.

Wind River Compiler for SPARC
User’s Guide, 5.4

74

5.4.46 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic)

-Xfp-fast
-X82=2

Favor floating-point performance over conformance to the IEEE754
floating-point standard.

-Xfp-normal
-X82=0

Use normal (relaxed) conformance to the IEEE754 floating-point standard.
This is the default.

-Xfp-pedantic
-X82=1

Use strict conformance to the IEEE754 floating-point standard. This option is
equivalent to using -Xieee754-pendatic. (See 5.4.59 Enable Strict implementation
of IEEE754 Floating Point Standard (-Xieee754-pedantic), p.79.)

The -Xfp-fast option allows floating-point division by a constant to be optimized
into a multiply by the reciprocal of the constant. This optimization is inhibited for
-Xpf-normal and -Xfp-pedantic unless the constant is a power of two.

5.4.47 Optimize Using Profile Data (-Xfeedback=file)

-Xfeedback
-Xfeedback=file
(no numeric equivalent)

Use profiling information generated by the -Xblock-count (see 5.4.10 Insert
Profiling Code (-Xblock-count), p.60) option to optimize for faster code. file is the
name of the profiling file. The default is dbcnt.out.

To use this option:

■ Compile a program with -Xblock-count.

■ Run the program, which now creates dbcnt.out with profiling
information. (See 15.8.2 File I/O, p.261 for file I/O in an embedded
environment.)

■ Recompile, now with the -XO and -Xfeedback options to produce
high-level speed optimized code. Use -Xfeedback-frequent and
-Xfeedback-seldom described below to control how the feedback data
affects optimization.

5 Invoking the Compiler
5.4 Compiler -X Options

75

5

5.4.48 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom)

-Xfeedback-frequent
-X68=n
-Xfeedback-seldom
-X69=n

Change the parameters used to control optimization of basic blocks when
using profile data, for example, the amount of inlining, loop unrolling, and
reorganization to reduce branches actually taken, all to increase speed
(sometimes at the expense of space).

When using -Xprof-feedback (5.4.103 Optimize Using RTA Profile Data
(-Xprof-feedback), p.99) and -Xfeedback (5.4.47 Optimize Using Profile Data
(-Xfeedback=file), p.74), the compiler divides the basic blocks into three
categories: code executed “frequently”, “sometimes”, and “seldom”. More of
the above optimizations are done for “frequent” code, while less or none is
done for code executed “seldom”.

The higher the thresholds, the more often code must be executed to get into the
“frequent” category.

The defaults are -Xfeedback-seldom=10 and -Xfeedback-frequent=50 and are
used as follows: each execution of a basic block recorded in the profile counts
as one “tick”. The low-mark and high-mark values are normalized on a basis
of 1,000 ticks, which means that the options have units of a tenth of a percent.
That is, the default values mean that, if exactly 1,000 ticks are recorded, blocks
executed fewer than 10 times (up to 1%) are marked “seldom”, those executed
from 10 to 50 times (1% to 5%) are marked “sometimes”, and those executed
50 or more times (5% of more) are marked “frequent”. Example:

-Xfeedback-frequent=30

means that blocks accounting for 3% or more of all ticks will go into the
“frequent” category, and the compiler will do more inlining of functions called
within these blocks, more loop unrolling, etc., to decrease their execution time.

Synonyms: -Xhi-mark for -Xfeedback-frequent, -Xlo-mark for
-Xfeedback-seldom.

Wind River Compiler for SPARC
User’s Guide, 5.4

76

5.4.49 Use Old for Scope Rules (-Xfor-init-scope-...)

-Xfor-init-scope-for
-X217=0

Use “new” scope rules for variables declared in the initialization part of a for
statement. With this option, the scope of a variable declared in the
initialization part extends to the end of the for statement.

-Xfor-init-scope-outer
-X217

C++ only. Use “old” scoping rules for variables declared in the initialization
part of a for statement. With this option, the scope extends to the end of the
scope enclosing the for statement.

Synonym: -Xold-scoping.

5.4.50 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes)

-Xforce-declarations
-X9

Generate warnings if a function is used without a previous declaration.

-Xforce-prototypes
-X9=3

Generate warnings if a function is used without a previous prototype
declaration.

These options are useful to make C a more strongly typed language. This
option is ignored when compiling C++ modules.

5.4.51 Suppress Assembler and Linker Parameters (-Xforeign-as-ld)

-Xforeign-as-ld
(no numeric equivalent)

Cause the driver to call an assembler and linker without any implicit
parameters.

This allows third-party assemblers and linkers to be used with the Wind River
compiler. The -W xfile option may be used to specify a foreign assembler or
linker (5.3.30 Substitute Program or File for Default (-W xfile), p.44), the -W a
option to pass parameters to the assembler (5.3.25 Pass Arguments to the
Assembler (-W a,arguments, -W :as:,arguments), p.42), and the -W l option to pass

5 Invoking the Compiler
5.4 Compiler -X Options

77

5

parameters to the linker (5.3.27 Pass Arguments to Linker (-W l,arguments, -W
:ld:,arguments), p.43).

5.4.52 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)

-Xfp-float-only
-X70=2

Force double and long double to be the same as float.

Synonym: -Xno-double.

-Xfp-long-double-off
-X70

Force long double to be the same as double on machines where they differ.

Synonym: -Xno-long-double.

5.4.53 Specify Minimum Floating Point Precision (-Xfp-min-prec...)

-Xfp-min-prec-double
-X3=0

Use double as the minimum precision in expressions and for floating point
arguments. Lesser precisions are used in expressions if the -Xdialect-ansi
option is used. If prototypes are used, use the declared precision for
arguments, unless the -Xextend-args option is used.

Synonym: -Xuse-double.

-Xfp-min-prec-float
-X3=1

Use float as the minimum precision in expressions and for floating point
arguments.

Synonym: -Xuse-float.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

Wind River Compiler for SPARC
User’s Guide, 5.4

78

-Xfp-min-prec-long-double
-X3=2

Use long double as the minimum precision in expressions and for floating
point arguments. Lesser precisions are used in expressions if the
-Xdialect-ansi option is used.

If prototypes are used, use the declared precision for arguments, unless the
-Xextend-args option is also given.

Synonym: -Xuse-long-double.

5.4.54 Generate .frame_info for C functions (-Xframe-info)

-Xframe-info

Force the compiler to generate .frame_info sections for C funtions. Use this option
when compiling mixed C/C++ programs in which C++ exceptions may propagate
back through C functions. For more information, see 23.8 .frame_info sections, p.351.

5.4.55 Include Filename Path in Debug Information (-Xfull-pathname)

-Xfull-pathname
-X125

Include the path prefix in filenames in debug information (specifically, in the
.file assembler directive). Without this option, only the filename is included.

5.4.56 Control GNU Option Translator (-Xgcc-options-...)

-Xgcc-options-on

Enable automatic translation of GNU compiler (GCC) options. This is the
default.

-Xgcc-options-off

Disable automatic translation of GCC options.

-Xgcc-options-verbose

Display all translations. Valid only if translation is enabled (-Xgcc-options-on).

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5 Invoking the Compiler
5.4 Compiler -X Options

79

5

When -Xgcc-options-on is enabled, GCC option flags from the command line or
makefile are parsed and, if possible, translated to equivalent Wind River Compiler
options. Translations are determined by the tables in the file gcc_parser.conf.

5.4.57 Treat All Global Variables as Volatile (-Xglobals-volatile)

See 5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.91.

5.4.58 Do Not Pass #ident Strings (-Xident-off)

-Xident-on
-X63=0

Pass #ident strings to the assembler. This is the default.

-Xident-off
-X63

Do not pass #ident strings to the assembler.

Synonym: -Xno-ident.

5.4.59 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic)

-Xieee754-pedantic
-X82=1

Enable strict implementation of the IEEE754 floating point standard at some
cost in performance. Specifically,

■ Do not optimize a divide by a constant to a multiply of its reciprocal.

■ Do not use floating multiply-add instructions on architectures where more
bits are kept in intermediate results than is defined by the standard.

■ Do not optimize x-x to zero so that possible NaN values are preserved.

■ Do less equal and greater equal comparisons with behavior for NaN
values as defined by the standard.

This option is equivalent to -Xfp-pedantic. (See 5.4.46 Specify Degree of
Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic),
p.74.)

Wind River Compiler for SPARC
User’s Guide, 5.4

80

5.4.60 Control Template Instantiation (-Ximplicit-templates...)

-Ximplicit-templates
-X207=0

Instantiate each template in each module where it is used or referenced. This
is the default.

-Ximplicit-templates-off
-X207=1

Instantiate templates only where explicit instantiation syntax is used.

Synonym: -Xno-implicit-template.

For further discussion, see 5.4.24 Mark Sections as COMDAT for Linker Collapse
(-Xcomdat), p.65 and Templates, p.223.

C++ only.

5.4.61 Treat #include As #import (-Ximport)

-Ximport
-X75

Treat all #include directives as if they are #import directives. This means that
any include file is included only once.

5.4.62 Ignore Missing Include Files (-Xincfile-missing-ignore)

-Xincfile-missing-ignore
-X172

This option, which suppresses error reporting, is effective only when used
with -Xmake-dependency (5.4.81 Show Make Rules (-Xmake-dependency), p.88).
It causes preprocessing to continue even when a required header is not found.
If -Xincfile-missing-ignore is used with -Xmake-dependency=2 or
-Xmake-dependency=6, the preprocessor issues a warning (but not an error)
when a required system file (#include <filename>) is not found.

5 Invoking the Compiler
5.4 Compiler -X Options

81

5

5.4.63 Initialize Local Variables (-Xinit-locals=mask)

-Xinit-locals=mask
-X87=mask

Initialize all local variables to zero or the value specified with -Xinit-value at
every function entry. mask is a bit mask specifying the kind of variables to be
initialized.

mask may be given in hex, e.g., -Xinit-locals=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x1 integers
0x2 pointers
0x4 floats
0x8 aggregates

If n is not given, all local variables will be initialized.

This option is useful in finding “memory dependent” bugs.

5.4.64 Control Generation of Initialization and Finalization Sections (-Xinit-section)

This option controls generation of sections for run-time initialization and
finalization invocation, including constructor and destructor functions and global
class objects in C++. For more information, see 15.4.8 Run-time Initialization and
Termination, p.256.

-Xinit-section=0
-X91=0

Suppress generation of initialization and finalization sections. This option is
not recommended and may result in incorrect run-time behavior.

-Xinit-section
-Xinit-section=1
-X91
-X91=1

Create .ctors and .dtors sections containing pointers to initialization and
finalization functions, sorted by priority. This is the default.

Initialization and finalization functions are designated with attribute
specifiers. See constructor, constructor(n) Attribute, p.139 and destructor,
destructor(n) Attribute, p.140.

Wind River Compiler for SPARC
User’s Guide, 5.4

82

-Xinit-section=2
-X91=2

Create .init$nn and .fini$nn code sections containing calls to initialization and
finalization functions, sorted by priority. Provides compatibility with previous
versions of the compiler, including recognition of old-style function prefix
designations for initialization and finalization functions.

Synonym: -Xuse-.init.

5.4.65 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri)

-Xinit-section-default-pri=n
-X175=n

Assign the default priority for constructor and destructor functions and for
C++ global class objects. The specified priority n applies to functions
referenced in .ctors, .dtors, .init, and .fini sections. Functions with lower
priority numbers execute first.

5.4.66 Define Initial Value for -Xinit-locals (-Xinit-value=n)

-Xinit-value=n
-X90=n

Define the initial value used by the -Xinit-locals option. This option can be
useful to identify uninitialized variables, since it can be used to initialize
variables to some invalid or recognizable value that might produce a memory
access error.

The value n is 32-bits, right-justified, zero-filled and may be specified as a
decimal or hexadecimal number (0x...).

5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n)

-Xinline=n
-X19=n

Set the limit on the number of nodes for automatic inlining. Because the
compiler collects functions until -Xparse-size KBytes of memory is used, the
inlined function does not need to be defined before the function using it. See
__inline__ and inline Keywords, p.133 and Inlining (0x4), p.191 for a discussion
of inlining.

5 Invoking the Compiler
5.4 Compiler -X Options

83

5

See 5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.110 for a
definition of node count. (Assembly files saved with -S show the number of
nodes for each function.) For purposes of automatic inlining, nodes that do not
correspond to an operator or operand are not counted. Hence setting -Xinline
to 0 inlines no functions automatically, and setting -Xinline to 1 inlines only
“dummy” functions containing no code.

Defaults: -Xinline is 10 by default. -XO sets -Xinline to 40 by default.

5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)

-Xinline-explicit-force
-Xinline-explicit-force=n
-X163
-X163=n

Inline recursive function calls up to n times. The default is 50. If this option is
not used, the compiler inlines a function at most once.

If this option is combined with -Xinline=0, the compiler inlines only functions
declared within a C++ class or with inline, __inline__ , or #pragma inline.

This option is overridden by -Xexplicit-inline-factor. (See 5.4.44 Control
Inlining Expansion (-Xexplicit-inline-factor), p.73.) By default,
-Xexplicit-inline-factor=3 is in effect for C++ programs; C++ programmers
who want to use -Xinline-explicit-force should therefore specify
-Xexplicit-inline-factor=0.

5.4.69 Enable Intrinsic Functions (-Xintrinsic-mask)

-Xintrinsic-mask=n
-X154=n

Enable specified intrinsic functions. See 6.6 Intrinsic Functions, p.142 for
details.

NOTE: Inlining occurs only if optimization is selected by using the -XO or -O
option.

Wind River Compiler for SPARC
User’s Guide, 5.4

84

5.4.70 Set longjmp Buffer Size (-Xjmpbuf-size=n)

-Xjmpbuf-size=n
-X201=n

C++ only. Set the size in bytes of the buffer allocated for setjmp and longjmp
when using exceptions. The default size as determined by the compiler should
usually be sufficient.

5.4.71 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file)

-Xkeep-assembly-file
(no numeric equivalent)

Always create and keep a .s file without the need for a separate compilation
with the -S option. This option can be used with the -c option to create both
assembly and object files at once.

-Xkeep-object-file
(no numeric equivalent)

Always create and keep a .o file without the need for a separate compilation
with the -c option. This is needed only when a single file is compiled,
assembled, and linked in one step, because in this case the driver deletes
intermediate assembly and object files automatically.

5.4.72 Enable Extended Keywords (-Xkeywords=mask)

-Xkeywords=mask
-X78=mask

Recognize new keywords according to mask, a bit mask specifying which
keywords to add.

mask may be given in hex, e.g., -Xkeywords=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x01 extended (C only)
0x02 pascal (C only)
0x04 inline (this keyword always available in C++)
0x08 packed
0x10 interrupt (C only)

See 6. Additions to ANSI C and C++ for more information on these keywords.

5 Invoking the Compiler
5.4 Compiler -X Options

85

5

5.4.73 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)

-Xkill-opt=mask
-X27=mask

Disable individual target-independent optimizations.

-Xkill-reorder=mask
-X28=mask

Disable individual target-dependent optimizations in the reorder program.

mask is a bit mask with one bit for each optimization type. mask may be given
in hex, e.g., -Xkill-opt=0x12. Multiple optimizations can be disabled by
OR-ing their mask bits. Undefined mask bits are ignored.

Both target-independent and target-dependent optimizations are described in
10. Optimization. The name of each optimization is followed by its mask bit in
parentheses, e.g. Tail recursion (0x2).

For mask bit values for -Xkill-opt, see 10.3 Target-Independent Optimizations,
p.190, and for -Xkill-reorder, 10.4 Target-Dependent Optimizations, p.202. mask
bit values are given in parentheses after the name of each optimization.

Either the -O or -XO option must be given to enable optimization before either
of these -Xkill-... options can be used. To compile with almost no optimization,
do not specify -O or -XO.

Two minor optimizations required by the code generation algorithms cannot
be disabled: local strength reduction (e.g., multiply by power of 2 becomes
shift or add) and simple branch optimization (e.g., branches to branches).

5.4.74 Wait For License (-Xlicense-wait)

-Xlicense-wait
-X138

If a license is not available, request that the compiler wait and retry once a
minute, rather than returning with an error.

NOTE: These options are deprecated and should be used only on the advice
Customer Support.

Wind River Compiler for SPARC
User’s Guide, 5.4

86

5.4.75 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)

-Xlint[=mask]
-X84[=mask]

Generate warnings when suspicious and non-portable C code is encountered.
For C++ modules, see note below. The two usual cases are:

-Xlint enables all warnings (equivalent to -Xlint=1).

-Xlint=0xffffffff disables all present and future warnings (equivalent to
-Xlint=0 or the default of not using the option at all).

Individual warnings can be disabled by OR-ing the following values. In effect,
-Xlint=1 is assumed, enabling all warnings, and then individual warnings are
disabled. mask may be given in hex, e.g., -Xlint=0x1a. Undefined bits are
ignored.

0x02
Variable used before being set.

0x04
Label not used.

0x08
Condition always true/false, for example, i==i.

0x10
Variable/function not used.

0x20
Missing return expression.

0x40
Variable set but not used.

0x80
Statement not reached.

0x100
Conversion problems.

0x200
In non-ANSI mode, warn when the compiler selects an unsigned integral
type for an expression which would be signed under ANSI mode. For
example:

"a.c", line 3: warning (1671):
non-portable behavior: type of
`>' operator is unsigned only
in non-ANSI mode

0x400

5 Invoking the Compiler
5.4 Compiler -X Options

87

5

Possibly assignment (=) should be comparison (==).

0x1000
Missing function declaration (equivalent to -Xforce-declarations).

0x2000
Possible redundant expression. (Examples: x=x, x&x, x|x, x/x.)

11. The Lint Facility gives an example of a program which generates most of the
-Xlint warnings.

See also the __lint macro in 6.1 Preprocessor Predefined Macros, p.115 to avoid
use of non-ANSI extensions in header files.

5.4.76 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)

-Xlocal-data-area=n
-X115=n

Allocate the static and global variables which are defined in a module and
referenced as least once in a contiguous block of memory, called the local data
area (LDA), and make fast, efficient references to those variables via a
temporary base register selected by the compiler.

n specifies the maximum of the LDA, and defaults to 32,767 bytes. (If n is
greater than the default, references to variables in the LDA will be less
efficient.)

The optimization does not apply to unreferenced variables. -Xlocal-data-area
should be used with caution in multithreaded environments. To restrict the
optimization to static variables, use -Xlocal-data-area-static-only; VxWorks
developers are strongly advised to use this option.

See 14.3 Local Data Area (-Xlocal-data-area), p.244 for additional information.

Synonym: -Xlocal-struct.

NOTE: For C++, -Xlint is equivalent to -Xsyntax-warning-on. (See
5.4.130 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.108.)

NOTE: If at least one variable in the LDA has an initial value, the LDA is in the
.data section; otherwise it is in the .bss section. Because -Xlocal-data-area is
nonzero by default, uninitialized static and global variables which are
referenced at least once are not stored in a .bss section. To store such variables
in .bss, use -Xlocal-data-area=0.

Wind River Compiler for SPARC
User’s Guide, 5.4

88

5.4.77 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)

-Xlocal-data-area-static-only
-X166

Apply the local data area optimization only to static variables; do not optimize
global variables. See 14.3 Local Data Area (-Xlocal-data-area), p.244 for
information about this optimization.

5.4.78 Do Not Assign Locals to Registers (-Xlocals-on-stack)

-Xlocals-on-stack
-X5

By default, the compiler attempts to assign all local variables to registers. If
-Xlocals-on-stack is given, only variables declared with the register keyword
are assigned to registers.

5.4.79 Expand Macros in Pragmas (-Xmacro-in-pragma)

-Xmacro-in-pragma
-X157

Expand preprocessor macros in #pragma directives.

5.4.80 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)

-Xmacro-undefined-warn
-X171

Generate a warning when an undefined macro name occurs in a #if
preprocessor directive.

5.4.81 Show Make Rules (-Xmake-dependency)

-Xmake-dependency
-Xmake-dependency=mask
-X156, -X156=mask

Generate a list of include files required to build each object file. Example:

main.o: main.c stdio.h
command list

5 Invoking the Compiler
5.4 Compiler -X Options

89

5

This output means that main.c and stdio.h are required to build the target
main.o. A list of make commands follows the dependency.

mask, which defaults to 1, is a bit mask—always interpreted as
hexadecimal—of which the four least significant bits are meaningful: the
fourth (least significant) bit, if set to 1, means that all required files are shown;
this is the default. The third bit means that only files enclosed in double
quotation marks (#include "filename") are shown. (If both the third and the
fourth bits are set, the fourth overrides the third.) The second bit means that
compilation continues after the dependency list is generated (if this bit is 0, no
output is emitted other than the list of dependencies) and that the dependency
list is sent to a file (instead of the standard output). The first bit creates a
“phony target” for each dependency other than the main file; this is a
work-around for errors caused by missing header files and is provided for
GNU compatibility. The -o option can be used to specify the output file, the
target name, or both. Hence:

-Xmake-dependency=1

Same as -Xmake-dependency. Show all required include files. If -o is used, the
target is the name specified with -o. Results go to the standard output unless
-Xmake-dependency-savefile=filename is specified. No further output is
emitted.

-Xmake-dependency=2

Same as -Xmake-dependency=1, but show only files enclosed in double
quotation marks (#include "filename").

-Xmake-dependency=4

Same as -Xmake-dependency=1, but write the dependency list to a file and
then continue with normal compilation. The output file can be specified with
either -o or -Xmake-dependency-savefile=filename (which overrides -o);
otherwise it is called filename.d, where filename is the name of the main source
file, and is created in the directory where the compiler was invoked. If -o is
used without -Xmake-dependency-savefile, the output file is the basename
specified by -o with .d appended.

-Xmake-dependency=8

Same as -Xmake-dependency=1, but output a phony target for each
dependency other than the main file.

The bits can be OR-ed to combine options. Example:

-Xmake-dependency=6

Show only files enclosed in double quotation marks (-Xmake-dependency=2);
write output to a file, then continue with normal compilation
(-Xmake-dependency=4).

Wind River Compiler for SPARC
User’s Guide, 5.4

90

-Xmake-dependency=a

Show only files in double quotation marks (-Xmake-dependency=2) and
output phony targets (-Xmake-dependency=8).

-Xmake-dependency=c

Output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

-Xmake-dependency=e

Show only files enclosed in double quotation marks (-Xmake-dependency=2);
output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

Ordinarily, the preprocessor returns an error and stops when a required file is not
found. To continue preprocessing when files are missing, use -Xmake-dependency
with -Xincfile-missing-ignore (5.4.62 Ignore Missing Include Files
(-Xincfile-missing-ignore), p.80).

5.4.82 Specify Dependency Name or Output File (-Xmake-dependency-...)

This option is valid only when used with -Xmake-dependency.

-Xmake-dependency-target=string
Change the target name in the rule emitted by -Xmake-dependency to string
(instead of using the name of the object file). To specify multiple target names,
repeat the -Xmake-dependency-target option on the command line.

-Xmake-dependency-savefile=filename
Specify the output file for -Xmake-dependency.

5.4.83 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)

-Xmax-inst-level[=n]
-X216[=n]

C++ only. Set the maximum level for recursive instantiation of templates.
Without this option, an error is emitted when a default level of 50 is reached.
With this option, but without a value n, the limit is 100.

5 Invoking the Compiler
5.4 Compiler -X Options

91

5

5.4.84 Set Maximum Structure Member Alignment (-Xmember-max-align=n)

-Xmember-max-align=n
-X88=n

Set the maximum byte boundary to which structure members will be aligned.
If the natural alignment of a member is less than n, the natural alignment is
used for it. See pack Pragma, p.127 and the __packed__ and packed Keywords,
p.135 for details. See also 5.4.126 Set Minimum Structure Member Alignment
(-Xstruct-min-align=n), p.107.

The default value of n is dependent on the processor as described in 8. Internal
Data Representation.

Synonym: -Xstruct-max-align.

5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)

-Xmemory-is-volatile
-X4
-X4=7

Treat all variables as volatile.

-Xglobals-volatile
-X4=1

Treat all global variables as volatile.

-Xstatics-volatile
-X4=2

Treat all static variables as volatile.

-Xpointers-volatile
-X4=4

Treat all pointer accesses as volatile.

These options tell the compiler not to perform optimizations that can cause device
drivers or other systems to fail. By default, the compiler keeps data in registers as
long as possible whenever it is safe. Difficulties can arise if a memory location
changes because it is mapped to an external hardware device and the compiler,
unaware of the change, continues to use the old value stored in a register. While
these situations can now be handled with the volatile keyword, the -X4 options
allow compilation of older programs.

To combine these options, use the sum of their values with a single occurrence of
the option flag. For example, use -X4=3 to treat all global and static variables as
volatile. -X4=7, equivalent to -X4 or -Xmemory-is-volatile, combines all of the
options.

Wind River Compiler for SPARC
User’s Guide, 5.4

92

5.4.86 Warn On Type and Argument Mismatch (-Xmismatch-warning)

-Xmismatch-warning
-X2
-Xmismatch-warning=2
-X2=2

Generate a warning only (instead of a fatal error) when either pointers of
different types, or pointers and integers, are mixed in expressions. Example:

long i1, i2 = &i1;

is invalid in ANSI C but is allowed in some non-ANSI dialects. This option is
set implicitly by -Xdialect-pcc (-X7=3).

If the option -Xmismatch-warning=2 is given, the compiler also generates a
warning instead of an error when identifiers are redeclared and when a
function call has the wrong number of arguments.

This option is ignored when compiling C++ modules.

5.4.87 Specify Section Name (-Xname-...)

Use the following options to specify the name of a default section.

-Xname-code=name
Set the section name for code.

-Xname-const=name
Set the section name for initialized constants.

-Xname-data=name
Set the section name for initialized data.

-Xname-eh=name
C++ only.
Set the section name for all exception-handling tables.

-Xname-rtti=name
C++ only.
Set the section name for all RTTI tables.

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.3.8 Change Diagnostic Severity Level (-e), p.36.

5 Invoking the Compiler
5.4 Compiler -X Options

93

5

-Xname-sconst=name
Set the section name for initialized small const.

-Xname-sdata=name
Set the section name for initialized small data.

-Xname-string=name
Set the section name for strings.

-Xname-uconst=name
Set the section name for uninitialized constants.

-Xname-udata=name
Set the section name for uninitialized data.

-Xname-usconst=name
Set the section name for uninitialized small const.

-Xname-usdata=name
Set the section name for uninitialized small data.

-Xname-vtbl=name
C++ only.
Set the section name for all virtual-function tables.

Section names can also be specified using the section pragma. For example, setting
-Xname-code=.code has the same effect as:

#pragma section CODE ".code"

For more information, see section Pragma, p.131.

5.4.88 Disable C++ Keywords namespace and Using (-Xnamespace-...)

-Xnamespace-on
-X219=0

Recognize the namespace and using keywords or constructs.

-Xnamespace-off
-X219

C++ only. Do not recognize the namespace and using keywords or constructs.

5.4.89 Enable Extra Optimizations (-XO)

-XO
-X26

Enable all standard optimizations plus the following:

Wind River Compiler for SPARC
User’s Guide, 5.4

94

-O
(5.3.17 Optimize Code (-O), p.40)

-Xinline=40
(10 with -O; 5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p.82)

-Xopt-count=2
(1 with -O; 5.4.91 Execute the Compiler’s Optimizing Stage n Times
(-Xopt-count=n), p.94)

-Xparse-size=6000
(3000 with -O; 5.4.93 Specify Optimization Buffer Size (-Xparse-size), p.95)

-Xrestart
(off with -O; 5.4.105 Restart Optimization From Scratch (-Xrestart), p.100)

-Xtest-at-both
(-Xtest-at-bottom with -O; 5.4.132 Specify Loop Test Location (-Xtest-at-...),
p.108)

5.4.90 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)

-Xold-inline-asm-casting
-X137

This option affects small arguments to asm macros (arguments with size less
than int).

By default, the compiler does not extend such arguments to int. Prior to
version 4.2, the compiler did extend such arguments to int. Use this option to
force the old behavior for compatibility with existing asm macros which
depend on it.

5.4.91 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)

-Xopt-count=n
-X25=n

Execute the compiler’s optimizing stage n times. The default is once. In most
cases this is enough. In rare instances, one stage of the optimizer will generate
an opportunity for a previous stage. Setting -Xopt-count=2 or more will cause
a somewhat longer compilation time but may produce slightly better code.
This option is set to 2 by -XO.

5 Invoking the Compiler
5.4 Compiler -X Options

95

5

5.4.92 Disable Most Optimizations With -g (-Xoptimized-debug-...)

-Xoptimized-debug-on
-X89=0

Do not disable optimizations when using -g. This is the default.

-Xoptimized-debug-off
-X89

When using the -g option to generate debug information, disable most
optimizations and force line numbers in debug information to be in increasing
order — assists with debuggers that cannot handle optimized code. See also
5.4.35 Disable debugging information Extensions (-Xdebug-mode=mask), p.68, and
5.4.36 Disable Debug Information Optimization (-Xdebug-struct-...), p.69.

Synonym: -Xno-optimized-debug.

5.4.93 Specify Optimization Buffer Size (-Xparse-size)

-Xparse-size=n
-X20=n

Delay code generation of functions until n KBytes of main memory is used for
internal tables. By delaying generation, the compiler can perform
interprocedural optimizations such as inlining and register tracking.

The default is 3000 KB (6000 KB if option -XO is used). The highest useful value
for a module depends on many factors; it is not practical to calculate it (see the
discussion of “limitations related to memory size” in C. Compiler Limits for
some of the factors).

For very large and complex modules, experiment with larger values, e.g.
-Xparse-size=8000, to see if code size or execution time is reduced.

5.4.94 Output Source as Comments (-Xpass-source)

-Xpass-source
-X11

Output the source as comments in the generated assembly language code.

NOTE: That using a value larger than available physical memory will cause
excessive swapping and slow compilation.

Wind River Compiler for SPARC
User’s Guide, 5.4

96

5.4.95 Use Precompiled Headers (-Xpch-...)

C++ only. These options are disabled by default. At most one of -Xpch-automatic,
-Xpch-create, and -Xpch-use can be enabled; if more than one is specified, all but
the first are ignored. For more information, see 13.7 Precompiled Headers, p.229.

-Xpch-automatic

Generate and use precompiled headers.

-Xpch-create=filename
Generate a precompiled header (PCH) file with specified name.

-Xpch-diagnostics

Generate an explanatory message for each PCH file that the compiler locates
but is unable to use.

-Xpch-directory=directory
Look for PCH file in specified directory.

-Xpch-messages

Generate a message each time a PCH file is created or used.

-Xpch-use=filename
Use specified PCH file.

5.4.96 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)

See 5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.91.

5.4.97 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)

These options control the compiler’s behavior when multiple #pragma section
directives are used with different parameters for the same section class. The default
is -Xpragma-section-first.

For more information, see section and use_section Pragmas, p.233.

-Xpragma-section-first

If this option is in effect when a variable or function is defined, the compiler
uses the earliest currently-valid section pragma that specifies a non-default
location for the variable or function.

5 Invoking the Compiler
5.4 Compiler -X Options

97

5

-Xpragma-section-last

If this option is in effect when a variable or function is defined, the compiler
uses the last currently-valid section pragma that specifies a non-default
location for the variable or function.

5.4.98 Preprocess Assembly Files (-Xpreprocess-assembly)

-Xpreprocess-assembly

Invoke C preprocessor on assembly files before running the assembler.

5.4.99 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off)

-Xpreprocessor-lineno-off
-X165

Suppress line-number information in the preprocessor output. Use this with
the -E option (send preprocessor output to standard output) when
line-number information is not needed.

5.4.100 Use Old Preprocessor (-Xpreprocessor-old)

-Xpreprocessor-old
-X155

Use the preprocessor from release 4.3. When -Xpreprocessor-old is specified,
vararg macros are not supported and the following options are not available:
-Xmake-dependency, -Xmake-dependency-..., -Xmacro-in-pragma, and
-Xcpp-dump-symbols.

This option is valid only when compiling C modules or when compiling C++
modules with the -Xc++-old option.

5.4.101 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...)

-Xprof-all
-X123=3

Collect count and time data.

Wind River Compiler for SPARC
User’s Guide, 5.4

98

-Xprof-all-fast
-X123=6

Collect count and time data for each function, but not for pairs of functions, so
no hierarchical profile will be available.

-Xprof-count
-X123=2

Collect count data only, incrementing a counter for line of code executed
(actually, for each basic block).

-Xprof-coverage
-X123=8

Like -Xprof-count, except just set the counter to one for each basic block
executed instead of counting the number of executions.

-Xprof-time
-X123=1

Collect time data only.

-Xprof-time-fast
-X123=4

Collect time data for each function, but not for pairs of functions, so no
hierarchical profile will be available.

These options cause the compiler to generate profiling code for the RTA. To be
profiled, a function must be instrumented. The compiler inserts instrumentation
code based on the following options. Every module to be profiled must be
compiled with one of these options.

NOTE: In addition to an -Xprof-type option, you must use the -g option to generate
debug information.

Besides interactively analyzing the profile information generated by these options
using the RTA, you may feed the collected data back to the compiler to improve
optimization based on the actual execution of the target program. See
5.4.103 Optimize Using RTA Profile Data (-Xprof-feedback), p.99.

Do not use these options with the older pair of profiling options -Xblock-count
(5.4.10 Insert Profiling Code (-Xblock-count), p.60) and -Xfeedback (5.4.47 Optimize
Using Profile Data (-Xfeedback=file), p.74).

A function, its parent, and its children must all be compiled with the same
-Xprof-type option or the results are undefined.

5 Invoking the Compiler
5.4 Compiler -X Options

99

5

5.4.102 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)

-Xprof-exec=pathname
(no numeric equivalent)

pathname must be the full pathname of a target executable for which profile
data is present in the RTA database directory specified with -Xprof-feedback.
See 5.4.103 Optimize Using RTA Profile Data (-Xprof-feedback), p.99 for details.

5.4.103 Optimize Using RTA Profile Data (-Xprof-feedback)

-Xprof-feedback=pathname
(no numeric equivalent)

pathname must specify an RTA database directory (not a file). Use the profiling
information in that database (the latest “snapshot”) to optimize for faster code.
See the 5.4.48 Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom), p.75, to control how the profile data
affects optimization.

The snapshot selected depends on -Xprof-snapshot (5.4.104 Select Snapshot for
Use by -Xprof-feedback (-Xprof-snapshot), p.100) and -Xprof-exec (5.4.102 Select
Target Executable for Use by -Xprof-feedback (-Xprof-exec), p.99) as follows:

-Xprof-exec -Xprof- snapshot Snapshot Selected

No No Use latest snapshot in the database.

No Yes Use snapshot named by -Xprof-snapshot. If a
snapshot with the given name is present for
more than one executable, use the latest.

Yes No Use latest snapshot for the executable
specified by -Xprof-exec.

Yes Yes Use snapshot named by -Xprof-snapshot.
Report an error if no snapshot with the given
name is present for the executable specified by
-Xprof-exec.

Wind River Compiler for SPARC
User’s Guide, 5.4

100

5.4.104 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)

-Xprof-snapshot=string
(no numeric equivalent)

string must name a snapshot in the RTA database directory specified with
-Xprof-feedback. See -Xprof-feedback (5.4.103 Optimize Using RTA Profile
Data (-Xprof-feedback), p.99) for details.

5.4.105 Restart Optimization From Scratch (-Xrestart)

-Xrestart
-X29

Restart optimization from scratch if too many optimistic predictions were
made.

Compilers may have difficulty predicting the best way to perform specific
optimizations when the information needed is not available until a later
compiler stage. For example, better code may be produced by moving a loop
invariant expression outside the loop if the result can be placed in a register.
However, the compiler does not know if any register is available until after
register allocation, which is performed later in the compilation.

The compiler uses an optimistic approach which generates optimal code when
registers are available but not when all registers are taken. The -Xrestart option
will restart optimization and code generation if any optimistic prediction is
false. This will typically slow the compilation of large functions by a factor of
almost two while generating better code. This option is turned on by -XO.

NOTE: This option is used in conjunction with the -Xprof-... options
(5.4.101 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...), p.97). Do not use this option with the older pair of
profiling options -Xblock-count (5.4.10 Insert Profiling Code (-Xblock-count),
p.60) and -Xfeedback (5.4.47 Optimize Using Profile Data (-Xfeedback=file),
p.74).

Also, the selected snapshot must include basic block count data, that is, the
executed code must have been compiled with -Xprof-all, -Xprof-all, or
-Xprof-count. The options -Xprof-time, -Xprof-time-fast, and
-Xprof-coverage do not produce the data required for feedback-driven
optimization.

5 Invoking the Compiler
5.4 Compiler -X Options

101

5

5.4.106 Generate Code for the Run-Time Error Checker (-Xrtc=mask)

-Xrtc=mask
-X64=mask

With no mask, this option directs the compiler to insert checking code for all
checks made by the Run-Time Error Checker. Use the mask to select specific
checks rather than all.

5.4.107 Enable Run-time Type Information (-Xrtti, -Xrtti-off)

-Xrtti
-X205=1

Enable run-time type information. This is the default.

There are two approaches to generating run-time type information for a class:

■ Compile all modules with -Xrtti and also with -Xcomdat (5.4.24 Mark
Sections as COMDAT for Linker Collapse (-Xcomdat), p.65): the run-time type
information will be emitted for every module but will be marked
COMDAT and collapsed to a single instance by the linker. This is the
preferred method.

■ For a class declaring one or more virtual functions, compile only the
module defining the key function for the class with -Xrtti. Key functions are
described in Virtual Function Table Generation—Key Functions, p.169.

-Xrtti-off
-X205=0

C++ only. Disable run-time type information. Using this option will save space
because the compiler does not need to create type tables.

Synonym: -Xno-rtti.

5.4.108 Pad Sections for Optimized Loading (-Xsection-pad)

-Xsection-pad
-X152

Allow the linker to pad loadable sections for optimized loading.

Wind River Compiler for SPARC
User’s Guide, 5.4

102

5.4.109 Generate Each Function in a Separate CODE Section Class (-Xsection-split)

-Xsection-split
-X129
-Xsection-split-off
-X129=0

Generate a separate CODE section class for each function in the module. The
default is -Xsection-split-off; a single module generates only one CODE
section class containing the code for all functions for that module.

By default, with -Xsection-split enabled, the multiple CODE section classes
will all still be named .text (absent the use of .section pragmas). While linking,
a specific .text section for a given function may be singled out using the linker
command language syntax:

object-filespec(input-section-name[symbol] ,...)

(where the “[“ and “]” characters are required and do not mean “optional” in
this case).

Example: if object file test.o contains functions f1 and f2, then the .text section
for f1 may be specified by:

test.o(.text[f1])

5.4.110 Disable Generation of Priority Section Names (-Xsect-pri-...)

-Xsect-pri-on
-X122=0

Enable section names of the form “...$n”. See 23.6 Sorted Sections, p.349 for use
of this form. This is the default.

-Xsect-pri-off
-X122

Disable generation of section names of the form “...$n” for use by third-party
assemblers or linkers unable to process this form of name.

NOTE: This option is especially useful in combination with
-Xremove-unused-sections to reduce code size. See Remove Unused Sections
(-Xremove-unused-sections), p.369.

5 Invoking the Compiler
5.4 Compiler -X Options

103

5

5.4.111 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)

-Xshow-configuration=0

Compiler-generated assembly listings (saved with the -S option) do not show
-X options. This is the default.

-Xshow-configuration=1

Assembly listings contain -X options, but only user-configurable options are
shown; internal compiler flags are suppressed.

5.4.112 Print Instantiations (-Xshow-inst)

-Xshow-inst
-X212

C++ only. Print to stderr a list of all template instantiations made during
compilation. See also 5.4.60 Control Template Instantiation
(-Ximplicit-templates...), p.80 and Templates, p.223.

5.4.113 Show Target (-Xshow-target)

-Xshow-target

dcc C and dplus C++ driver option. Display the target processor “-t option” on
standard output, but do not compile any file.

5.4.114 Optimize for Size Rather Than Speed (-Xsize-opt)

-Xsize-opt
-X73

Optimize for size rather than speed when there is a choice. Optimizations
affected include inlining, loop unrolling, and branch to small code. For
character arrays, -Xstring-align=value will override -Xsize-opt. See the
description of array alignment in 8.3 Arrays, p.164.

Wind River Compiler for SPARC
User’s Guide, 5.4

104

5.4.115 Select Software Floating Point Emulation (-Xsoft-float)

-Xsoft-float
-X56

The implementation is a very fast call-based method. This option is controlled
by DFP, which also selects which library to use, and should not usually be set
explicitly by the user.

5.4.116 Enable Stack Checking (-Xstack-probe)

-Xstack-probe
-X10

Enable stack checking (probing). For users of the Run-Time Error Checker, this
option is equivalent to -Xrtc=4.

5.4.117 Diagnose Static Initialization Using Address (-Xstatic-addr-...)

-Xstatic-addr-error
-X81=2

Generate an error if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC).

-Xstatic-addr-warning
-X81=1

Generate a warning if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC). This option is on by default.

5.4.118 Treat All Static Variables as Volatile (-Xstatics-volatile)

See 5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.91.

NOTE: -Xstack-probe cannot be used with “interrupt” functions, that is, with
a function named in an interrupt pragma or declared using the interrupt or
__interrupt__ keywords

5 Invoking the Compiler
5.4 Compiler -X Options

105

5

5.4.119 Buffer stderr (-Xstderr-fully-buffered)

-Xstderr-fully-buffered
-X173

Buffer stderr using 10KB buffer. Use this option to reduce network traffic;
stderr is unbuffered by default.

5.4.120 Terminate Compilation on Warning (-Xstop-on-warning)

-Xstop-on-warning
-X85

Terminate compilation on any warning. Without this option, only errors
terminate compilation. (For both errors and warnings, compilation terminates
after a small number of errors are output.)

5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)

-Xstrict-ansi

Compile in “pedantic” mode. This option is equivalent to -Xdialect-strict-ansi.
For C, see 5.4.37 Specify C Dialect (-Xdialect-...), p.69. For C++, -Xstrict-ansi
generates diagnostic messages when nonstandard features are used and
disables features that conflict with ANSI/ISO C++, including -Xusing-std-on
and -Xdollar-in-ident.

Disabled by default.

5.4.122 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions)

-Xstrict-bitfield-promotions

Conform to the ANSI standard when promoting bit-fields. When a bit-field
occurs in an expression where an int is expected, the compiler promotes the
bit-field to a larger integral type. Unless this option is enabled, such
promotions preserve sign as well as value. If -Xstrict-bitfield-promotions is
specified, however, an object of an integral type all of whose values are
representable by an int (that is, an object smaller than 4 bytes) is promoted to
an int, even if the original type is unsigned.

-Xstrict-ansi or -Xdialect-strict-ansi implicitly enables
-Xstrict-bitfield-promotions by default, but can be overridden with
-Xstrict-bitfield-promotions=0.

Wind River Compiler for SPARC
User’s Guide, 5.4

106

See also 5.4.9 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned), p.59.

5.4.123 Align Strings on n-byte Boundaries (-Xstring-align=n)

-Xstring-align=n
-X18=n

Align each string on an address boundary divisible by n. The default value is
4. See also 5.4.7 Specify Minimum Array Alignment (-Xarray-align-min), p.58.

5.4.124 Warn on Large Structure (-Xstruct-arg-warning=n)

-Xstruct-arg-warning=n
-X92=n

C only. Emit a warning if the size of a structure argument is larger than or equal
to n bytes.

5.4.125 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...)

-Xstruct-assign-split-diff=n
-X147=n
-Xstruct-assign-split-max=n
-X146=n

These options control optimization of assignments of local struct variables.
The compiler uses a number of techniques to optimize structure members (it
uses registers, etc.). A structure can be assigned as a one or more blocks
(depending on a number of factors) or member-by-member. However, block
structure assignment disables member optimization, so options are available
to control the type of structures that will assigned as a block.

By default, the assignment is member-by-member if the structure has 6 or
fewer members and if the increase in assignments (over block assignments) is
3 or fewer. Otherwise, the structure is assigned as a block.

Use -Xstruct-assign-split-max to set the maximum number of members in a
struct that may be assigned member-by-member.

Use -Xstruct-assign-split-diff to set the maximum number of additional
assignments allowed. If member-to-member assignment involves a higher

5 Invoking the Compiler
5.4 Compiler -X Options

107

5

number of additional assignments than the number set by
-Xstruct-assign-split-diff, a block assignment is performed.

5.4.126 Set Minimum Structure Member Alignment (-Xstruct-min-align=n)

-Xstruct-min-align=n
-X76=n

Force structures to begin on at least an n byte boundary. If any member in a
structure has a greater alignment, the structure will be aligned on a boundary
divisible by the size in bytes of the largest member.

See pack Pragma, p.127 and __packed__ and packed Keywords, p.135 for details.
See also 5.4.84 Set Maximum Structure Member Alignment
(-Xmember-max-align=n), p.91.

The default value of n is dependent on the processor as described in 8. Internal
Data Representation.

5.4.127 Suppress Warnings (-Xsuppress-warnings)

-Xsuppress-warnings
-X14

Suppress compiler warnings. Same as the -w option.

5.4.128 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl)

-Xswap-cr-nl
-X13

C only. Swap '\n' and '\r' in character and string constants. Used on systems
where carriage return and line feed are reversed.

5.4.129 Set Threshold for a Switch Statement Table (-Xswitch-table...)

-Xswitch-table=n
-X143=n

Implement a switch statement using compares if there are fewer than n case
labels in the switch, use a jump table if there are n or greater. This option is on
by default with a value of 7.

Wind River Compiler for SPARC
User’s Guide, 5.4

108

-Xswitch-table-off

Do not use a jump table to implement a switch statement under any
conditions.

5.4.130 Disable Certain Syntax Warnings (-Xsyntax-warning-...)

-Xsyntax-warning-on
-X215=0

Enable certain syntax warnings, for example, warning on a comma after the
last enumerator. This is the default.

-Xsyntax-warning-off
-X215

C++ only. Disable these warnings.

5.4.131 Select Target Processor (-Xtarget)

-Xtarget

-X39=nThis option is for internal use should usually not be set by the user. See
4. Selecting a Target and Its Components.

5.4.132 Specify Loop Test Location (-Xtest-at-...)

-Xtest-at-both
-X6=2

Force the compiler to always test loops both before the loop is started and at
the bottom of the loop. This option produces the fastest possible code but uses
more space. Even if -Xtest-at-both is not set, other optimizations may cause the
compiler to generate double tests. This option is turned on by -XO.

-Xtest-at-bottom
-X6=0

Use one loop test at the bottom of a loop.

-Xtest-at-top
-X6=1

Use one loop test at the top of a loop.

5 Invoking the Compiler
5.4 Compiler -X Options

109

5

5.4.133 Truncate All Identifiers After m Characters (-Xtruncate)

-Xtruncate=m
-X22=m

Truncate all identifiers after m characters. If m is zero, no truncation is done.
This is the default.

5.4.134 Append Underscore to Identifier (-Xunderscore-...)

-Xunderscore-leading
-X71=1

Prefix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xleading-underscore.

-Xunderscore-trailing
-X71=2

Suffix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xtrailing-underscore.

-Xunderscore-surround
-X71=3

Prefix and suffix every externally visible identifier with an underscore in the
symbol table.

Synonym: -Xsurround-underscore.

NOTE: The -Xunderscore... options are provided for use in linking code generated
by the compiler with third-party libraries or with other tools requiring generated
underscores.

The default value of this option is 0 (no extra underscore).

Because Wind River libraries are compiled with the default setting, setting this option to
anything but the default will require recompiling every library used.

Wind River Compiler for SPARC
User’s Guide, 5.4

110

5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)

-Xunroll=n
-X15=n

Unroll small loops n times. Set to 2 by default. n must be a power of two. See
Loop Unrolling (0x8000), p.197.

-Xunroll-size=n
-X16=n

Specify the maximum number of nodes a loop can contain to be considered for
loop unrolling. Each operator and each operand counts as one node, so the
expression

a = b - c;

contains 5 nodes. (There is also a small number of additional nodes for each
function.) n is set to 20 by default. Assembly files saved with -S show the
number of nodes for each function.

5.4.136 Runtime Declarations in Standard Namespace (-Xusing-std-...)

-Xusing-std-on

 C++ only. Automatically search for runtime library declarations in the std
namespace (as if “using namespace std;” had been specified in the source
code), not in global scope. This is the default behavior, but it is disabled by
-Xstrict-ansi; use -Xusing-std-on on the command line to override
-Xstrict-ansi.

This option allows you to use the newer C++ libraries, which are in the std
namespace, without adding using namespace std; to legacy code.

-Xusing-std-off

Search for runtime library declarations in global scope unless an explicit using
namespace std; is given.

NOTE: Some sufficiently small loops may be unrolled more than n times if total
code size and speed is better.

NOTE: Unrolling is done only if option -O or -XO is given to enable optimization

5 Invoking the Compiler
5.5 Examples of Processing Source Files

111

5

5.4.137 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)

-Xvoid-ptr-arith-ok
-X167

Treat void pointers as char * for the purpose of arithmetic. For example:

some_void_ptr += 1; /* adds 1 to some_void_ptr */

5.4.138 Define Type for wchar (-Xwchar=n)

-Xwchar=n
-X86=n

Define the type to which wchar will correspond. The desired type is given by
specifying a value n equal to a value returned by the operator sizeof(type, 2).
See sizeof Extension, p.146. The default type is long integer (32 bits), that is,
-Xwchar=4.

5.4.139 Control Use of wchar_t Keyword (-Xwchar_t-...)

-Xwchar_t-on
-X214=0

Enable the wchar_t keyword.

-Xwchar_t-off
-X214

C++ only. Disable the wchar_t keyword.

Synonym: -Xno-wchar.

5.5 Examples of Processing Source Files

The following examples show typical ways of compiling.

The two files, file1.c and file2.cpp, contain the source code:

Wind River Compiler for SPARC
User’s Guide, 5.4

112

/* file1.c */
void outarg(char *);
int main(int argc, char **argv)
{

while(--argc) outarg(*++argv);
return 0;

}

/* file2.cpp */
#include <stdio.h>

extern "C" void outarg(char *arg)
{

static int count;

printf("arg #%d: %s\n",++count,arg);
}

5.5.1 Compile and Link

When compiling small programs such as this, the driver can be invoked to execute
all four stages of compilation in one command. For example:

dplus file1.c file2.cpp

The driver preprocesses, compiles, and assembles the two files (one C and one
C++), and links them together with the appropriate libraries to create a single
executable file, by default called a.out. When more than one file is compiled to
completion, object files are created and kept, in this case, file1.o and file2.o. When
only one file is compiled, assembled, and linked, the intermediate assembly and
object files are deleted automatically (see 5.4.71 Create and Keep Assembly or Object
File (-Xkeep-assembly-file, -Xkeep-object-file), p.84 to change this).

If the target system supports command-line execution, to execute this program
enter a.out with some arguments:

a.out abc def ghi

This will print:

arg #1: abc
arg #2: def
arg #3: ghi

(See 15. Use in an Embedded Environment for comments on executing programs in
embedded environments.)

To execute the program on the host system using the WindISS simulator, compile
the program with windiss specified on the command line—for example:

dplus -tSPARCES:windiss file1.c file2.cpp

5 Invoking the Compiler
5.5 Examples of Processing Source Files

113

5

Then run the program with WindISS:

windiss a.out abc def ghi

To give the generated program a name other than a.out, use the -o option:

dplus file1.c file2.cpp -o prog1

To also enable optimization, use the -O option:

dplus -O file1.c file2.cpp -o prog1

To convert the linked output to S records:

ddump -Rv a.out

will produce file srec.out by default. See 29. D-DUMP File Dumper for additional
options and details.

5.5.2 Separate Compilation

When compiling programs consisting of many source files, it is time-consuming
and impractical to recompile the whole program whenever a file is changed.
Separate compilation is a time-saving solution when recompiling larger programs.
The -c option creates an object file which corresponds to every source file, but does
not call the linker. These object files can then be linked together later into the final
executable program. When a change has been made, only the altered files need to
be recompiled. To create object files and then stop, use the following command:

dplus -O -c file1.c file2.cpp

The files file1.o and file2.o will be created.

Create the executable program as follows. Note that the driver is used to invoke
the linker; this is convenient because defaults will be supplied as required based
on the current target, for example, for libraries and crt0.o.

dplus file1.o file2.o -o prog2

If file2.cpp is altered, prog2 can be rebuilt with:

dplus -O -c file2.cpp
dplus file1.o file2.o -o prog2

Usually, the compilation process is automated with utilities similar to make, which
finds the minimum command sequence to create an updated executable.

Wind River Compiler for SPARC
User’s Guide, 5.4

114

5.5.3 Assembly Output

It is frequently desirable to look at the generated assembly code. Two options are
available for this purpose:

■ The -S option stops compilation after generating the assembly and
automatically names the file basename.s, file1.s in this case:

dplus -O -S file1.cpp

■ When using a command which generates an object file, the
-Xkeep-assembly-file option will preserve the assembly file in addition to the
object, naming it basename.s.

5.5.4 Precompiled Headers

In C++ projects with many header files, you can often speed up compilation by
using precompiled headers, enabled with the -Xpch-... options. See
13.7 Precompiled Headers, p.229.

The option -Xpass-source outputs the compiled source as comments in the
generated file and makes it easier to see which assembly instructions correspond
to each line of source:

dplus -O -S -Xpass-source file2.cpp

115

 6
Additions to ANSI C and C++

6.1 Preprocessor Predefined Macros 115

6.2 Preprocessor Directives 118

6.3 Pragmas 121

6.4 Keywords 133

6.5 Attribute Specifiers 137

6.6 Intrinsic Functions 142

6.7 Other Additions 144

6.1 Preprocessor Predefined Macros

The following preprocessor macros are predefined. The macros that do not start
with two underscores (“__”) are not defined if option -Xdialect-strict-ansi is given.

__BIG_ENDIAN__

Big-endian implementation.

__bool

The constant 1 if type bool is defined when compiling C++ code, otherwise
undefined. Option -Xbool-off disables the bool, true, and false keywords.
C++ only.

Wind River Compiler for SPARC
User’s Guide, 5.4

116

__CHAR_UNSIGNED__

Indicates that plain char characters are unsigned.

__cplusplus

The constant 199711 when compiling C++ code, otherwise undefined.

__DATE__

The current date in “mm dd yyyy” format; it cannot be undefined.

__DCC__

The constant 1.

__DCPLUSPLUS__

The constant 1 when compiling C++ code, otherwise undefined.

_DIAB_TOOL

Indicates the Wind River Compiler is being used.

__ETOA__

Indicates that full ANSI C++ is supported. Not defined when compiling C
code or when an older version of the compiler is invoked.

__ETOA_IMPLICIT_USING_STD

Defined if -Xusing-std-on is enabled. Indicates that runtime library
declarations are automatically searched for in the std namespace (not in global
scope), regardless of whether using namespace std; is specified.

__ETOA_NAMESPACES

Defined if the runtime library uses namespaces.

__EXCEPTIONS

Exceptions are enabled. C++ only.

__FILE__

The current filename; it cannot be undefined.

__FUNCTION__

__FUNCTION__ is not really a preprocessor macro, but a special predefined
identifier that returns the name of the current function (that is, the function in
which the identifier occurs).

 __hardfp

Hardware floating point support for SPARC only, not SPARClite.

__LITTLE_ENDIAN__

Little-endian implementation.

__LDBL__

The constant 1 if the type long double is different from double.

__LINE__

The current source line; it cannot be undefined.

6 Additions to ANSI C and C++
6.1 Preprocessor Predefined Macros

117

6

__lint

This macro is not predefined; instead, define this when compiling to select
pure-ANSI code in Wind River header files, avoiding use of any non-ANSI
extensions.

__nofp

No floating point support.

__PRETTY_FUNCTION__

__PRETTY_FUNCTION__ is not really a preprocessor macro, but a special
predefined identifier that returns the name of the current function (that is, the
function in which the identifier occurs). In C modules,
__PRETTY_FUNCTION__ always returns the same value as __FUNCTION__.
For C++, __PRETTY_FUNCTION__ may return additional information, such as
the class in which a method is defined.

__RTTI

C++ only. Run-time type information is enabled.

__SIGNED_CHARS__

C++ only. Defined as 1 if plain char is signed. See 5.4.19 Specify Sign of Plain
Char (-Xchar-signed, -Xchar-unsigned), p.63.

__softfp

Software floating point support.

__sparc

Target flag used by various tools.

__sparclite

Target flag used by various tools.

__STDC__

The constant 0 if -Xdialect-ansi and the constant 1 if -Xdialect-strict-ansi is
given. It cannot be undefined if -Xdialect-strict-ansi is set. For C++ modules it
is defined as 0 in all other cases.

__STRICT_ANSI__

The constant 1 if -Xdialect-strict-ansi or -Xstrict-ansi is enabled.

__TIME__

The current time in “hh:mm:ss” format; it cannot be undefined.

__VERSION__

The version number of the compiler and tools, represented as a string.

__VERSION_NUMBER__

The version number of the compiler and tools, represented as an integer.

Wind River Compiler for SPARC
User’s Guide, 5.4

118

__wchar_t

The constant 1 if type wchar_t is defined when compiling C++ code, otherwise
undefined. Option -X-wchar-off disables the wchar_t keyword.

6.2 Preprocessor Directives

The preprocessor recognizes the following additional directives.

#assert and #unassert Preprocessor Directives

The #assert and #unassert directives allow definition of preprocessor variables
that do not conflict with names in the program namespace. These variables can be
used to direct conditional compilation. The C and C++ preprocessors recognize
slightly different syntax for #assert and #unassert.

Assertions can also be made on the command line through the -A option.

To display information about assertions at compile time, see 5.4.28 Dump Symbol
Information for Macros or Assertions (-Xcpp-dump-symbols), p.66.

To make an assertion with a preprocessor directive, use the syntax:

In the first form, name is given the value value. In the second form, name is defined
but not given a value. Whitespace is allowed only where shown.

Examples:

#assert system(unix)
#assert system

To make an assertion on the command line, use:

-A name(value)

Examples:

#assert name (value) C or C++

#assert name C++ only

dcc -A "system (unix)" test.c UNIX

6 Additions to ANSI C and C++
6.2 Preprocessor Directives

119

6

Assertions can be tested in an #if or #elif preprocessor directive with the syntax:

A statement of the first form evaluates to true if an assertion of that name with that
value has appeared and has not been removed. (A name can have more than one
value at the same time.) A statement of the second form evaluates to true if an
assertion of that name with any value has appeared.

Examples:

#if #system(unix)
#if #system

An assertion can be removed with the #unassert directive:

The first form removes all definitions of name. The other forms remove only the
specified definition.

Examples:

#unassert system
#unassert system(unix)
#unassert #system(unix)

#error Preprocessor Directive

The #error preprocessor directive displays a string on standard error and halts
compilation. Its syntax is:

#error string

Example:

#error "Feature not yet implemented."

dcc -A system\ (unix\) test.c UNIX

dcc -A system (unix) test.c Windows

#if #name (value) C or C++

#if #name C only

#unassert name C++ only

#unassert name (value) C++ only

#unassert #name (value) C only

Wind River Compiler for SPARC
User’s Guide, 5.4

120

See also #info, #inform, and #informing Preprocessor Directives, p.120 and #warn and
#warning Preprocessor Directives, p.121.

#ident Preprocessor Directive (C only)

The #ident preprocessor directive inserts a comment into the generated object file.
The syntax is:

#ident string

Example:

#ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#import Preprocessor Directive

The #import preprocessor directive is equivalent to the #include directive, except
that if a file has already been included, it is not included again. The same effect can
be achieved by wrapping all header files with protective #ifdefs, but using
#import is much more efficient since the compiler does not have to open the file.
Using the -Ximport command-line option will cause all #include directives to
behave like #import.

#info, #inform, and #informing Preprocessor Directives

The #info, #inform, and #informing preprocessor directives display a string on
standard error and continue compilation. Their syntax is:

#info string
#inform string
#informing string

Example:

#info "Feature not yet implemented."

See also #error Preprocessor Directive, p.119 and #warn and #warning Preprocessor
Directives, p.121.

6 Additions to ANSI C and C++
6.3 Pragmas

121

6

#warn and #warning Preprocessor Directives

The #warn and #warning preprocessor directives display a string on standard
error and continue compilation. Their syntax is:

#warn string
#warning string

Example:

#warn "Feature not yet implemented."

See also #error Preprocessor Directive, p.119 and #info, #inform, and #informing
Preprocessor Directives, p.120.

6.3 Pragmas

This section describes the pragmas supported by the compiler. A warning is issued
for unrecognized pragmas.

Pragma directives are not preprocessed. Comments are allowed on pragmas.

In C++ modules, a pragma naming a function affects all functions with the same
name, independently of the types and number of parameters—that is,
independently of overloading.

align Pragma

#pragma align [([[max_member_alignment], [min_structure_alignment] [, byte-swap]])]

The align pragma, provided for portability, is a synonym for pack Pragma, p.127.

error Pragma

#pragma error string

Display string on standard error as an error and halt compilation. See also info
Pragma, p.123 and warning Pragma, p.131.

Wind River Compiler for SPARC
User’s Guide, 5.4

122

global_register Pragma

#pragma global_register identifier=register ,...

This pragma forces a global or static variable to be allocated to a specific register.
This can increase execution speed considerably when a global variable is used
frequently, for example, the “program counter” variable in an interpreter.

identifier gives the name of a variable. register gives the name of the selected register
in the target processor. See 9.6 Register Use, p.178 for a list of valid register names.

The following rules apply:

■ Only registers which are preserved across function calls may be assigned to
global variables.

■ When assigning several variables to registers, start by using the lowest
preserved register available. Some targets cannot use lower preserved
registers for automatic and register variables.

■ Do not mix modules using global registers with modules not using them.
Never call a function using global registers from a module compiled without
them.

■ #pragma global_register can be used to force the compiler to avoid specific
registers in code generation by defining dummy variables as global registers
in all modules.

■ The pragma must appear before the first definition or declaration of the
variable being assigned to a register.

Examples:

#pragma global_register counter=register-name
char *counter; /* allocated to the named register */

/* Force the compiler to avoid a named register. */
#pragma global_register __dummy=register-name

hdrstop Pragma

#pragma hdrstop

NOTE: A convenient method of ensuring that all modules are compiled with the
same global register assignments is to put all #pragma global_register directives
in a header file, e.g. globregs.h, and then include that file with every compilation
from the command line with the -i option, e.g. -i=globregs.h.

6 Additions to ANSI C and C++
6.3 Pragmas

123

6

C++ only. Suppress generation of precompiled headers. Headers included after
#pragma hdrstop are not saved in a parsed state. See 13.7 Precompiled Headers,
p.229 for more information.

ident Pragma

#pragma ident string

Insert a comment into the generated object file.

Example:

#pragma ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

info Pragma

#pragma info string

Display string on standard error and continue compilation. See also error Pragma,
p.121 and warning Pragma, p.131.

inline Pragma

#pragma inline func ,...

Inline the given function whenever possible. The pragma must appear before the
definition of the function. Unless cross-module optimization is enabled (-Xcmo-...),
a function can be inlined only in the module in which it is defined.

In C++ modules, the inline function specifier is normally used instead. This
specifier, however, also makes the function local to the file, without external
linkage. Conversely, the #pragma inline directive provides a hint to inline the code
directly to the code optimizer, without any effect on the linkage scope.

NOTE: The inline pragma has no effect unless optimization is selected (with the
-XO or -O options).

Wind River Compiler for SPARC
User’s Guide, 5.4

124

Example:

#pragma inline swap

void swap(int *a, int *b) {
int tmp;
tmp = *a; *a = *b; *b = tmp;

}

interrupt Pragma

#pragma interrupt function ,...

Designate function as an interrupt function. Code is generated to save all general
purpose scratch registers and to use a different return instruction.

Important interrupt Pragma Notes

■ Floating point and other special registers, if present on the target, are not saved
because interrupt functions usually do not modify them. If such registers must
be saved in order to handle nested interrupts, use an asm macro to do so (see
7. Embedding Assembly Code). To determine which registers are saved for a
particular target, compile the program with the -S option and examine the
resulting assembler file (it will have a .s extension by default).

■ The compiler does not generate instructions to re-enable interrupts. If this is
required to allow for nested interrupts, use an asm macro.

■ See 5.4.116 Enable Stack Checking (-Xstack-probe), p.104 for when this option
cannot be used with interrupt functions.

■ This pragma must appear before the definition of the function. A convenient
method is to put it with a prototype declaration for the function, perhaps in a
header file.

Example:

#pragma interrupt trap

void trap () {
/* this is an interrupt function */

}

no_alias Pragma

#pragma no_alias { var1 | *var2 } ,...

6 Additions to ANSI C and C++
6.3 Pragmas

125

6

Promise that the variable var1 is not accessed in any manner (through pointers etc.)
other than through the variable name; promise that the data at *var2 is only
accessed through the pointer var2. This allows the compiler to better optimize
references to such variables.

The pragma must appear after the definition of the variable and before its first use.

Example:

add(double *d, double *s1, double *s2, int n)

#pragma no_alias *d, *s1, *s2

{
int i;

for (i = 0; i < n; i++) {
/* "s1 + s2" will move outside the loop */
d[i] = *s1 + *s2;

}
}

Without the pragma, either s1 or s2 might point into d and the assignment might
then set s1 or s2. See also 5.4.6 Assume No Aliasing of Pointer Arguments
(-Xargs-not-aliased), p.58.

no_pch Pragma

#pragma no_pch

Suppress all generation of precompiled headers from the file where #pragma
no_pch occurs. See 13.7 Precompiled Headers, p.229, for more information.

no_return Pragma

#pragma no_return function ,...

Promise that each function never returns. Helps the compiler generate better code.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma no_return exit, abort, longjmp

Wind River Compiler for SPARC
User’s Guide, 5.4

126

no_side_effects Pragma

#pragma no_side_effects descriptor ,...

Where each descriptor has one of the following forms and meanings:

function
Promises that function does not modify any global variables (it may use global
variables).

function ({ global | n } ,...)
Promises that function does not modify any global variables except those
named or the data addressed by its nth parameter. At least one global or
parameter number must be given, and there may be more than one of either
kind in any order.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, for example, in a header
file.

Contrast with pure_function Pragma, p.130, which also promises that a function
does not use any global or static variables.

Example:

#pragma no_side_effects strcmp(1), sin(errno), \
my_func(1, 2, my_global)

option Pragma

#pragma option option [option ...]

Where option is any of the -g, -O, or -X options (including the leading ‘-’ character).
This option makes it possible to set these options from within a source file.

These options must be at the beginning of the source file before any other source
lines. The effect of other placement is undefined.

Note that some -X options are consumed by driver or compiler command-line
processing before a source file is read. If an -X option does not appear to hve the
intended effect, try it on the command line. If effective there, that option can not be
used as a pragma.

6 Additions to ANSI C and C++
6.3 Pragmas

127

6

pack Pragma

#pragma pack [([[max_member_alignment], [min_structure_alignment][, byte-swap]])]

The pack directive specifies that all subsequent structures are to use the alignments
given by max_member_alignment and min_structure_alignment where:

max_member_alignment
Specifies the maximum alignment of any member in a structure. If the
natural alignment of a member is less than or equal to
max_member_alignment, the natural alignment is used. If the natural
alignment of a member is greater than max_member_alignment,
max_member_alignment will be used.

Thus, if max_member_alignment is 8, a 4-byte integer will be aligned on a
4-byte boundary.
While if max_member_alignment is 2, a 4-byte integer will be aligned on a
2-byte boundary.

min_structure_alignment
Specifies the minimum alignment of the entire structure itself, even if all
members have an alignment that is less than min_structure_alignment.

byte-swap
If 0 or absent, bytes are taken as is. If 1, bytes are swapped when the data
is transferred between byte-swapped members and registers or
non-byte-swapped memory. This enables access to little-endian data on a
big-endian machine and vice-versa.

It is not possible to take the address of a byte-swapped member.

If neither max_member_alignment nor min_structure_alignment are given, they are
both set to 1. If either max_member_alignment or min_structure_alignment is zero, the
corresponding default alignment is used. If max_member_alignment is non-zero and
min_structure_alignment is not given it will default to 1.

The form #pragma pack is equivalent to #pragma pack(1,1,0). The form
#pragma pack() is equivalent to #pragma pack(0,0,0).

The align pragma, provided for portability, is an exact synonym for pack.

An alternative method of specifying structure padding is by using __packed__ and
packed Keywords, p.135.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

Wind River Compiler for SPARC
User’s Guide, 5.4

128

Restrictions and Additional Information

Note that if a structure is not packed, the compiler will insert extra padding to assure
that no alignment exception occurs when accessing multi-byte members because
the processor requires that multi-byte variables be aligned on 8-byte boundaries;
see 5.4.5 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n), p.57.

When a structure is packed, because the processor requires that multi-byte values
be aligned (-Xalign-min > 1), the following restrictions apply:

■ Access to multi-byte members will require multiple instructions. (This is so
even if a member is aligned as would be required within the structure because
the structure may itself be placed in memory at a location such that the
member would be unaligned, and this cannot be determined at compile time.)

■ volatile members cannot be accessed atomically. The compiler will warn and
generate multiple instructions to access the volatile member. Also,
“compound” assignment operators to volatile members, such as +=, |=, etc.,
are not supported. For example, assuming i is a volatile member of packed
structure struct1, then the statement:

struct1.i += 3;

must be recoded as:

struct1.i = struct1.i + 3;

In addition, for packed structures, an enum member will use the smallest type
sufficient to represent the range, see 5.4.42 Specify enum Type (-Xenum-is-...), p.71.

Examples

Later examples depend on earlier examples in some cases.

#pragma pack (2,2)

struct s0 {
char a; 1 byte at offset 0, 1 byte padding
short b; 2 bytes at offset 2
char c; 1 byte at offset 4
char d; 1 byte at offset 5
int e; 4 bytes at offset 6
char f; 1 byte at offset 10

}; total size 11, alignment 2

6 Additions to ANSI C and C++
6.3 Pragmas

129

6

If two such structures are in a section beginning at offset 0xF000, the layout would
be:

padding

a
padding

b

c

d

e

f

F000

F001

F002

F004

F005

F006

F00A

F00B

a
padding

b

c

d

e

f

F00C

F00D

F00E

F010

F011

F012

F016

F017

#pragma pack (1) Same as #pragma pack(1,1), no padding.
struct S1 {

char c1 1 byte at offset 0
long i1; 4 bytes at offset 1

Wind River Compiler for SPARC
User’s Guide, 5.4

130

pure_function Pragma

#pragma pure_function function ,...

Promises that each function does not modify or use any global or static data. Helps
the compiler generate better code, for example, in optimization of common
sub-expressions containing identical function calls. Contrast with no_side_effects

char d1; 1 byte at offset 5
}; total size 6, alignment 1

#pragma pack (8) Use “natural” packing for largest member.
struct S2 {

char c2 1 byte at offset 0, 3 bytes padding
long i2; 4 bytes at offset 4
char d2; 1 byte at offset 8, 3 bytes padding

}; total size 12, alignment 4

#pragma pack (2,2) Typical packing on machines which cannot
struct S3 { access multi-byte values on odd-bytes.

char c3; 1 byte at offset 0, 1 byte padding
long i3; 4 bytes at offset 2
char d3; 1 byte at offset 6, byte padding

}; total size 8, alignment 2

struct S4 { Using pragma from prior example.
char c4; 1 byte at offset 0, 1 byte padding

}; total size 2, alignment 2 since
min_member_alignment is 2 above

#pragma pack (8) “Natural” packing since S3 is 8 bytes long.
struct S {

char e1; 1 byte at offset 0
struct S1 s1; 6 bytes at offset 1, 1 byte padding
struct S2 s2; 12 bytes at offset 8
char e2; 1 byte at offset 20, 1 byte padding
struct S3 s3; 8 bytes, at offset 22, 2 bytes padding

alignment 2
}; total size 32, alignment 4

#pragma pack (0) Set to default packing.

6 Additions to ANSI C and C++
6.3 Pragmas

131

6

Pragma, p.126, which only promises that a function does not modify global
variables.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma pure_function sum
int sum(int a, int b) {

return a+b;
}

section Pragma

#pragma section class_name [istring [ustring]] [addr_mode] [acc_mode] [address=x]

The #pragma section directive defines sections into which variables and code can
be placed. It also defines how objects in sections are addressed and accessed.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The section pragma is discussed in detail in 14. Locating Code and Data, Access.

use_section Pragma

#pragma use_section class_name variable ,...

Selects the section class into which a variable or function is placed. A section class
is defined by #pragma section.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The use_section pragma is discussed in detail in 14. Locating Code and Data, Access.

warning Pragma

#pragma warning string

Display string on standard error as a warning and continue compilation. See also
error Pragma, p.121, and info Pragma, p.123.

Wind River Compiler for SPARC
User’s Guide, 5.4

132

weak Pragma

#pragma weak symbol

Mark symbol as weak.

When a #pragma weak for a symbol is given in the module defining the symbol, it
is a weak definition. When the #pragma weak is in a module using but not defining
it, it is a weak reference.

Because this pragma is ultimately processed by the assembler, it may appear
anywhere in the source file.

A weak symbol resembles a global symbol with two differences:

■ When linking, a weak definition with the same name as a global or common
symbol is not considered a duplicate definition; the weak symbol is ignored.

■ If no module is present to define a symbol, unresolved weak references to the
symbol have a value of zero and remain undefined in the symbol table after
linking, and no error is reported.

Note while a symbol may be defined in more than one module as long as at most
one of the definitions is global or common while the rest (or all) are weak, the
linker resolves references to the first instance of the symbol it encounters. Consider
the following scenario. Function foo() uses x, which is declared weak in library 1
and global in library 2. If library 1 is searched first, the weak version of x will be
used. On the other hand, if library 2 is subsequently linked (because, for example,
another function uses it), then the global version of x will replace the weak version.

#pragma weak is incompatible with local data area (LDA) allocation; using
#pragma weak with -Xlocal-data-area or -Xlocal-data-area-static-only enabled
will produce a warning and temporarily disable LDA. See 5.4.76 Allocate Static and
Global Variables to Local Data Area (-Xlocal-data-area=n), p.87, and 14.3 Local Data
Area (-Xlocal-data-area), p.244.

6 Additions to ANSI C and C++
6.4 Keywords

133

6

6.4 Keywords

The following additional keywords are recognized by the compiler.

__asm and asm Keywords

Used to embed assembly language (see 7. Embedding Assembly Code) and use the
information found in Assigning Global Variables to Registers, p.145.

__attribute__ Keyword

See 6.5 Attribute Specifiers, p.137.

extended Keyword (C only)

If the option -Xkeywords=x is used with the least significant bit set in x (e.g.,
-Xkeywords=0x1), the compiler recognizes the keyword extended as a synonym
for long double.

Example:

extended e; /* the same as long double e; */

__inline__ and inline Keywords

The __inline__ and inline keywords provide a way to replace a function call with
an inlined copy of the function body. The __inline__ keyword is intended for use
in C modules but is disabled in strict-ANSI mode. The inline keyword is normally
used in C++ modules but can also be used in C if the option -Xkeywords=0x4 is
given (5.4.72 Enable Extended Keywords (-Xkeywords=mask), p.84).

__inline__ and inline make the function local (static) to the file by default.
Conversely, the #pragma inline directive provides a hint to inline the code directly
to the code optimizer, without any effect on the linkage scope. Use extern to make
an inline function public.

Wind River Compiler for SPARC
User’s Guide, 5.4

134

Example:

__inline__ void inc(int *p) {
*p = *p+1;

}

inc(&x);

The function call will be replaced with

x = x+1;

__interrupt__ and interrupt Keywords (C only)

The __interrupt__ keyword provides a way to define a function as an interrupt
function. The difference between an interrupt function and a normal function is
that all registers are saved, not just the those which are volatile, and a special return
instruction is used. __interrupt__ works like the interrupt Pragma, p.124. The
keyword interrupt can also be used; see 5.4.72 Enable Extended Keywords
(-Xkeywords=mask), p.84.

Example:

__interrupt__ void trap() {
/* this is an interrupt function */

}

NOTE: Functions are not inlined, even with an explicit #pragma inline, or
__inline__ or inline keyword unless optimization is selected with the -XO or -O
options.

Note that using -O will automatically inline functions of up to 10 nodes (including
“empty” functions), and -XO will automatically inline functions of up to 40 nodes.
See how these values are controlled in 5.4.67 Inline Functions with Fewer Than n
Nodes (-Xinline=n), p.82. An explicit pragma or keyword can be used to force
inlining of a function larger than the value set with implicitly or explicitly with
-Xinline.

See Inlining (0x4), p.191, for a complete discussion of all inlining methods.

NOTE: See why this cannot be used with interrupt functions, 5.4.116 Enable Stack
Checking (-Xstack-probe), p.104).

6 Additions to ANSI C and C++
6.4 Keywords

135

6

long long Keyword

The compiler supports 64-bit integers for all SPARC microprocessors. A variable
declared long long or unsigned long long is an 8 byte integer. To specify a long
long constant, use the LL or ULL suffix. A suffix is required because constants are
of type int by default.

Example:

long long mask_nibbles (long long x)
{

return (x & 0xf0f0f0f0f0f0f0f0LL);
}

NOTE: Bit-fields are not permitted in variables of type long long.

__packed__ and packed Keywords

__packed__ ([[max_member_alignment], [min_structure_alignment] [, byte-swap]])

The __packed__ keyword defines how a structure should be padded between
members and at the end. The keyword packed can also be used if the option
-Xkeywords=0x8 is given. See pack Pragma, p.127 for treatment of 0 values,
defaults, and restrictions.

The max_member_alignment value specifies the maximum alignment of any
member in the structure. If the natural alignment of a member is less than
max_member_alignment, the natural alignment is used. See 8. Internal Data
Representation for more information about alignments and padding.

The min_structure_alignment value specifies the minimum alignment of the
structure. If any member has a greater alignment, the highest value is used.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

The byte-swapped option enables swapping of bytes in structure members as they
are accessed. If 0 or absent, bytes are taken as is; if 1, bytes are swapped as they are
transferred between byte-swapped structure members and registers or
non-byte-swapped memory.

See pack Pragma, p.127 for defaults for missing parameters and for additional
examples.

Wind River Compiler for SPARC
User’s Guide, 5.4

136

Examples:

For the C compiler only, constant expressions (in addition to simple constants) can
be specified as arguments to the __packed__ or packed keyword.

pascal Keyword (C only)

If the option -Xkeywords=x is used with bit 1 set in x (e.g., -Xkeywords=0x2), the
compiler recognizes the keyword pascal. This keyword is a type modifier that
affects functions in the following way:

■ The argument list is reversed and the first argument is pushed first.

■ On CISC processors (for example, MC68000), the called function clears the
argument stack space instead of the caller.

__typeof__ Keyword (C only)

__typeof__(arg), where arg is either an expression or a type, behaves like a defined
type. Examples:

__typeof__(int *) x;
__typeof__(x) y;

__packed__ struct s1 { no padding between members
char c;

int i starts at offset 1
}; total size 5 bytes

__packed__ (2,2) struct s2 { maximum alignment 2
char c;
int i; starts at offset 2

}; total size 6 bytes

__packed__ (4) struct s3 { maximum alignment 4
char c;
int i; starts at offset 4

}; total size 8 bytes

__packed__ (4,2) struct s4 { minimum alignment 2
char c;

}; total size 2 bytes

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

137

6

The first statement declares a variable x whose type is the type of pointers to
integers, while the second declares a variable y of the same type as x. Note that
typeof (without underscores) is not supported.

6.5 Attribute Specifiers

Attribute specifiers, formed with the __attribute__ keyword, assign extra-language
properties to variables, functions, and types. They can specify packing, alignment,
memory placement, and execution options. When you have a choice between an
attribute specifier and an equivalent pragma, it is preferable to use the attribute
specifier.

Attribute specifiers have the form __attribute__((attribute-list)), where
attribute-list is a comma-delimited list of attributes. Supported attributes, some of
which include parameters in parentheses, are described in the sections that follow.

An attribute specifier can appear in a variable or function declaration, function
definition, or type definition; or following any variable within a list of variable
declarations. Multiple attribute specifiers should be separated by whitespace.

When an attribute specifier modifies a function, it can appear before or after the
return type. Examples:

__attribute__((pure)) int foo(int a, b);
int __attribute__((no_side_effects)) bar(int x);

When an attribute specifier modifies a struct, union, or enum, it can appear
immediately before or after the keyword, or after the closing brace. Example:

struct b {
char b;
int a;

} __attribute__((aligned(2))) str1;

For non-structure fields, the specifier can be placed anywhere before or
immediately following the identifier name:

__attribute__((aligned(2))) int foo;
int __attribute__((aligned(4))) bar;
int foobar __attribute__((aligned(8)));

Placement of a specifier determines how the attribute is applied. Example:

Wind River Compiler for SPARC
User’s Guide, 5.4

138

// align a and b on 4-byte boundaries
__attribute__((aligned(4))) char a='a', b='b';

// force alignment only for c
char __attribute__((aligned(4))) c='c', d ='d';

// force alignment only for f
char e='e', f __attribute__((aligned(4))) ='f';

If an attribute specifier modifies a typedef, it applies to all variables declared using
the new type:

typedef __attribute__((aligned(4))) char AlignedChar;

// a and b are aligned on 4-byte boundaries
AlignedChar a='a', b='b';

To eliminate naming conflicts between attributes and preprocessor macros, any
attribute name can be surrounded by double underscores. For example, aligned
and __aligned__ are synonyms; __attribute__((aligned(2))) is equivalent to
__attribute__((__aligned__(2))).

When an attribute takes a numeric parameter, the parameter can be a simple
constant or a constant expression. Example:

__attribute__((aligned(sizeof(double)))) int x[32];

In this example, the constant expression sizeof(double) is used as a parameter to
the aligned attribute.

absolute Attribute (C only)

__attribute__((absolute)) indicates that a const integer variable is an absolute
symbol. Example:

const int foo __attribute__((absolute)) = 7;

NOTE: The placement of attribute specifiers can be misleading. For example:

int last_func() {
...
} __attribute__((noreturn)) // modifies foo, not last_func

int foo() {
...
}

This example is confusing because in type definitions, the attribute specifier can
follow the closing brace. But in function definitions, the attribute specifier must
appear directly before or after the return type.

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

139

6

This declaration means that foo appears in the symbol table and always represents
the value 7; no memory is allocated to store foo.

aligned(n) Attribute

To specify byte alignment for a variable or data structure, use:

__attribute__ ((aligned(n)))

where n is a power of two. Example:

// align structure on 8-byte boundary
__attribute__((aligned(8))) struct a {

char b;
int a;

} str1;

This is often combined with the packed Attribute, p.141. Example:

struct b {
char b;
int a;

} __attribute__((aligned(2), packed)) str2;

You can force alignment for a specific element within a structure:

struct c {
int k;
__attribute__ ((aligned(8))) char m; // align m on 8 bytes

} str3;

But special alignment for members of a packed structure is ignored:

struct c {

int k;
__attribute__ ((aligned (8))) char m; // alignment ignored

} __attribute__((packed)) str4;

Nested alignment attributes are preserved within a struct or union.

constructor, constructor(n) Attribute

A constructor, or initialization, function is executed before the entry point of your
application—that is, before main(). To designate a function as a constructor with
default priority, use:

__attribute__ ((constructor))

Wind River Compiler for SPARC
User’s Guide, 5.4

140

To designate a function as a constructor with a specified priority, use:

__attribute__ ((constructor(n)))

where n is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which initialization functions execute; the lower the value of n,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.256.

deprecated, deprecated(string) Attribute (C only)

Causes the compiler to issue a warning when the marked function, variable, or
type is referenced.

__attribute__ ((deprecated))
__attribute__ ((deprecated(string)))

The optional string is included with the warning message.

destructor, destructor(n) Attribute

A destructor, or finalization, function is executed after the entry point of your
application or after exit(). To designate a function as a destructor with default
priority, use:

__attribute__ ((destructor))

To designate a function as a destructor with a specified priority, use:

__attribute__ ((destructor(n)))

where n is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which finalization functions execute; the lower the value of n,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.256.

noreturn, no_return Attribute

To indicate that a function will never return to the caller, use:

__attribute__ ((noreturn))

This allows the compiler to remove unnecessary code intended for returning
execution to the caller on exit. The no_return attribute is equivalent to no return.

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

141

6

no_side_effects Attribute

This attribute is a less restrictive version of pure (see pure, pure_function Attribute,
p.141). __attribute__((no_side_effects)) indicates that a function does not modify
any global data.

packed Attribute

This attribute specifies alignment for types and data structures.
__attribute__((packed)) tells the compiler to use the smallest space possible for the
data to which it is applied. Example:

struct b {
char b;
int a ;

} __attribute__ ((packed)) str1;

When used with aligned, the packed attribute takes precedence as discussed in
aligned(n) Attribute, p.139.

pure, pure_function Attribute

This attribute indicates that a function does not modify or use any global or static
data and that it accesses only data passed to it as parameters. Using
__attribute__((pure)) allows the compiler to perform optimizations such as global
common subexpression elimination. The pure_function attribute is equivalent to
pure. If this attribute is applied to a function that has side effects, run-time
behavior may be indeterminate.

See also no_side_effects Attribute, p.141.

section(name) Attribute

To specify a linker section in which to place a function or variable, use:

__attribute__ ((section("name")))

This creates a section called name and places the designated code in it. Example:

// place func1 in a section called foo
void func1(void) __attribute__((section("foo")));

For variables, the section is created as a read-write data segment. For functions, the
section is created as a read-execute code segment. There are no options to change

Wind River Compiler for SPARC
User’s Guide, 5.4

142

the properties of the section. For greater control over sections, use #pragma section
(see 14. Locating Code and Data, Access).

An attempt to mix types of information in a single section (for example, constant
data in a section reserved for code or variables) produces an error (dcc1793). In this
example, the compiler assumes from the first statement that the section .mydata is
intended to be of the DATA section class, whereas the second statement assumes
that .mydata will be a CONST section class:

__attribute__((section(".mydata"))) int var = 1;
__attribute__((section(".mydata"))) const int const_var = 2;

See Table 14-1 on page 237 for a list of sections and section classes.

There is no cross-module verification that section names are used consistently.
Incorrect usage, including typographical errors, cannot be detected until link time.

6.6 Intrinsic Functions

The compiler implements the following intrinsic functions to give access to specific
SPARC instructions. See the processor manufacturer’s documentation for details
on machine instructions.

Intrinsic functions can be selectively disabled with the -Xintrinsic-mask=n
(-X154=n) option, where n is a bit mask that can be given in hex; mask bits can be
OR-ed to select more than one. n defaults to 0xf.

Note:

■ Functions taking integral arguments first sign-extend their arguments to 32
bits.

■ Functions taking long long arguments first sign-extend their arguments to 64
bits.

NOTE: In some cases, the compiler may not honor an attempt to use the section
attribute to place initialized data into a section intended for uninitialized data, and
vice-versa. For example, in the following code:

__attribute__((section(“.bss”))) int x = 3;

x will be assignedto the .data section, not .bss.

6 Additions to ANSI C and C++
6.6 Intrinsic Functions

143

6

■ These functions are not prototyped and return an int (32 bits) by default. A
prototype may be used to define a different return type.

Function Mask Description

alloca (integral) 0x800000 Allocates temporary local stack space for
an object of size integral. Returns a pointer
to the start of the object. The allocated
memory is released at return from the
current function.

__alloca (integral) Same as alloca(), but cannot be disabled.

__ff0 (integral) 0x1 Return the position of the first zero bit in
the integral argument, counting the most
significant bit as 0. The argument is first
sign-extended to 32 bits. If the argument is
0, the value returned is 0; if the argument is
-1, the value is 32.

__ff0ll (long long) 0x1 Return the position of the first zero bit in
the long long argument, counting the most
significant bit as 0. The argument is first
sign-extended to 64 bits. If the argument is
0, the value returned is 0; if the argument is
-1LL, the value is 64.

__ff1 (integral) 0x1 Return the position of the first one bit in
the integral argument, counting the most
significant bit as 0. The argument is first
sign extended to 32 bits. If the argument is
0, the value returned is 32; if the argument
is -1, the value is 0.

__ff1ll (long long) 0x1 Return the position of the first one bit in the
long long argument, counting the most
significant bit as 0. The argument is first
sign extended to 64 bits. If the argument is
0, the value returned is 64; if the argument
is -1LL, the value is 0.

Wind River Compiler for SPARC
User’s Guide, 5.4

144

6.7 Other Additions

C++ Comments Permitted

C++ style comments beginning with // are allowed by default. To disable this
feature, use -Xdialect-strict-ansi. Example:

int number1bits (int i) // Count the number of 1 bits
{ // in "i".

int n = 0;

while (i != 0) {
i &= (i - 1);
n ++;

}
return n;

}

Dynamic Memory Allocation with alloca

The alloca(size) and __alloca(size) functions are provided to dynamically allocate
temporary stack space inside a function. Example:

char *alloca();
char *p;

p = alloca(1000);

The pointer p points to an allocated area of 1000 bytes on the stack. This area is
valid only until the current function returns. The use of alloca() typically increases

__scan (integral, integral) Takes two integrals and carries out the scan
instruction. See manufacturer’s reference
manual for details.

__divscc (integral, integral) Takes two integrals and carries out the
divscc instruction. See manufacturer’s
reference manual for details.

Function Mask Description

6 Additions to ANSI C and C++
6.7 Other Additions

145

6

the entry/exit code needed in the function and turns off some optimizations such
as tail recursion.

See 6.6 Intrinsic Functions, p.142 for additional details.

Binary Representation of Data

The compiler recognizes variables and constants that are given in binary format.
For example, it will accept the following:

unsigned int x = 0b00001010;

Note that the compiler does not recognize the following format:

unsigned int x = 00001010b;

Use of binary representation in C may make your code non-portable.

Assigning Global Variables to Registers

You can assign a global variable to a preserved register by placing
asm("register-name") or __asm("register-name") immediately after the variable name
in the declaration. Example:

int some_global_var asm("%10");

This assigns the variable some_global_var to %10. Local variables cannot be
assigned in this way.

__ERROR__ Function

The __ERROR__() function produces a compile-time error or warning if it is seen
by the code generator. This is useful for making compile-time checks beyond those
possible with the preprocessor—e.g. ensuring that the sizes of two structures are
the same, as shown in the example below. If the __ERROR__() function is placed
after an if statement that is not executed unless the assertion fails, the optimizer
removes the __ERROR__() function and no error is generated. (The optimizer must
be enabled (at any level) for this technique to work.)

The syntax of the __ERROR__() function:

__ERROR__(error-string [, value])

Wind River Compiler for SPARC
User’s Guide, 5.4

146

where error-string is the error message to be generated and the optional value
defines whether the error should be:

If no value is given, the default value of 1 is used. Example:

extern void __ERROR__(char *, ...);

#define CASSERT(test) \
if (!(test)) __ERROR__("C assertion failed: " #test)

.

.

.
CASSERT(sizeof(struct a) == sizeof(struct b));

When __ERROR__() is used in C++ code, it must be declared like this:

extern "C" void __ERROR__(char *, ...);

sizeof Extension

The sizeof operator has been extended to incorporate the following syntax:

sizeof(type, int-const)

where int-const is an integer constant between 0 and 2 with the following
semantics:

0 warning - compilation will continue

1 error - compilation will continue but will stop after the entire file has been
processed

2 fatal error - compilation is aborted

0 standard sizeof, returns size of type

1 returns alignment of type

2 returns an int constant depending on type as follows:

signed char 0
unsigned char 1
char C: 0 (char is signed by default)

C++: 44
signed short 2
unsigned short 3
signed int 4
unsigned int 5

6 Additions to ANSI C and C++
6.7 Other Additions

147

6

Examples:

i = sizeof(long ,2) /* type of long: i = 6 */
j = sizeof(short,1) /* alignment of short: j = 2 */

vararg Macros

The preprocessor supports several styles of variadic macro, including ANSI C
draft, C99, and GNU. Use of vararg macros is illustrated below:

va_arg.c:
// C draft
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define showlist(...) puts(#__VA_ARGS__)
#define report(test, ...) ((test)?puts(#test):\

printf(__VA_ARGS__))
// C99
#define foo(string1, ...) printf(string1, ## __VA_ARGS__, ":end")
// GNU
#define bar(string2, args...) printf(string2, ## args, ":end")

debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);
foo("start");
bar("begin");

> dcc -E va_arg.c
1 "va_arg.c" 0

signed long 6
unsigned long 7
long long 8
unsigned long long 9
float 14
double 15
long double 16
void 18
pointer to any type 19
array of any type 22
struct, union C: 23

C++: same as class, 32
function 25
class C++: 32
reference C++: 33
enum C++: 34

Wind River Compiler for SPARC
User’s Guide, 5.4

148

fprintf(stderr, "Flag") ;
fprintf(stderr, "X = %d\n", x) ;
puts("The first, second, and third items.") ;
((x>y)?puts("x>y"): printf("x is %d but y is %d", x, y)) ;
printf("start", ":end") ;
printf("begin", ":end") ;
>

149

 7
Embedding Assembly Code

7.1 Introduction 149

7.2 asm Macros 151

7.3 asm String Statements 156

7.4 Reordering in asm Code 158

7.5 Direct Functions 159

7.1 Introduction

There are three approaches to embedding assembly code in source files: flexible
asm macros, simple but less flexible asm strings, and direct functions for embedding
machine code.

! WARNING: When embedding assembly code with any method, you must use only
scratch registers. See 9.6 Register Use, p.178 to determine the scratch registers.

If optimization is enabled, even hand-inserted assembly language may be
optimized. See 7.4 Reordering in asm Code, p.158

Wind River Compiler for SPARC
User’s Guide, 5.4

150

The asm and __asm keywords provide a way to embed assembly code within a
compiled program. Either keyword may be used to introduce an assembly string
or assembly macro as defined below, but asm is not defined in C modules if the
-Xdialect-strict-ansi option is used. In the text below, whenever asm is used,
__asm can be used instead.

There are two ways of using the asm keyword. The first is a simple way to pass a
string to the assembler, an asm string. The second is to define an asm macro that
inlines different assembly code sections, depending on the types of arguments
given. The following two sections discuss both methods. 7.5 Direct Functions, p.159
provide a third way to embed code by using integer values. The following table
contrasts the three method.

To confirm that embedded assembly code has been included as desired, compile
with the -S option and examine the resulting .s file.

The examples in this chapter apply to both C and C++.

NOTE: The compiler recognizes extended GNU inline syntax (e.g. register usage
specification) but does not translate it. When extended syntax is encountered, the
compiler issues an error message.

Table 7-1 Methods for Embedding Assembly Code

Method Implementation Calling Conventions, Parameters

asm string Expanded inline where
encountered. Functions
containing asm strings with
labels may not be inlined more
than once per function.

None — difficult to access
source variables.

asm macro Expanded inline where called.
Functions containing asm
macros may be inlined without
restriction.

Parameters matched by type
per storage mode lines. May
return a value.

Direct
function

Always inlined where called. All normal calling conventions
are followed. May return a
value.

7 Embedding Assembly Code
7.2 asm Macros

151

7

7.2 asm Macros

While asm strings (described in 7.3 asm String Statements, p.156) can be useful for
embedding simple assembly fragments, they are difficult to use with variables
inside the assembly code. asm macros provide a more flexible way to embed
assembly code in compiled programs.

asm Macro Syntax

An asm macro definition looks much like a function definition, including a return
type and parameter list, and function body.

The syntax is:

where:

■ volatile prevents instructions from being interspersed or moved before or
after the ones in the macro.

■ return-type is as in a standard C function. For a macro to return a value of the given
type, the assembly code must put the return value in an appropriate register as
determined by the calling conventions. See 9.5 Returning Results, p.178 for details.

■ macro-name is a standard C identifier.

■ parameter-list is as in a standard C function, using either old style C with just
names followed by separate type declarations, or prototype-style with both a
type and a name for each parameter. Parameters should not be modified
because the compiler has no way to detect this and some optimizations will fail
if a parameter is modified.

■ storage mode line begins with a “%” which must start in column 1. The
storage-mode-list is used mainly to describe parameters and is described below.
A macro with no parameters and no labels does not require a storage mode
line.

■ register-list is an optional list of scratch registers, each specified as a
double-quoted string, or the string “call” if the macro makes a call, separated

asm [volatile] [return-type] macro-name ([parameter-list])
{

% storage-mode-list
! register-list

asm-code

(must start in column 1)
(“!” must be first non-whitespace)

} (must start in column 1)

Wind River Compiler for SPARC
User’s Guide, 5.4

152

by commas. Specifying this list enables the compiler to generate more efficient
code by invalidating only the named registers. Without a register-list, the
compiler assumes that all scratch registers are used by the asm macro. See
Register-List Line, p.154 for details.

■ asm-code is the code to be generated by the macro.

■ final right “}”closes the body; it must start in column 1.

The compiler treats an asm macro much like an ordinary function with unknown
properties:

■ Any global or static variable can be modified.

■ #pragma directives can be used to tell the compiler if the function has any side
effects, etc.

However, because the asm macro is by definition inlined, it is not possible to take
the address of an asm macro.

The compiler discards any invocation of an empty asm macro (one with no storage
mode line and no assembler code). This may be useful for macros used for
debugging purposes.

Storage Mode Line — Describing Parameters and Labels

The storage mode line is not required if a macro has no parameters and no labels.

For a macro with parameters, a storage mode line is required to describe the
methods used to pass the parameters to the macro. Currently, for SPARC targets,
all parameters are passed in registers for convenience. A storage mode line is also
required if the macro generates a label.

Every parameter name in the parameter-list must occur exactly once in a single
storage mode line. The form of the storage-mode-line is:

%[reg | con | lab] name, ...; [reg | con | lab] name, ... ; ...

NOTE: An asm macro must be defined in the module where it is to be used before
its use. Otherwise the compiler will treat it as an external function and, assuming
no such function is defined elsewhere, the linker will issue an unresolved external
error.

In C++, forward declarations of asm macros are not permitted. Hence, while static
member functions can be asm macros, the asm keyword must occur in the function
definition, not in the class declaration.

7 Embedding Assembly Code
7.2 asm Macros

153

7

where:

reg
Introduces a list of one or more parameters. Every parameter name in the
parameter-list must occur exactly once in the single storage mode line.

Arguments to a macro are assigned to registers following the usual calling
conventions. For example, four int arguments will use registers %r8, %r9,
%r10, and %r11. Other scratch registers may be used freely in the macro. This
limits the maximum number of parameters to the number allowed by the
registers used for parameters (see 9.3 Argument Passing, p.175 and 9.6 Register
Use, p.178).

con
The parameter is a constant.

lab
A new label is generated. lab is not actually a storage mode — the name
following lab is not a parameter (a lab identifier is not allowed as a parameter).
It is a label used in the assembly code body.

For each use of the macro, the compiler will generate a unique label to
substitute for the uses of the name in the macro.

Names of long long parameters must be appended with !H or !L—e.g.
someParameter!H. This replaces the parameter with a register holding the most
(!H) or least (!L) significant 32 bits. The register is chosen based on the
compilation’s endian mode.

“No Matching asm Pattern Exists”

The compiler error message “no matching asm pattern exists” indicates that no
suitable storage mode was found for some parameter, or that a label was used in
the macro but no lab storage mode parameter was present. For example, it would
be an error to pass a variable to a macro containing only a con storage mode
parameter.

NOTE: If the compiler has already moved an argument to a preserved register,
the compiler will use it from there in the macro rather than moving it to the
usual parameter register. Therefore, always use a parameter name rather than a
register name when coding a macro.

NOTE: Because arguments may be in preserved registers as just noted, macros
should avoid use of preserved registers, even if saved and restored.

Wind River Compiler for SPARC
User’s Guide, 5.4

154

Register-List Line

An asm macro body may optionally contain a register-list line, consisting of the
character “!” in column 1 and an optional register-list. The register-list if present , is
a list of scratch registers, each specified as a double-quoted string, or the string
“call”, separated by commas. Specifying this list enables the compiler to generate
more efficient code by invalidating only the named registers. Without a register-list,
the compiler assumes that all scratch registers are used by the asm macro. Also, if
a register-list is specified and the assembly macro makes a call, the “call” string
must also be specified to cause the link register to be saved and restored.

The register-list line must begin with a “!” character, which must be the first
non-whitespace character on a line. The specification can occur anywhere in the
macro body, and any number of times, however it is recommended that a single
line be used at the beginning of the macro for clarity.

Supported scratch registers are %g1-%g7, and %o0-%o5. Also, if a register-list line
is specified and the assembly macro makes a call, then “call” must also be specified
to cause the link register to be saved and restore around the macro. See 9.6 Register
Use, p.178 for more information about registers.

If the “!” is present without any list, the compiler assumes that no scratch or link
(%o7) registers are used by the macro.

Comments in asm Macros

Any comment on the non-assembly language lines—that is, the asm macro
function-style header, the “{“ or “}” lines, or a storage-mode or register-list line—
must be a C-style comment (“/* ... */”) because this line is processed by the
compiler, not the assembler.

Comments on the assembly language line may be either C style or assembler style.
If C style, they are discarded by the compiler and are not preserved in the

NOTE: If supplied, the register-list must be complete, that is, must name all scratch
registers used by the macro and must include “call” if the macro makes a call.
Otherwise, the compiler will assume that registers which may in fact be used by
the macro contain the same value as before the macro.

Also, as noted below, any comment on the register-list line must be a C-style
comment (“/* ... */”) because this line is processed by the compiler, not the
assembler.

7 Embedding Assembly Code
7.2 asm Macros

155

7

generated .s assembly-language file. If assembler style, they are visible in the .s file
on every instance of the expanded macro.

Assembler-style comments in asm macros are read by the preprocessor when the
source file is processed. For this reason, apostrophes and quotation marks in
assembler-style comments may generate warning messages.

Examples of asm Macros

In this example, a macro loops until the value at the address given by its parameter
is non-zero and then returns the value at that address (int values are returned in
register %o0).

asm int get_data (volatile unsigned int *address_p)
{
% reg address_p; lab loop;
! /* no scratch registers used */
loop:

ld [address_p],%o0
cmp %o0,0
be loop

}

extern volatile unsigned int device_in; /* input port */

int test (volatile unsigned int *device_in_p)
{

int data;
data = get_data (device_in_p);
return get_data (& device_in);

}

The above code was compiled with:

dcc -tSPARCliteEN -S -XO -Xpass-source asm_macro.c

Extracts from the generated assembly code for the two macro calls follow.

data1 = get_data(device_in_p);
.L9:

ld [%i0],%o0
cmp %o0,0
be .L9
nop
st %o0,[%g1+4]

Wind River Compiler for SPARC
User’s Guide, 5.4

156

return get_data(& device_in);
add %g1,8,%g1

.L10:
ld [%g1],%o0
cmp %o0,0
be .L10
nop

7.3 asm String Statements

An asm string statement provides a simple way to embed instructions in the
assembly code generated by the compiler. Its syntax is:

asm[volatile] ("string"[! register-list]);

where string is an ordinary string constant following the usual rules (adjacent
strings are pasted together, a “\” at the end of the line is removed, and the next line
is concatenated) and register-list is a list of scratch registers (see Register-List Line,
p.154). The optional volatile keyword prevents instructions from being moved
before or after the string statement.

An asm string statement can be used wherever a statement or an external
declaration is allowed. string will be output as a line in the assembly code at the
point in a function at which the statement is encountered, and so must be a valid
assembly language statement.

NOTE:

■ The uniquely generated loop labels.

■ The macro argument is always forced to a register. Before the first expansion,
device_in_p was passed to test in %i0. For the second expansion, the address
of device_in is loaded into %g1.

NOTE: asm string statements are primarily useful for manipulating data in static
variables and special registers, changing processor status, etc., and are subject to
several restrictions: no assumption can be made about register usage, non-scratch
registers must be preserved, values may not be returned, some optimizations are
disabled, and more. asm macro functions described above are recommended
instead. See Notes and Restrictions, p.157 below.

7 Embedding Assembly Code
7.3 asm String Statements

157

7

If several assembly language statements are to be generated, they may either be
written as successive asm string statements, or by using “\n” within the string to
end each embedded assembly language statement. The compiler will not insert
any code between successive asm string statements.

If an asm string statement contains a label, and the function containing the asm
string is inlined more than once in some other function, a duplicate label error will
occur. Use an asm macro with a storage mode line containing a lab clause for this
case. See 7.2 asm Macros, p.151.

Notes and Restrictions

asm string statements are primarily useful for tasks like changing processor status
(as in the example above) and manipulating data in static variables and special
registers. When using asm string statements, consider the following notes and
restrictions:

■ No assumptions may be made regarding register values before and after an
asm string statement. For example, do not assume that parameters passed in
registers will still be there for an asm string statement.

■ The compiler does not expect an asm string statement to “return” a value.
Thus, using an asm string statement as the last line of a function to place a
value in a return register does not ensure that the function will return that
value.

■ The compiler assumes that non-scratch registers are preserved by asm string
statements. If used, these registers must be saved and restored by the asm
string statements.

■ The compiler assumes that scratch registers are changed by asm string
statements and so need not be preserved.

■ Some optimizations are turned off when an asm string statement is
encountered.

■ A function containing an asm string statement is never inlined.

■ Because the string contained in quotation marks is passed to the assembler
exactly as is (after any pasting of continued lines), it must be in the format
required for an assembly language line. Specifically, an instruction line must
begin with a space, a tab, or a label. Assembler directives may start in column
one but only if the assembler -Xlabel-colon option is enabled (see Set Label
Definition Syntax (-Xlabel-colon...), p.281).

■ When an asm string statement appears in global scope, the compiler adds it to
the output assembly module after all of the function definitions. For this

Wind River Compiler for SPARC
User’s Guide, 5.4

158

reason, global asm string statements should not use assembler directives—
such as .set symbol—on which other asm statements (appearing in functions)
depend.

Example 7-1 Disable Interrupts

The following sequence of asm string statements disables hardware interrupts.
Note that a scratch register is used in the example.

asm(" rd %psr,%o1 # get the processor state register");
asm(" bclr %o1+0x20 # clear bit 5 (Enable Traps bit)");
asm(" wr %o1,0,%psr # set the state register");

7.4 Reordering in asm Code

If optimization is requested (options -O or -XO), after generating an assembly file,
the driver will run the reorder optimization program. reorder runs peephole
optimizations and schedules the assembly file before the assembler assembles it,
and does not distinguish assembly code generated by the compiler from assembly
code inserted by asm macros or asm strings. Thus, explicit assembly instructions
written in a particular order by the user may still be reordered by reorder.

In general this may improve even hand-coded assembly language. If it is necessary
to prevent this, write a .set noreorder directive in the asm string or asm macro at
the point at which such re-ordering should be disabled, and a .set reorder directive
where re-ordering can be re-enabled. Alternatively, define the string or macro as
volatile.

SPARC processors require that delay slots be filled following certain instructions.
The compiler (ctoa, etoa, etc.) does not do this, leaving it to either reorder or the
assembler. If optimization is not requested, the assembler generates nop
instructions to fill the delay slots. If optimization is requested, then 1) the reorder
program fills the delay slots as necessary, and 2) indicates to the assembler that it
should not generate these nops (by changing the default .set reorder directive to
.set noreorder).

7 Embedding Assembly Code
7.5 Direct Functions

159

7

7.5 Direct Functions

Direct functions, available in C modules only, provide a way to inline machine
code in a function. In a direct function definition, the body of the function is a list
of integer constant expressions which represent the machine code. The form is:

[return_type] function_name ([parameter_type parameter_name ,...]) =
{

integer-constant-expression , ...,
integer-constant-expression , ...,
. . .

}; /* ';' required */

Rules:

■ A direct function is signaled by the presence of an “=” character between the
parameter list and the body of the function.

■ The expressions in the body are separated by commas and may be written one
or more per line (with a comma after the final expression on a line if additional
expression lines follow).

■ The final “}” closing the function body must be followed by a “;”.

A direct function is always inlined when called. When called, what would be the
branch to the function is replaced by a .long assembler directive having as
operands the value of each expression as a hex constant. Otherwise, normal calling
conventions are followed (e.g., any parameters are set up in the usual manner).

Direct functions are supported primarily for compatibility reasons. asm macros
provide a more flexible method to do nearly the same thing. See Table 7-1 which
contrasts the differences.

Wind River Compiler for SPARC
User’s Guide, 5.4

160

161

 8
Internal Data Representation

8.1 Basic Data Types 161

8.2 Byte Ordering 163

8.3 Arrays 164

8.4 Bit-fields 164

8.5 Classes, Structures, and Unions 165

8.6 C++ Classes 165

8.7 Linkage and Storage Allocation 170

This chapter describes the alignments, sizes, and ranges of the C and C++ data
types for SPARC microprocessors.

8.1 Basic Data Types

By default, the type plain char—that is, char without the keyword signed or
unsigned—is treated as signed.

The following table describes the basic C and C++ data types available in the
compiler. All sizes and alignments are given in bytes. An alignment of 2, for
example, means that data of this type must be allocated on an address divisible by
2.

Wind River Compiler for SPARC
User’s Guide, 5.4

162

Table 8-1 C/C++ Data Types, Sizes, and Alignments

Data Type Bytes Align Notes

char 1 1 range (-128, 127) , or (0, 255) with
-Xchar-unsigned (Note 1)

signed char 1 1 range (-128, 127)

unsigned char 1 1 range (0, 255)

short 2 2 range (-32768, 32767)

unsigned short 2 2 range (0, 65535)

int 4 4 range (-2147483648, 2147483647)

unsigned int 4 4 range (0, 4294967295)

long 4 4 range (-2147483648, 2147483647)

unsigned long 4 4 range (0, 4294967295)

long long 8 8 range (-263, 263-1)

unsigned long long 8 8 range (0, 264-1)

enum (Note 2) 4 4 same as int

1 1 with -Xenum-is-small and fits in signed char
or -Xenum-is-best and fits in unsigned char

2 2 with -Xenum-is-small and fits in short or
-Xenum-is-best and fits in unsigned short

pointers 4 4 all pointer types; the NULL pointer has the
value zero

float 4 4 IEEE 754-1985 single precision

double 8 8 IEEE 754-1985 double precision

long double 8 8 IEEE 754-1985 double precision

reference 4 4 C++: same as pointer (Note 3)

ptr-to-member 8 4 C++: pointer to member

8 Internal Data Representation
8.2 Byte Ordering

163

8

Notes:

1. If the option -Xchar-unsigned is given, the plain char type is unsigned. If the
option -Xchar-signed is given, the plain char type is signed.

2. If the option -Xenum-is-int is given, enumerations take four bytes. This is the
default for C.

If the option -Xenum-is-small is given, the smallest signed integer type
permitted by the range of values for the enumeration is used, that is, the first
of signed char, short, int, or long sufficient to represent the values of the
enumeration constants. Thus, an enumeration with values from 1 through 128
will have base type short and require two bytes.

If the option -Xenum-is-best is given, the smallest signed or unsigned integer
type permitted by the range of values for an enumeration is used, that is, the
first of signed char, unsigned char, short, unsigned short, int, unsigned int,
long, or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte. This is the default for C++.

3. A reference is implemented as a pointer to the variable to which it is initialized.

8.2 Byte Ordering

All data is stored in big-endian order. That is, with the most significant byte of any
multi-byte type at the lowest address. To access data in little-endian order, see the
byte-swapped parameter for the #pragma pack in pack Pragma, p.127 and __packed__
and packed Keywords, p.135.

ptr-to-member-fn 12 4 C++: pointer to member function

Table 8-1 C/C++ Data Types, Sizes, and Alignments (cont’d)

Data Type Bytes Align Notes

Wind River Compiler for SPARC
User’s Guide, 5.4

164

8.3 Arrays

Arrays, excluding character arrays, have the same alignment as their element type.
The size of an array is equal to the size of the data type multiplied by the number
of elements. Character arrays have a default alignment of 4. -Xsize-opt sets the
alignment of character arrays to 1, and -Xstring-align overrides -Xsize-opt.
-Xarray-align-min, which overrides -Xstring-align, specifies a minimum
alignment for all arrays.

8.4 Bit-fields

Bit-fields can be of type char, short, int, long, or enum. Plain bit-fields are
unsigned by default. By using the -Xbit-fields-signed option (C only) or by using
the signed keyword, bit-fields become signed. The following rules apply to
bit-fields:

■ Allocation is from most significant bit to least.

■ A bit-field never crosses its type boundary. Thus a char bit-field is never
allocated across a byte boundary and can never be wider than 8 bits.

■ Bit-fields are allocated as closely as possible to the previous struct member
without crossing a type boundary.

■ A zero-length bit-field pads the structure to the next boundary specified by its
type.

■ Bit-fields may not be type long long.

■ The compiler accesses a bit-field by loads and stores appropriate to the
bit-field’s type. For example, an int bit-field is accessed using a word load or
store (or an equivalent set of smaller load/stores in the unaligned case), even
if the bit-field spans only one byte. To ensure that a bit-field is accessed using
byte (or half-word) load/stores, make the bit-field char or short, or use the
-Xcompress-bitfields option.

■ When a bit-field is promoted to a larger integral type, the comiler preserves
sign as well as value unless -Xstrict-bitfield-promotions, -Xdialect-strict-ansi,
or -Xstrict-ansi is enabled.

8 Internal Data Representation
8.5 Classes, Structures, and Unions

165

8

8.5 Classes, Structures, and Unions

The size of a structure is the sum of the size of all its members plus any necessary
padding. Padding is added so that all members are aligned to a boundary given by
their alignment and to make sure that the total size of the structure is divisible by
its alignment.

The size of a union is the size of its largest member plus any padding necessary to
make the total size divisible by the alignment.

To minimize the necessary padding, structure members can be declared in
descending order by alignment.

See pack Pragma, p.127 and __packed__ and packed Keywords, p.135 for more
information.

8.6 C++ Classes

C++ objects of type class, struct, or union can be divided into two groups,
aggregates and non-aggregates. An aggregate is a class, struct, or union with no
constructors, no private or protected members, no base classes, and no virtual
functions. All other classes are non-aggregates.

The internal data representation for aggregates is exactly the same as it is for C
structures and unions.

Static member functions and static class members, as well as non-virtual member
functions do not affect the representation of classes. Their relation to the classes are
only encoded in their names (name mangling). Pointers to static member functions
and static class members are ordinary pointers. Pointers to member functions are
of the type pointer-to-member-function as described later.

The internal data representation for non-aggregates has the following properties:

■ The rules for alignment are equal to the rules of aggregates.

■ The order that members appear in the object is the same as the order in the
declaration.

■ Non-virtual base classes are inserted before any members, in the order that
they are declared.

Wind River Compiler for SPARC
User’s Guide, 5.4

166

■ A pointer to the virtual function table is added after the bases and members.

■ For virtual base classes, a pointer to the base class is added after non-virtual
bases, members, or the virtual function table. The virtual base class pointers
are added in the order that they are declared.

■ The storage for the virtual bases are placed last in the object, in the order they
are declared, that is, depth first, left to right.

■ Virtual base classes that declare virtual functions are preceded by a “magic”
integer used during construction and destruction of objects of the class.

Example:

struct V1 {};
struct V2 {};
struct V3 : virtual V2 {};
struct B1 : virtual V1 {};
struct B2 : virtual V3 {};
struct D : B1, private virtual V2, protected B2 {

int d1;
private:

int d2;
public:

virtual ~D() {};
int d3;

};

The class hierarchy for this example is:

D is derived from B1, B1 is derived from V1

D is derived from B2, B2 is derived from V3, V3 is derived from V2

D is derived from V2 (which is virtual, thus there is only one copy of V2)

8 Internal Data Representation
8.6 C++ Classes

167

8

The internal data representation for D is as follows:

Note:

■ When the class D is used as a base class to another class, for example:

class E : D {};

only the base part of D will be inserted before the body of class E. The virtual
bases V1, V2, and V3 will be placed last in class E, in the fashion described
above. Class E would be laid out as follows:

B1

B2

Body of D:
d1
d2
d3

Virtual function table pointer

Pointer to virtual base class V1

Pointer to virtual base class V2

Pointer to virtual base class V3

V1

V2

magic for V3

V3

Wind River Compiler for SPARC
User’s Guide, 5.4

168

■ The virtual function table pointer is only added to the first base class that
declares virtual functions. A derived class will use the virtual function table
pointer of its base classes when possible. A virtual function table will be added
to a derived class when new virtual functions are declared, and none of its
non-virtual base classes has a virtual function table.

■ The virtual function table is an array of pointers to functions. The virtual
function table has one entry per virtual function, plus one entry for the null
pointer.

■ Virtual base class pointers are added to a derived class when none of its
non-virtual base classes have a virtual base class pointer for the corresponding
virtual base class.

■ Each virtual base class with virtual functions are preceded by an integer called
magic. This integer is used when virtual functions are called during
construction and destruction of objects of the class.

Pointers to Members

The pointer-to-member type (non-static) is represented by two objects. One for
pointers to member functions, and one for all other pointers to member types. The
offsets below are relative to the class instance origin.

Base part of D

Body of E:
. . .

V1

V2

magic for V3

V3

8 Internal Data Representation
8.6 C++ Classes

169

8

An object for a pointer to non-virtual or virtual member functions has three parts:

The voffset field is an integer that is used when the virtual function table is located
in a virtual base class. In this case it contains the offset to the virtual base class
pointer + 1. Otherwise it has a value of 0.

The index field is an integer with two meanings.

1. index <= 0
The index field is a negative offset to the base class in which the non-virtual
function is declared. The third field is used as a function pointer

2. index > 0
The index field is an index in the virtual function table. The third field,
vtbl-offset, is used as an offset to the virtual function table pointer of type
integer

A null pointer-to-member function has zero for the second and third fields.

An object for a pointer-to-member of a non-function type has two parts:

The voffset field is used in the same way as for pointer-to-member functions. The
moffset field is an integer that is the offset to the actual member + 1. A null pointer
to member has zero for the moffset field.

Virtual Function Table Generation—Key Functions

The virtual function table for a class will be generated only in the module which
defines (not declares) its key virtual function (and does not inline it). The key virtual
function is the virtual function declared lexically first in the class (or the only
virtual function in the class if there is only one).

voffset

index

vtbl-offset
or

Function Pointer

voffset

moffset

Wind River Compiler for SPARC
User’s Guide, 5.4

170

Consider, for example:

class C {
public:

virtual void f1(...);
virtual void f2(...);

}

Because f1 is the first virtual function declared in the class, it is the key virtual
function.

Then, the virtual function table will be emitted for the module which provides the
non-inlined definition of f1.

8.7 Linkage and Storage Allocation

Depending on whether a definition or declaration is performed inside or outside
the scope of a function, different storage classes are allowed and have slightly
different meanings. Notes are at the end of the section.

Outside Any Function and Outside Any Class

Inside a function, but outside any class

Specifier Linkage Allocation

none external linkage,
program

Static allocation (Note 1).

static file linkage Static allocation (Note 1).

extern external linkage,
program

None, if the object is not initialized in the
current file, otherwise same as “none”
above.

Specifier Linkage Allocation

none current block In a register or on the stack (Note 2).

register current block In a register or on the stack (Note 2).

auto current block In a register or on the stack (Note 2).

8 Internal Data Representation
8.7 Linkage and Storage Allocation

171

8

Outside any function, but inside a C++ class definition

Outside the class, a class member name must be qualified with the :: operator, the
. operator or the -> operator to be accessed. The private, protected, and public
keywords, class inheritance and friend declaration will affect the access rights.

Within a Local C++ Class, Inside a Function

A local class cannot have static data members. The class is local to the current block
as described above and access to its members is through the class. All member
functions will have internal linkage.

Notes

1. Allocation of static variables is as per Table 14-1.

2. The compiler attempts to assign as many variables as possible to registers,
with variables declared with the register keyword having priority. Variables
which have their address taken are allocated on the stack. If the
-Xlocals-on-stack option is given, only register variables are allocated to
registers

3. Although an extern variable has a local scope, an error will be given if it is
redefined with a different storage class in a different scope.

static current block Static allocation (Note 1).

extern current block None, this is not a definition (Note 3).

Specifier Linkage Allocation

Specifier Linkage Allocation

none
(data)

external linkage,
program

None, this is only a declaration of the
member. Allocation depends on how the
object is defined.

static
(data)

external linkage,
program

None, this is not a definition. A static
member must be defined outside the class
definition.

none
(function)

external linkage,
program

(uses a this pointer.)

static
(function)

external linkage,
program

(no this pointer)

Wind River Compiler for SPARC
User’s Guide, 5.4

172

173

 9
Calling Conventions

9.1 Introduction 173

9.2 Stack Layout 173

9.3 Argument Passing 175

9.4 C++ Argument Passing 176

9.5 Returning Results 178

9.6 Register Use 178

9.1 Introduction

This chapter describes the interface between a function caller and the called
function. Stack layout, argument passing, returning results, and register use are all
described in detail.

9.2 Stack Layout

The following figure shows the stack frame after completion of the prolog in a

Wind River Compiler for SPARC
User’s Guide, 5.4

174

called function (the “callee”).

Notes:

■ The argument spill area is used to save the argument registers if the called
function is a variable argument (stdarg/varargs) function or takes the address
of a parameter.

high address

FP

callee’s SP

caller’s locals

caller’s temporaries

Extra arguments to callee
present if callee has more

than 24 bytes of arguments

Callee’s “argument register spill area”
space for callee to save first 24 bytes of arguments

if callee is varargs or takes address of parameter

alignment pad (4 bytes)

aggregrate return pointer (not used)

Register window save area
for 8 in registers and 8 local registers

pad to align on 8 if necessary
callee’s locals

callee’s temporaries

Outgoing parameters to next callee
for non-leaf callee, 24 bytes for arguments to

allow for argument register spill area and

for any arguments greater than 24 bytes

alignment pad (4 bytes)

aggregrate return pointer (not used)

Register window save area
for 8 in registers and 8 local registers

low address

callee’s frame pointer
(= caller’s SP)

9 Calling Conventions
9.3 Argument Passing

175

9

■ An optimized leaf routine that does not require any stack space does not create
a stack frame at all (and also use the caller’s out registers directly to access its
parameters).

■ See the manufacturer’s manual for a discussion of the register window save
area. It is the responsibility of the application program or real-time operating
system to save registers in the register window save area if the current window
pointer overflows; the compiler only allocates space on the stack for this
purpose.

9.3 Argument Passing

The SPARC standard register model for argument passing is used. The first 24
bytes of the parameters are placed in the out registers (%o0 - %o5) of the caller’s
register window. These become input registers (%i0 - %i5) in the called function’s
register window for a non-leaf routine or unoptimized leaf routine (after the called
function executes a save instruction) . For an optimized leaf function (see the stack
discussion above for details), no save instruction is executed and the called
function uses the out registers of the caller. Refer to the SPARClite User’s Guide for
details. Consult the manufacturer’s manual for details on SPARC.

The following discussion is for non-leaf routines and unoptimized leaf routines.
Within the argument registers, arguments of size one and two bytes are extended
to four bytes. Following the expansion, the first 24 bytes of arguments are passed
in registers %o0-%o5 (with any eight-byte values in either %o0-%o1, %o2-%o3, or
%o4-%o5). Additional arguments are passed on the stack. Arguments with an
alignment of 8 are aligned on 8, all other arguments are aligned on 4. The stack is
always aligned on 8.

The stack layout is shown above. Examples of argument passing are shown below.

Wind River Compiler for SPARC
User’s Guide, 5.4

176

9.4 C++ Argument Passing

In C++, the same lower-level conventions are used as in C, with the following
additions:

■ References are passed as pointers.

■ Function names are encoded (mangled) with the types of all arguments. A
member function has also the class name encoded in its name. See 13.5 C++
Name Mangling, p.225.

■ An argument of class, struct, or union type may, depending on the target
architecture and the size of the actual parameter, be passed as a pointer to the
object. (But this does not happen if the function is declared with extern "c".)
For this reason, when a C++ function with class, struct, or union parameters
is called from a C module, it should always be assumed that the C++ compiler
expects a pointer argument. For example, suppose the following function is
defined in a C++ module:

int ff(struct S s);

To call this function from a C module, use code like this:

struct S xyz;
int i = ffmangledname(&xyz);

where ffmangledname is the mangled form of ff. To find the mangled name of a
C++ function, see 13.5 C++ Name Mangling, p.225 and 29. D-DUMP File
Dumper.

Table 9-1 Examples of M•CORE Argument Passing

Example Function Call %o0 %o1 %o2 %o3 %o4 %o5 Stack

f(char a, char b, char c, char d,
char e, char f, char g)

a b c d e g g

f(char a, int b, double c) a b –– c –– –– c ––

f(char a, double b, char c) a - –– b –– c

9 Calling Conventions
9.4 C++ Argument Passing

177

9

Pointer to Member as Arguments and Return Types

Pointers to members are internally converted to structures. Therefore argument
passing and returning of pointer to members will follow the rules of class, struct,
and union.

Member Function

Non-static member functions have an extra argument for the this pointer. This
argument is passed as a pointer to the class in which the function is declared. The
argument is passed as the first argument, unless the function returns an object that
needs the hidden return argument pointer, in which case the return argument
pointer is the first argument and the this pointer is the second argument.

Constructors and Destructors

Constructors and destructors are treated like any other member function, with
some minor exceptions as follows.

Constructors for objects with one or more virtual base classes have one extra
argument added for each virtual base class. These arguments are added just after
the this pointer argument. The extra arguments are pointers to their respective
base classes.

Calling a constructor with the virtual base class pointers equal to the null pointer
indicates that the virtual base classes are not yet constructed. Calling a constructor
with the virtual base class pointers pointing to their respective virtual bases
indicates that they are already constructed.

All destructors have one extra integer argument added, after the this pointer. This
integer is used as a bit mask to control the behavior of the destructor. The definition
of each bit is as follows (bit 0 is the least significant bit of the extra integer
argument):

Bit 0
When this bit is set, the destructor will call the destructor of all sub-objects
except for virtual base classes. Otherwise, the destructor will call the
destructor for all sub-objects.

Bit 1
When this bit is set, the destructor will call the operator delete for the
object.

Wind River Compiler for SPARC
User’s Guide, 5.4

178

All other bits are reserved and should be cleared.

9.5 Returning Results

Characters and shorts are extended to 32-bits, and they and integers, floats and
pointers are returned in register:

■ %i0 for non-leaf routines (the caller’s %o0)

■ %o0 for optimized leaf routines which do not establish a new register window.

double and long long values in %i0/%i1 for non-leaf routines (%o0/%o1 for
optimized leaf routines).

All other types are returned in the memory area pointed to by a hidden address
argument passed in register %i0 for non-leaf routines (%o0 for optimized leaf
routines).

Class, Struct, and Union Return Types

A function with a return type of class, struct, or union is called with a hidden
argument of type pointer to function return type. The called function copies the
return argument to the object pointed at by the hidden argument; the ordinary
arguments are “bumped” one place to the right.

9.6 Register Use

The following table describes how registers are used by the compiler. See the
SPARC or SPARClite manufacturer’s manual for a discussion of the register
window concept. Note that use is slightly different for optimized leaf routines.

9 Calling Conventions
9.6 Register Use

179

9

Table 9-2 Register Use

Register Name Software Name Description

%r0 %g0 Global register: always reads as 0, writes to it
discarded.

%r1 %g1 Global register: scratch register; not preserved by
functions.

%r2 - %r7 %g2 - %g7 Global registers; not preserved by functions.

%r8 - %r13 %o0 - %o5 “Out” registers; hold the first 24 bytes of the
arguments to a called routine; not preserved by
functions.

%r14 %o6 Stack pointer.

%r15 %o7 Address of call instruction address after a function
call. Note that the synthetic ret instruction is
equivalent to %jmpl %i7+8,%g0”; that is, it
returns past the call instruction and past the
instruction in the delay slot following the call
instruction. May be used as a scratch register
before a call.

%r16 - %r23 %l0 - %l7 “Local” registers: scratch registers. Preserved
across function calls (automatically via the register
window facility for non-leaf routines).

%r24 - %r29 %i0 - %i5 “In” registers; hold the first 24 bytes of the
arguments to the current routine. Preserved across
function calls (automatically via the register
window facility for non-leaf routines), except for
%i0 and %i1 which may be used to return results.

%r30 %i6 Stack pointer of caller (that is, the frame pointer).

%r31 %i7 Address of call instruction address after a function
call. Note that the synthetic ret instruction is
equivalent to %jmpl %i7+8,%g0”; that is, it
returns past the call instruction and past the
instruction in the delay slot following the call
instruction.

Wind River Compiler for SPARC
User’s Guide, 5.4

180

181

 10
Optimization

10.1 Optimization Hints 181

10.2 Cross-Module Optimization 188

10.3 Target-Independent Optimizations 190

10.4 Target-Dependent Optimizations 202

10.5 Example of Optimizations 204

Optimizations have two purposes: to improve execution speed and to reduce the
size of the compiled program.

Most optimizations are activated by the -O option (5.3.17 Optimize Code (-O), p.40).
A few, such as inlining, are activated by the -XO option (5.4.89 Enable Extra
Optimizations (-XO), p.93). See also the discussion of optimization and debugging
under the -g option (5.3.9 Generate Symbolic Debugger Information (-g), p.37).

10.1 Optimization Hints

The compilers attempt to produce code as compact and efficient as possible.
However, some information about characteristics of the program only the user has.
This section describes various ways the user can enable the compiler to generate
the most optimal code.

Wind River Compiler for SPARC
User’s Guide, 5.4

182

What to Do From the Command Line

The usual purpose of optimizations is to make a program run as fast as possible.
Most optimizations also make the program smaller; however the following
optimizations will increase program size, exchanging space for speed:

■ Inlining: replaces a function call with its actual code.

■ Loop unrolling: expands a loop with several copies of the loop body.

When a program expands it may have a negative effect on speed due to increased
cache-miss rate and extra paging in systems with virtual memory.

Because the compiler does not have enough information to balance these concerns,
several options are provided to let the user control the above mentioned
optimizations:

■ -Xinline=n

Controls the maximum size of functions to be considered for inlining. n is the
number of internal nodes. See 5.4.67 Inline Functions with Fewer Than n Nodes
(-Xinline=n), p.82, for more details and 5.4.135 Control Loop Unrolling
(-Xunroll=n, -Xunroll-size=n), p.110, for a definition of internal nodes. Other
options that control inlining include -Xexplicit-inline-factor (5.4.44 Control
Inlining Expansion (-Xexplicit-inline-factor), p.73) and -Xinline-explicit-force
(5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.83).

■ -Xunroll-size=n

Controls the maximum size of a loop body to be unrolled. See also
5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.110, for more
details.

There is also a trade-off between optimization and compilation speed. More
optimization requires more compile-time. The amount of main memory is also a
factor. In order to execute interprocedural optimizations (optimizations across
functions) the compiler keeps internal structures of every function in main
memory. This can slow compilation if not enough physical memory is available
and the process has to swap pages to disk. The -Xparse-size=m option, where m is
memory space in KByte, is set to suggest to the compiler how much memory it
should use for this optimization. (See 5.4.93 Specify Optimization Buffer Size
(-Xparse-size), p.95.)

With all the different optimization options, it is sometimes difficult to decide
which options will produce the best result. The -Xblock-count and -Xfeedback
options (5.4.10 Insert Profiling Code (-Xblock-count), p.60, 5.4.47 Optimize Using
Profile Data (-Xfeedback=file), p.74), which produce and use profiling information,

10 Optimization
10.1 Optimization Hints

183

10

provide powerful mechanisms to help with this. With profiling information
available, the compiler can make most optimization decisions by itself.

The following guidelines summarize which optimizations to use in varying
situations. The options used are found in 5. Invoking the Compiler.

■ If execution speed is not important, but compilation speed is crucial (for
example while developing the program), do not use any optimizations at all:

dplus file.cpp -o file

■ The -O option is a good compromise between compilation time and execution
speed:

dplus -O file.cpp -o file

■ To produce highly optimized code, without using the profiling feature, use the
-XO option:

dplus -XO file.cpp -o file

■ To obtain the fastest code possible, use the profiling features referred to above.

■ To produce the most compact code, use the -Xsize-opt option:

dplus -XO -Xsize-opt file.cpp -o file

■ If the compiler complains about “end of memory” (usually only on systems
without virtual memory), try to recompile without using -O.

■ When compiling large files on a host system with large memory, increase the
amount of memory the compiler can use to retain functions. This allows the
compiler to perform more interprocedural optimizations. Use the following
option to increase the available memory to 8,000 KByte:

-Xparse-size=8000

■ If speed is very important and the resulting code is small compared to the
cache size of the target system, increase the values controlling inlining and
loop-unrolling:

-XO -Xinline=80 -Xunroll-size=80

■ When it is difficult to change scripts and makefiles to add an option, set the
environment variable DFLAGS. Examples:

■ If possible, disable exceptions and run-time type information
(-Xexceptions-off, -Xrtti-off). This can reduce code size significantly.

DFLAGS="-XO -Xparse-size=8000 -Xinline=50"
export DFLAGS

(UNIX)

set DFLAGS=-XO -Xparse-size=8000 -Xinline=50 (Windows)

Wind River Compiler for SPARC
User’s Guide, 5.4

184

What to Do With Programs

The following list describes coding techniques which will help the compiler
produce optimized code.

■ Use local variables. The compiler can keep these variables in registers for
longer periods than global and static variables, since it can trace all possible
uses of local variables.

■ Use plain int variables when size does not matter. Local variables of shorter
types must often be sign-extended on specific architectures before compares,
etc.

■ Use the unsigned keyword for variables known to be positive.

■ In a structure, put larger members first. This minimizes padding between
members, saving space, and ensures optimal alignment, saving both space and
time. For example, change:

struct _pack {
char flag;
int number;
char version;
int op;

}

to

struct good_pack {
int number;
int op;
char flag;
char version;

}

■ For target architectures which include a cache, declare variables which are
frequently used together, near each other to reduce cache misses. For example,
change:

struct bad {
int type;
...
struct bad *next;

};

to

struct good {
int type;
struct good *next;
...

};

10 Optimization
10.1 Optimization Hints

185

10

Then both type and next will likely be in the cache together in constructs such
as:

while (p->type != 0) {
p = p->next;

}

■ Use the const keyword to help the optimizer find common sub-expressions.
For example, *p can be kept in a register in the following:

void func(const int *p) {
f1(*p);
f2(*p);

}

■ Use the static keyword on functions and module-level variables that are not
used by any other file. Optimization can be much more effective if it is known
that no other module is using a function or variable. Example:

static int si;

void func(int *p) {
int i;
int j;

i = si;
*p = 0;
j = si;
...

}

The compiler knows that *p = 0 does not modify variable si and so can order
the assignments optimally.

■ Use the volatile keyword only when necessary because it disables many
optimizations.

■ Avoid taking the address of variables. When the address of a variable is taken,
the compiler usually assumes that the variable is modified whenever a
function is called or a value is stored through a pointer. Also, such variables
cannot be assigned to registers. Use function return values instead of passing
addresses.

Example: change

int func (int var) {
far_away1(&var);
far_away2(var);
return var;

}

Wind River Compiler for SPARC
User’s Guide, 5.4

186

to

int func (int var) {
var = new_far_away1(var);
far_away2(var);
return var;

}

■ Use the #pragma inline directive and the inline keyword for small, frequently
used functions. inline eliminates call overhead for small functions and
increases scheduling opportunities.

■ Use the #pragma no_alias directive to inform the compiler about aliases in
time critical loops. Example:

void add(double d[100][100], double s1[100], double s2[100])
#pragma no_alias *d, *s1, *s2
{

int i;
int j;

for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j ++) {
d[i][j] += s1[i] * s2[i];
}
}

}

Because it is known that there is no overlap between d and each of s1 and s2,
the expression s1[i]*s2[i] can be moved outside of the innermost loop.

■ Use #pragma no_side_effects and #pragma no_return on appropriate
functions. Example:

comm.h:
#pragma no_side_effects busy_wait(1)
#pragma no_return comm_err

file.c:
#include "comm.h"

a = *p;
busy_wait(&sem);
if (error) {
...
comm_err("fatal error");

}
b = *p;

Because busy_wait is known to have no side effects and comm_err is known
not to return, the compiler can assign *p to a register.

■ Use asm macros rather than separate assembly functions because it eliminates
call overhead. See 7. Embedding Assembly Code.

10 Optimization
10.1 Optimization Hints

187

10

■ Avoid setjmp() and longjmp(). When the compiler finds setjmp() in a
function, a number of optimizations are turned off. For example, when the
-Xdialect-pcc option is specified, no variables declared without the register
keyword will be allocated to registers. This is done to be compatible with older
compilers that always allocate variables not declared register on the stack,
which means that if they are changed between the call to setjmp() and the call
to longjmp(), they will keep the changed value after the longjmp(). If the
variables were allocated to registers, they would have the values valid at the
time of the setjmp().

The following example demonstrates this difference:

#include <setjmp.h>
static jmp_buf label;

f1() {
int i = 0;

if (setjmp(label) != 0) {
/* returned from a longjmp() */
if (i == 0) {

printf("i has first value: allocated to "
"register.\n");

} else {
printf("i has new value: allocated on stack\n");

}
return;

}

/* setjmp() returned 0: does not come from a longjmp*/
i = 1;
f2();

}

f2() {
/* jump to the setjmp call, returning 1 */
longjmp(label, 1);

}

Note that both ways are valid according to ANSI.

■ If possible, eliminate C++ exception-handling code (try, catch, or throw). This
allows you to compile with exceptions disabled (-Xexceptions-off), which
reduces stack space and increases execution speed.

Wind River Compiler for SPARC
User’s Guide, 5.4

188

10.2 Cross-Module Optimization

Cross-module optimization, controlled with the -Xcmo-... options (see
5.4.22 Enable Cross-module Optimization (-Xcmo-...), p.64), allows the compiler to
optimize calls between functions in different source files. This feature can improve
execution efficiency but requires the developer to track intermodule dependencies
with care.

Currently, function inlining is the only implemented cross-module optimization.

The compiler implements cross-module optimization by constructing a database
of information about functions and variables. To use cross-module optimization,
compile your project twice—first with -Xcmo-gen to create a database, then with
-Xcmo-use to optimize using information from the database. You must specify a
name and location for the database file. Examples:

The -Xcmo-gen compiler pass is used only for building the database. All object
files created by this pass should be regenerated during the next build.

If there are functions that you do not want to have inlined across modules, you can
specify them by adding -Xcmo-exclude-inline to the command line with
-Xcmo-use. For example:

dcc -Xcmo-use=...\MyProject.db -Xcmo-exclude-inline=f1,f2 main.c

tells the compiler not to inline f1 or f2 across modules. Names of C++ functions
must be given in mangled form (see 13.5 C++ Name Mangling, p.225); to find the
mangled form of a function name, use the ddump utility (see 29. D-DUMP File
Dumper).

-Xcmo-verbose, combined with -Xcmo-use or -Xcmo-gen, outputs a list of inlined
(or inlinable) functions.

Before using cross-module optimization, please read the following additional
notes.

dcc -Xcmo-gen=C:\projects\MyProject\MyProject.db main.c
dcc -Xcmo-use=C:\projects\MyProject\MyProject.db main.c

(Windows)

dcc -Xcmo-gen=/projects/MyProject/MyProject.db main.c
dcc -Xcmo-use=/projects/MyProject/MyProject.db main.c

(UNIX)

NOTE: Do not use the -Xcmo-... options to compile a project that contains two or
more source files (in different directories) with the same base name.

10 Optimization
10.2 Cross-Module Optimization

189

10

Database Location and Use

The database name should be specified with a full directory path. Otherwise, the
compiler uses the current working directory, which could result in fragmented
databases residing in multiple locations.

It is preferable to use a non-network directory for the database. Never share a
database among compiler installations, even when building from the same source
files.

Use With Other Optimizations and Build Options

The -Xcmo-... switches are affected by other build options. In general, you should
turn compiler optimizations off when building with -Xcmo-gen and on when
building with -Xcmo-use. More specifically:

■ To save time, disable optimizations and skip the linking step when building
with -Xcmo-gen. (Executable output from the -Xcmo-gen compilation is
ultimately discarded.)

■ -Xcmo-use is ignored unless other optimizations are enabled (-O or -XO).

■ Optimization-related compiler switches, including -Xinline, apply to
cross-module optimization as well. If -Xinline is set to a very low value,
cross-module optimization is unlikely to be useful. (-Xinline has no effect on
the construction of the database itself.)

■ If -Xinline is set to a high value, cross-module optimization can result in large
executables and long compilation time. You may want to compile specific
source files with cross-module optimization disabled.

Database Maintenance

Every time you compile with -Xcmo-use, the compiler updates the existing
database by adding to the list of functions that are candidates for inlining—but it
does not perform dependency analysis. Hence the database can easily become
unsynchronized after repeated incremental builds. (This occurs, for example,
when a source file containing a called function has changed, but the source file
containing the calling function is unchanged.) It is important to track
dependencies and recompile periodically with -Xcmo-gen. When in doubt,
manually delete the database file before recompiling.

After moving or copying files, always delete the database file and regenerate it
with -Xcmo-gen.

Wind River Compiler for SPARC
User’s Guide, 5.4

190

Special Name Mangling

To enable cross-module optimization, the compiler assigns a unique mangled
name to each function and static variable. Mangled function names begin with
__STF followed by a line number, function name, mangled filename, and other
information. Mangled variable names begin with __STV followed by a line
number, variable name, mangled filename, and other information. The
demangling utility does not demangle these names.

10.3 Target-Independent Optimizations

The following optimizations are performed by the compiler on all targets.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-opt option. Optimizations can be selectively disabled by specifying
-Xkill-opt=mask, where mask can be given in hex (e.g. -Xkill-opt=0x12). Multiple
optimizations can be disabled by OR-ing their bits; undefined mask bits are
ignored. -Xkill-opt=0xffffffff has the same effect as not using the -O option at all.

Tail Recursion (0x2)

This optimization replaces calls to the current function, if located at the end of the
function, with a branch. Example:

NODEP find(NODEP ptr, int value)
{

if (ptr == NULL) return NULL;
if (value < ptr->val) {

ptr = find(ptr->left,value);

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-opt is deprecated and should be used only on the advice of Customer
Support.

10 Optimization
10.3 Target-Independent Optimizations

191

10

} else if (value > ptr->val) {
ptr = find(ptr->right,value);

}
return ptr;

}

will be approximately translated to:

NODEP find(NODEP ptr, int value)
{
top:

if (ptr == NULL) return NULL;
if (value < ptr->val) {

ptr = ptr->left;
goto top;

} else if (value > ptr->val) {
ptr = ptr->right;
goto top;

}
return ptr;

}

Inlining (0x4)

Inlining optimization replaces calls to functions with fewer than the number of
nodes set by -Xinline with the actual code from the same functions to avoid
call-overhead and generate more opportunities for further optimizations. See
5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.110, for the definition
of node; assembly files saved with -S show the number of nodes for each function.

To be inlined, the called function must be in the same file as the calling function.

Inlining can be triggered in three ways:

1. In C++ use the inline keyword when defining the function, and in C use the
__inline__ keyword or the inline keyword if enabled by -Xkeywords=4.
Functions inlined by the use of keywords are local (static) by default, but can
be made public with extern. See __inline__ and inline Keywords, p.133.

2. Use the #pragma inline function-name directive. The #pragma directive can be
used in C++ code to avoid the local static linkage forced by the __inline__ or
inline keywords. See inline Pragma, p.123.

3. Use option -XO to automatically inline functions of up to the number of nodes
set by -Xinline (see 5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p.82). Option -XO sets this value to 40 nodes by default.

In addition to -Xinline, the options -Xexplicit-inline-factor,
-Xinline-explicit-force, and -Xcmo-... also control inlining of functions.

Wind River Compiler for SPARC
User’s Guide, 5.4

192

Example:

#pragma inline swap
swap(int *p1, int *p2)
{

int tmp;
tmp = *p1;
*p1 = *p2;
*p2 = tmp;

}

func({
...
swap(&i,&j);
...

}

will be translated to:

func() {
...
{

tmp = i;
i = j;
j = tmp;

}
...

}

Argument Address Optimization (0x8)

If the address of a local variable is used only when passing it to a function which
does not store that address, the variable can be allocated to a register and only
temporarily placed on the stack during the call to the function. Example:

extern int x;

int check(int *x)
{

if (*x > 569) {
return(999);

} else {
return(100);

}
}

NOTE: Code must be optimized by use of the -XO or -O option for inlining to occur.

10 Optimization
10.3 Target-Independent Optimizations

193

10

int foo(int y)
{

int i, j; // can be placed in registers

i = x * y;
j = check(&i);
if (j > i) {

i = check(&j);
} else {

i = 365;
}
return j*i;

}

Structure Members to Registers (0x10)

This optimization places members of local structures and unions in registers
whenever it is possible. It also optimizes assignments to structure and union
members. Example:

int fpp(int);
int bar(int, int);
struct x{

int a;
int b;

};
void goo();

foo()
{

struct x X;

X.a = fpp(3);
X.b = fpp(5);

if (bar(X.a, X.b)) {
goo();

}
}

If the optimization is enabled, the compiler attempts place X.a and X.b in registers
rather than allocating memory for X.

Wind River Compiler for SPARC
User’s Guide, 5.4

194

Assignment Optimization (0x80)

Multiple increments of the same variable are merged:

p++; ->
p[0] = 0; p[1] = 0;
p++; p[2] = 1;
p[1] = 1; p += 2;

Pre- and post-increment/decrement addressing modes are used when available on
the target processor:

p++; ->
p[0] = 0; *++p = 0;
p++;
p[1] = 1; *++p = 1;

Increments are moved from the end of a loop to the beginning in order to use
incrementing addressing modes when available on the target processor:

while(*s++) ; -> s--; while(*++s) ;

Tail Call Optimization (0x100)

In the following case, the call to printf is converted to a branch to printf and the
stack frame is undone before the branch.

int _myfunc(char *fmt, int val)
{

return printf(fmt,val);
}

This optimization is performed even if no -O or -XO switch is used.

Common Tail Optimization (0x200)

Different paths with equal tails are rewritten. This optimization is most effective
when many case statements end the same way:

void bar(), foo(), gfoo(), hfoo();

NOTE: In earlier releases (prior to version 4.3), the 0x100 mask was used to disable
simple branch optimization.

10 Optimization
10.3 Target-Independent Optimizations

195

10

lucky()
{

switch (a) {
case 1:

foo(); bar();
break;

case 2:
gfoo(); bar();
break;

case 3:
hfoo(); bar();
break;

case 4:
foo(); bar();
break;

default:
bar();
break;

}
}

The call to bar() is removed from the individual case statements and executed
separately at the end of the switch statement.

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),
p.44).

Variable Live Range Optimization (0x400)

Variables with more than one live range are rewritten to make it possible to allocate
them to different registers/stack locations:

m(int i, int j) { -> m(int i$1, int j) {
int k = f(i,j); int k = f(i$1,j);
i = f(k,j); i$2 = f(k,j);
return i+k; return i$2+k;

} }

In the above example, only two registers are needed to hold the three variables
after split optimization, since i$1 and k can share one register and i$2 and j can
share the other one.

Wind River Compiler for SPARC
User’s Guide, 5.4

196

Constant and Variable Propagation (0x800)

Constants and variables assigned to a variable are propagated to later references of
that variable. Lifetime analysis might later remove the variable:

a = 1; b = 2; -> a = 1; b = 2;
...; k(a+b); ...; k(1+2);

Complex Branch Optimization (0x1000)

Branches and code that falls through to conditional branches where the outcome
can be computed are rewritten. This typically occurs after a loop with multiple
exits.

extern int x;
extern int bar(int x);

int foo(int a, int b)
{

int i, y, z = 0;

x = bar(a);
if (x > 44)
{

y = a + b;
if (x < 22) { // always false when evaluated

z = a * 365; // never executed
}

}
return (x + y + z);

}

Loop strength reduction (0x2000)

Multiplications with constants in loops are rewritten to use additions. Instead of
multiplying i with the size every time, the size is added to a pointer (arp++ in the
example below). The array reference

ar[i]

is actually treated as

*(ar_type *)((char *)ar + i*sizeof(ar[0]))

10 Optimization
10.3 Target-Independent Optimizations

197

10

Example:

for (i=0; i<10; i++){ -> arp = ar;
sum +=var[i]; for (i=0; i<10; i++){

} sum += *arp; arp++;
}

Loop Count-Down Optimization (0x4000)

Loop variable increments are reversed to decrement towards zero:

for (i=0; i<10; i++){ -> for (i=10; i>0; i--){
sum = *arp; arp++; sum += *arp; arp++;

} }

Also, empty loops are removed.

Loop Unrolling (0x8000)

Small loops are unrolled to reduce the loop overhead and increase opportunities
for rescheduling. Option -Xunroll option sets the number of times the loop should
be unrolled. Option -Xunroll-size defines the maximum size of loops allowed to
be unrolled (see 5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.110
for both options).

Note: some sufficiently small loops may be unrolled more than n times if total code
size and speed is better. Example:

for (i=10; i>0; i--){ -> for (i=10; i>0; i-=2){
sum += *arp; sum += *arp;
arp++; sum += *(arp+1);

arp += 2;
} }

Global Common Subexpression Elimination (0x10000)

Subexpressions, once computed, are held in registers and not re-computed the next
time the subexpressions occur. Memory references are also held in registers.

if (p->op == A) -> tmp = p->op;
... if (tmp == A)

else if (p->op == B) ...
else if (tmp == B)

Wind River Compiler for SPARC
User’s Guide, 5.4

198

Undefined variable propagation (0x20000)

Expressions containing undefined variables are removed.

int bar(int);

int foo()
{

int x, a, b, y;

x = 365 * (a + b);
y = bar(x);
return y;

}

No memory is allocated for a or b. The operation a + b is not performed.

Unused assignment deletion (0x40000)

Assignments to variables that are not used are removed.

int foo(int x, int y)
{

int a, b;

a = x + 365; // removed
b = x - y;
return b;

}

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),
p.44).

Minor Transformations to Simplify Code Generation (0x80000)

Some minor transformations are performed to ease recognition in the code
generator:

if (a) return 1; -> return a ? 1 : 0;
return 0;

Register Coloring (0x200000)

This optimization locates variables that can share a register.

10 Optimization
10.3 Target-Independent Optimizations

199

10

extern int a[100], b[100];

foo()
{

int i, a, j, b;

for (i = 0; i < 10; i++) {
a += bar(i) + i;

}

for (j = 0; j < 80; j-=6) {
b += bar(i) - i;

}
}

a and j use the same register.

Interprocedural Optimizations (0x400000)

Registers are allocated across functions. Inlining and argument address
optimizations are performed.

static int foo(int a, int b)
{

return ((a > b)? a: b);
}

bar(int i, int j)
{

printf("larger value = %d\n", foo(i,j));
}

The foo function is inlined into bar.

Remove Entry and Exit Code (0x800000)

The prolog and epilog code at the beginning and end of a function which sets up
the stack-frame is not generated whenever possible.

Use Scratch Registers for Variables (0x1000000)

When allocating registers, the compiler attempts to put as many variables as
possible in scratch registers (registers not preserved by the function).

Wind River Compiler for SPARC
User’s Guide, 5.4

200

Extend Optimization (0x2000000)

Sometimes the compiler must generate many extend instructions to extend smaller
integers to a larger one. The compiler attempts to avoid this by changing the type
of the variable. For example:

int c;
char *s;
c = *s;
if (c == 2) c = 0;

On some targets, the c = *s statement has an extend instruction. By changing int c
to char c this instruction is avoided.

Loop Statics Optimization (0x4000000)

Memory references that are updated inside loops are allocated to registers.
Example:

int ar[100], sum;

sum_ar() {
int i;

sum = 0;
for (i = 0; i < 100; i++) {

sum += ar[i];
}

}

will be translated to:

sum_ar() {
int i;
register int tmp_sum

tmp_sum = 0;
for (i = 0; i < 100; i++) {

tmp_sum += ar[i];
}
sum = tmp_sum;

}

NOTE: When this optimization is disabled, the compiler may still use registers to
store variables. To control register use, use #pragma global_register (global_register
Pragma, p.122).

10 Optimization
10.3 Target-Independent Optimizations

201

10

Loop Invariant Code Motion (0x8000000)

Expressions within loops that are not changed between iterations are moved
outside the loop.

int sum;
int c[10];
int bar(int);
foo(int a, int b)
{

int i;

for(i = 0; i < 10; i++) {
sum += a * b;
c[i] = bar(i);

}
}

The operation a*b is performed outside of the loop statement.

Live-Variable Analysis (0x40000000)

Live variable analysis is done for global and static variables. This means that global
and static variables can be allocated into registers and any stores into them can be
postponed until the last store in a live range.

Local Data Area Optimization (0x80000000)

This optimization creates a Local Data Area (LDA) into which variables may be
placed for fast, efficient base-offset addressing. See 14.3 Local Data Area
(-Xlocal-data-area), p.244 for details.

This optimization can be disabled by setting -Xlocal-data-area=0 or restricted to
static variables by setting -Xlocal-data-area-static-only.

Feedback Optimization

By utilizing profiling information from an actual execution of the target program,
the optimizer can make more intelligent decisions in various cases, including the
following:

■ Register allocation can be based on the real number of times a variable is used.

■ if-else clauses are swapped if first part is executed more often.

Wind River Compiler for SPARC
User’s Guide, 5.4

202

■ Inlining and loop unrolling is not done on code seldom executed.

■ More inlining and loop unrolling is done on code often executed.

■ Partial inlining is done on functions beginning with if (expr) return;

■ Branch prediction is performed.

The -Xblock-count and -Xfeedback options are available to collect and use
profiling data. See 15.12 Profiling in An Embedded Environment, p.268.

10.4 Target-Dependent Optimizations

The following target-dependent optimizations are specific to the SPARC family
and are done by the reorder program.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-reorder option. Optimizations can be selectively disabled by specifying
-Xkill-reorder=mask, where mask can be given in hex (e.g. -Xkill-reorder=0x9).
Multiple optimizations can be disabled by OR-ing their bits; undefined mask bits
are ignored.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-reorder is deprecated and should be used only on the advice of Customer
Support.

NOTE: The reorder program, which does target-dependent optimization, parses
the assembler output of the compiler. Because this output is assumed to be correct,
reorder may abort on assembly code errors, including errors in hand-written asm
macros and strings. If an error in reorder appears to be persistent, confirm that any
handwritten assembly code is correct, perhaps by removing it temporarily, before
reporting the difficulty to Customer Support.

10 Optimization
10.4 Target-Dependent Optimizations

203

10

Basic Reordering (0x1)

Instructions are reorganized to avoid stalls in the processor pipeline. For example,
when loading a value from memory, the processor has to wait for one cycle before
the next instruction uses the destination register. The compiler rearranges the code
so the processor can execute at full speed.

General Peephole Optimization (0x8)

Peephole optimization makes final improvements within basic blocks, especially
to remove inefficiencies caused by interactions among other optimizations which
would be uneconomical to detect otherwise. Examples:

■ A branch to a single instruction followed by another branch is rewritten by
inlining the instruction at the current address.

■ Certain instructions which do not change any register are removed.

■ Elimination of redundant load and stores.

■ Register coalescing to eliminate moves.

Peephole Reaching Analysis (0x20)

Extends peephole optimization across basic blocks. See General Peephole
Optimization (0x8), p.203 for details of peephole optimization.

Merge Common Block Entry or Exit Code (0x200)

Merge common code at the entry or exit of blocks.

Additional Loop Optimizations (0x400)

Hoist loop invariant instructions. Eliminate redundant loads at the top of a loop
that are also done at the bottom of a loop.

NOTE: Disabling general peephole optimization implicitly disables finer-grained
peephole optimizations listed below, including peephole reaching analysis, merge
common block entry or exit code, and additional loop optimizations.

Wind River Compiler for SPARC
User’s Guide, 5.4

204

Delay Slot Optimization (0x1000)

Look for opportunities to use delay slot instructions. If this optimization is
disabled, the assembler fills delay slots with nop instructions. The optimization
changes the .set reorder directive to .set noreorder because the compiler is
responsible for filling delay slots. See .set option, p.323 for additional details. It also
performs a simple scheduling optimization that attemtps to optimize load
instructions.

Leaf Optimization (0x2000)

Remove register window overhead from leaf functions.

10.5 Example of Optimizations

The following C program demonstrates several of the optimizations available in
the compiler and how they interact with each other.

The numbers in parentheses are used to identify the optimizations in the generated code for
the example, shown following the table.

The target processor is the SPARC. The optimizations shown are:

 (1) remove entry and exit code

 (2) use scratch registers for variables

 (3) unused assignment deletion

 (4) complex branch optimization

 (5) peephole optimization

 (6) loop strength reduction

 (7) loop count-down optimization

 (8) global common subexpression elimination

 (9) inlining of functions

10 Optimization
10.5 Example of Optimizations

205

10

bubble.c implements sorting of an array in ascending order.

swap2(int *ip) /* swap two ints */
{

int tmp = ip[0];
ip[0] = ip[1];
ip[1] = tmp;

}

/* "bubble" sorts the array pointed to by "base", containing
"count" elements, and returns the number of tests done */

int bubble(int *base, int count)
{

int change = 1;
int i;
int test_count = 0;

while (change) {
change = 0;
count--;
for (i = 0; i < count; i++) {

test_count++;
if (base[i] > base[i+1]) {

swap2(&base[i]);
change = 1;

}
}

}
return test_count;

}

When bubble.c is compiled with the following line,

dcc -tSPARCliteEN -S -Xpass-source -XO bubble.c

the file bubble.s is generated as shown below (option -Xpass-source conveniently
causes the source to be included intermixed as comments with the generated
assembly code in bubble.s).

Only the bubble() function is shown; code will also be present for the swap()
function in bubble.s because it is not static and may therefore be called from
another module. Comments have been added below to explain the optimizations
performed.

 (10) constant and variable propagation

 (11) basic reordering optimization

Wind River Compiler for SPARC
User’s Guide, 5.4

206

Table 10-1 Illustration of Optimizations for SPARC

C Code Generated Assembly Code Explanation

.text

.align 4

.globl bubble

bubble:
save %sp,-112,%sp

Start of function bubble. Entry code adjusts the
CWP and stack.

{
int change = 1;
int i;
int test_count = 0;

The assignment change = 1 is eliminated (3)
since it is used only in the first while test, which
is known to be true and removed (4).

mov 0,%g2 %g2 test_count = 0;

.L4: Top of while (change) loop.

while (change) { change was just initialized to 1 and cannot
initially be 0, so the loop test can be made only
at the bottom.

change = 0;
count--;

mov
add

0,%g1
%i1,-1,%i1

%g1 change = 0;
%i1 count--;

for (i = 0;
i < count;
i++) {

cmp
ble
nop

%i1,0
.L16

Before entering loop, if %i1 count is <= 0,
branch to the return because just set change to
0 so further passes through the outer loop would
leave change unchanged.

mov %i0,%o1 Loop strength reduction (6) has replaced all
references to base[i] with a created pointer, $$2,
initialized to %i0 base and placed in %o1. Since
no more references are made to count, loop
count-down optimization (7) will decrement i
from count to 0 instead of incrementing i and
comparing it against count.

mov %i1,%g3 %g3 i is set to %i1 count per the above.

.L8: Top label of for loop.

test_count++;
if (base[i] >

base[i+1] {

ldw
ld

[%o1],%g4
[%o1+4],%o0

Load base[i] equivalent $$2[0] to %g4 ($$4), and
load base[i+1] equivalent $$2[1] to %o0 ($$3)
(8).

add %g2,1,%g2 test_count++ is moved here because otherwise
the processor could stall waiting for the load of
%o0 (11).

10 Optimization
10.5 Example of Optimizations

207

10

cmp
ble
nop

%g4,%o0
.L7

Swap required? If not, branch to .L7. The
function swap2 is inlined (9). Variable
propagation (10) removes the use of variables
tmp and ip in swap2.

Inlined code
from swap2.

st
st
mov

%o0,[%o1]
%g4,[%o1+4]
1,%g1

ip[0] = ip[1] (= $$3);
ip[1] = tmp (= $$4);
%g1 change = 1;

} End of if.

.L7: Label for if not taken.

} add
cmp
bne
add

%g3,-1,%g3
%g3,0
.L8
%01,4,%o1

End of for loop.
Increment base pointer $$2++ (6).
Decrement %g3 i (7).
Bottom test of for: test %g3 i against 0 (5).
If i is not zero, branch to the top of the for loop.

} cmp
bne
mov

%g1,0
.L4+4
0,%g1

Bottom test of while (change).
If change is not zero, branch to the top of the
loop. (The mov instruction is in the delay slot, so
branch to .l4+4.)

return test_count; .L16: mov %g2,%i0 Get ready to return. Move the return value,
test_count, to the required return register, %i0.

} ret
restore

Return, putting the exit code to restore the CWP
and stack in the delay slot of the ret instruction.

Allocations for bubble Variable allocations are commented for
debugging.

#
#

%i0
%i1

base
count

Arguments are kept in their original registers (2).

#
#
#

%g1
%g3
%g2

change
i
test_count

Other variables are put in scratch registers or
unused argument registers to minimize
entry/exit code.

%o1 $$2 Loop strength reduction (6) variable for base
pointer.

%o0
%g4

$$3
$$4

Global common subexpression elimination (8)
for base[i+1] and base[i].

#
#

not allocated tmp
not allocated ip

Variables deleted by Variable propagation (10).

Table 10-1 Illustration of Optimizations for SPARC (cont’d)

C Code Generated Assembly Code Explanation

Wind River Compiler for SPARC
User’s Guide, 5.4

208

209

 11
The Lint Facility

11.1 Introduction 209

11.2 Examples 210

11.1 Introduction

The lint facility is a powerful tool to find common C programming mistakes at
compile time. (For C++, see -Xsyntax-warning-on on 5.4.130 Disable Certain Syntax
Warnings (-Xsyntax-warning-...), p.108.) Lint has the following features:

■ It is activated through command-line option -Xlint.

■ -Xlint does all checking while compiling. Since it does not interfere with
optimizations, it can always be enabled.

■ -Xlint gives warnings when a suspicious construct is encountered. To stop the
compilation after a small number of warnings, use the -Xstop-on-warning
option to treat all warnings like errors.

■ Each individual check that -Xlint performs can be turned off by using a bit
mask. See the -Xlint option on 5.4.75 Generate Warnings On
Suspicious/Non-portable Code (-Xlint=mask), p.86 for details.

■ -Xlint can be used with the -Xforce-prototypes option to warn of a function
used before its prototype.

Wind River Compiler for SPARC
User’s Guide, 5.4

210

The comments in the following C program demonstrate probable defects that will
be detected by using -Xlint and -Xforce-prototypes. There are three types of errors
marked by different comment forms:

■ Comments containing the form “(0xXX)” are on lines with suspicious
constructs detected by -Xlint; the hex value is the -Xlint bit mask which
disables the test.

■ Comments of the form /* warning: ... */ and /* error: ... */ are used on lines for
which the compiler reports a warning or error with or without -Xlint.

■ Two lines are a result of option -Xforce-prototypes as noted.

Actual warnings from the compiler follow the code. Note that warnings are not
necessarily in line number order because the compiler detects the errors during
different internal passes.

11.2 Examples

Example 11-1 Program for -Xlint Demonstration

1: void f1(int);
2: void f2();
3: /* (-Xlint mask bit disables) */
4: static int f4(int i) /* function never used (0x10) */
5: {
6: if (i == 0)
7: return; /* missing return expression (0x20) */
8: return i+4;
9: }
10:
11: static int f5(int i); /* error: function not found */
12:
13: static int i1; /* variable never used (0x10) */
14:
15: int m(char j, int z1) /* parameter never used (0x10) */
16: {
17: int i, int4;
18: char c1;
19: unsigned u = 1; /* variable set but not used (0x40) */
20: int z2; /* variable never used (0x10) */
21:
22: c1 = int4; /* narrowing type conversion (0x100) */
23:
24: if (j) {
25: u = 4294967295;

11 The Lint Facility
11.2 Examples

211

11

26: i = 0;
27: } else {
28: u = 4294967296; /* warning: constant out of range */
29: }
30: f1(i); /* variable might be used
31: before being set (0x02) */
32: switch(i) {
33: j = 2; /* statement not reached (0x80) */
34: break;
35:
36: case 0: /* -X force prototype, not lint, warns: */
37: f2(i); /* function has no prototype */
38: f3(i); /* function not declared */
39: f5(i);
40: break;

Example 11-2 -Xlint example output

"lint.c", line 7: warning (dcc:1521): missing return expression
"lint.c", line 22: warning (dcc:1643): narrowing or signed-to-unsigned type

conversion found: int to unsigned char
"lint.c", line 28: warning (dcc:1243): constant out of range
"lint.c", line 37: warning (dcc:1500): function f2 has no prototype
"lint.c", line 38: warning (dcc:1500): function f3 has no prototype
"lint.c", line 42: warning (dcc:1583): overflow in constant expression
"lint.c", line 48: warning (dcc:1643): narrowing or signed-to-unsigned type

conversion found: short to unsigned char
"lint.c", line 48: warning (dcc:1244): constant out of range (=)
"lint.c", line 47: warning (dcc:1251): label deflaut not used
"lint.c", line 15: warning (dcc:1516): parameter z1 is never used
"lint.c", line 20: warning (dcc:1518): variable z2 is never used
"lint.c", line 33: warning (dcc:1522): statement not reached
"lint.c", line 50: warning (dcc:1522): statement not reached
"lint.c", line 62: warning (dcc:1521): missing return expression
"lint.c", line 19: warning (dcc:1604): Useless assignment to variable u.

Assigned value not used.
"lint.c", line 22: warning (dcc:1604): Useless assignment to variable c1.

Assigned value not used.
"lint.c", line 43: warning (dcc:1604): Useless assignment to variable j.

Assigned value not used.

"lint.c", line 22: warning (dcc:1608): variable int4 might be used before set
"lint.c", line 30: warning (dcc:1608): variable i might be used before set
"lint.c", line 54: warning (dcc:1606): condition is always true/false
"lint.c", line 58: warning (dcc:1606): condition is always true/false
"lint.c", line 4: warning (dcc:1517): function f4 is never used
"lint.c", line 11: error (dcc:1378): function f5 is not found
"lint.c", line 13: warning (dcc:1518): variable i1 is never used

Wind River Compiler for SPARC
User’s Guide, 5.4

212

213

 12
Converting Existing Code

12.1 Introduction 213

12.2 Compilation Issues 213

12.3 Execution Issues 216

12.4 GNU Command-Line Options 218

12.1 Introduction

Compiling code originally developed for a different system or toolkit is usually
straightforward, especially given the extensive compatibility options supported by
the tools. This chapter gives pointers on working around the most common
differences among systems and compilers.

12.2 Compilation Issues

The following list includes hints on what to do when a program fails to compile
and you want to avoid changing the source code.

Wind River Compiler for SPARC
User’s Guide, 5.4

214

Look for Missing Standard Header Files

Different systems have different standard header files and the declarations within
the header files may be different. Use the -i file1=file2 option to change the name of
a missing header file (see 5.3.13 Modify Header File Processing (-i file1=file2), p.39 for
details).

Older C Code

Look for Code Using Loose Typing Control

Some older C code is written for compilers that do not check the types of identifiers
thoroughly. Use the -Xmismatch-warning=2 option if you get error messages like
“illegal types: ...”.

Look for Code Written for PCC

C code written for older UNIX compilers, such as PCC (Portable C Compiler), may
not be compatible with the C standard. Use the -Xdialect-pcc option to enable
some older language constructs. See B. Compatibility Modes: ANSI, PCC, and K&R C
for more information.

Older Versions of the Compiler

C++ Coding Conventions

When exceptions and run-time type information are enabled (-Xrtti and
-Xexceptions), the current compiler supports the C++ standard. Source code
written for earlier versions of the Wind River (Diab) C++ compiler may require
modification before it can be compiled with version 5.0 or later. We strongly
recommend bringing all source code into compliance with the ANSI standard, but
if time does not permit this, you can use the -Xc++-old option to invoke the older
compiler.

12 Converting Existing Code
12.2 Compilation Issues

215

12

C++ Libraries

Older (pre-5.0) versions of the compiler require different C++ libraries:

See 32.2.1 Libraries Supplied, p.440 for more information.

When -Xc++-old is specified, the dplus driver automatically selects the
appropriate standard C++ library—that is, it invokes -ldold instead of -ld to link
libdold.a instead of libd.a. However, to link the older iostream and complex
libraries, you must use the -l option (see Specify Library or File to Process (-lname,
-l:filename), p.361) explicitly. If you use the dcc driver or invoke dld directly, all the
old libraries must be specified explicitly. Examples:

dplus -Xc++-old hello.cpp
dplus -Xc++-old -lios -lcomplex hello.cpp
dcc -Xc++-old -ldold -lios -lcomplex hello.cpp
dld -YP,search-path -l:windiss/crt0.o hello.o

-o hello -ldold -lios -lc version-path/conf/default.dld

In the first two examples, -ldold is invoked automatically because of -Xc++-old. In
the second two examples, all the older C++ libraries must be specified explicitly.

To select the old compiler and libraries by default (eliminating the need for
-Xc++-old), create a user.conf file in which DCXXOLD is set to YES and ULFLAGS2
invokes the old libraries. For example:

Select old compiler
DCXXOLD=YES
Add these as default C++ libraries
ULFLAGS2=”-ldold -liosold”

For more information, see A. Configuration Files and 2.3 Environment Variables, p.15.

Default library Old library

libd.a
libstl.a
libstlstd.a
libstlabr.a

libdold.a
libios.a, libcomplex.a
libios.a, libcomplex.a
(none)

NOTE: The -Xc++-old option cannot be used selectively within a project. If this
option is used, all files must be compiled and linked with -Xc++-old to make the
output binary-compatible. Selective use of -Xc++-old should produce linking
errors; if it does not, the resulting executable is still likely to be unstable.

VxWorks developers should not use -Xc++-old.

Wind River Compiler for SPARC
User’s Guide, 5.4

216

Startup and Termination Code

If you are compiling legacy projects that used old-style .init$nn and .fini$nn code
sections to invoke initialization and finalization functions, or if your code
designates initialization and finalization functions with old-style _STI__nn_ and
_STD__nn_ prefixes, you may get compiler or linker errors. The -Xinit-section=2
option (see 5.4.64 Control Generation of Initialization and Finalization Sections
(-Xinit-section), p.81) allows you to continue using old-style startup and
termination. The recommended practice, however, is to adopt the new method of
creating startup and termination code—that is, using attributes to designate
initialization and finalization functions, and .ctors and .dtors sections to invoke
them at run-time. See 15.4.8 Run-time Initialization and Termination, p.256 for more
information.

12.3 Execution Issues

The following list includes hints on what to do when a program fails to execute
properly:

Compile With -Xlint

The -Xlint option enables compile-time checking that will detect many
non-portable and suspicious programming constructs. See 11. The Lint Facility.

Recompile Without -O

If a program executes correctly when compiling without optimizations it does not
necessarily mean something is wrong with the optimizer. Possible causes include:

■ Use of memory references mapped to external hardware. Add the volatile
keyword or compile using the -Xmemory-is-volatile option. Note: option
-Xmemory-is-volatile disables some optimizations which may produce
slower code.

■ Use of uninitialized variables exposed by the optimizer.

■ Use of expressions with undefined order of evaluation.

Uninitialized local variables will behave differently on dissimilar systems,
depending how memory is initialized by the system. The compiler generates a

12 Converting Existing Code
12.3 Execution Issues

217

12

warning in many instances, but in certain cases it is impossible to detect these
discrepancies at compile time.

Look for Code Allocating Dynamic Memory in Invalid Ways

The following invalid uses of operator new() or malloc() may go undetected on
some systems:

■ Assuming the allocated area is initialized with zeroes.
■ Writing past the end of the allocated area.
■ Freeing the same allocated area more than once.

Look for Expressions with Undefined Order of Execution

The evaluation order in expressions like x + inc(&x) is not well defined. Compilers
may choose to call inc(&x) before or after evaluating the first x.

Look for NULL Pointer Dereferences

On some machines the expression if (*p) will work even if p is the zero pointer.
Replace these expressions with a statement like if (p != NULL && *p).

Look for Code Which Makes Assumptions About Implementation Specific Issues

Some programs make assumptions about the following implementation specific
details:

■ Alignment. Look for code like:

char *cp; double d; *(double *)cp = d;

■ Size of data types.

■ Byte ordering. See __packed__ and packed Keywords, p.135 on methods for
accessing byte-swapped data.

■ Floating point format.

■ Sign of plain chars (those declared without either the signed or unsigned
keyword). By default plain char is signed. To force a convention opposite to the
default, see 5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned),
p.63.

■ Sign of plain int bit-fields. bit-fields of type int are unsigned by default. Use
the option -Xbit-fields-signed (C only) to be compatible with systems that
treat plain int bit-fields as signed.

Wind River Compiler for SPARC
User’s Guide, 5.4

218

12.4 GNU Command-Line Options

By default, GCC option flags from the command line or makefile are parsed and,
if possible, translated to equivalent Wind River options. Translations are
determined by the tables in the file gcc_parser.conf. Use -Xgcc-options-off to
disable this feature. -Xgcc-options-verbose outputs a list of translated options.

219

 13
C++ Features and Compatibility

13.1 Header Files 219

13.2 C++ Standard Libraries 220

13.3 Migration From C to C++ 221

13.4 Implementation-Specific C++ Features 222

13.5 C++ Name Mangling 225

13.6 Avoid setjmp and longjmp 229

13.7 Precompiled Headers 229

This chapter describes compiler’s implementation of the ANSI C++ standard. For
more information, see the references cited in Additional Documentation, p.8.

13.1 Header Files

The C++ compiler supports all ANSI-specified header files. Generally C++ uses
the same header files as C (see 33. Header Files), but the C++ standard imposes
additional requirements on standard C header files and the declarations need to be
adjusted to work in both environments. See 13.3 Migration From C to C++, p.221
below.

Wind River Compiler for SPARC
User’s Guide, 5.4

220

13.2 C++ Standard Libraries

The Wind River Compiler includes two versions of the standard C++ library. The
complete version provides full support for exceptions. The abridged version does
not provide exception-handling functions, the type_info class for RTTI support, or
complete STL functionality.

The abridged version produces smaller, faster executables than the complete
version, but the difference in size and speed varies from project to project. In
general, the more an application uses the Standard Template Library, the greater
the benefit from switching to the abridged version.

To use the standard library, include one of the following linker options in your
project makefile:

Projects that use any part of the standard library (including iostreams) must
specify one of these linker options. For more information about library modules,
see 32. Library Structure, Rebuilding.

To use the abridged library, you must also specify the -Xc++-abr compiler option.
For example:

dplus -Xc++-abr file1.cpp

-Xc++-abr automatically disables exception-handling (-Xexceptions=off).

For projects that use the complete C++ library, exception-handling must be enabled
(-Xexceptions, the default). For projects that use the abridged version,
exception-handling may be enabled as long as no exception propagates through
the library.

While the compiler supports the wchar_t type, in most environments the libraries
do not support locales, wide- or multibyte-character functions, or the long double
type. (Some VxWorks files may include stubs for unsupported wide-character

Option Library

-lstl Link to the complete standard library.

-lstlstd Same as -lstl.

-lstlabr Link to the abridged standard library.

NOTE: VxWorks developers should not specify any of the -lstl... options listed
above. To select a C++ library for VxWorks projects, see the documentation that
accompanied your VxWorks development tools.

13 C++ Features and Compatibility
13.3 Migration From C to C++

221

13

functions.) For user-mode (RTP) VxWorks projects, the libraries support
wide-character functions.

Nonstandard Functions

The C++ libraries include definitions for certain traditional but nonstandard
Standard Template Library and iostream functions. You can omit these definitions
by editing the file version_path/include/cpp/yvals.h.

To omit the Standard Template Library extensions, change the definition of
_HAS_TRADITIONAL_STL to:

#define _HAS_TRADITIONAL_STL 0

To omit the iostream extensions, change the definition of
_HAS_TRADITIONAL_IOSTREAMS to:

#define _HAS_TRADITIONAL_IOSTREAMS 0

To see which functions are nonstandard, look for the _HAS_TRADITIONAL_STL
and _HAS_TRADITIONAL_IOSTREAMS macros in the library header files.

13.3 Migration From C to C++

When C functions are converted to C++ or called from a C++ program, minor
differences between the languages must be observed and the header files must be
written in C++ style. The standard predefined macro __cplusplus can be used with
#ifdef directives in the program and header files for code that will be used in both
C and C++ modules.

To call a C function from a C++ program, declare the prototype with extern "C" (to
avoid name mangling) and declare the arguments in C++-compatible format. The
extern "C" specification may apply to the single declaration that follows or to all
declarations in a block. For example:

extern "C" int f (char c);

extern "C"
{
#include "my_c_lib.h"
}

Wind River Compiler for SPARC
User’s Guide, 5.4

222

For information about calling C++ functions from C modules, see 9.4 C++
Argument Passing, p.176.

A few general differences between C and C++ are listed below. For more
information, see Additional Documentation, p.8.

■ A function declared func() has no argument in C++, but has any number of
arguments in C. Use the void keyword for compatibility, e.g. func(void), to
indicate a function with no arguments.

■ A character constant in C++ has the size of a char, but in C has the size of an int.

■ An enum always has the size of an int in C, but can have another size in C++.

■ The name scope of a struct or typedef differs slightly between C and C++.

■ There are additional keywords in C++ (such as catch, class, delete, friend,
inline, new, operator, private, protected, public, template, throw, try, this,
and virtual) that could make it necessary to modify C programs in which these
keywords occur as declared identifiers.

■ In C, a global const has external linkage by default. In C++, static or extern
must be used explicitly.

13.4 Implementation-Specific C++ Features

This subsection describes features of C++ that may behave differently in other
implementations of the language.

Construction and Destruction of C++ Static Objects

Before the first statement of the main() function in a C++ program can be
executed, all global and static variables must be constructed. Also, before the
program terminates, all global and static objects must be destructed.

These special constructor and destructor operations are carried out by code in the
initialization and finalization sections as described under 15.4 Startup and
Termination Code, p.250.

13 C++ Features and Compatibility
13.4 Implementation-Specific C++ Features

223

13

Templates

Function and class templates are implemented according to the standard.

Template Instantiation

There are two ways to control instantiation of templates. By default, templates are
instantiated implicitly—that is, they are instantiated by the compiler whenever a
template is used. For greater control of template instantiation, the
-Ximplicit-templates-off option tells the compiler to instantiate templates only
where explicitly called for in source code—for example:

template class A<int>; // Instantiate A<int> and all
// member functions.

template int f1(int); // Instantiate function int f1{int).

The compiler options summarized below control multiple instantiation of
templates.

Options Related to Template Instantiation in C++

-Ximplicit-templates (5.4.60 Control Template Instantiation (-Ximplicit-templates...),
p.80)

Instantiate each template wherever used. This is the default.

-Ximplicit-templates-off (5.4.60 Control Template Instantiation
(-Ximplicit-templates...), p.80)

Instantiate templates only when explicitly instantiated in code.

-Xcomdat (5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.65)
When templates are instantiated implicitly, mark each generated code or data
section as “comdat”. The linker collapses identical instances so marked into a
single instance in memory. This is the default.

-Xcomdat-off (5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.65)
Generate template instantiations and inline functions as static entities in the
resulting object file. Can result in multiple instances of static member-function
or class variables. This requires that -Ximplicit-templates-off be enabled.

-Xcomdat-info-file (5.4.25 Maintain Project-wide COMDAT List (-Xcomdat-info-file),
p.65)

Maintain a list of COMDAT entries across modules. Speeds up builds and
reduces object-file size, but has no effect on final executables.

Wind River Compiler for SPARC
User’s Guide, 5.4

224

-Xexpl-instantiations (Write Explicit Instantiations File (-Xexpl-instantiations),
p.367)

This linker option writes a file of all instantiations to stdout. Can be used with
-Xcomdat-off to generate a complete list of template instantiations; source
code can then be edited to explicitly instantiate templates where needed and
then recompiled with -Ximplicit-templates-off.

This option is deprecated.

Using Export With Templates

There are two constraints on the use of the export keyword:

■ An exported template must be declared exported in any translation unit in
which it is instantiated (not just in the translation unit in which it is defined).
In practice, this means that an exported template should be declared with
export in a header file.

■ A translation unit containing the definition of an exported template must be
compiled before any translation unit which instantiates that template.

Exceptions

Exception handling provides a mechanism for responding to software-generated
errors and other exceptional events. It is implemented according to the standard.

The generation of exception-handling code can be disabled using the
-Xexceptions=0 compiler option. When this option is enabled, the compiler also
flags the keywords try, catch, and throw as errors.

Array New and Delete

The two memory allocation/deallocation operators operator new[]() and
operator delete[]() are implemented as defined in the standard.

NOTE: See 15. Use in an Embedded Environment for a notes on implementing
exceptions in a multitasking environment.

13 C++ Features and Compatibility
13.5 C++ Name Mangling

225

13

Type Identification

The typeid expression returns an expression of type typeinfo&. The type_info
class definition can be found in the header file typeinfo.h.

Dynamic Casts in C++

Dynamic casts are made with dynamic_cast(expression) as described in the
standard.

Namespaces

Namespaces are implemented according to the standard. The compiler option
-Xnamespaces-off disables namespaces; -Xnamespaces-on (the default) enables
them.

Undefined Virtual Functions

The C++ standard requires that each virtual function, unless it is declared with the
pure-specifier (=0), be defined somewhere in the program; this rule applies even if
the function is never called. However, no diagnostic is required for programs that
violate the rule. Programs with undefined non-pure virtual functions compile and
run correctly in some cases, but in others generate “undefined symbol” linker
errors.

13.5 C++ Name Mangling

The compiler encodes every function name in a C++ program with information
about the types of its arguments and (if appropriate) its class or namespace. This
process, called name mangling, resolves scope conflicts, enables overloading,

NOTE: To interpret a mangled name, see Demangling utility, p.228.

Wind River Compiler for SPARC
User’s Guide, 5.4

226

standardizes non-alphanumeric operator names, and helps the linker detect errors.
Some variable names are also mangled.

When C code is linked with C++ code, the C functions must be declared with the
extern "C" linkage specification, which tells the C++ compiler not to mangle their
names. (The main function, however, is never mangled.) See 13.3 Migration From C
to C++, p.221 for examples.

The scheme used for mangling follows the suggestions in The Annotated C++
Reference Manual (by Ellis and Stroustrup), which should be consulted for details.
In a mangled name, two underscore characters separate the original name from the
other encoded information. For this reason, the user should avoid double
underscores in class or function names.

A function name is encoded with the types of its arguments. A member function
also has the class name or namespace encoded with it. The names of classes and
other user-defined types are encoded as the length of the name in decimal followed
by the name itself; nested class names contain the names of all classes in the
hierarchy using the Q modifier (see the table below), and template class names
include the arguments of the template. When necessary, local class names and
other identifiers are encoded as the name itself followed by __L followed by an
arbitrary number. Simple type indicators are single characters.

A global function has a double underscore appended to its name, followed by the
indicator F and the types of its arguments. For example, void myFunc(int, float)
would be mangled as myFunc__Fif.

A member function has the encoded class name or namespace inserted before the
F indicator—for example, myFunc__7MyClassFif. An S preceding the F indicates
a static member function.

Static data members and variables that are members of namespaces are also
mangled. Their mangled form consists of a double underscore appended to the
variable name, followed by the encoded class name or namespace—for example,
myNumber__7MyClass.

Functions that instantiate or specialize templates have a template signature.
Template parameters are encoded as ZnZ, where n is the parameter’s position
(starting with 1); if a parameter’s depth is greater than 1, it is encoded as Zn_mZ,
where m is parameter depth. The return type is also included in the mangled name.
An __S after a template name indicates that the template is specialized; an __S after
the argument list indicates that the instance is specialized. The __S indicator is
similarly placed in the encoded names of parent classes of functions and static data
members generated from templates.

13 C++ Features and Compatibility
13.5 C++ Name Mangling

227

13

For constructors, destructors, operator class members, and certain other
constructs, a special string beginning with two underscores is prefixed to the class
name. For example, __ct indicates a constructor and __pl indicates the + operator.
See The Annotated C++ Reference Manual for details.

Argument types are encoded as follows:

Type Encodings for Name Mangling in C++

An_
Array (followed by the simple type name), where n is the array size.

b
bool

d
double

c
char

e
Ellipses parameter (...)

Ftype-list
Function with parameters of types specified by the type-list.

f
float

i
int

L
long long

l
long

MType1Type2
Pointer to member in Type1 of Type2. Type1 is always of the form n name.

Mmn
Repeat m arguments with the same type as argument number n. m is limited
to a single digit.

nName
User-defined type, with n giving the length of Name and Name giving the type
name.

Ptype
Pointer to type.

Wind River Compiler for SPARC
User’s Guide, 5.4

228

Qm_n1name1
n2name2...

Nested class name or namespace: m user-defined type names after Qm.

Rtype
Reference to type.

r
long double

s
short

T n
Same type as argument number n.

v
void

w
wchar_t

The following modifiers are inserted before the type indicator. If more than one
modifier is used, they appear in alphabetical order.

Modifiers for Type Encodings

C
const type

S
signed type

U
unsigned type

V
volatile type

Demangling utility

To interpret a mangled name, enter

ddump -F

and then interactively enter mangled names one per line. ddump displays the
demangled meaning of the name after each entry. If the entry is not a valid
mangled name, there will be no output.

13 C++ Features and Compatibility
13.6 Avoid setjmp and longjmp

229

13

13.6 Avoid setjmp and longjmp

It is difficult to safely use setjmp() and longjmp() in C++ code because jumps out
of a block may miss calls to destructors and jumps into a block may miss calls to
constructors.

Note that in addition to visible user-defined objects, the compiler may have created
temporary objects not visible in the source for use in optimized code.

Consider instead C++ exception handling in situations which might have used
setjmp and longjmp. It will still be necessary to account for allocations and
deallocations not performed through contructors and destructors of automatic
objects.

13.7 Precompiled Headers

In projects with many header files, a large part of the compilation time is spent
opening and parsing included headers. (To see how many header files are opened
during compilation, use the -H option.) You can speed up compilation by using
precompiled headers, enabled with the -Xpch-... options. The easiest option to use
is -Xpch-automatic. For example:

dplus -Xpch-automatic file1.cpp

compiles file1.cpp using precompiled headers. This means that a set of header files
is saved in a preparsed state and reused each time file1.cpp is compiled. The first

Table 13-1 Examples of ddump -F

Entry to ddump Interpreted result

myfunc__Fv myfunc(void)

mymain__FiPPc mymain (int , char **)

Wind River Compiler for SPARC
User’s Guide, 5.4

230

time you compile a project with -Xpch-automatic you will probably not notice an
improvement in speed, but subsequent compilations should be faster.

Within a header file, use #pragma no_pch to suppress all generation of
precompiled headers from that file. To selectively suppress generation of
precompiled headers, use #pragma hdrstop; headers included after #pragma
hdrstop are not saved in a parsed state.

Precompiled headers are supported by the C++ compiler only.

PCH Files

Parsed headers are saved in PCH (precompiled header) files. The compiler
processes PCH files only if one of the following options is enabled:
-Xpch-automatic, -Xpch-create=filename, or -Xpch-use=filename. If more than one
of these options is given, only the first is considered.

When -Xpch-automatic is enabled, the compiler looks for a PCH file in the current
working directory (unless you use -Xpch-directory=directory to specify a different
location) and, if possible, uses the preparsed headers in that file. Otherwise a PCH
file is generated with the default name sourcefile.pch, where sourcefile is the name
of the primary source-code file. When the source file is recompiled, or when
another file is compiled in the same directory, sourcefile.pch is checked for
suitability and used if possible.

Before using a PCH file, the compiler always verifies that it was created in the
correct directory using the same compiler version, command-line options, and
header-file versions as the current compilation; this information is stored in each
PCH file. If more than one PCH file is applicable to a compilation, the compiler
uses the largest file available.

If you want to specify a name for the generated PCH file, use
-Xpch-create=filename instead of -Xpch-automatic:

dplus -Xpch-create=myPCH file1.cpp

Later, you can reuse myPCH—when compiling the same file or a different file—by
specifying -Xpch-use=filename:

dplus -Xpch-use=myPCH file2.cpp

The filename specified with -Xpch-create or -Xpch-use can include a full directory
path, or the option can be combined with -Xpch-directory:

dplus -Xpch-use=myPCH -Xpch-directory=/source/headers somefile.cpp

13 C++ Features and Compatibility
13.7 Precompiled Headers

231

13

Limitations and Trade-offs

A generated PCH file includes a snapshot of all the code preceding the header stop
point—that is, #pragma hdrstop or the first token in the primary source file that
does not belong to a preprocessor directive. If the header stop point appears within
an #if block, the PCH file stops at the outermost enclosing #if.

A PCH file is not generated if the header stop point appears within:

■ An #if block or #define started within a header file.

■ A declaration started within a header file.

■ A linkage specification’s declaration list.

■ An unclosed scope, such as a class declaration, established by a header file. (In
other words, the header stop point must appear at file scope.)

Further, a PCH file is not generated if the header stop point is preceded by:

■ A reference to the predefined macro __DATE__ or __TIME__.

■ The #line preprocessing directive.

A PCH file is generated only if the code preceding the header stop point has
produced no errors and has introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. Finally, a PCH file is
generated only if sufficient memory is available.

Efficient use of precompiled headers requires experimentation and, in most cases,
minor changes to source code. PCH files can become bulky; included files must be
organized so that headers are preparsed to as few shared PCH files as possible.

Diagnostics

The -Xpch-messages option generates a message each time a PCH file is created or
used. The -Xpch-diagnostics option generates an explanatory message for each
PCH file that the compiler locates but is unable to use.

Wind River Compiler for SPARC
User’s Guide, 5.4

232

233

 14
Locating Code and Data,

Access

14.1 Controlling Access to Code and Data 233

14.2 Access Mode — Read, Write, Execute 238

14.3 Local Data Area (-Xlocal-data-area) 244

14.1 Controlling Access to Code and Data

By default, the compiler generates architecture-specific code for locating and
accessing code and data in memory which will be suitable for many cases. In
addition, a number of options are available for exercising fine control over the
process, for locating code and data at specific locations in memory, and for
generating position-independent code. All are described in detail in this chapter.

section and use_section Pragmas

Code and data are generated in sections in an object file, combined by the linker into
an executable file, and ultimately located in target memory at specific locations.
Default sections are predefined and have certain attributes. To change the name of
a default section, use the -Xname-... option (see 5.4.87 Specify Section Name
(-Xname-...), p.92). The section and use_section pragmas may be used to change
the default attributes, to define new sections, and to control the assignment of code

Wind River Compiler for SPARC
User’s Guide, 5.4

234

and variables to particular sections and, along with the linker command file, their
locations.

#pragma section class_name [istring] [ustring] [acc-mode] [address=x]
#pragma use_section class_name [variable | function] ,...

class_name
Required. Symbolic name for a predefined or user-defined section class to
hold objects of a particular class, e.g., code, initialized variables, or
uninitialized variables.

istring
Name of the actual section to contain initialized data. For variables, this
means those declared with an initializer (e.g., int x=1;). Use empty quotes if
this section is not needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this
means those declared with no initializer (e.g., int x;). This name may be
omitted if not needed (the default value is used).

acc-mode
Accessibility to the section. See 14.2 Access Mode — Read, Write, Execute,
p.238 for details.

#pragma section defines a section class and, optionally, one or two sections in the
class. A section class controls the addressing and accessibility of variables and code
placed in an instance of the class.

For C++, #pragma section declarations apply to all global and namepace scope
variables, class static member variables, global and namespace scope functions,
and class member functions that follow the pragma.

#pragma use_section selects a section class for specific variables or functions after
the section class has been defined by #pragma section.

Notes for #pragma section and #pragma use_section

The C++ compiler has the following limitations for #pragma section and
#pragma use_section:

■ Templates are not affected by #pragma section or #pragma use_section.
However, you can alter the placement of all the data or code in a file
(including templates) by using the command-line options -Xname-data
(and related options, such as -Xname-sdata or -Xname-const) or
-Xname-code. See 5.4.87 Specify Section Name (-Xname-...), p.92 for more
information on these options.

14 Locating Code and Data, Access
14.1 Controlling Access to Code and Data

235

14

■ #pragma section STRING cannot be used to alter the placement of strings.
Instead, use the command-line option -Xname-string.

■ #pragma use_section must be followed by at least one declaration or
definition of an entity for it to apply to that entity, as in:

#pragma section MYCODE “.mycode”
void my_func()
{
}

■ A section class_name (e.g., DATA) is the symbolic name of a section class and it
is used only in writing #pragma section and #pragma use_section directives.

At any given point in the source, there may be up to two physical sections
associated with a section class—an initialized section and an uninitialized
section as named by the istring and ustring attributes to #pragma section
respectively (e.g., “.data”). It is these physical sections which will appear in the
object file and which may be manipulated during linking.

■ istring is an optional quoted string giving a name for a particular section of the
given class which is to contain initialized data. The name is used in the
assembler .section directive to switch to the desired section for initialized data.
An empty string or no string at all indicates that the default value should be
used. Note that a section to contain code is “initialized” with the code.
Examples:

".text", ".data", ".init"

■ ustring is an optional quoted string giving a name for a particular section of the
given class which is to contain uninitialized data. The name is used in the
assembly .section directive to switch to the desired section for uninitialized
data. An empty string, or no string at all, indicates that the default value
should be used. The string “COMM” indicates that the .comm/.lcomm
assembler directives should be used. See 23.4 COMMON Sections, p.348
regarding allocation of common variables for full details; generally however,
COMM sections are gathered together by the linker an placed at the end of the
.bss output section. Examples:

".bss", ".data", "COMM"

■ Predefined section classes: Except when a user-defined section class has been
specified, all variables and functions are categorized by default into one of
several predefined section classes depending on how they are defined. Each
predefined section class is defined by default values for all of its attributes.
Table 14-1 gives the names and attributes of all predefined section classes.

Wind River Compiler for SPARC
User’s Guide, 5.4

236

■ By using the #pragma use_section directive, any variable and function can be
individually assigned to any of the predefined section classes, or to a
user-defined section class.

■ If a section pragma for some class is given with no values for one or more of
the attributes, those attributes are always restored to their default values as
given in Table 14-1. This is true even for a user-defined class_name (the table
shows the default attributes in this case as well).

■ Multiple #pragma section directives with different attributes can be given for
the same class_name. Variables and functions use the earliest non-default
directive that is valid at the point of definition. (This behavior can be changed
with the -Xpragma-section-last directive; see 5.4.97 Control Interpretation of
Multiple Section Pragmas (-Xpragma-section-...), p.96.)

■ Pragmas are not seen across modules unless a common header file is included.

■ The compiler associates each function with a storage space at the point in a
module where it is first declared or defined. Subsequent attempts within the
same module to assign a function to a storage space are ignored.

■ For functions that are declared multiple times, the first section binding applies,
unless the -Xpragma-section-last option has been specified. For example:

void my_func(); /* binds to “text” */

#pragma section CODE “.mycode”

void my_func() /* does not override previous binding unless
-Xpragma_section-last has been used */

In this example, to force my_func to go into .mycode, you need to do one of
the following:

■ Move the #pragma section before the initial declaration of my_func.

■ Specify -Xpragma-section-last on the command line.

■ Use #pragma use_section:

void my_func();

#pragma section CODE “.mycode”
#pragma use_section CODE my_func

void my func()
{
}

14 Locating Code and Data, Access
14.1 Controlling Access to Code and Data

237

14

Section Classes and Their Default Attributes

Table 14-1 below gives the predefined section classes and their default attributes,
and also the defaults for a user-defined section class.

Notes for Table 14-1:

■ Local data area optimization: global and static scalar variables may be placed
in a local data area if -Xlocal-data-area, which has a default value of 32,767
bytes, is non-zero and optimization is in effect (either -O or -XO is present). The
local data area will be placed in the .data section for the module if any such
variable in it has an initial value, or in the .bss section for the module if none
do. When uninitialized variables are placed in the .data section in this way, it
overrides the default COMM (common) section name as given above. See
14.3 Local Data Area (-Xlocal-data-area), p.244 for further details and restrictions.

■ The section names shown in the table assume the default value for option
-Xconst-in-text. See Moving initialized Data From “text” to “data”, p.243 if
-Xconst-in-text is set to a non-default value.

Table 14-1 Section Classes and Their Default Attributes

section
class_name Description and example

Default

istring ustring acc-mode

CODE code generated in functions and
global asm statements:

int cube(int n)
{ return n*n*n; }

.text n/a RX

DATA static and global variables:

static int a[10];

.data COMM RW

CONST const variables:

const int a[10] = {1, ...};

.text .text R

STRING string constants:

"hello\n"

.text n/a R

user-defined #pragma section USERdata COMM RW

Wind River Compiler for SPARC
User’s Guide, 5.4

238

■ Dynamically initialized C++ const variables are treated like uninitialized
non-const variables. For example:

int f();
const int x = f();

By default, x is placed in the .bss section.

Implementati
on, p.242

14.2 Access Mode — Read, Write, Execute

acc-mode defines how the section can be accessed and is any combination of:

R

Read permission.

W

Write permission.

X

Execute permission.

O

COMDAT — when the linker encounters multiple identical sections marked as
“comdat”, it collapses the sections into a single section to which all references
are made and deletes the remaining instances of the section.

This is used, for example, with templates in C++. If COMDAT sections are
disabled (-Xcomdat-off), the compiler generates a template instance for each
module that uses a template, which can result in duplicate template
instantiations. With the -Xcomdat option, the compiler uses “O” to mark
sections generated for templates as COMDAT; the linker then collapses
identical instantiations into a single instance. See 5.4.24 Mark Sections as
COMDAT for Linker Collapse (-Xcomdat), p.65.

N

“not allocatable” —the section is not to occupy space in target memory. This is
used, for example, with debug information sections such as .debug in ELF. N
must be used by itself; it is ignored when it is combined with other flags.

acc-mode is used by the assembler and loader. It does not affect type-checking
during compilation.

14 Locating Code and Data, Access
14.2 Access Mode — Read, Write, Execute

239

14

Default acc-mode values for the predefined section classes are shown in Table 14-1.

If -Xconst-in-text=0 then the CONST, SCONST, and STRING section classes have
will have access mode RW (read/write) rather than the default R (read only). See
Moving initialized Data From “text” to “data”, p.243 for further details.

Multiple instances of a constant allocated to a section with no write access (W) may
be collapsed by the compiler to a single instance.

Using #pragma section and #pragma use_section to Locate Variables and Functions at
Absolute Addresses

There are two ways to put a variable or function in a specific section.

■ A variable or function can be placed in a specific section by redefining the
default section into which the variable or function would normally be placed.
Examples:

– Using the defaults, ar1 is placed in the DATA section class (.data) and
referenced using far-absolute addressing:

int ar1[100] = { 0 };

– ar2 is placed in section .absdata and referenced using far-absolute
addressing:

#pragma section DATA ".absdata" far-absolute
int ar2[100] = { 0 };

– ar3 is again placed in the default DATA section class (.data) — because no
istring, ustring, or acc-mode is given, the default values for these attributes
as given in Table 14-1 are used.

#pragma section DATA
int ar3[100] = { 0 };

– A variable or function can be placed by specifying a specific section in a
#pragma use_section. Example:

– ar4 is placed in section .absdata and referenced using far-absolute
addressing (see the next heading regarding the empty quotes in this
example):

#pragma section VECTOR "" ".absdata" far-absolute RW
#pragma use_section VECTOR ar4

int ar4[100];

Placing Initialized vs. Uninitialized Variables

When defining a data section class to hold variables, the section pragma can name
two sections: one for initialized variables and one for uninitialized variables, or

Wind River Compiler for SPARC
User’s Guide, 5.4

240

either section by itself. Repeating from the definition above (section and use_section
Pragmas, p.233):

#pragma section class_name [istring] [ustring]
class_name

Required. Predefined or user-defined name to hold objects of a particular class,
e.g., code, initialized variables, or uninitialized variables.

istring
Name of actual section to contain initialized data. For variables, this means those
declared with an initializer (e.g., int x=1;). Use empty quotes if this section is not
needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this means
those declared with no initializer (e.g., int x;). This section may be omitted if not
needed (which will assign the default value).

Consider these examples:

#pragma section DATA ".inits" ".uninits"
int init=1;
int uninit;

Assuming no earlier pragmas for class DATA, the pragma changes the section for
initialized variables from .data to .inits, and changes the section for uninitialized
variables from COMMON (which the linker adds to .bss) to .uninits. As a result,
variable init will be placed in the .inits section (because init has an initial value),
while variable uninit will be placed in the .uninits section because it has no initial
value.

The following shows a common error:

#pragma section DATA ".special" /* probably error */
init special;

The user presumably intends for variable special to be placed in section .special.
But the pragma defines .special as the section for initialized variables. Because
variable special is uninitialized, it will be placed in the default COMMON section.
Changing the above to

#pragma section DATA "" ".special"
int special;

achieves the intended result because .special is now the section for uninitialized
variables.

14 Locating Code and Data, Access
14.2 Access Mode — Read, Write, Execute

241

14

Using the Address Clause to Locate Variables and Functions at Absolute Addresses

The address=n clause provides a way to place variables and functions at a specific
absolute address in memory. With this form, the linker will put the designated
code or data in an absolute section named “.abs.nnnnnnnn” where nnnnnnnn is the
value in hexadecimal, zero-filled to eight digits, of the address given in the
address=n clause.

Advantages of using absolute sections (see 15.9.3 Accessing Variables and Functions
at Specific Addresses, p.263):

■ I/O registers, global system variables, and interrupt handlers, etc., can be
placed at the correct address from the compiled program without the need to
write a complex linker command file.

That is, if you know the address of an object at compile-time, the address
clause of the #pragma section directive can be used in your source. If the
location of the object is best left to link-time, use a #pragma section directive
with a named section which can then by located via a linker command file.

■ A symbolic debugger will have all information necessary for full access to
absolute variables, including types. Variables defined in a linker command file
cannot be debugged at a high level. Examples:

// define IOSECT:
// a user defined section containing I/O registers

#pragma section IOSECT far-absolute RW address=0xffffff00
#pragma use_section IOSECT ioreg1, ioreg2

// place ioreg1 at 0xffffff00 and ioreg2 at 0xffffff04
int ioreg1, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt ProgramException
#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect ProgramException

void ProgramException() {
// ...
}

NOTE: When using the address=n clause, any section name given by istring or
ustring will be ignored.

Wind River Compiler for SPARC
User’s Guide, 5.4

242

Prototypes and the Placement of Sections

If function prototypes are present, the compiler and linker select sections and their
attributes for functions and, in C++, static class variables, based on where the
prototypes of the functions appear in the source, rather than where the function
definitions appear.

The following example shows the wrong way to request the compiler and linker to
place the function fun() in the .myTEXT section.

int fun(); // Prototype determines "fun" section
...
#pragma section CODE ".myTEXT" // #pragma before definition has no
int fun() { // effect on placement of "fun"
...
}

In this example, the initial declaration of fun() determines where it will appear in
the executable; the subsequent #pragma is ignored. This is consistent with the
behavior of the C++ compiler.

Implementation

The compiler will generate the assembly code for the different addr-mode settings
as shown in Table 14-2. The corresponding code is as follows (the #pragma
use_section is present to ensure that the variable var is placed in DATA rather than
SDATA for simplicity).

#pragma use_section DATA var
int var=1; /* var in DATA or SDATA (not in .bss or .sbss) */

reg = var;
func(); /* func in CODE */

Notes for Table 14-2:

■ The compiler may select a different register for the reg variable than is shown
in the table.

■ To reproduce the code as shown, place the above code in a file, e.g. test.c, and
use -Xaddr-code and -Xaddr-data to set the addressing modes, and -g to turn
on debugging (this disables some minor optimizations which might otherwise
be present). For example, for standard addressing mode:

dcc -g -S -Xaddr-code=0x01 -Xaddr-data=0x01 -Xpass-source test.c

Notes:

■ The assembler uses some special SPARC relocation types for the operators
used in the table above. See F.1.6 ELF Relocation Information, p.580 for the
complete list of relocation types. See also include/elf_sparc.h.

14 Locating Code and Data, Access
14.2 Access Mode — Read, Write, Execute

243

14

Moving initialized Data From “text” to “data”

Sections that hold setable variables are generically referred to as “data” sections
(and should be in RAM), while sections that hold code, constants like strings, and
unchangeable const variables are generically referred to as “text” sections (and can
be in ROM).

The -Xconst-in-text option provides a shortcut for controlling the default section
for initialized data (istring) for the CONST, and STRING constant section classes. Its
form is:

-Xconst-in-text=mask

where mask bit 0x1 controls const variables in the CONST section class, and 0x4
controls string data in the STRING section class.

If a mask bit is set to 1, variables or strings belonging to the corresponding section
classes are placed in ROMable “text” sections; if set to 0, they are placed in “data”
sections.

By default, -Xconst-in-text=0xff. This gives the behavior shown in the following
table. (Note: the table shows section names for initialized sections. See notes
following the table for uninitialized sections.)

Table 14-2 Code Generated for Different Addressing Modes

Mode Reference to DATA: reg = var; Reference to CODE: func()

standard sethi %hi(var),%16
ld [%16+%lo(var)],%16

call func

far-absolute sethi %hi(var),%16
ld [%16+%lo(var)],%16

call func

Table 14-3 -Xconst-in-text mask bits

Section Class Mask Bit
“text” Section With
Mask Bit Set to 1

 “data” Section With
Mask Bit Set to 0

CONST 0x1 .text (default) .data

STRING 0x4 .text (default) .data

Wind River Compiler for SPARC
User’s Guide, 5.4

244

While the option -Xconst-in-text is preferred, the older option -Xconst-in-data is
equivalent to -Xconst-in-text=0, and thus requests that data for all constant
sections, CONST, and STRING be placed in their corresponding “data” sections as
given by the last column of the table above, and the older option -Xstrings-in-text
is equivalent to -Xconst-in-text=0xf, and thus requests that data for all constant
sections be placed in their default “text” sections.

The table above gives section names for initialized sections. There are no
uninitialized STRING sections. Uninitialized CONST sections, if moved from
“text” to “data”, go in the COMM (common) section (which the linker puts at the
end of the .bss section by default).

14.3 Local Data Area (-Xlocal-data-area)

The compiler supports a local data area (LDA) optimization. This optimization
works as follows:

■ The LDA optimization applies only to static and global variables of scalar
types—not arrays, structures, unions, or classes (for C++).

■ Like all optimizations, LDA optimization is enabled only if option -O or -XO is
present. It can be disabled by setting -Xlocal-data-area=0.

■ An LDA is allocated for each module, and static and global scalar variables
which are referenced at least once are allocated to it except as noted above. To
restrict the optimization to static variables, use -Xlocal-data-area-static-only.
VxWorks developers are strongly advised to use -Xlocal-data-area-static-only
so that asynchronous changes to global variables remain visible to the
generated code.

■ The variables in the LDA are addressed using efficient base register-offset
addressing. The base register is chosen for the module by the compiler as part
of its normal register assignment algorithms and optimizations.

NOTE: Note that when a section is in “data” it will have access mode RW
(read/write), while in “text”, the access mode will be R (read only). See 14.2 Access
Mode — Read, Write, Execute, p.238. If a section is moved from its default by
-Xconst-in-text, this will be a change from its usual default access mode.

14 Locating Code and Data, Access
14.3 Local Data Area (-Xlocal-data-area)

245

14

■ If at least one variable in the LDA is initialized, the LDA will be in the .data
section for the module. If all are uninitialized, the LDA will be in the .bss
section for the module.

■ By default, the size of the LDA is 32,767 bytes. It may be set to a different size
with option -Xlocal-data-area=n. However, a value larger than the default will
be less efficient because the default was chosen based on the size of the most
efficient offset. If there are too many scalar variables to fit in the LDA, the
overflow will be allocated as usual.

F.1.6 ELF Relocation Information, p.580

NOTE: Note that this can change the usual behavior for uninitialized variables —
without LDA optimization, uninitialized variables go into the .bss section. But
with LDA optimization, variables to be put into the LDA are put there whether
initialized or not; and if any LDA variables are uninitialized, the LDA is placed in
the .data section for the module, and in that case, any uninitialized variables in the
LDA will also be in the .data section.

Wind River Compiler for SPARC
User’s Guide, 5.4

246

247

 15
Use in an Embedded

Environment

15.1 Introduction 248

15.2 Compiler Options for Embedded Development 248

15.3 User Modifications 249

15.4 Startup and Termination Code 250

15.5 Hardware Exception Handling 257

15.6 Library Exception Handling 257

15.7 Linker Command File 258

15.8 Operating System Calls 259

15.9 Communicating with the Hardware 263

15.10 Reentrant and “Thread-Safe” Library Functions 265

15.11 Target Program Arguments, Environment Variables, and Predefined
Files 266

15.12 Profiling in An Embedded Environment 268

Wind River Compiler for SPARC
User’s Guide, 5.4

248

15.1 Introduction

Device software development differs significantly from development for native
environments, in part because there is often no operating-system support for:

■ initialization of data

■ initialization of argc, argv, and environment variables

■ hardware exception handling (illegal memory access, divide by zero, etc.)

■ file and device I/O

■ memory allocation

■ signal handling

■ execution of instructions to enable caches

■ virtual memory

Other features often needed in an embedded environment include:

■ control over addressing to minimize code size and maximize execution speed

■ complete control over allocation of code and data to specific addresses

■ placement of initialized data in ROM and its movement on startup to RAM

■ packed structures to map external hardware or data from other processors

■ mixing of big- and little-endian data structures

15.2 Compiler Options for Embedded Development

The following compile-time options and pragmas control code generation in
various ways. All are documented in 5. Invoking the Compiler.

-Xdollar-in-ident
Allow variable names containing “$”-signs.

-Xmemory-is-volatile
Treat all memory references as volatile, to avoid optimizing away accesses to
hardware ports. This option is not needed if the volatile keyword is used for

15 Use in an Embedded Environment
15.3 User Modifications

249

15

variables making accesses to volatile data. See 5.4.85 Treat All Variables As
Volatile (-Xmemory-is-volatile, -X...-volatile), p.91.

-Xsize-opt
Minimize the size of the executable code.

-Xconst-in-text=0xf
Put strings and const data in the .text section together with code. See Moving
initialized Data From “text” to “data”, p.243.

-Xmember-max-align
-Xstruct-min-align

Options to pack structures in different ways. See 5.4.84 Set Maximum Structure
Member Alignment (-Xmember-max-align=n), p.91 and 5.4.126 Set Minimum
Structure Member Alignment (-Xstruct-min-align=n), p.107.

#pragma interrupt func
Specify that a function func is an exception handler. See interrupt Pragma, p.124.

#pragma pack
Control packing of structures and the byte order of members. See the pack
Pragma, p.127.

#pragma section ...
Control placement and addressing of variables and functions. See section and
use_section Pragmas, p.233.

15.3 User Modifications

Since most embedded environments are unique, some things must be modified by
the user:

■ Startup code must initialize the processor and run-time.

■ Hardware exceptions must be handled.

■ A linker command file must specify where to allocate code and data.

■ It may be necessary to modify library functions to make user-supplied
operating system calls.

Wind River Compiler for SPARC
User’s Guide, 5.4

250

15.4 Startup and Termination Code

This section describes startup and termination for self-contained applications built
with the compiler. Applications that run under an operating system (such as
VxWorks or Linux) work differently.

As shipped, startup is carried out by four modules: crt0.s, crtlibso.c, ctordtor.c,
and init.c. Termination is carried out by five modules: exit.c, crt0.s, crtlibso.c,
ctordtor.c, and _exit.c. Read this section and examine these modules to determine
whether any modifications are required for your target environment.

An overall schematic for startup and termination is shown in Figure 15-1. This
figure applies to all supported targets and does not show some details. See the
referenced modules for complete details. Notes, including source locations and
modification hints, are in the sub-sections immediately following the figure.

15 Use in an Embedded Environment
15.4 Startup and Termination Code

251

15

Figure 15-1 Startup and Termination Program Flow

crt0.s

crtlibso.c

.section .text

start:

Initialize stack.

Call __init_main().

Call exit()

(in case user main()

 returns).

__init:

Call __exec_ctors()
(in ctordtor.c).

<module’s .ctors section >

<old-style .init$nn sections>

Return from __init.

__fini:

Call __exec_dtors()

(in ctordtor.c).

<module’s .dtors section>

<old-style .fini$nn sections>

Return from __fini.

init.c: __init_main()

Move data from “rom” to “ram” for
linker LOAD spec.

Clear .bss, etc.

Set up argc, etc. if present.

Call __init().

return main
(argc, argv, env);

User’s program

...

int main(...)
{

...
exit(0);

}exit.c: exit(int status)

Call function registered by at_exit()
calls.

Call __fini().

Call _EXIT(status);

_exit.c: _EXIT(int status)

Close files if present.

Halt.

Wind River Compiler for SPARC
User’s Guide, 5.4

252

15.4.1 Location of Startup and Termination Sources and Objects

The source of crt0.s is located in the src/crtsparc directory. Objects are in the library
directories shown in Table 2-2.

init.c, crtlibso.c, exit.c, and _exit.c are in the src directory. Objects are in libc.a.

15.4.2 Notes for crt0.s

crt0.s begins at label start. This is the entry point for the target application.

crt0.s is brief, with most initialization done in init.c. Its first action is to initialize
the stack to symbol __SP_INIT. This symbol is typically defined a linker command
file. See Figure 25-1 for an example.

Insert assembly code as required to initialize the processor before crt0.s calls
__init_main() described in 15. Use in an Embedded Environment. Refer to
manufacturer’s manuals for the target processor for information on initializing the
processor.

To replace crt0.o:

■ Copy and modify it as required.

■ Assemble it with:

das crt0.s

■ Link it either by including it on a dld command line when invoking the linker,
or by using the -Ws option if using the compiler driver, e.g.,

dcc -Wsnew_crt0.o ... other parameters ...

The -Ws option can be added to the user.conf configuration file to make it
permanent.

15.4.3 Notes for crtlibso.c and ctordtor.c

By default, compiled modules generate special .ctors and .dtors sections for
startup and termination code, including constructor functions, destructor
functions, and global constructors in C++. The .ctors and .dtors sections contain
pointers to initialization and finalization functions, sorted by priority. This code is
invoked during initialization and finalization through calls to __exec_ctors() and
__exec_dtors() from the __init() and __fini() functions in crtlibso.c. The source

15 Use in an Embedded Environment
15.4 Startup and Termination Code

253

15

code for __exec_ctors() and __exec_dtors(), along with symbols marking the top
and bottom of .ctors and .dtors, is in ctordtor.c. (See Figure 15-1.)

crtlibso.c includes “wrapper” sections .init$00, .init$99, .fini$00, and .fini$99.
These sections, which previous versions of the compiler used for startup and
termination code, exist for backward compatibility.

For more information, see 15.4.8 Run-time Initialization and Termination, p.256.

See also 5.4.41 Generate Initializers for Static Variables (-Xdynamic-init), p.71.

15.4.4 Notes for init.c

Initialization code that can be written in C or C++ should be inserted in or called
from __init_main(), typically just before calling main(), so that all other
initialization done by __init_main()—copying initial values from “rom” to “ram”,
clearing .bss, and so forth—can be done first.

Copying Initial Values From “ROM” to “RAM”, Initializing .bss

In a typical embedded system, the initial values for non-const variables must be
stored in some form of read-only memory, “ROM” for simplicity, while the code
must refer to the variables themselves in writable memory, “RAM”. At startup, the
initial values must be copied from ROM to RAM. In addition, C and C++ require
that uninitialized static global memory be initialized to zero.

init.c requires five symbols to “copy constants from ROM to RAM” (the traditional
phrase) and to clear .bss. These five symbols, all typically defined in a linker
command file, are:

__DATA_ROM

Start of the physical image of the data section for variables with initial values,
including all initial values—the location in “ROM” as defined using the LOAD
specification in the linker command file.

NOTE: The malloc() function supplied with the compiler must be initialized. This
is done automatically by code generated in the .ctors section. If you do not use the
standard crtlibso.c, then include comparable code in your own startup file. Other
library functions may also require initialization, so __init() should be called in all
cases.

Wind River Compiler for SPARC
User’s Guide, 5.4

254

__DATA_RAM

Start of the logical image of the data section — the location in “RAM” where
the variables reside during execution as defined by an area specification (“>
area-name”) in the linker command file.

__DATA_END

End of the logical image of the data section. __DATA_END - __DATA_RAM
gives the size in bytes of the memory to be copied.

__BSS_START

Start of the .bss section to be cleared to zero.

__BSS_END

End of the .bss section.

The code in init.c compares __DATA_ROM to __DATA_RAM; if they are different,
it copies the data section image from __DATA_ROM to __DATA_RAM. It then
compares __BSS_START with __BSS_END and if they are different sets the memory
so defined to zero.

As noted, these symbols are typically defined in a linker command file. See
25.6 Command File Structure, p.379 for an example.

Providing arguments to main and data for memory resident files

Examine the code in init.c to see how C-style main() function arguments and
environment variables can be set up. The variables used in this code, such as
__argv[] and __env[], are defined in src/memfile.c and src/memfile.h. These
variables, as well as data for memory resident files, can be created using the setup
program. See 15.11 Target Program Arguments, Environment Variables, and Predefined
Files, p.266 for details.

Replacing init.c

To replace init.c:

■ Copy and modify it as required.
■ Include it as a normal C module in your build.

15.4.5 Notes for Exit Functions

Because embedded systems are often designed to run continuously, exit() may not
be needed and will not be included in the target executable if not called.

15 Use in an Embedded Environment
15.4 Startup and Termination Code

255

15

To replace exit.c or _exit.c:

■ Copy and modify as required.
■ Include with normal C modules in your build.

15.4.6 Stack Initialization and Checking

Stack Initialization

The initial stack is initialized by crt0.s to symbol __SP_INIT, typically defined in the
linker command file. See 15.4.2 Notes for crt0.s, p.252 and for an example see
25.6 Command File Structure, p.379.

Stack Checking

Stack checking is not implemented for SPARC microprocessors.

15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()

malloc() allocates memory from a heap managed by function sbrk() in src/sbrk.c.
There are two ways to create the heap:

■ Define __HEAP_START and __HEAP_END, typically in a linker command file.
See the files conf/default.dld, conf/sample.dld, and 25.6 Command File
Structure, p.379 for examples.

■ Recompile sbrk.c as follows:

dcc -ttarget -c -D SBRK_SIZE=n sbrk.c

where n is the size of the desired heap in bytes.

The malloc() function implements special features for initializing allocated
memory to a given value and for checking the free list on every call to malloc() and
free(). See malloc(), p.499.

NOTE: To avoid excess execution overhead, malloc() acquires heap space in 8KB
master blocks and sub-allocates within each block as required, re-using space
within each 8KB block when individual allocations are freed. The default 8KB
master block size may be too large on systems with small RAM. To change this, call

size_t __malloc_set_block_size(size_t blocksz)

where blocksz is a power of two.

Wind River Compiler for SPARC
User’s Guide, 5.4

256

15.4.8 Run-time Initialization and Termination

The compiler automatically generates calls to initialization and finalization
functions, including C++ global constructors, through pointers in each module’s
.ctors and .dtors sections. Initialization and finalization functions can appear in
any program module and are identified by the constructor and destructor
attributes, respectively. Functions identified with the constructor and destructor
attributes are executed when __init() and __fini() are called, as shown in
Figure 15-1 and described in 15.4.3 Notes for crtlibso.c and ctordtor.c, p.252.

The priority of initialization and finalization functions can be set through
arguments to the constructor and destructor attributes; functions with lower
priority numbers execute first. For each priority level assigned, the compiler
creates a subsection called .ctors.nnnnn or .dtors.nnnnn, where nnnnn is a five-digit
numeral between 00000 and 65535; the higher the value of nnnnn, the earlier the
functions in that section are called. For example, a function declared with
__attribute__ ((constructor(12))) will be referenced in .ctors.65523 (because
65523=65535–12). All of the .ctors.nnnnn sections are grouped at link time into a
single section called .ctors, and all of the .dtors.nnnnn sections are grouped at link
time into a single section called .dtors. For an example linker map, see ctordtor.c.

By default, user-defined initialization and finalization functions (as well as global
class constructors) have the last priority, to ensure that compiler-defined
initialization and finalization occurs first.

For more information on constructor and destructor attributes, see constructor,
constructor(n) Attribute, p.139 and destructor, destructor(n) Attribute, p.140. To
change the default priority for initialization and finalization functions, see
5.4.65 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri), p.82.

NOTE: malloc() and related functions must be initialized by function __init() in
crtlibso.c. See the note at the end of the section 15.4.3 Notes for crtlibso.c and
ctordtor.c, p.252 for details.

NOTE: An archived object file containing constructors or destructors will not be
pulled from its .a file and linked into the final executable unless it also contains at
least one function that is explicitly called by the application. To ensure execution
of startup and termination code, never create modules that contain only
constructor and destructor functions.

15 Use in an Embedded Environment
15.5 Hardware Exception Handling

257

15

Old-style Initialization and Termination

For backward compatibility, the compiler supports an older style of run-time
initialization and termination that uses .init$nn and .fini$nn sections (instead of
.ctors and .dtors). To use old-style initialization and finalization, enable
-Xinit-section=2 (see 5.4.64 Control Generation of Initialization and Finalization
Sections (-Xinit-section), p.81). In this mode, the compiler also supports the use of
special _STI__nn_ and _STD__nn_ prefixes (as well as constructor and destructor
attributes) to identify initialization and finalization functions and set their priority.
In cases where both .init$nn and .ctors sections are present, the default __init()
function executes the code in .ctors first; similarly, in cases where both .fini$nn and
.dtors sections are present, the default __fini() function executes the code in .dtors
first.

15.5 Hardware Exception Handling

■ Please refer to the SPARClite User’s Guide for a description of the exception
(interrupt) handling by the hardware.

The compiler provides the following support for interrupt routines:

■ A #pragma interrupt which specifies that a function is an exception handler.

■ The library function raise(), which can be called with an appropriate signal
from the interrupt routine to raise a signal.

■ A #pragma section directive that can place exception vectors at an absolute
address.

15.6 Library Exception Handling

On error, many standard library functions set errno and return a null or undefined
value as described for each function in 34. C Library Functions. This is typical of, for
example, file system functions.

Wind River Compiler for SPARC
User’s Guide, 5.4

258

Many math functions, malloc(), and some other library functions call a central
error reporting function (in addition to setting errno):

__diab_lib_error(int fildes, char *buf, unsigned nbyte);

where:

fildes
File descriptor index: 1 for stdout, 2 for stderr (the usual value for error
reports).

buf
Buffer containing an ASCII string describing the error, e.g., “stack overflow”.

nbyte
Number of characters in buf (excluding any terminating null byte).

__diab_lib_error() is defined in src/lib_err.c and may be modified as required.
(The prototype for __diab_lib_error() is not included in any user accessible
header file; the prototype given above may be added to a user header file if it is
desirable to call __diab_lib_error() from user application code.) Unless the
message is intercepted by another program, __diab_lib_error() writes the
message to the file given by fildes and returns the number of bytes written. After
calling __diab_lib_error(), most functions continue execution (after setting errno
if required).

15.7 Linker Command File

A linker command file:

■ Can specify input files and options, although usually these are on the
command line.

■ Specifies how memory is configured.

■ Specifies how to combine the input sections into output sections.

■ Assigns addresses to symbols.

See 25. Linker Command Language for more information about the command
language, and 25.6 Command File Structure, p.379 for an example.

15 Use in an Embedded Environment
15.8 Operating System Calls

259

15

When invoking a compiler driver such as dcc, specify a non-default linker
command file using the -Wm option:

-Wmpathname

where pathname is the full name of the file. To use the same linker command file for
all compilations, specify this option in the user.conf configuration file.

If no -Wm option is used, the linker will use file version_path/conf/default.dld.
Documentary comments are included in this file; please see it for details. See
5.3.28 Specify Linker Command File (-W mfile), p.43 for additional details on the -W
m option.

Other linker command files written for some specific targets are also provided in
the conf directory. These and default.dld may serve as examples for creating your
own linker command file.

15.8 Operating System Calls

The source files available in the src directory implement or provide stubs for a
number of POSIX/UNIX functions for an embedded environment. A partial set is
documented in the subsections of this section. Examine the .c files to see the
complete set.

The modules in the src directory are typically stubs which must be modified for a
particular embedded environment. These modules have been compiled and the
objects collected into two libraries:

libchar.a — basic operating systems functions using simple character
input/output

libram.a — basic operating system functions using RAM-disk file
input/output.

Variants of these libraries for different object module formats are found in the
directories documented in Table 2-2.

To use these functions:

■ Modify the above files or those such as chario.c discussed below. That is,
replace the stub code with code which implements each required function
using the facilities available in the embedded environment.

Wind River Compiler for SPARC
User’s Guide, 5.4

260

■ Compile the files; the script compile can be used as is or modified to do this.

■ Use dar to modify either the original or a copy of libchar.a or libram.a as
appropriate, or simply include the modified object files in your link before the
libraries. See 27. D-AR Archiver for instructions.

■ If a copy of libchar.a or libram.a was modified, see 32.2 Library Structure, p.440
for a detailed description of how the libraries are structured and searched.

15.8.1 Character I/O

The predefined files stdin, stdout, and stderr use the __inchar()/__outchar()
functions in version_path/src/chario.c. These functions can be modified in order to
read/write to a serial interface on the user’s target. The files /dev/tty and /dev/lp
are also predefined and mapped to these character I/O functions.

chario.c can be compiled for supported boards and simulators by defining one of
several preprocessor macros when compiling chario.c. These macros are:

For example, all versions of chario.o in the supplied libraries are compiled for
SingleStep as follows:

dcc -c -DSINGLESTEP chario.c

These preprocessor macros typically cause the inclusion of code which reads from
or writes to devices on the board, or make system calls for doing so, or in the case
of SingleStep, supports input/output to the SingleStep command window.

chario.c has three higher level functions:

■ inedit() corresponds to stdin; it reads a character by calling __inchar()
and calls outedit() to echo the character.

■ outedit(...) corresponds to stdout; it writes a character by calling
__outchar().

■ outerror(...) corresponds to stderr; it writes a character by calling
__outerrorchar(). This function is currently used only by SingleStep

SingleStep debugger SINGLESTEP

I.D.P. M68EC0x0 board IDP

SB306 board SBC306

EST Virtual Emulator EST

MBUG monitor for 68k boards MBUG

15 Use in an Embedded Environment
15.8 Operating System Calls

261

15

(when compiling chario.c with -DSINGLESTEP); other implementations
write stderr output to stdout.

The lower level functions, __inchar(), __outchar(), and __outerrorchar()
implement the actual details of input/output for each of the boards for emulators
listed above. Examine the code for details.

See the makefiles in the example directories (version_path/example/...) for
suggestions on recompiling chario.c for the selected target board.

15.8.2 File I/O

A number of standard file I/O functions are implemented as a “RAM-disk”. These
functions are part of the standard libc.a library when cross is used as part of a
-ttof:cross option when linking (see Table 4-1).

For a convenient way to create RAM-disk files for use with these functions, see
15.11 Target Program Arguments, Environment Variables, and Predefined Files, p.266.

Space required by the file I/O functions is allocated by calls to malloc().

The following functions are supported. For details on any of these functions,
including header files containing their prototypes, lookup the function in 34. C
Library Functions.

access()
In access.c, checks if a file is accessible.

close()
In close.c, closes a file.

creat()
In creat.c, opens a new file by calling open().

fcntl()
In fcntl.c, checks the type of a file.

fstat()
In stat.c, gets some information about a file.

isatty()
In isatty.c, checks whether a file is connected to an interactive terminal. It is
used by the stdio functions to decide how a file should be buffered. If it is a
terminal, the stream will be flushed at every end-of-line, otherwise the stream
will be buffered and written in large blocks.

Wind River Compiler for SPARC
User’s Guide, 5.4

262

link()
In link.c, causes two filenames to point to the same file.

lseek()
In lseek.c, positions the file pointer in a file.

open()
In open.c, opens a new or existing file.

read()
In read.c, reads a buffer from a file.

unlink()
In unlink.c, removes a file from the file system.

write()
In write.c, writes a buffer to a file.

15.8.3 Miscellaneous Functions

The following functions provide miscellaneous services.

clock()
In clock.c, is an ANSI C function returning the number of clock ticks elapsed
since program startup. It is not used by any other library function.

__diab_lib_err()
In lib_err.c, reports errors caught by library functions. See 15.6 Library
Exception Handling, p.257.

_exit()
In _exit.c, closes all open files and halts. See 15.4.5 Notes for Exit Functions,
p.254.

getpid()
In getpid.c, returns a process number. Modify this if you have a
multiprocessing system.

__init_main()
In init.c, is called from the startup code and performs some initializations. See
15.4.4 Notes for init.c, p.253.

kill()
In kill.c, sends a signal to a process. Only signals to the current process are
supported.

15 Use in an Embedded Environment
15.9 Communicating with the Hardware

263

15

signal()
In signal.c, changes the way a signal is handled.

time()
In time.c, returns the system time. Other functions in the library expect this to
be the number of seconds elapsed since 00:00 January 1st 1970.

15.9 Communicating with the Hardware

The following features facilitate access to the hardware in an embedded
environment.

15.9.1 Mixing C and Assembler Functions

The calling conventions of the compiler are well defined, and it is straightforward
to call C functions from assembler and vice versa. See 9. Calling Conventions for
details.

Note that the compiler sometimes prepends and/or appends an underscore
character to all identifiers. Use the -S option to examine how this works.

In C++, the extern "C" declaration can be used to avoid name mangled function
names for functions to be called from assembler.

15.9.2 Embedding Assembler Code

Use the asm keyword or direct functions to intermix assembler instructions in the
compiler function. See 7. Embedding Assembly Code for details.

15.9.3 Accessing Variables and Functions at Specific Addresses

There are four ways to place a variable or function at a specific absolute address:

1. At compile-time by using the #pragma section directive to specify that a
variable should be placed at an absolute address. See Using the Address Clause
to Locate Variables and Functions at Absolute Addresses, p.241.

Wind River Compiler for SPARC
User’s Guide, 5.4

264

 Advantages of using absolute sections:

■ I/O registers, global system variables, and interrupt vectors and functions
can be placed at the correct address from the program without the need to
write a complex linker command file.

■ Absolute variables will have all symbolic information needed by symbolic
debuggers. Variables defined using the linker command language cannot
be debugged at a high level.

Examples using absolute addressing at compile-time:

// define IOSECT:
// a user defined section containing I/O registers
#pragma section IOSECT far-absolute RW address=0xffffff00
#pragma use_section IOSECT ioreg1, ioreg2

// place ioreg1 at 0xffffff00 and ioreg2 at 0xffffff04
int ioreg1, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt programException
#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect programException

void programException() {
// ...
}

2. At compile-time by using a macro. For example:

/* variable at address 0x100 */
#define mem_port (*(volatile int *)0x100)

/* function at address 0x200 */
#define mem_func (*(int (*)())0x200)

mem_port = mem_port + mem_func();

3. At link time by defining the address of an identifier. For example:

In the C file:

extern volatile int mem_port; /* variable */
extern int mem_func(); /* function */

mem_port = mem_port + mem_func();

In the linker command file add:

_mem_port = 0x100; /* Both with and without '_' */
mem_port = 0x100;

15 Use in an Embedded Environment
15.10 Reentrant and “Thread-Safe” Library Functions

265

15

_mem_func = 0x200;
mem_func = 0x200;

Note the use of the volatile keyword to specify that all accesses to this memory
must be executed in the order as given in the source program, without the
optimizer eliminating any of the accesses.

4. By placing the variables or functions in a special named section during
compilation and then locating the section via a linker command file.

See 25. Linker Command Language for additional details.

15.10 Reentrant and “Thread-Safe” Library Functions

Most library functions are reentrant, although in some cases this is impossible
because the functions are by definition not reentrant. In 34. C Library Functions, the
“Reference” portion of each function description includes “REENT” for
completely reentrant functions and “REERR” for functions which are reentrant
except that errno may be set. Functions not so marked are not reentrant. In some
cases, standard functions are supplied in special reentrant versions, and functions
that modify only errno can be made completely reentrant by modifying the
__errno_fn() function. See 34. C Library Functions, for more information.

The reentrant functions are “thread-safe”—that is, they work in a multi-threaded
or multitasking environment. Notable exceptions include malloc() and free().
Typically, real-time operating systems include thread-safe versions of these
functions. You can also create thread-safe versions of malloc() and free() by
implementing the functions __diab_alloc_mutex(), __diab_lock_mutex(), and
__diab_unlock_mutex(); these three functions are called by malloc() (see
malloc.c for their usage) but, as shipped, do nothing.

Wind River Compiler for SPARC
User’s Guide, 5.4

266

15.11 Target Program Arguments, Environment Variables, and
Predefined Files

In a host-based execution environment, a program can be started with
command-line arguments and can access environment variables and a file system.

The setup feature brings the same capabilities to programs running in an
embedded environment without the need for an operating system or file devices.

Being able to pre-define arguments, environment variables, and files means:

■ When porting an existing host-based program (e.g., a test program or
benchmark), it may be possible to compile and run the program with little or
no modification.

■ A program can read large amounts of test or constant data from a “RAM-disk”
file using the input/output functions described in 15.8.2 File I/O, p.261.

The setup program provides initial values for arguments, environment variables,
and RAM-disk files as follows:

■ You run setup on your host system, giving it options which provide values for
target-based “command-line options” and “environment variables” and
which name host files.

■ setup writes a file on your host system called memfile.c. The data for the
arguments and environment variables and from the host files is included in
memfile.c.

■ You then treat memfile.c as part of your application: include it as a normal .c
file in your makefile in order to compile and link it with your application.

■ When you run your application on your target, the code in memfile.c and
associated library functions will provide the data for the argc and argv
arguments to main, for environment variables accessible through getenv calls,
and for RAM-disk files. (See 15.4 Startup and Termination Code, p.250 for related
details.)

setup is run as follows:

setup [-a arg] [-e evar[=value]] [-b file] [-t file] ...

where the options are:

-a arg
Increments argc by one and adds arg to the strings accessible through argv
passed to main in the usual way. The program name pointed to by argv[0] will
always be “a.out”.

15 Use in an Embedded Environment
15.11 Target Program Arguments, Environment Variables, and Predefined Files

267

15

-e evar[=value]
Creates an environment variable accessible through getenv() in the usual way:
getenv (“name”) will return a null-pointer if name does not match any evar
defined by -e, will return an empty string if there is a match but no value was
provided, or will return "value” as a string.

-b filename
The contents of the given host file will be a binary file accessible as a RAM-disk
file with the given name. (Any path prefix will be included in the filename
exactly as given.)

-t filename
The contents of the host file will be a text file accessible as a RAM-disk file with
the given name. (Any path prefix will be included in the filename exactly as
given.)

Any combination and number of the different options are allowed. Invoking setup
with no arguments will display a usage message.

Example

If you run setup as follows:

setup -a -f -a db.dat -e DEBUG=2 -b db.dat -t f1.asc

it will write memfile.c in the current directory.

When memfile.c is compiled and included in your application:

■ The application’s main function will act as if the application had been started
with the command line:

a.out -f db.dat

■ The environment variable DEBUG will be set to “2” so that getenv("DEBUG")
will return “2”“.

■ Binary file db.dat will be predefined and can be opened with fopen() or
open() library calls.

■ ASCII text file f1.asc will be predefined and can be opened as above.

setup is an ANSI standard C program supplied in source form as setup.c in the src
directory. To use it, first compile and link it with any native ANSI C tools on your
host system. Typically, it will be sufficient to change to the tools’ src directory, enter
the following command (assuming cc invokes an ANSI C compiler):

cc -o setup setup.c

Wind River Compiler for SPARC
User’s Guide, 5.4

268

and then move the executable file setup to your tools’ bin directory or some other
directory in your path.

15.12 Profiling in An Embedded Environment

Profiling collects information while your program executes. That information is
then fed back to the compiler for more optimal code generation based on what
your program actually does when it executes.

The compiler implements profiling through the -Xblock-count and -Xfeedback
options. There are three main steps:

■ Compile your code with -Xblock-count to insert counting code.

■ Run your program; count data will be written as your program runs. Transfer
the count data from the target to your host.

■ Re-compile your code with -Xfeedback — the compiler will optimize based on
the count data.

In more detail:

■ Compile all modules to be profiled with the -Xblock-count option, e.g.:

dcc -c -Xblock-count file1.c file2.c

This causes the compiler to insert minimal profiling code to track the number of
times each basic block is executed (a basic block is the code between labels and
branches).

This profile data is written by the profiling code to a target file named dbcnt.out.
Thus, you must either have an environment in which target files may be
connected to files on your host, or you may use the RAM-disk service (see
15.8.2 File I/O, p.261).

■ Copy library module version_path/src/_exit.c and modify it to write the
profiling data back to your host system. For example, if you used the
RAM-disk feature, copy the data in target file dbcnt.out to stdout and collect
the data into an ASCII file. The distributed _exit.c includes code to do this
conditioned by two macros: PROFILING and RAMDISK. To use this code
without further modification to _exit.c, recompile with:

dcc -c -DPROFILING -DRAMDISK version_path/src/_exit.c

15 Use in an Embedded Environment
15.12 Profiling in An Embedded Environment

269

15

See _exit.c for additional details.

■ Compile the rest of your program and link as usual.

■ Execute your program on the target system. When it terminates, it will write
the profiling information back to the host system per your modification to
_exit.c.

■ If the profiling information was transferred back to the host in ASCII format,
use the ddump command to convert it to a binary file (the dbcnt.out output
filename is chosen because it is the default for the step after this).

ddump -B -o dbcnt.out your-file-of-collected-profile-data

■ Recompile the modules profiled with the -Xfeedback option:

dcc -c -Xfeedback -XO file1.c file2.c

(use -Xfeedback=profile-file, where profile-file is the name of file of collected
profile data in binary form if that file is not named dbcnt.out).

The compiler will optimize based on the profile data collected from the target.
Make sure to use the -XO option as well to get the best code (either -XO or -O
must be included or the profile data will be ignored).

Wind River Compiler for SPARC
User’s Guide, 5.4

270

271

PART II I

Wind River Assembler

16 The Wind River Assembler 273

17 Syntax Rules ... 287

18 Sections and Location Counters 297

19 Assembler Expressions 301

20 Assembler Directives ... 305

21 Assembler Macros .. 329

22 Example Assembler Listing 337

Wind River Compiler for SPARC
User’s Guide, 5.4

272

273

 16
The Wind River Assembler

16.1 Selecting the Target 273

16.2 The das Command 274

16.3 Assembler Command-Line Options 274

16.4 Assembler -X Options 279

This chapter describes the assembler for SPARC microprocessors. For in-depth
information on the SPARC architecture and instructions, please refer to the
manufacturer’s documentation for SPARC and Sparclite.

16.1 Selecting the Target

The target for the assembler is selected by the same methods as for the compiler.
See 4.1 Selecting a Target, p.21 for details. When using the compiler drivers dcc,
dplus, etc., the target for the assembler is selected automatically by the driver.

Wind River Compiler for SPARC
User’s Guide, 5.4

274

16.2 The das Command

The command to execute the assembler is as follows:

das [options] [input-files]

where:

das
Invokes the assembler.

options
Command-line options; see the following subsection for details. Options
must precede the input files.

input-files
A list of filenames, paths permitted, separated by whitespace, naming the
file(s) to be assembled; the default suffix is .s.

The assembler assembles the input file and generates an object file as determined
by the selected target configuration. By default, the output file has the name of the
input file with an extension suffix of .o. The -o option can be used to change the
output filename.

The form -@name can also be used for either options or input-file. If found, the name
must be either that of an environment variable or file (a path is allowed), the
contents of which replace -@name.

Example: assemble test.s with a symbol named DEBUG equal to 2 for use in
conditional assembly statements:

das -D DEBUG=2 test.s

16.3 Assembler Command-Line Options

The following command-line options are available. Also see the next section,
16.4 Assembler -X Options, p.279.

16 The Wind River Assembler
16.3 Assembler Command-Line Options

275

16

Show Option Summary (-?)

-?, -h,
--help

Show synopsis of command-line options.

Define Symbol Name (-Dname=value)

-D name[=value]
Define symbol name to have the given value. If value is not given, 1 is used. The
-D option can be used to set symbols used with conditional assembly. See the
.if expression, p.314 for more information.

Generate Debugging Information (-g)

-g

Generate debug line and file information. (ELF/DWARF format only).
Equivalent to -Xasm-debug-on.

Include Header in Listing (-H)

-H

Print a header on the first line of each page of the assembly listing. See Include
Header in Listing (-Xheader...), p.280 for additional details and 22. Example
Assembler Listing for an example of an assembly listing.

NOTE: Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. For easier reading, command-line options may be shown with
embedded spaces in the table. In writing options on the command line, space is
allowed only following the option letter, not elsewhere. For example,
“-D DEBUG=2” is valid; “-D DEBUG = 2” is not.

If the same option is given more than once, the last instance is used.

Wind River Compiler for SPARC
User’s Guide, 5.4

276

Set Header Files Directory (-I path)

-I path
Specify a directory where the assembler will look for header files. May be
given more than once. See the .include "file", p.316 for more information.

Generate Listing File (-l, -L)

-l

Generate the listing file to input-file.lst. (To change the default extension of the
output file, use -Xlist-file-extension=“string”; for example,
-Xlist-file-extension=".L".)

-L

Generate the listing file to standard output. See 22. Example Assembler Listing
for an example of an assembly listing.

Set outpUt File (-o file)

-o file
Write the object file to file instead of the default (input-file.s). Applies only to
the first file if a list of files is presented; remaining files in the list use the
default.

Remove the Input File on Termination (-R)

-R

May be used by tools to remove temporary files.

Specify Assembler Description (.ad) File (-T ad-file)

-T ad-file
Specify which assembler description (.ad) file to use. This is normally set
automatically by using the -t option, defining the DTARGET and the DOBJECT
environment variables, or using the -WDDTARGET and the -WDDOBJECT
command-line options. It is primarily for internal use by Wind River.

16 The Wind River Assembler
16.3 Assembler Command-Line Options

277

16

Select Target (-ttof:environ)

-ttof:environ
Specifies with one command the DTARGET (t), the DOBJECT (o), the DFP (f),
and the DENVIRON (environ) configuration variables. See 4. Selecting a Target
and Its Components for details.

Print Version Number (-V)

-V

Display the version number of the assembler on standard output.

Define Configuration Variable (-WDname=value)

-WDname=value
Set a configuration variable for use in the configuration files with the given
name to the given value. Overrides an environment variable of the same name.

Select Object Format and Mnemonic Type (-WDDOBJECT=object-format)

-WDDOBJECT=object
Specify the object format and mnemonic type. Overrides the environment
variable DOBJECT if it is also set.

Select Target Processor (-WDDTARGET=target)

-WDDTARGET=target
Specify the target processor. Overrides the environment variable DTARGET if
it is also set.

Discard All Local Symbols (-x)

-x

Discard symbols not declared .extern or .comm.

Wind River Compiler for SPARC
User’s Guide, 5.4

278

Discard All Symbols Starting With .L (-X)

-X

Discard all symbols starting with .L; supports compilers using this form for
automatically generated symbols, including the Wind River compiler.

Print Command-Line Options on Standard Output (-#)

-#

The output of this option can be directed to a file. This can be convenient when
contacting Technical Services. The -# should immediately follow the das
command (after a space).

Read Command-Line Options from File or Variable (-@name, -@@name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the assembler first looks
for an environment variable with the given name and substitutes its value. If
an environment variable is not found then it tries to open a file with given
name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the assembler
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

-@E=file
-@E+file

Redirect any output to standard error to the given file.

-@O=file
-@O+file

Redirect any output to standard output to the given file.

In both cases, use of + instead of = appends the output to the file.

16 The Wind River Assembler
16.4 Assembler -X Options

279

16

16.4 Assembler -X Options

The following options provide more detailed control of the assembler. The -X
options are for use on the command line; -X options can also be set using the .xopt
assembler directive. See .xopt, p.327.

Specify Value to Fill Gaps Left by .align or .alignn Directive (-Xalign-fill-text)

-Xalign-fill-text=n
Fill gaps left by the .align or .alignn directive with the value n, overriding the
processor-specific default.

Interpret .align Directive (-Xalign-value, -Xalign-power2)

-Xalign-value

Interpret the value in an .align directive as the value to which the location
counter is to be aligned, which must be a power of 2. Example:
-Xalign-value=8 means .align is to align on an 8-byte boundary. This is the
default.

-Xalign-power2

Interpret the value in an .align directive as the power of 2 to which the location
counter is to be aligned. Example: -Xalign-power2=3 means .align is to align
on an 8-byte boundary

Generate Debugging Information (-Xasm-debug-...)

-Xasm-debug-off
Do not generate debug line and file information. This is the default.

-Xasm-debug-on
Generate debug line and file information. (ELF/DWARF format only).

Align Program Data Automatically Based on Size (-Xauto-align)

-Xauto-align-off
The assembler performs no data alignment. This is the default.

-Xauto-align
Align program data automatically based on size.

Wind River Compiler for SPARC
User’s Guide, 5.4

280

Set Instruction Type (-Xcpu-...)

-Xcpu-target
Accept instructions only for the target processor designated by target. This
option is primarily for internal use and is set automatically by the driver in
response to the user-level -ttof:environ option. See Table 4-1 for details.

Set Default Value for Section Alignment (-Xdefault-align)

-Xdefault-align=value
Set the value use when calculating the default alignment for .comm, .lcomm,
and .sbss directives, and the alignment used by the .even directive.

The default value of -Xdefault-align is 8 if no value is given.

Absent this directive, the default alignment for ELF sections is the maximum
alignment of all objects in the section.

Note that for ELF modules, -Xdefault-align does not set the alignment of
sections — it sets the default for used by the .comm, .lcomm, .sbss, and .even
directives. Only if one of these directives is in fact used in a section will the
alignment be as set by -Xdefault-align rather than the maximum alignment of
all objects in the section.

Enable Local GNU Labels (-Xgnu-locals-...)

-Xgnu-locals-off

Disable local GNU labels. See GNU-Style Locals, p.293 for more information.
The default setting is -Xgnu-locals-on.

-Xgnu-locals-on

Enable local GNU labels. See GNU-Style Locals, p.293 for more information.
This is the default.

Include Header in Listing (-Xheader...)

-Xheader

Include a header in the listing. See the -l and the -L options. This option is
turned off as a default. This option has the same effect as the -H option. See
also -Xheader-format below 31.

16 The Wind River Assembler
16.4 Assembler -X Options

281

16

-Xheader-off

Do not include a header in the listing file. This is the default.

See 22. Example Assembler Listing for an example of an assembly listing.

Set Header Format (-Xheader-format="string")

-Xheader-format="string"
Define the format of the header in the assembly listing. (The header is enabled
by options -H or -Xheader above). The header string can contain format
specifications in any order introduced by a “%”. Characters not preceded by
“%” are printed as is, including spaces and escapes such as “\t” for tab.

 Valid format specifications are:

%nE
Use n columns to display the error count.

%nF
Use n columns to display the filename.

%N
Start a new line.

%nP
Use n columns to display the page number.

%nS
Use n columns to display the subtitle given with the -Xsubtitle option.

%nT
Use n columns to display the title given with the -Xtitle option.

%nW
Use n columns to display the warning count.

The default header string is:

"%30T File: %10F Errors %4E"

See 22. Example Assembler Listing for an example of an assembly file listing.

Set Label Definition Syntax (-Xlabel-colon...)

-Xlabel-colon

Require that all label definitions have a colon “:”appended. When this option
is selected, some directives are allowed to start the line. This is the default.

Wind River Compiler for SPARC
User’s Guide, 5.4

282

Note that this applies to all directives, including .equ and .set. Thus, with this
option:

TRUE: .set 1 valid
TRUE .set 1 invalid

-Xlabel-colon-off

Do not require label definitions to end with a colon “:”. When this option is
selected, directives are not allowed to start in column 1.

Set Format of Assembly Line in Listing (-Xline-format="string")

-Xline-format="string"
Define the format of each assembly line in a listing. The string can contain the
following format specifications, in any order, starting with a “%“. Characters
not preceded by “%“ are printed as is, including spaces and escapes such as
“\t“ for tab.

 Valid format specifications are:

%nA
Use n columns to display current address.

%n.mC
Use n columns to display the generated code. A space is inserted at every
nth column.

%nD
Display a maximum of n generated bytes for each source line. n may have
a value from 1 through 32. More than one listing line might be used to
display lines that produce many bytes.

%nL
Use n columns to display the current source line number.

%nP
Use n columns to display the current Program Location Counter (PLC)
which corresponds to a section number.

The assembly source statement follows the above items on the listing line.
The default line format string is:

"%8A %2P %32D%15.2C%5L\t"

See 22. Example Assembler Listing for an example of an assembly listing.

16 The Wind River Assembler
16.4 Assembler -X Options

283

16

Generate a Listing File (-Xlist-...)

-Xlist-file

Generate a listing file to file input-file.lst. Same as the -l option.

-Xlist-off

Generate no listing file. This is the default.

-Xlist-tty

Generate a listing file to standard output. Same as the -L option.

See 22. Example Assembler Listing for an example of an assembly listing.

Specify File Extension for Assembly Listing (-Xlist-file-extension="string")

-Xlist-file-extension="string"
Use this option to override the default extension (.lst) of the listing file
generated by -l or -Xlist-file. For example, -Xlist-file-extension=".L" specifies
the file extension .L.

Set Line Length of Listing File (-Xllen=n)

-Xllen=n
Define the number of printable character positions per line of the listing file.
The default is 132 characters. A value of 0 means unlimited line length. This
value may also be set or changed by the .llen (.llen expression, p.317) and .psize
(.psize page-length [,line-length], p.320) directives.

See 22. Example Assembler Listing for an example of an assembly listing.

Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)

-Xmacro-arg-space-off

Do not permit blanks in macro arguments. This is the default.

-Xmacro-arg-space-on

Permit blanks in macro arguments.

Wind River Compiler for SPARC
User’s Guide, 5.4

284

Set Page Break Margin (-Xpage-skip=n)

-Xpage-skip=n

If n is zero (the default), page breaks in the listing file will be created using
formfeed (ASCII 12). Otherwise each page will be padded with n blank lines,
and these n blank lines included in the count set by -Xplen option. See
22. Example Assembler Listing for an example of an assembly listing.

Set Lines Per Page (-Xplen=n)

-Xplen=n
Define the number of printable lines per page in the listing file. The default
value of n is 60. See also -Xpage-skip above. This value may also be set or
changed by the .lcnt (see .lcnt expression, p.317) and .psize (see .psize
page-length [,line-length], p.320) directives. See 22. Example Assembler Listing for
an example of an assembly listing.

Limit Length of Conditional Branch (-Xprepare-compress=n)

-Xprepare-compress=n
Change the maximum length of a conditional branch from the default, which
is 32,766 bytes; if n is not specified, the length is set to 1024. If a conditional
branch exceeds this limit, the assembler inserts a reverse conditional around
an unconditional branch to the label.

Treat Semicolons As Statement Separators (-Xsemi-is-newline)

-Xsemi-is-newline

Treat the semicolon (;) as a statement separator instead of a comment character.
This is useful for GNU compatibility.

Enable Spaces Between Operands (-Xspace-...)

-Xspace-off

Do not allow spaces between operands in an assembly instruction.

-Xspace-on

Allow spaces between operands in an assembly instruction. This is the default.

16 The Wind River Assembler
16.4 Assembler -X Options

285

16

Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)

-Xstrip-locals

Do not include local symbols in the symbol table. This is the same as the -x
option. Local symbols are those not defined by .extern or .comm.

-Xstrip-locals-off

Include local symbols in the symbol table. This is the default.

-Xstrip-temps="string"
Do not include local labels starting with string in the symbol table. If no string
is specified, .L will be used. This is the same as the -X option. This option can
be used to suppress the temporary symbols generated by the compiler.

-Xstrip-temps-off

Include local symbols starting with .L in the symbol table. This is the default.

Set Subtitle (-Xsubtitle="string")

-Xsubtitle="string"
Define a subtitle that will be printed in the %S field of the header. See Set
Header Format (-Xheader-format="string"), p.281, for more information.

Set Tab Size (-Xtab-size=n)

-Xtab-size=n

Define the number of spaces between tab stops. The default is 8.

Set Title (-Xtitle="string")

-Xtitle="string"
Define a title that will be printed in the %T field of the header. See Set Header
Format (-Xheader-format="string"), p.281, for more information.

Wind River Compiler for SPARC
User’s Guide, 5.4

286

287

 17
Syntax Rules

17.1 Format of an Assembly Language Line 287

17.2 Symbols 290

17.3 Direct Assignment Statements 291

17.4 External Symbols 291

17.5 Local Symbols 292

17.6 Constants 293

17.1 Format of an Assembly Language Line

An assembly language file consists of a series of statements, one per line. The
maximum number of characters in an assembly line is 1024.

If -Xsemi-is-newline is enabled, ”;” (semicolon) can also serve as a statement
separator.

The format of an assembly language statement is:

[label:] [opcode] [operand field] [# comment]

Spaces and tabs may be used freely between fields and between operands (except
that -Xspace-off option prohibits spaces between operands. See Enable Spaces
Between Operands (-Xspace-...), p.284).

Wind River Compiler for SPARC
User’s Guide, 5.4

288

A comment starts with “#” as shown above. See Comment, p.289 for additional
comment details.

All fields are optional depending on the circumstances. In particular:

■ Blank lines are permitted.

■ A statement may contain only a label.

■ The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). A statement may contain only an opcode. (Assembler directives may start
in column one but only if the -Xlabel-colon option is given.)

■ A line may consist of only a comment beginning in any column.

An example of assembly language code follows:

mv_word(dest,src,cnt)
move cnt (%o2) 4-byte words from src (%o1) to dest (%o0).

.text

.globl mv_word
mv_word:

cmp %o2,0
ble .L2
nop

.L4:
ld %o1,%o5
add %o2,-1,%o2
st %o5,[%o0]
cmp %o2,0
add %o0,4,%o0
bne .L4
add %o1,4,%o1

.L2:
retl
nop

Labels

A label is a user-defined symbol which is assigned the value of the current location
counter; both of which are entered into the assembler’s symbol table. The value of
the label is relocatable.

A label is a symbolic means of referring to a specific location within a program. The
following govern labels:

■ A label is a symbol; see 17.2 Symbols, p.290 for the rules on forming symbols.

■ A label always occurs first in a statement; there may be multiple labels on one
line.

17 Syntax Rules
17.1 Format of an Assembly Language Line

289

17

■ A label may be optionally terminated with a colon, unless the -Xlabel-colon
option is used in which case the colon is required. Examples:

start:
genesis: restart: # Multiple labels
7$: # A local label
4: # A local label

(See 17.5 Local Symbols, p.292 for details on local labels.)

Opcode

The opcode of an assembly language statement identifies the statement as either a
machine instruction or an assembler directive.

The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). One or more blanks (or tabs) must separate the opcode from the operand
field in a statement. No blanks are necessary between a label ending with a colon
and an opcode. However, at least one blank is recommended to improve
readability.

A machine instruction is indicated by an instruction mnemonic.

An assembler directive (or just “directive”), performs some function during the
assembly process. It does not produce any executable code, although it may assign
space in a program for data. Assembler directives may start in column one but only
if the -Xlabel-colon option is given.

The assembler is case-insensitive regarding opcodes.

Operand Field

In general, an operand field consists of 0-3 operands separated by commas.

The format of the operand field for machine instruction statements is the same for
all instructions. The format of the operand field for assembler directives depends
on the directive itself.

Comment

The comment delimiters are pound sign “#”and semicolon “;”.

An asterisk “*” in column 1 is also treated as a comment delimiter.

Wind River Compiler for SPARC
User’s Guide, 5.4

290

The comment field consists of all characters in a source line including and
following the comment character through the end of the line (the next <Newline>
character). These characters are ignored by the assembler.

17.2 Symbols

A symbol consists of a number of characters, with the following restrictions:

■ Valid characters include A-Z, a-z, 0-9, period “.“, dollar sign “$“, and
underscore “_“.

■ The first character must not be a “$“ dollar sign.

■ The first character must not be numeric except for local symbols (17.5 Local
Symbols, p.292).

The only limit to the length of symbols is the amount of memory available to the
assembler. Upper and lower cases are distinct: “Alpha” and “alpha” are separate
symbols.

A symbol is said to be declared when the assembler recognizes it as a symbol of the
program. A symbol is said to be defined when a value is associated with it. A
symbol may not be redefined, unless it was initially defined with the directive
symbol .set expression (see symbol[:] .set expression, p.323).

There are several ways to define a symbol:

■ As the label of a statement.
■ In a direct assignment statement.
■ With the .equ/.set directives.
■ As a local common symbol via the .lcomm directive.

The .comm directive will declare a symbol as a common symbol. If a common
symbol is not defined in any module, it will be allocated by the linker to the end of
the .bss section. See 23.4 COMMON Sections, p.348 for additional details.

17 Syntax Rules
17.3 Direct Assignment Statements

291

17

17.3 Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The format of a direct assignment statement is one of the
following:

symbol[:] = expression

symbol[:] =: expression

The =: syntax has the side effect that symbol will be visible outside of the current
file. Examples of valid direct assignments are:

vect_size = 4
vectora = 0xfffe
vectorb = vectora-vect_size
CRLF: =: 0x0D0A

17.4 External Symbols

A program may be assembled in separate modules, and linked together to form a
single program. By using external symbols, it is possible to define a label in one file
and use it in another. The linker will relocate the reference so that the same address
is used. There are two forms of external symbols:

■ Ordinary external symbols declared with the .globl, .global, .xdef, or .export
directives.

■ Common symbols declared with the .comm directive.

For example, the following statements define the array table and the routine two
to be external symbols:

.globl table, two

.data
table:

.space 20 # twenty bytes long

.text
two:

mov 2,%i0 # return 2
retl
nop

Wind River Compiler for SPARC
User’s Guide, 5.4

292

External symbols are only declared to the assembler by the .globl, .global, .xdef,
or .export directives. They must be defined (i.e., given a value) in another
statement by one of the methods mentioned above. They need not be defined in the
current file; in that case they are flagged as “undefined” in the symbol table. If they
are undefined, they are considered to have a value of zero in expressions.

The following statements, which may be located in a different file, use the above
defined labels:

call two
nop
sethi %hi(table,%i5)
st %o0,[%i5+%lo(table)]

Note that whenever a symbol is used that is not defined in the same file, it is
considered to be a global undefined symbol by the assembler.

An external symbol is also declared by the .comm directive in one or more modules
(see .comm symbol, size [,alignment], p.309). For the rest of the assembly such a
symbol, called a common symbol, will be treated as though it is an undefined
global symbol. The assembler does not allocate storage for common symbols; this
task is left to the linker. The linker computes the maximum size of each common
symbol with the same name, allocates storage for it at the end of the final .bss
section, and resolves linkages to it (unless the -Xbss-common-off is used; see
5.4.14 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections
(-Xbss-off, -Xbss-common-off), p.61).

17.5 Local Symbols

Local symbols provide a convenient way of generating labels for branch
instructions. Use of local symbols reduces the possibility of attempting to define a
symbol more than once in a program, and separates entry point symbols from local
references, such as the top of a loop. Local symbols cannot be referenced by other
object modules. The assembler implements two styles of local symbols.

17 Syntax Rules
17.6 Constants

293

17

Generic Style Locals

The generic style local symbols are of the form n$ where n is any integer.

Examples of valid local symbols:

1$
27$
394$

Leading zeroes are significant, e.g., 2$ and 02$ are different symbols. A local
symbol is defined and referenced only within a single local symbol block. There is
no conflict between local symbols with the same name which appear in different
local symbol blocks. A new local symbol block is started when either:

■ A non-local label is defined.
■ A new program section is entered.

GNU-Style Locals

A GNU-style local symbol consists of one to five digits when defined. A GNU-style
local symbol is referenced by the digits followed by the character f or b. When the
digits are suffixed by an f, the nearest definition going forward (toward the end of
the source) is referenced. When suffixed with the character b, the nearest definition
going backward (toward the beginning of the file) is referenced. Example:

15:
.long 15f # Reference definition below.
.long 15b # Reference definition above.

15:

By default the GNU style local symbols are recognized by the assembler. This can
be disabled with the option -Xgnu-locals-off (see Enable Local GNU Labels
(-Xgnu-locals-...), p.280).

17.6 Constants

The assembler supports both integral and floating point constants. Integral
constants may be entered in decimal, octal, binary or hexadecimal form, or they
may be entered as character constants. Floating point constants can only be used
with the .float and .double directives.

Wind River Compiler for SPARC
User’s Guide, 5.4

294

Integral Constants

Internally, the assembler treats all integer constants as signed 32-bit binary two’s
complement quantities. Valid constant forms are listed below. The order of the list
is significant in that it is scanned from top to bottom, and the first matching form
is used.

'c'
character constant

0xhex-digits
hexadecimal constant

0octal-digits
octal constant

/hex-digits
hexadecimal constant

@octal-digits
octal constant

%binary-digits
binary constant

decimal-digits
decimal constant

octal-digitso
octal constant

octal-digitsq
octal constant

binary-digitsb
binary constant

Examples:

abc = 12 12 decimal
bcd = 012 12 octal (10 decimal)
cde = 0x12 12 hex (18 decimal)

To represent special character constants, use the following escape sequences:

Constant Value Meaning

'\b' 8 backspace

'\t' 9 horizontal tab

17 Syntax Rules
17.6 Constants

295

17

By using a “\nnn” construct, where nnn is an octal value, any character can be
specified:

'\101' same as ‘A (65 decimal)
'\60' same as ‘0 (48 decimal)

Floating Point Constants

Floating point constants have the following format:

[+|-]i.i{e|E}[+|-]i

where i is an integer. All parts are optional as long as the constant starts with a sign
or a digit and contains either a decimal point or an exponent (e or E and a following
digit). Also, +NAN and [+/-]INF are supported. Examples:

float 1.2, -3.14, 0.27172e1
double -123e-45, .56, 1e23

String Constants

The form of a string is:

"characters"

where characters is one or more printable characters or escape codes.

Characters represented in the source text with internal values less than 128 are
stored with the high bit set to zero. Characters with source text values from 128
through 255, and characters represented by the “\nnn” construct are stored as is.

A Newline character must not appear within the character string. It can be
represented by the escape sequence \n as described below. The (") is a delimiter
character and must not appear in the string unless preceded by a backslash “\”.

'\n' 10 line feed (newline)

'\v' 11 vertical tab

'\f' 12 form feed

'\r' 13 return

''' 39 single quote

'\\' 92 backslash

Constant Value Meaning

Wind River Compiler for SPARC
User’s Guide, 5.4

296

The following escape sequences are also valid as single characters:

Some examples follow. The final two are equivalent.

Constant Value Meaning

\b 8 Backspace

\t 9 Horizontal tab

\n 10 Line Feed (New Line)

\v 11 Vertical tab

\f 12 Form feed

\r 13 Enter

\" 34 Double quote ““

\\ 92 Backslash “\”

\nnn nnn (octal) Octal value of nnn

Statement Hex Code Generated

.ascii "hello there" 68 65 6C 6C 6F 20 74 68 65 72 65

.ascii "Warning-\007\007\n" 77 61 72 6E 69 6E 67 2D 07 07 0A

.ascii "Warning-",7,7,"\n" Same as previous line.

297

 18
Sections and Location

Counters

18.1 Program Sections 297

18.2 Location Counters 298

18.1 Program Sections

Assembly language programs are usually divided into sections to separate
executable code from data, constant data from variable data, initialized data from
uninitialized data, etc. Some important predefined sections are described below,
with a reference to the assembler directive that switches output to each section.

.text, p.325
Instruction space.

.data, p.310
Initialized data.

.bss, p.308
Uninitialized data.

By invoking these directives, it is possible to switch among the sections of the
assembly language program. New sections can also be defined with the .section
directive (see .section name, [alignment], [type], p.321).

The assembler maintains a separate location counter for each section. Thus for
assembly code such as:

Wind River Compiler for SPARC
User’s Guide, 5.4

298

.text
instruction-block-1
.data
data-block-1
.text
instruction-block-2
.data
data-block-2

In the object file, instruction-block-2 will immediately follow instruction-block-1, and
data-block-2 will immediately follow data-block-1.

ELF sections are aligned based on their contents or on a specified alignment in a
.section directive. ELF sections are not extended to any boundary whether aligned
or not.

Padding introduced into a code section (but not other types of sections) by means
of an .align or .alignn directive is filled with the nop instruction (0x01000000).

18.2 Location Counters

The assembly current location counter is represented by the character “.”. In the
operand field of any statement or assembly directive it represents the address of
the first byte of the statement.

The assembler initializes the location counter to zero. Normally, consecutive
memory locations are assigned to each byte of the generated code. However, the
location where the code is stored may be changed by a direct assignment altering
the location counter:

. = expression

NOTE: See the -f linker option, 24. The dld Command, for filling of gaps between
input sections in an output section.

NOTE: A current location counter appearing as an operand in a .byte directive (see
.byte expression ,..., p.308) always has the value of the address at which the first byte
was loaded; it is not updated while evaluating the directive.

18 Sections and Location Counters
18.2 Location Counters

299

18

expression must not contain any forward references, must not change from one pass
to another, and must not have the effect of reducing the value of “.“. Note that the
assembler supports absolute sections when using ELF, so setting “.“ to an absolute
position is equivalent to using the .org directive and will produce a section named
.abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the section, with
leading zeros to fill to eight digits. The linker will then place this section at the
specified address. For example:

. = 0xff0000

will create a section named .abs.00ff0000 located at that address.

Storage area may also be reserved by advancing the “.“. For example, if the current
value of “.“is 0x1000:

. = . +0x100

would reserve 100 (hex) bytes of storage. The next instruction would be stored at
address 0x1100. Note that

.skip 0x100

is a more readable way of doing the same thing.

Wind River Compiler for SPARC
User’s Guide, 5.4

300

301

 19
Assembler Expressions

Expressions are combinations of terms joined together by unary or binary
operators. An expression is always evaluated to a 32-bit value. If the instruction
calls for only 8 or 16 bits, the least significant 8 or 16 bits are used.

A term is a component of an expression. A term may be one of the following:

■ A constant.
■ A symbol.

■ An expression or term enclosed in parentheses (). Any quantity enclosed in
parentheses is evaluated before the rest of the expression. This can be utilized
to alter the normal precedence of operators, e.g., differentiating between a*b+c
and a*(b+c), or to apply a unary operator to an entire expression, e.g., -(a*b+c).

Any expression, when evaluated, is either absolute or relocatable:

1. An expression is absolute if its value is fixed. An expression whose terms are
constants, or symbols whose values are constants via a direct assignment
directive, is absolute. A relocatable expression minus a relocatable expression,
where both items belong to the same program section is also absolute.

2. An expression is relocatable if it contains a label whose value will not be defined
until link time. In this case the assembler will generate an entry in the
relocation table in the object file. This entry will point to the instruction or data
reference so that the linker can patch the correct value after memory allocation.
The allowed relocatable expressions are defined in F. Object and Executable File
Format together with the relocation type used. The following demonstrates the
use of relocatable expressions, where “alpha” and ”beta” are symbols:

alpha
relocatable

Wind River Compiler for SPARC
User’s Guide, 5.4

302

alpha+5
relocatable

alpha-0xa
relocatable

alpha*2
not relocatable (error)

2-alpha
not relocatable, since the expression cannot be linked by adding alpha’s
offset to it

alpha-beta
absolute, since the distance between alpha and beta is constant, as long as
they are defined in the same section

Unary Operators

The unary operators recognized by the assembler are:

%endof(section-name)
Address of the end of the given section. Evaluates to .endof.section_name,
a symbol created by the linker. (See 23.2 Symbols Created By the Linker,
p.346.)

expr@h
%hi(expr)

The most significant 22 bits of expr are extracted.

expr@l
%lo(expr)

The least significant 10 bits of expr are extracted.

%sizeof(section-name)

Size of the given section. Evaluates to .sizeof.section_name, a symbol
created by the linker (see 23.2 Symbols Created By the Linker, p.346).

%startof(section-name)

Address of the start of the given section. Evaluates to .startof.section_name,
a symbol created by the linker (see 23.2 Symbols Created By the Linker,
p.346).

+
Unary add.

19 Assembler Expressions

303

19

-
Negate.

~
Complement.

Binary Operators

The binary operators recognized by the assembler are:

Operator Precedence

Expressions are evaluated with the following precedence in order from highest to
lowest. All operators in each row have the same precedence.

Binary Operator Description

+ add

- subtract

* multiply

/ divide

| bitwise or

% modulo

& bitwise and

^ bitwise exclusive or

<< shift left

>> shift right

== equal to

!= not equal to

<= less than or equal to

< less than

>= greater than or equal to

> greater than

Wind River Compiler for SPARC
User’s Guide, 5.4

304

Table 19-1 Assembler Operator Precedence and Associativity

Operator Associativity

unary + – ~ right to left

%hi
%lo
%startof %endof %sizeof

left to right

* / % (modulo) left to right

binary + – left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

305

 20
Assembler Directives

20.1 Introduction 305

20.2 List of Directives 306

20.1 Introduction

All the assembler directives (or just “directives”) described here that are prefixed
with a period “.” are also available without the period. Most are shown with a “.”
except for those traditionally written without it.

If the -Xlabel-colon option is given (see Set Label Definition Syntax (-Xlabel-colon...),
p.281), then directives which cannot take a label may start in column 1. A directive
which can take a label—that is, can produce data in the current section—may not
start in column 1. If -Xlabel-colon-off is in force (the default), then no directive
may start in column 1.

Spaces are optional between the operands of directives unless the -Xspace-off
option is in force (see Enable Spaces Between Operands (-Xspace-...), p.284).

In addition to the directives documented in this chapter, the assembler recognizes
the following directives generated by some compilers for symbolic debugging:

.d1_line_start, .d1_line_end, .d1file, .d1line, .def, .endef, .ln, .dim, .line, .scl,

.size, .tag, .type, .val, .d2line, .d2file, .d2_line_start, .d2_line_end, .d2string,

Wind River Compiler for SPARC
User’s Guide, 5.4

306

.d2_cfa_offset, .d2_cfa_register, .d2_cfa_offset_list, .d2_cfa_same_value_list,

.d2_cfa_same_value, .uleb128, .sleb128

The remainder of this chapter describes individual assembler directives.

20.2 List of Directives

symbol[:] = expression

See symbol[:] .equ expression, p.312. See -Xlabel-colon-... in Set Label Definition
Syntax (-Xlabel-colon...), p.281 regarding the initial colon.

symbol[:] =: expression

Equivalent to symbol = expression except that symbol will be made a global symbol.
See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.281 regarding
the initial colon.

.2byte

This is a synonym for .short (.short expression ,..., p.324) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.4byte

This is a synonym for .long (.long expression ,..., p.318) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

20 Assembler Directives
20.2 List of Directives

307

20

.align expression

Aligns the current location counter to the value given by expression (which must be
absolute). When the option -Xalign-value is set, expression is used as the alignment
value, and must be a power of 2. When the option -Xalign-power2 is set, the
alignment value is 2 to the power of expression.

The default is -Xalign-value.

There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (0x01000000) unless a different value is specified with -Xalign-fill-text.

Example:

.align 4

With -Xalign-value, aligns on a 4-byte boundary; with -Xalign-power2, aligns on
a 24 = 16-byte boundary.

.alignn expression

Aligns the current location counter to the value given by expression (which must be
absolute).

There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (0x01000000) unless a different value is specified with -Xalign-fill-text.

Example:

.alignn 4

Will align on 4 byte boundary.

.ascii "string"

The .ascii directive stores the internal representation of each character in the string
starting at the current location. See String Constants, p.295 for rules for writing the
"string".

The .ascii directive is actually a synonym of the .byte directive — its operands may
be a list of expressions including non-strings. See .byte for details (.byte expression
,..., p.308).

Wind River Compiler for SPARC
User’s Guide, 5.4

308

.asciz "string"

The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically appended as the final character of the string. In the C language,
strings are null terminated. See String Constants, p.295 for rules for writing the
"string".

.balign expression

See .alignn expression, p.307.

.blkb expression

See .skip size, p.324.

.bss

Switches output to the .bss section. Note that .bss contains uninitialized data only,
which means that the .skip, .space, and ds.b directives are the only useful
directives inside the .bss section.

.bsect

See .bss, p.308 above.

.byte expression ,...

Reserves one byte for each expression in the operand field and initializes the value
of the byte to be the low-order byte of the corresponding expression. Multiple
expressions are separated by commas.

Any expression may be a string containing one or more characters. Each character
in the string will be allocated one byte. See String Constants, p.295 for the rules for
writing a string.

20 Assembler Directives
20.2 List of Directives

309

20

Example:

.byte 17,65,0101,0x41 # sets 4 bytes

.byte 0 # sets a single byte to 0

.byte 7,7,"Warning",7,7,0 # sets 12 bytes

.comm symbol, size [,alignment]

Define symbol as the address of a common block with length given by expression
size bytes and make it global. Contrast with .lcomm, (.lcomm symbol, size
[,alignment], p.317) which does not make the symbol externally visible.

The size and alignment expressions must be absolute.

All common blocks with the same name in different files will refer to the same
block. The linker will collect and allocate space for all common blocks, and, by
default, place this space at the end of the .bss section; see 23.4 COMMON Sections,
p.348 for details.

Optional alignment

The optional alignment expression specifies the alignment of the common block. It
must be absolute. If not specified, the default value equals the greatest power of 2
which is less than or equal to the minimum of size and the value specified by
-Xdefault-align (Set Default Value for Section Alignment (-Xdefault-align), p.280),
which defaults to 8.

 See Interpret .align Directive (-Xalign-value, -Xalign-power2), p.279 for options for
giving the alignment by power of 2 or the value specified. The default is to align
on the value specified.

Examples (assume -Xdefault-align=8):

.comm a1,100 # 100 bytes aligned on an 8-byte boundary.

.comm a2,7,4 # 7 bytes aligned on a 4-byte boundary.

dc.b expression

See .byte expression ,..., p.308 above.

dc.l expression

See .long expression ,..., p.318.

Wind River Compiler for SPARC
User’s Guide, 5.4

310

dc.w expression

See .word expression, ..., p.327.

ds.b size

See .skip size, p.324.

.data

Switches output to the .data (initialized data) section.

.double float-constant ,...

Reserves space and initializes double 64-bit IEEE floating point values.

Example:

double 1.0, -123.45e-56

.dsect

See .data, p.310 above.

.eject

Forces a page break if a listing is produced by the -L or -l options. See 22. Example
Assembler Listing for an example of an assembly listing.

.else

The .else directive is used with the .ifx directives to reverse the state of the
conditional assembly, i.e., if statements were skipped prior to the .else directive,
statements following the .else directive will be processed, and vice versa. See .if
expression, p.314 for an example.

20 Assembler Directives
20.2 List of Directives

311

20

.elseif expression

The .elseif directive must follow a .ifx or another .elseif directive in a conditional
assembly block. If all prior conditions (at the same nesting level) have been false,
then the expression will be tested and if non-zero, the statements following it
assembled, else statements will be skipped until the next .elseif, .else, or .endif
directive. The expression must be absolute. See .if expression, p.314 for an example.

.elsec

See .else, p.310 above.

.end

This directive indicates the end of the source program. All characters after the end
directive are ignored.

.endc

See .endif, p.311 below.

.endif

This directive indicates the end of a condition block; each .endif directive must be
paired with a .ifx directive. See .if expression, p.314 for an example.

.endm

This directive indicates the end of a macro body definition. Each .endm directive
must be paired with a .macro directive. See 21. Assembler Macros for a detailed
description.

.entry symbol ,...

See .global symbol ,..., p.313.

Wind River Compiler for SPARC
User’s Guide, 5.4

312

symbol[:] .equ expression

The statement must be labeled with a symbol and sets the symbol to be equal to
expression. See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.281,
regarding the initial colon. Example:

nine: .equ 9

.error "string"

Generate an error message showing the given string. See String Constants, p.295 for
rules for writing the "string".

.even

Aligns the location counter on the default alignment value, specified by the
-Xdefault-align option (Set Default Value for Section Alignment (-Xdefault-align),
p.280).

.exitm

Exit the current macro invocation.

.extern symbol ,...

Declare that each symbol in the symbol list is defined in a separate module. The
linker supplies the value from the defining module during linking. Multiple
.extern directives for the same symbol are permitted. Example:

.extern add,sub,mul,div

NOTE: Symbols defined with .equ may not be redefined. Use the second form of
the .set directive in .set symbol, expression, p.323, instead of .equ if redefinition is
required.

20 Assembler Directives
20.2 List of Directives

313

20

.export symbol ,...

See .global symbol ,..., p.313 below.

.file "file"

Specifies the name of the source file for inclusion in the symbol table of the object
file. The default is the name of the file. This directive is used by compilers to pass
the name of the original source file to the symbol table. Example:

.file "test.c"

.fill count,[size[,value]]

Reserves a block of data that is count*size bytes big and initialized to count copies
of value. The size must be a value between 1 and 4. The default size is 1 and the
default value is 0.

.float float-constant ,...

Reserves space and initializes single 32-bit IEEE floating point values. Example:

.float 3.14159265, .089e4

.global symbol ,...

Declares each symbol in the symbol list to be visible outside the current module.
This makes each symbol available to the linker for use in resolving .extern
references to the symbol. Example:

.global add,sub,mul,div

.globl symbol ,...

See .global symbol ,..., p.313 above.

Wind River Compiler for SPARC
User’s Guide, 5.4

314

.ident "string"

Appends the character string to a special section called .comment in the object file.
See String Constants, p.295 for rules for writing the "string". Example:

.ident "version 1.1"

.if expression

The .if construct provides for conditional assembly. The expression must be
absolute. If the expression evaluates to non-zero, all subsequent statements until the
next .elseif, .else, or .endif directive at the same nesting level are assembled. If the
terminating statement was .elseif or .else, then all statements following it up to the
next .endif at the same level are skipped.

If the expression is zero, all statements up to the next .elseif, .else, or .endif at the
same nesting level are skipped. An .elseif directive is evaluated and statements
following it are skipped or not in the same manner as for the initial .if directive. If
an .else directive is encountered, the statements following it up to the matching
.endif are assembled.

.if constructs may be nested. Example:

.if long_file_names
maxname: .equ 1024

.elseif medium_file_names
maxname: .equ 128

.else
maxname: .equ 14

.endif

The following directives are equivalent: .else and .elsec, and .endif and .endc.

.ifendian

.ifendian big
Assemble the following block of code if the mode is big-endian.

.ifendian little
Assemble the following block of code if the mode is little-endian.

Note: the “endian” mode is set automatically from the target options and may
not be directly changed by the user.

20 Assembler Directives
20.2 List of Directives

315

20

.ifeq expression

.ifeq is an alias for .if expression == 0. See “.if expression” above for more details.

.ifc "string1","string2"

.ifc is effectively an alias for .if "string1"="string2" (.if does not allow string
expressions). See .if expression, p.314 for more details. See String Constants, p.295
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifdef symbol

Assemble the following code if the symbol is defined. See also .ifndef symbol, p.316
below. See .if expression, p.314 for more details on .if constructs.

.ifge expression

The .ifge is an alias for .if expression >= 0. See .if expression, p.314 for more details.

.ifgt expression

The .ifgt is an alias for .if expression > 0. See .if expression, p.314 for more details.

.ifle expression

The .ifle is an alias for .if expression <= 0. See .if expression, p.314 for more details.

.iflt expression

The .iflt is an alias for .if expression < 0. See .if expression, p.314 for more details.

Wind River Compiler for SPARC
User’s Guide, 5.4

316

.ifnc "string1","string2"

.ifnc is effectively an alias for .if "string1"!="string2" (.if does not allow string
expressions). See .if expression, p.314 for more details. See String Constants, p.295
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifndef symbol

Assemble the following code if the symbol is not defined. See .ifdef symbol, p.315
above. See also .if expression, p.314 for more details on .if constructs.

.ifne expression

.ifne is an alias for .if expression != 0. See .if expression, p.314 for more details.

.import symbol ,...

See .extern symbol ,..., p.312.

.incbin "file"[,offset[,size]]

Insert the content of a specified file into the assembly output. The assembler
searches for the file in the current directory and all paths added using the -I option.
If offset is specified, offset bytes are skipped at the beginning of the file. If size is
specified, only size bytes are inserted into the assembly output.

.include "file"

Inserts the contents of the named file after the .include directive. May be nested to
any level. Example:

.include "globals.h"

20 Assembler Directives
20.2 List of Directives

317

20

.lcnt expression

Set or change the number of lines on each page of the listing file. The default value
is 60. This count may be set initially by option -Xplen (Set Lines Per Page (-Xplen=n),
p.284), and it includes any margin set by option -Xpage-skip (Set Page Break Margin
(-Xpage-skip=n), p.284). See 22. Example Assembler Listing for an example of an
assembly listing. Example:

.lcnt 72

.lcomm symbol, size [,alignment]

Define a symbol as the address of a local common block of length size expression
bytes in the .bss section.

Note that the symbol is not made visible outside the current module. Contrast with
.comm .

The size and alignment expressions must be absolute. See Optional alignment, p.309
for a description of the alignment parameter and its default value. Example:

.lcomm local_array,200 # 200 bytes aligned on 8 bytes by default

.list

Turns on listing of lines following the .list directive if the option -L or -l is specified.
Listing can be turned off with the .nolist directive. See 22. Example Assembler
Listing for an example of an assembly listing.

.llen expression

Set the number of printable character positions per line of the listing file. The
default value is 132. A value of 0 means unlimited line length. This count may be
set initially by option -Xllen (Set Line Length of Listing File (-Xllen=n), p.283). See
22. Example Assembler Listing for an example of an assembly listing. Example:

.llen 132

Wind River Compiler for SPARC
User’s Guide, 5.4

318

.llong expression ,...

Reserves 8 bytes (64 bits) for each expression in the operand field and initializes the
value of the word to the corresponding expression. Example:

.llong 0xfedcba9876543210,0123456,-75 # 24 bytes

.long expression ,...

Reserves one long word (32 bits) for each expression in the operand field and
initializes the value of the word to the corresponding expression. Example:

.long 0xfedcba98,0123456,-75 # 12 bytes

name.macro [parameter ,...]

Start definition of macro name. All lines following the .macro directive until the
corresponding .endm directive are part of the macro body. See 21. Assembler Macros
for a detailed description.

Note: the form:

.macro name parameter ,...

is also permitted for compatibility with other tools but is not recommended.

.mexit

Exit the current macro invocation. Synonymous with .exitm, p.312.

.name "file"

See .file "file", p.313.

.nolist

Turns off listing of lines following the .nolist directive if the option -L or -l is
specified. Listing can be turned on with the .list directive. See 22. Example
Assembler Listing for an example of an assembly listing.

20 Assembler Directives
20.2 List of Directives

319

20

.org expression

Sets the current location counter to the value of expression. The value must either
be an absolute value or be relocatable and greater than or equal to the current
location. Using the .org directive with an absolute value in ELF mode will produce
a section named .abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the
section (with leading zeros as required to fill to eight digits). The linker will then
place this section at the specified address. Example:

.org 0xff0000

will produce a section named .abs.00ff0000 located at that address.

.p2align expression

Aligns the current location counter to 2 to the power of expression. The .p2align
directive is equivalent to .align when the -Xalign-power2 option is enabled.

.page

See .eject, p.310.

.pagelen expression

See .lcnt expression, p.317.

.plen expression

See .lcnt expression, p.317.

.previous

Assembly output is directed to the program section selected prior to the last
.section, .text, .data, etc. directive.

Wind River Compiler for SPARC
User’s Guide, 5.4

320

.psect

See .text, p.325.

.psize page-length [,line-length]

Set the number of lines per page and number of character positions per line of the
listing file. This directive is exactly equivalent to setting page-length with the .lcnt
expression, p.317 and setting line-length with the .llen expression, p.317; see them for
additional details. See 22. Example Assembler Listing for an example of an assembly
listing.

Example:

.psize 72,132

.rdata

Switches output to the .rodata (read-only data) section.

.rodata

Switches output to the .rodata (read-only data) section.

.sbss [symbol, size [,alignment]]

With no arguments, switch output to the .sbss section (short uninitialized data
space).

With arguments, define a symbol as the address of a block of length size expression
bytes in the .sbss section and make it global.

The size and alignment expressions must be absolute. See Optional alignment, p.309
for a description of the alignment parameter and its default value. Examples:

.sbss # switch to .sbss section

.sbss local_array,200 # reserve space in .sbss section

20 Assembler Directives
20.2 List of Directives

321

20

.sbttl "string"

See .subtitle "string", p.325.

.sdata

Switches output to the .sdata (short data space) section.

.sdata2

Switches output to the .sdata2 (constant short data space) section.

.section name, [alignment], [type]

The assembly output is directed into the program section with the given name. The
section name may be quoted with the (") character or not quoted. The section is
created if it does not exist, with the attributes specified by type. type is one or more
of the following characters, written as either as a quoted "string" or without quotes.
If type is not specified, the default is d (data).

Table 20-1 Section Type

Type
Character

Linker Command File
Section Typea Description of Section Contents

b BSS zero-initialized data

c TEXT executable code

d DATA data

m TEXT DATA mixed code and data

n COMMENT not allocatable — the section is not to occupy
space in target memory; for example,
debugging information sections such as
.debug in ELF

o not applicableb COMDAT section (see 23.5 COMDAT Sections,
p.349)

Wind River Compiler for SPARC
User’s Guide, 5.4

322

The alignment expression must evaluate to an integer and specifies the minimum
alignment that must be used for the section.

The compiler uses the b type with the #pragma section directive to specify an
uninitialized section. Example: direct assembly output to a section named “.rom”,
with four-byte alignment, containing read-only data and executable code:

.section ".rom",4,rx

.section n

The assembly output is directed into the program section named “_Sn”. Example:
direct assembly output to a section named “_S1”:

.section 1

.sectionlink section-name

This directive will cause the current section to be linked as if it had the name
section-name. This directive is available only for ELF object output.

r CONST readable data

w DATA writable data

x TEXT executable code

a. See Type Specification: ([=]BSS), ([=]COMMENT), ([=]CONST), ([=]DATA), ([=]TEXT),
([=]BTEXT); OVERLAY, NOLOAD, p.385.

b. ‘o’, for COMDAT, is an additional attribute of a section and is usually used with
another type specification character. If “o” is used with another section type character,
the linker command file section type will be that of the other section type character; if
used by itself, the default will be COMMENT.

Table 20-1 Section Type (cont’d)

Type
Character

Linker Command File
Section Typea Description of Section Contents

20 Assembler Directives
20.2 List of Directives

323

20

.set option

The following .set option directives are available:

reorder
noreorder

When processed by the reorder program before assembly, enable/disable
reorder optimizations (thus, the .set reorder and .set noreorder directives are
actually “reorder” directives rather than assembler directives). Code
generated for modules compiled with optimization includes a .set reorder
directive. Use .set noreorder in asm strings and asm macros in such code to
disable reordering changes to these hand-coded assembly inserts. Follow with
.set reorder to re-enable reordering optimization. See 7.4 Reordering in asm
Code, p.158.

When processed by the SPARC assembler, .set reorder instructs the assembler
to add a NOP instruction after a branch to fill its delay slot. .set noreorder
disables NOP insertion. The default is .set noreorder (the code is left
unchanged).

.set symbol, expression

Defines symbol to be equal to the value of expression. This is an alternative to the
.equ directive. Example:

.set nine,9

symbol[:] .set expression

Defines symbol to be equal to the value of expression. This form of the .set is different
from the .equ directive or the form of the .set directive immediately above in that
it is possible to redefine the value of symbol later in the same module. See
-Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.281, regarding the
initial colon.

expression may not refer to an external or undefined symbol. Example:

NOTE: Using this form of .set, the symbol may not be redefined later. Use the next
form of .set with the symbol first on the line if redefinition is required

Wind River Compiler for SPARC
User’s Guide, 5.4

324

number: .set 9
...

number: .set number+1

.short expression ,...

Reserves one 16 bit word for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.short 0xba98, 012345, -75, 17 # reserves 8 bytes.

.size symbol, expression

Sets the size information for symbol to expression. Note that only the ELF object file
format uses the size information.

.skip size

The .skip directive reserves a block of data initialized to zero. size is an expression
giving the length of the block in bytes. Example:

name: .skip 8

is the same as:

name: .byte 0,0,0,0,0,0,0,0

.space expression

See .skip size, p.324 above.

.string "string"

See .ascii "string", p.307.

.strz "string"

See .asciz "string", p.308.

20 Assembler Directives
20.2 List of Directives

325

20

.subtitle "string"

Sets the subtitle to the character string. This string replaces the %nS format
specification in the format the string defined by the -Xheader-format option (see
280). The subtitle may be set any number of times. The default subtitle is blank. See
String Constants, p.295 for rules for writing the "string".

.subtitle "string search function"

.text

Switches output to the .text (instruction space) section.

.title "string"

Sets the title to character string. The title may be set any number of times. The
default title is blank. See String Constants, p.295 for rules for writing the "string".
Example:

.title "program.s"

.ttl "string"

See .title "string", p.325 above.

.type symbol, type

Mark symbol as type. The type can be one of the following:

#object
@object
object

symbol names an object

#function
@function
function

symbol names a function

Note that only the ELF object file format uses type information.

Wind River Compiler for SPARC
User’s Guide, 5.4

326

.uhalf

This is a synonym for .short (.short expression ,..., p.324) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.ulong

This is a synonym for .long (.long expression ,..., p.318) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.ushort

This is a synonym for .short (.short expression ,..., p.324) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.uword

See .ulong, p.326 above.

warning "string"

Generate a warning message showing the given string. See String Constants, p.295
for rules for writing the "string".

.weak symbol ,...

Declares each symbol as a weak external symbol that is visible outside the current
file. Global references are resolved by the linker. Note that only the ELF object file
format supports weak external symbols. Example:

.weak add,sub,mul,div

For a further description of weak symbols see weak Pragma, p.132.

20 Assembler Directives
20.2 List of Directives

327

20

.width expression

See .llen expression, p.317.

.word expression, ...

Reserves one word (32 bits) for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.word 0xfedcba98,0123456,-75 # reserves 12 bytes.

.xdef symbol ,...

See .global symbol ,..., p.313.

.xref symbol ,...

See .extern symbol ,..., p.312.

.xopt

Pass -X options to the assembler using the format:

.xopt option name[=value]

Example:

.xopt align-value

has the same effect as using -Xalign-value on the command line. In case of a
conflict, .xopt overrides the command-line option. Also, some -X options are only
tested before the assembly starts; in that case, the .xopt directive will have no effect.
This option is primarily for internal use; the command-line options are preferred.

Wind River Compiler for SPARC
User’s Guide, 5.4

328

329

 21
Assembler Macros

21.1 Introduction 329

21.2 Macro Definition 330

21.3 Invoking a Macro 333

21.4 Macros to “Define” Structures 333

21.1 Introduction

Assembler macros enable the programmer to encapsulate a sequence of assembly
code in a macro definition, and then inline that code with a simple parameterized
macro invocation.

Example:

ld32: .macro reg,ident # macro definition
sethi %hi(ident),reg
ld [reg+%lo(ident)],reg
.endm

ld32 o0,yvar # macro invocation #1
ld32 o1,xvar # macro invocation #2

This will produce the following code:

Wind River Compiler for SPARC
User’s Guide, 5.4

330

sethi %hi(yvar),%o0
ld [%o0+%lo(yvar)],%o0
sethi %hi(xvar),%o1
ld [%o1+%lo(xvar)],%o1

21.2 Macro Definition

A macro definition has the form:

where label is the name of the macro, without containing any period. In addition,
the following syntax is valid but is not recommended:

The optional parameters can be referenced in the macro body in two different
ways. The following two examples show a macro which calculates

par1 = par2 + par3

(where the parameters are assumed to be in registers).

1. By using the parameter name:

add3: .macro par1,par2,par3 # definition
mov par2,par1
add par3,par1
.endm

add3 %g1,%o0,%o1 # invocation

produces

mov %o0,%g1
add %o1,%g1

label: .macro [parameter ,...]

macro body

.endm

.macro name [parameter ,...]

macro body

.endm

21 Assembler Macros
21.2 Macro Definition

331

21

2. By using \n syntax where \1, \2, ... \9, \A, ... \Z are the first, second, etc.,
actual parameters passed to the macro. When the \n syntax is used, formal
parameters are optional in the macro definition. If present, both the named and
numbered form may be freely mixed in the same macro body.

add3: .macro # definition
mov \2,\1
add \3,\1
.endm

add3 %g1,%o0,%o1 # invocation

produces

mov %o0,%g1
add %o1,%g1

The special parameter \0 denotes the actual parameter attached to the macro name
with a “.” character in an invocation. Usually this is an instruction size.

move: .macro dregp,sregp // definition
ldu\0 [sregp],%g1
stu\0 %g1,[dregp]
.endm

move.b %o0,%o1 // invocation

produces

ldub [%o1],%g1
stub %g1,[%o0]

Separating Parameter Names From Text

In the macro body, the characters “&&” can optionally precede or follow a
parameter name to concatenate it with other text. This is useful when a parameter
is to be part of an identifier:

xmov: .macro hcnst,reg # definition
mov 0x&&hcnst,reg
.endm

xmov f,%o0 # invocation

NOTE: Because of the SPARC instruction set, this macro can only be used with
bytes and half-words. The macro could be extended to check for words and double
words, and to implement or diagnose them.

Wind River Compiler for SPARC
User’s Guide, 5.4

332

produces

mov 0xf,%o0

Generating Unique Labels

The special parameter \@ is replaced with a unique string to make it possible to
create labels that are different for each macro invocation.

The following macro defines a string of up to four bytes in the .data section at a
uniquely generated label (however the length of the string is not checked), and
then generates code to load the contents at that label (the string itself) into a
register.

lstr: .macro reg,string # definition
.data

.Lm\@:
.byte string,0
.previous
sethi %hi(.Lm\@),%o0
ld [%0+%lo(.Lm\@)],%o0
.endm

lstr %o0,"abc" # invocation

produces

.data
.Lm.0001:

.byte "abc",0

.previous
sethi %hi(.Lm.0001),%o0
ld [%0+%lo(.Lm.0001)],%o0

NARG Symbol

The special symbol NARG represents the actual number of non-blank parameters
passed to the macro (not including any \0 parameter):

init: .macro value # definition
.if NARG == 0
.byte 0
.else
.byte value
.endc
.endm

init # invocation #1
init 10 # invocation #2

21 Assembler Macros
21.3 Invoking a Macro

333

21

produces

.byte 0 # expansion #1

.byte 10 # expansion #2

21.3 Invoking a Macro

A macro is invoked by using the macro name anywhere an instruction can be used.
The macro body will be inserted at the place of invocation, and the formal
parameters in the macro definition will be replaced with the actual parameters, or
operands, given after the macro name.

Actual parameters are separated by commas. To pass an actual parameter that
includes special characters, such as blanks, commas and comment symbols, angle
brackets ”< >” may be used. Everything in between the brackets is regarded as one
parameter.

If the option -Xmacro-arg-space-on is given, blanks may be included in an actual
parameter without using brackets. Example:

init: .macro command,list
.data
command list
.previous
.endm

init byte,<0,1,2,3>

produces

.data

.byte 0,1,2,3

.previous

21.4 Macros to “Define” Structures

Although struct is not part of the assembly language, the macros shown below
allow you to assign offsets to symbols so they can refer to structure members.

Wind River Compiler for SPARC
User’s Guide, 5.4

334

These macros do not allocate memory; they merely assign values to symbols. The
value of a structure “member” is its offset from the beginning of the structure.

The macros use CURRENT_OFFSET_VALUE to set the offsets of structure members:
the STRUCT macro sets CURRENT_OFFSET_VALUE to 0; the MEMBER macro
defines a symbol named for the member and having as its value
CURRENT_OFFSET_VALUE, then increments CURRENT_OFFSET_VALUE by the
size of the member.

STRUCT .macro
CURRENT_OFFSET_VALUE .set 0

.endm

MEMBER .macro name, size
name = CURRENT_OFFSET_VALUE
CURRENT_OFFSET_VALUE .set CURRENT_OFFSET_VALUE + size

.endm

CURRENT_OFFSET_VALUE must be incremented with this form of the .set
directive because it allows the symbol so set to be set again later in the module. See
symbol[:] .set expression, p.323 for details.

Also, note that:

■ The MEMBER macro cannot be labeled.

■ These macros cannot be used to define nested structures because there is only
one CURRENT_OFFSET_VALUE used for all instances.

■ A final MEMBER can be used to define the size of the structure.

Example

The macros define the symbols first_name, middle_initial, and last_name with
values 0, 20, and 21 respectively, and define name_size as the total size of the
“structure” with a value of 46.

STRUCT
MEMBER first_name,20
MEMBER middle_initial,1
MEMBER last_name,25
MEMBER name_size,0

One might use this, for example, as follows:

.data
rec1:

.skip 20 # reserve space for a first name

.skip 1 # ... middle initial

.skip 25 # ... and last name

21 Assembler Macros
21.4 Macros to “Define” Structures

335

21

Then an expression such as rec1+last_name in an instruction would access the
last_name “member” of the rec1 “structure”.

Wind River Compiler for SPARC
User’s Guide, 5.4

336

337

 22
Example Assembler Listing

If the -l or -L option is specified, a listing is produced. The -l option produces a
listing file with the default extension .lst (or the extension specified with
-Xlist-file-extension="string"). The -L option sends the listing to standard output.

The listing contains the following:

Location
Hexadecimal value giving the relative address of the generated code within
the current section.

Pl
“Pl” stands for “Program Location counter number”. Maps one-to-one to the
section number in the object file (but not necessarily in the same order). When
the same section is used at several discontinuous places in the source, the same
section number will be used for all instances.

Code
Generated code in hexadecimal.

Line
Source line number.

Source Statement
Source code lines.

To change the format of the assembly line, see Set Format of Assembly Line in Listing
(-Xline-format="string"), p.282.

If the -H option is used, a header containing the source filename and the
cumulative number of errors is displayed at the top of each page. To change the
format of the header, see Set Header Format (-Xheader-format="string"), p.281.

Wind River Compiler for SPARC
User’s Guide, 5.4

338

Errors are not included in the listing but are always written to stderr.

The following shows a listing produced by assembling an extract from file swap.s
with the command:

das -tSPARCliteEN -l -H swap.s.

swap.s is used with the bubble sort example in the Getting Started manual.

Figure 22-1 Assembly Listing File Swap.lst

File: swap.s Errors 0
Location Pl Code Line Source Statement

1 .name "swap.s"
2 .section .text2,,c
3 .align 4
4 .globl swap
5 _swap:

00000000 01 d802 2004 6 ld [%o0+4],%o4
00000004 01 c202 0000 7 ld [%o0],%g1
00000008 01 d822 0000 8 st %o4[%o0]
0000000c 01 81c3 e008 9 retl
00000010 01 c222 2004 10 st %g1[%o0+4]

339

PAR T IV

Wind River Linker

23 The Wind River Linker 341

24 The dld Command .. 353

25 Linker Command Language 373

Wind River Compiler for SPARC
User’s Guide, 5.4

340

341

 23
The Wind River Linker

23.1 The Linking Process 342

23.2 Symbols Created By the Linker 346

23.3 .abs Sections 347

23.4 COMMON Sections 348

23.5 COMDAT Sections 349

23.6 Sorted Sections 349

23.7 Warning Sections 350

23.8 .frame_info sections 351

This section describes the linker for SPARC microprocessors and is organized as
follows:

■ This chapter is a brief introduction to the linking process, including an
example, description of special symbols created by the linker, and treatment of
special sections.

■ 24. The dld Command, describes the command to invoke the linker and its
options.

■ 25. Linker Command Language, describes the language used in linker command
files.

In addition, F. Object and Executable File Format, describes the format of object files
processed by the linker and special relocation types for those requiring such
detailed information.

Wind River Compiler for SPARC
User’s Guide, 5.4

342

23.1 The Linking Process

This section provides an introduction to the linking process. Readers familiar with
linker operation may proceed to 23.2 Symbols Created By the Linker, p.346.

The linker is a program that combines one or more binary object modules produced
by compilers and assemblers into one binary executable file. It may also write a text
map file showing the results of its operation.

Each object module/file is the result of one compilation or assembly. Object files
are either stand-alone, typically with the extension .o, or are collected in archive
libraries, also called libraries. Library files typically have the extension “.a”.

An object module contains sections of code (also called “text”), and “data”, with
names such as .text, .data (variables having initial values), .bss (“blank sections —
uninitialized variables), and various housekeeping sections such as a symbol table
or debug information.

The linker reads the sections from the object modules input to it, and based on
command-line options and a linker command file, combines these input sections into
output sections, and writes an executable file (usually; it is also possible to output a
file which can be linked again with other files in a process called incremental
linking).

A section may contain a reference to a symbol not defined in it — an undefined
external. Such an external must be defined as global in some other object file. A
global definition in one object file may be used to satisfy the undefined external in
another.

As compiled or assembled into an input object file, the first byte of each input
section is at address 0 (typically). But when finally located in memory as part of
some output section, the input section will not be at address 0 (except for the first
input section in an output section that is actually located at 0). Any absolute
references to bytes in the section from within the section will therefore be “wrong”
and will require relocation. The input object file contains sections of relocation
information which the linker will use to adjust such absolute references. Relocation
information is used to make other similar adjustments as well.

Given the definitions above, in the abstract, the linking process consists of six
steps:

1. Read the command line and linker command file for directions.

2. Read the input object files and combine the input sections into output sections
per the directions in the linker command file. Globals in one object file may
satisfy undefined externals in another.

23 The Wind River Linker
23.1 The Linking Process

343

23

3. Search all supplied archive libraries for modules which satisfy any remaining
undefined externals.

4. Locate the output sections at specific places in memory per the directions in
the linker command file.

5. Use the relocation information in the object files to adjust references now that
the absolute addresses for sections are known.

6. If requested, write a link map showing the location of all input and output
sections and symbols.

Linking Example

This section provides an example of the above linking process. Consider the
following two C files:

File f1.c:

int a = 1;
int b;

main()
{

b = 2;
f2(3);

}

File f2.c:

extern int a, b;

f2(int c)
{

printf("a:%d, b:%d, c:%d\n", a, b, c);
}

The compilation command

dcc -O -c f1.c f2.c

generates the object files f1.o and f2.o.

The contents of the two object files are shown in Table 23-1.

Table 23-1 Linking Example Files

Section Type of Data Contents

f1.o:

Wind River Compiler for SPARC
User’s Guide, 5.4

344

Invoking the linker explicitly using the dld command is fully described in 24. The
dld Command. However, the easiest way to invoke the linker is to use one of the
compiler drivers, for example, dcc, as follows:

dcc f1.o f2.o -o prog

The driver notes that the input files are objects (f1.o and f2.o) and invokes the
linker immediately, supplying default values for the library, library search paths,
linker command file, etc. To see how the linker is invoked, add the option -# to the
above command; this option directs the driver to display the commands it uses to
invoke the subprograms.

.text Code Instructions of function main().

.data Variables Initialized variable a.

.rela.text Relocation
entries

Reference to the variable b inside main().
Reference to the function f2 inside main().

.symtab Symbol table
entries

Symbol main, defined in .text section.
Symbol a, defined in the .data section.
Symbol b, COMMON block of size 4.
Symbol f2, undefined external symbol.

f2.o:

.text Code Instructions of function f2() and the string used
in printf().

.rela.text Relocation
entries

Reference to the variable a inside f2().
Reference to the variable b inside f2().
Reference to the function printf inside f2().
Reference to the printf string inside f2().

.symtab Symbol table
entries

Symbol _f2, defined in the .text section.
Symbol _a, undefined external symbol.
Symbol _b, undefined external symbol.
Symbol _printf, undefined external symbol.
Local symbol for the printf string, defined in the
.text section.

Table 23-1 Linking Example Files

Section Type of Data Contents

23 The Wind River Linker
23.1 The Linking Process

345

23

Schematically, the result will be as follows:

dcc f1.o f2.o -o prog -#
dld -YP,search-paths -l:crt0.o f1.o f2.o -o prog -lc

version_path/conf/default.dld

The -YP option specifies directories which the linker will search for libraries
specified with “-l” options and files specified with “-l:filename” options. crt0.o is
the C start-up module. The -lc option directs the linker to search for a library
named libc.a in the paths specified by -YP.

With this command, the linker will proceed as follows:

1. The text file is assumed to be a linker command file (default.dld here), input
object files are scanned in order (crt0.o, f1.o, and f2.o), and archive libraries are
searched as necessary for undefined externals (the library filename libc.a is
constructed from the option -lc).

In this link, the file printf.o is loaded from libc.a because printf is not defined
in the f1.o or f2.o objects. printf.o, in turn, needs some other files from libc.a,
such as fwrite.o, strlen.o, and write.o.

2. Per the directions in the default.dld linker command file, input sections with
the same name are combined into one output section. In this instance all .text
sections from crt0.o, f1.o, f2.o, printf.o, fwrite.o, etc. are concatenated into a
single output .text section. This also done for the other input sections. The
linker command language can be used to specify how sections should be
grouped together and where they should be placed in memory.

3. All “common blocks” not defined in .text or .data are placed last in the .bss
section. See 23.4 COMMON Sections, p.348 for details. In this case four bytes
for the variable b are allocated in .bss section.

4. Once the location of all output sections is known, the linker assigns addresses
to all symbols. By default, the linker puts the .text section in one area of
memory, and concatenates the .data and the .bss sections and locates the result
in another area in higher memory. However these defaults are seldom
adequate in an embedded system, and memory layout is usually controlled by
a linker command file (version_path/conf/default.dld in this example).

5. All input sections are copied to the output file. While copying the raw data, the
linker adjusts all address references indicated by the relocation entries. Note
that there is no space in the input object file or output executable for .bss
sections because they will be initialized by the system at execution time.

6. An updated symbol table is written (unless suppressed by the -s, strip option).

Wind River Compiler for SPARC
User’s Guide, 5.4

346

23.2 Symbols Created By the Linker

If necessary, the linker creates the following symbols at the end of the link process.
(The linker does not recreate symbols that the user has already defined or create
symbols that are never referred to in any module.) These can be used in C or
assembly programs, for example, in startup code to initialize .bss sections to zero,
or to “copy ROM to RAM” (see Example 25-8Copying Code from “ROM” to “RAM”,
p.397, for an example of the latter).

That is, a module may declare these symbols as external and use them without ever
defining them in any module. The linker will then create the symbols as described
during the linking process, and satisfy the external by referring to the created
symbol.

.endof.section-name
Address of the last byte of the named section. See Note 1.

.sizeof.section-name
Size in bytes of the named section. See Note 1.

.startof.section-name
Address of the first byte of the named section. See Note 1.

etext, _etext
First address after final input section of type TEXT. See Note 2.

edata, _edata
First address after final input section of type DATA. See Note 2.

end, _end
First address after highest allocated memory area.

sdata, _sdata
First address of first input section of type DATA. See Note 2.

NOTE: While .bss sections do not occupy space in the linker output file, if
converted to Motorola S-Records, S-Records will be generated to set the space to
zeros. To suppress this, use the -v option to the -R command for ddump in
29. D-DUMP File Dumper.

23 The Wind River Linker
23.3 .abs Sections

347

23

stext, _stext
First address of first input section of type TEXT. See Note 2.

__GLOBAL_OFFSET_TABLE_,
__PROCEDURE_LINKAGE_TABLE_,
__DYNAMIC

Base addresses for access to data in the .got, .plt, and .dynamic sections.

Notes:

1. .endof...., .sizeof...., and .startof.... cannot be used in C code because C
identifiers must include only alphanumeric characters and underscores. But
they can be used in assembly code. See Unary Operators, p.302.

2. See type-spec in Type Specification: ([=]BSS), ([=]COMMENT), ([=]CONST),
([=]DATA), ([=]TEXT), ([=]BTEXT); OVERLAY, NOLOAD, p.385, for a
discussion of output section types DATA and TEXT. As noted there, if an output
section contains more than one type of input section, then its type is a union of
the input section types. In this case, the symbols related to the DATA and TEXT
sections as described above are not well-defined.

For example, the following prints the first address after the highest allocated
memory area:

extern char end;

main() {
printf("Free memory starts at 0x%x\n",end);

}

23.3 .abs Sections

Input files may contain sections with names of the form .abs.nnnnnnnn, where
nnnnnnnn is eight hexadecimal digits (zero-filled if necessary). Such sections will
automatically be located at the address given by nnnnnnnn.

The compiler generates such sections in response to #pragma section directives of
the form

#pragma section class_name [addr_mode] [acc_mode] [address=n]

Wind River Compiler for SPARC
User’s Guide, 5.4

348

where the value given the address=n clause becomes the nnnnnnnn in the section
name.

23.4 COMMON Sections

Common variables are public variables declared either:

■ In compiled code outside of any function, without the extern or static qualifier,
and which are not initialized, e.g. at the module level:

int x[10];
■ With .comm or .lcomm in assembly language.

Such variables are assigned to an artificial COMMON section.

The linker gathers all common variables together and appends them to the end of
the output section named .bss; that is, the combined artificial COMMON sections
for all modules becomes the end of the .bss output section.

These are the standard actions if the -Xbss-common-off option is not used. If the
-Xbss-common-off option is used:

■ There must be exactly one definition of each such variable in the modules of a
link, with all other declarations being extern or .xref, or the linker will report
an error.

■ Each such variable will be part of the .bss section for the module in which it is
defined. Because the location of individual sections may be controlled on a per
file basis when linking, such variables can be located more precisely.

If an incremental link is requested (option -r), COMMON sections are allocated
only if the -a option is also given.

Linker Command File Requirements with COMMON

As noted above, by default the linker places COMMON sections at the end of
output section .bss. If there is no .bss section, then the linker command file must
include a section-contents of the form [COMMON] (see Section Contents, p.382).

23 The Wind River Linker
23.5 COMDAT Sections

349

23

SCOMMON Section

The linker can process an SCOMMON section, typically holding “small” common
variables and sometimes produced by other tools. This section is not normally
used by the Wind River tools. Just as the COMMON section is appended to the .bss
output section, the SCOMMON section, if present, is appended to the .sbss output
section; if there is no .sbss output section, it is appended to the .bss output section.
If neither the .sbss nor .bss output section exists, then the linker command file
must contain a section-contents of the form [SCOMMON] (see Section Contents,
p.382).

23.5 COMDAT Sections

A COMDAT section is created by using “o” for the section type in an assembler
.section directive (see .section name, [alignment], [type], p.321), or by using the
compiler option -Xcomdat-on which causes sections generated for templates and
run-time type information to be marked COMDAT (see 5.4.24 Mark Sections as
COMDAT for Linker Collapse (-Xcomdat), p.65). See this latter discussion for the an
example of the use of COMDAT sections.

When the linker encounters identical COMDAT sections, it removes all except one
instance and resolves all references to symbols in the COMDAT section to the
single instance.

If a non-COMDAT section is present along with one or more identical COMDAT
sections, the linker will still collapse the COMDAT sections to one instance, but
will treat the symbols in the COMDAT section as weak. See weak Pragma, p.132 for
the treatment of weak symbols.

23.6 Sorted Sections

The GROUP definition described in GROUP Definition, p.389, is the usual way for
a user to explicitly control the order of input sections in an output section. A

Wind River Compiler for SPARC
User’s Guide, 5.4

350

second mechanism for controlling input section order, called sorted sections is
described here.

An input section is a sorted section if its name begins with a period and ends with
“$nn”, where nn is a two-digit decimal number, for example .init$15. The first part
of the name (before the $nn) is called the common section name and the $nn part is
called the priority. Input sections can also be assigned priority in the linker
command file.

As described beginning on Section-Definition, p.381, a section-definition defines an
output section and may include a list of input sections. The order in the output
section of the input sections is undefined. However if the list of input sections
includes a common section name, then all input sections having that common
section name will be placed together and will be sorted in the output section in
order of their ascending priority numeric priority.

An input section having the common section name but no priority suffix is given
priority 50. The order among sorted sections with the same priority is undefined.

This sorted section feature is used by the compiler to order sections when
generating initialization code. See 15.4.8 Run-time Initialization and Termination,
p.256 for details.

23.7 Warning Sections

If a section is named .warning, the linker prints the text from that section to
standard output as a warning message if any section is loaded from the file. The
warning is printed only during the final linking; incremental linking will put such
sections into the output file. This is useful when the library has stub functions that
need to be replaced.

Example:

#pragma section DATA ".warning" N

char __warning[] = "No chario output routine has been given.\n"
"Printing through write() or printf() will not work.\n";

23 The Wind River Linker
23.8 .frame_info sections

351

23

#pragma section DATA

int __outchar(int c, int last)
{
}

The linker prints the following message:

dld: warning:
No chario output routine has been given.
Printing through write() or printf() will not work.

23.8 .frame_info sections

The compiler generates .frame_info sections for C++ programs when
exception-handling is enabled. A section is created for any function that might
appear on the call stack between a try and a throw; the linker concatenates these
into a searchable table that is used for stack-unwinding and object clean-up after
an exception occurs. For each function, the table contains a small (8- to 24-byte)
record that includes pointers to structures in the .data section. Since the C++
support functions in libd.a are compiled with exception-handling enabled, most
C++ programs have at least some .frame_info data.

By default, C functions do not have .frame_info sections. To generate .frame_info
sections for C functions—essential in mixed programs in which C++ exceptions
may propagate back through C functions—use the -Xframe-info compiler option.
Throwing an exception through C code that is not compiled with -Xframe-info
results in a call to the C++ standard-library terminate() function. Pure C++
applications and applications that only call C from C++, never the other way
around, do not need to use -Xframe-info.

Wind River Compiler for SPARC
User’s Guide, 5.4

352

353

 24
The dld Command

24.1 The dld Command 353

24.2 Defaults 356

24.3 Order on the Command Line 357

24.4 Linker Command-Line Options 357

24.5 Linker -X options 365

24.1 The dld Command

The linker is invoked by the following command:

dld [options] input-file ...

Options are described in 24.4 Linker Command-Line Options, p.357 and 24.5 Linker
-X options, p.365.

The linker decides what to do with each input-file given on the command line by
examining its contents to determine its type. Each file is either an object file, an
archive library file, or a text file containing directives to the linker:

■ Object files: These are loaded in the order given on the command line.

■ Archive files: If there is a reference to an unresolved external symbol after
loading the objects, then any archive library files given on the command line

Wind River Compiler for SPARC
User’s Guide, 5.4

354

(or specified with -l options) are searched for the symbol, and the first object
module defining the missing symbol is loaded from the libraries.

Library search order depends on the use of the -L, -Y L, -Y U, -Y P, and
-Xrescan-libraries options. See Specify Search Directories for -l (-Y L, -Y P, -Y U),
p.364 and Re-scan Libraries (-Xrescan-libraries...), p.369 for details.

Archive libraries may be built with the dar tool. Archive libraries built by other
archivers must conform to the ELF format accepted by the linker.

■ Text files: A text file is interpreted as a file of linker commands. These
commands are described in 25. Linker Command Language. More than one
linker command file is allowed.

Linker Command Structure

A typical linker command will be as follows in outline (where “...” means
repetition, and on one line when entered):

dld -YP,search-paths -o output-file-name -l:startup-object-file object-file ...
library... -llibs... linker-command-file

where:

-YP,search-paths
Directories to search for files named by -l options and -l: options. The paths for
the default directories are based on the default target. See Select Target Processor
and Environment (-t tof:environ), p.364.

(Search paths can also be specified using other -Y options and the -L option as
described later).

-o output-file-name
Options to specify the name of the output file (the default is a.out if no -o
option is given).

-l:startup-object-file
Startup object file. Link this file first to help establish the order of various
initialization sections. Searched for in the directories specified by -Y or -L
options (no path prefix allowed). Because the first character after -l is “:” the
search is for a file with the exact name following the colon. Contrast with -l
below.

Alternatively, the startup object file can be named directly on the command
line, in which case a path prefix is allowed.

24 The dld Command
24.1 The dld Command

355

24

object-file...
The object files to be linked.

library... -llibs...
Libraries to be searched for modules defining otherwise undefined external
symbols. Libraries can be given directly on the command line with path prefix,
or searched for in the -Y or -L directories by using the -lname form. In the latter
case, the library name libname.a is constructed from name and no path prefix is
allowed.

linker-command-file
Text file of linker commands. A path prefix is allowed.

To get a map to stdout, add the -m, -m2, or -m6 option (with increasing detail).

A good way to gain experience with linker command lines, and to see default
values for the parts of the command line outlined above, is to invoke dcc or dplus
with the -# option to show the command line for each subprogram. For example,
the following command line:

dcc -# -o hello.out hello.c -m > hello.map

would effectively invoke the linker with the following command line (assumes
default of no floating point, and shows each argument on a separate line for
readability):

dld -Y P,/diab/4.x/SPARCEN/simple:/diab/4.x/SPARCEN:
/diab/4.x/SPARCE/simple:/diab/4.x/SPARCE

-l:crt0.o
hello.o
-o hello.out
-lc
/diab/4.x/conf/default.dld
-m > hello.map

where:

-Y P,/diab/4.x/...
Directories to search for files named by -l options.

-l:crt0.o

Startup object file from the directories specified by the -YP option.

hello.o

The object module to be linked.

-o hello.out

The name of the output file instead of a.out.

-lc

Search for library libc.a for modules defining unresolved externals in the
directories specified by -YP.

Wind River Compiler for SPARC
User’s Guide, 5.4

356

/diab/4.x/conf/default.dld
Use the default linker command file.

-m > hello.map

Request a minimal map and redirect it from stdout to hello.map (the driver
dcc passes any option it does not recognize, the -m in this case, to the linker).

24.2 Defaults

In addition to application input object files, the linker typically needs a linker
command file to direct the link, libraries to satisfy undefined externals, and often
a startup object file.

When the linker is invoked explicitly with the dld command, there will be no
default linker command file, no libraries, and no startup file — all must be
specified using command-line options as described in this chapter.

When the linker is invoked automatically by the dcc or dplus drivers, it is invoked
with options which specify default linker command file, libraries, and startup
object file.

These defaults are as follows:

■ Linker command file: the default is version_path/conf/default.dld. To specify a
different linker command file when using dcc or dplus, use the -Wmfile option
(5.3.28 Specify Linker Command File (-W mfile), p.43). Note that -Wm is an option
to the compiler driver directing its sub-invocation of the linker; -Wm is not a
linker option. To provide a linker command file when invoking the linker
directly, just name it on the dld command line.

■ Libraries: the defaults are libraries libc.a and, for C++, libd.a from the
directories associated with the default target, and/or as specified with -l, -L,
and/or -Y options on the command line as documented later in this manual.

■ Startup object file: the default is crt.o from the selected target subdirectory. To
specify a different startup object file when using dcc or dplus, use the -Wsfile
option (5.3.29 Specify Startup Module (-W sfile), p.43). As with -Wm this is a
driver, not a linker, option.

24 The dld Command
24.3 Order on the Command Line

357

24

To see the defaults for a particular case, execute dcc or dplus with the -# option to
display the command line for the compiler, assembler, and linker as each is
automatically invoked.

24.3 Order on the Command Line

Options and files may be intermixed and may be given in any order except that an
option which specifies a search directory for -l, that is -L or -Y, must be given
before a -l to which it is to apply. However the following order is recommended:

■ options
■ object files
■ libraries and -l options which name libraries
■ linker command file

Other options may be mixed in any order. While libraries and objects may be in any
order (with the default setting of -Xrescan-libraries, see Re-scan Libraries
(-Xrescan-libraries...), p.369), a link will be faster if there is no need to re-scan a
library. The linker may also be more efficient in processing a linker command file
if its has encountered all objects first.

24.4 Linker Command-Line Options

This section contains standard command-line options common to many linkers.
The next section documents -X options which provide additional detailed control
over the linker (beginning with 24.5 Linker -X options, p.365).

For a concise list of all options, see the table of contents.

NOTE: Linker command files formerly used an extension of .lnk. As of version 4.2,
this is changed to .dld because .lnk is used by Windows to designate a shortcut. In
the conf directory, identical copies of each linker command file using each
extension will be present for an interim period.

Wind River Compiler for SPARC
User’s Guide, 5.4

358

Show Option Summary (-?, -?X)

-?, -h
--help

Show synopsis of command-line options.

-?X, -hX
Show synopsis of -X options (see 24.5 Linker -X options, p.365).

Read Options From an Environment Variable or File (-@name, -@@name)

-@ name
Read command-line options from environment variable name if it exists, else
from file name.

In an environment variable, separate options with a space. In a file, place one
or more options per line, separated by a space.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@O=file
Redirect any output to standard output to the given file.

 Use of “+” instead of “=” will append the output to the file.

Link Files From an Archive (-A name, -A...)

-A filename
-A -lname
-A -l:filename

Link all files from the specified archive. The -A option affects only the
argument immediately following it, which can be a filename or -l option. (See
Specify Library or File to Process (-lname, -l:filename), p.361.) If filename or name is
not an archive, -A has no effect.

Sections can still be dropped with the -Xremove-unused-sections option.

24 The dld Command
24.4 Linker Command-Line Options

359

24

-A1...
Same as -A.

-A2...
Same as -A, but overrides -Xremove-unused-sections for the specified
archives.

-A3...
Same as -A2, but also overrides -s and -ss for the specified archives.

Allocate Memory for Common Variables When Using -r (-a)

-a
Common variables are not normally allocated when an incremental link is
requested by the -r option. The -a option forces allocation in this case. See
23.4 COMMON Sections, p.348 for details.

Set Address for Data and tExt (-Bd=address, -Bt=address)

-Bd=address
-Bt=address

Allocate .text section and other constant sections to the given address. The -Bd
and -Bt options provide a simple way to define where to allocate the sections
without having to write a linker command file. If either -Bd or -Bt is specified,
the linker will use the following command specification:

SECTIONS {
GROUP Bt-address : {
.text (TEXT) : {

*(.text) *(.rdata) *(.rodata)
*(.init) *(.fini)

}
.sdata2 (TEXT) : {}

}
GROUP Bd-address: {
.data (DATA) : {}
.sdata (DATA) : {}
.sbss (BSS) : {}
.bss (BSS) : {}

}

If the -N option is given, the .data section is placed immediately after the .text
section.

Wind River Compiler for SPARC
User’s Guide, 5.4

360

Bind Function Calls to Shared Library (-Bsymbolic)

When creating a shared library, bind function calls, if possible, to functions
defined within the shared library. For VxWorks RTP application development.

Define a Symbol At An Address (-Dsymbol=address)

-Dsymbol=address
Define specified symbol at specified address.

Define a Default Entry Point Address (-e symbol)

-e symbol
symbol is made the default entry address and entered as an undefined symbol
in the symbol table. It should be defined by some module.

Specify “fill” Value (-f value, size, alignment)

-f value
-f value, size
-f value, size, alignment

Fill all “holes” in any output section with 16-bit value rather than the default
value of zero. Optional size and alignment are specified in bytes; the default is
2, 1.

NOTE: The -Bd and -Bt options are ignored if a linker command file is present. The
default.dld linker command file will be present by default if the linker is invoked
implicitly by dcc or dplus. To use -Bd and -Bt, suppress the use of the default linker
command file with the -W m option with no name on the dcc or dplus command
line

24 The dld Command
24.4 Linker Command-Line Options

361

24

Specify Directory for -l search List (-L dir)

-L dir
Add dir to the list of directories searched by the linker for libraries or files
specified with the -l option. More than one -L option can be given on the
command line.

Must occur prior to a -l option to be effective for that option.

Specify Library or File to Process (-lname, -l:filename)

-lname
Specify a library with the constructed name libname.a to be searched for object
modules defining missing symbols.

-l:filename
Process the given filename (without modification, no path prefix allowed): an
object file is linked, an archive is searched as necessary, a text file is taken as a
linker command file.

For both forms, search for the file is performed in the following order:

■ The directories given by -L dir options in the order these options are
encountered.

■ The directories as given by any -Y L, -Y P, or -Y U options (see these
options in Specify Search Directories for -l (-Y L, -Y P, -Y U), p.364).

Any -L or -Y option must occur prior to all -l options to which it applies.

If no -L or -Y option is present, search a set of directories based on the selected
target and environment. See 4.2 Selected Startup Module and Libraries, p.24 for
details.

Generate link map (-m, -m2, -m4)

-m (equivalent to -m1)
Generate a link map of the input and output sections on the standard output.

-m2
Generate a more detailed link map of the input and output sections, including
symbols and addresses, on the standard output. -m2 is a superset of -m1.

Wind River Compiler for SPARC
User’s Guide, 5.4

362

-m4
Generate a link map with a cross reference table.

-m6
Equivalent to -m2 plus -m4: generated a detailed link map and cross reference
table.

The value following “m” is converted to hexadecimal and used as a mask;
thus, -m3 is equivalent to -m2. Undefined bits in the mask are ignored.

Allocate .data Section Immediately After .text Section (-N)

-N
This option is used in conjunction with options -Bd and -Bt. See them for
details (Set Address for Data and tExt (-Bd=address, -Bt=address), p.359).

Change the Default Output File (-o file)

 -o file
Use file as the name of the linked object file instead of the default filename
a.out.

Perform Incremental Link (-r, -r2, -r3, -r4, -r5)

-r
The linked output file will still contain relocation entries so that the file can be
re-input to the linker. The output file will not be executable, and no unresolved
reference complaints will be reported.

-r2
Link the program as usual, but create relocation tables to make it possible for
an intelligent loader to relocate the program to another address. Absent other
options, a reference to an unresolved symbol is an error.

-r3
Equivalent to the -r2 option except that unresolved symbols are not treated as
errors.

-r4
Link for the VxWorks loader.

24 The dld Command
24.4 Linker Command-Line Options

363

24

-r5
Equivalent to the -r option except that COMDAT sections are merged and
converted to normal sections.

The -r options are required only for incremental linking, not when producing
an ordinary absolute executable.

Rename Symbols (-R symbol1=symbol2)

-R symbol1=symbol2
Rename symbols in the linker output file symbol table. The order of the symbol
names is not significant; -R symbol1=symbol2 does the same thing as -R
symbol2=symbol1. If both symbols exist, both are renamed: symbol1 becomes
symbol2 and symbol2 becomes symbol1.

Search for Shared Libraries on Specified Path (-rpath)

-rpath path
Search for shared libraries on specified path, a colon-separated list of
directories. (If no search path is specified, the linker looks in the directory
where the executable resides.) For VxWorks RTP application development.

Do Not Output Symbol Table and Line Number Entries (-s, -ss)

-s
Do not output symbol table and line number entries to the output file.

-ss
Same as -s, plus also suppresses all .comment sections in the output file.

Specify Name for Shared Library (-soname)

-soname=libraryName
Use libraryName as the name of the shared object containing compiled library
code. For VxWorks RTP application development.

Wind River Compiler for SPARC
User’s Guide, 5.4

364

Select Target Processor and Environment (-t tof:environ)

-t tof:environ
Select the target processor, object format, floating point support, and
environment libraries. See the -t option in 4. Selecting a Target and Its
Components for details. This option is not valid in a linker command file.

Define a Symbol (-u symbol)

-u symbol
Add symbol to the symbol table as an undefined symbol. This can be a way to
force loading of modules from an archive.

Print version number (-V)

-V
Print the version of the linker.

Do Not Output Some Symbols (-X)

-X
Do not output symbols starting with @L and .L in the generated symbol table.
These symbols are temporaries generated by the compiler.

Specify Search Directories for -l (-Y L, -Y P, -Y U)

-Y L,dir
Use dir as the first default directory to search for libraries or files specified with
the -l option.

-Y P,dir
dir is a colon-separated list of directories. Search each of the directories in the
list for libraries or files specified with the -l option.

-Y U,dir
Use dir as the second default directory to search for libraries or files specified
with the -l option.

24 The dld Command
24.5 Linker -X options

365

24

Notes:

1. These options must occur prior to all -l options to which they are to apply.

2. The dcc and dplus programs (but not dld itself) generate a -Y P option suitable
for the selected target and environment. Unless you are replacing the libraries,
you should not normally use this option. Use the -L option to specify libraries
to be searched before the Wind River libraries. (See Specify Directory for -l search
List (-L dir), p.361.)

3. If no -Y or -l options are present on the dld command line, the linker will
automatically search the directories associated with the default target. See
4.2 Selected Startup Module and Libraries, p.24 for details.

4. If a -Y option is used, -Y P is recommended. The older -Y L and -Y U options
are provided for compatibility. Use of -Y P together with -Y L or -Y U is
undefined.

24.5 Linker -X options

The following -X options provide additional detailed control over the linker. Many
are present to improve compatibility and ease of conversion from other tool sets.

For a concise list of all options, see the table of contents.

Use Late Binding for Shared Libraries (-X)

-Xbind-lazy
Bind each shared-library function the first time it is called. (By default, binding
occurs when the module is loaded.) For VxWorks RTP application
development.

Check Input Patterns (-Xcheck-input-patterns)

-Xcheck-input-patterns
Check that every input section pattern in the linker command file matches at
least one input section. Emit a warning if an unmatched pattern is found.

Wind River Compiler for SPARC
User’s Guide, 5.4

366

-Xcheck-input-patterns=2
Same as -Xcheck-input-patterns, but emit a message of severity level
“information” instead of “warning”. (For use with -Xstop-on-warning.)

Check for Overlapping Output Sections (-Xcheck-overlapping)

-Xcheck-overlapping
Check for overlapping output sections and sections which wrap around the
32-bit address boundary.

Force Linker to Continue After Errors (-Xdont-die)

-Xdont-die
Force the linker to continue after errors which would normally halt the link.
For example, issue warnings rather than errors for undefined symbols and
out-of-range symbols.

When the linker is forced to continue it produces reasonable output and
returns error code 2 to the parent process. By default, the make utility stops on
such errors; if you want it to continue you must handle this error code in the
makefile explicitly.

Do Not Create Output File (-Xdont-link)

-Xdont-link
Do not create a linker output file. Useful when the linker is started only to
create a memory map file.

Use Shared Libraries (-Xdynamic)

-Xdynamic
Link against shared libraries (.so files). For VxWorks RTP application
development.

24 The dld Command
24.5 Linker -X options

367

24

Use ELF Format for Output File (-Xelf)

-Xelf
This is the default.

ELF Format Relocation Information (-Xelf-rela-...)

-Xelf-rela
Use RELA relocation information format for ELF output. This is the default.

-Xelf-rela-off
-Xelf-rela=0

Use REL relocation information format for ELF output.

Do Not Export Symbols from Specified Libraries (-Xexclude-libs)

-Xexclude-libs=list
Do not automatically export symbols from the libraries specified in the
comma-delimited list. (Use the same library names, prefixed with “l”, that you
would use with the -l option.) Example: -Xexclude-libs=lc,lm. For VxWorks
RTP application development.

Do Not Export Specified Symbols (-Xexclude-symbols)

-Xexclude-symbols=list
Do not export the symbols specified in the comma-delimited list when creating
a shared library. Example: -Xexclude-symbols=function1,function2. For
VxWorks RTP application development.

Write Explicit Instantiations File (-Xexpl-instantiations)

-Xexpl-instantiations
Cause the linker to write the source lines of an explicit instantiations file to
stdout. To minimize space taken by template classes, the output from
-Xexpl-instantiations can be used to create an explicit instantiations file
(necessary header files must still be added); see Templates, p.223. This option is
deprecated.

Wind River Compiler for SPARC
User’s Guide, 5.4

368

Store Segment Address in Program Header (-Xgenerate-paddr)

-Xgenerate-paddr
Store the address of each segment in the p_paddr field of the corresponding
entry in the program header table. Without this option, the p_paddr value will
be 0.

Generate RTA Information (-Xgenerate-vmap)

-Xgenerate-vmap
Generates special information used by the RTA.

Do Not Align Output Section (-Xold-align)

-Xold-align
Do not align output sections.

Without this option (the default), each output section is given the alignment of
the input section having the largest alignment. Output sections must be
aligned to support position-independent code.

With this option, output sections are not aligned, and each output section
begins immediately after the previous output section. (In this later case, input
sections will still be aligned per their requirements, potentially leaving a gap
from the start of the output section to the start of the first input section within
it.)

Pad Input Sections to Match Existing Executable File (-Xoptimized-load)

-Xoptimized-load=n
-Xoptimized-load

Minimize the difference between the already existing executable file (if any)
and the new file by padding input sections. n specifies how much relative
space the linker can use for padding, where 0 means no padding and 100 is the
default. The larger the value of n, the more similar the images are likely to be.

The linker saves the old executable file with the .old extension and generate a
diff file with the .blk extension.

24 The dld Command
24.5 Linker -X options

369

24

Add Leading Underscore “_” to All Symbols (-Xprefix-underscore)

-Xprefix-underscore
Add a leading underscore “_” to all symbols in the files specified after this
command. Use -Xprefix-underscore=0 to turn off this feature. The default is
off.

Remove Unused Sections (-Xremove-unused-sections)

-Xremove-unused-sections
-Xremove-unused-sections-off

Remove all unused sections. By default the linker keeps unused sections.

A section is used if it:

■ Is referred to by another used section.

■ Has a program entry symbol—that is, a symbol defined with the -e option
(Define a Default Entry Point Address (-e symbol), p.360) or one of __start,
_start, start, __START, _START, _main, or main (order reflects priority).

■ Is not referenced by any section and has a name that starts with .debug,
.fini, .frame_info, .init, .j_class_table, or .line.

■ Defines a symbol used in an expression in the linker command file.

■ Defines a symbol specified with the -u option (Define a Symbol (-u symbol),
p.364).

Re-scan Libraries (-Xrescan-libraries...)

-Xrescan-libraries
-Xrescan-libraries-off

Request that the linker re-scan libraries to satisfy undefined externals. This is
the default. It solves the ordering problem which occurs when one library uses
symbols in another and vice-versa.

NOTE: This option is especially useful in combination with -Xsection-split
(5.4.109 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p.102) to reduce code size. When both options are used, each function in a
module will generate a separate CODE section, and thus functions which are
not called will be removed.

Wind River Compiler for SPARC
User’s Guide, 5.4

370

Use -Xrescan-libraries-off to force the linker to scan libraries and object files
in precisely the order given on the command line.

Re-scan Libraries Restart (-Xrescan-restart...)

-Xrescan-restart
-Xrescan-restart-off

If -Xrescan-libraries is on, when more than one library is presented to the
linker, force the linker to rescan the libraries from first to last in order for each
undefined symbol. This is the default.

Use -Xrescan-restart-off with -Xrescan-libraries to cause the linker, after
finding symbols in one library, to continue with the next library for the rest of
the undefined symbols.

Align Sections (-Xsection-align=n)

-Xsection-align=n
Force COFF input sections to have an alignment of n instead of the default 8.
(Ignored for ELF output.)

Build Shared Libraries (-Xshared)

-Xshared
Build shared libraries (rather than stand-alone executables). For VxWorks RTP
application development.

Sort .frame_info Section (-Xsort-frame-info)

-Xsort-frame-info
-Xsort-frame-info-off

To enable sorting of the .frame_info section, use -Xsort-frame-info. By default,
sorting is disabled (-Xsort-frame-info-off).

24 The dld Command
24.5 Linker -X options

371

24

Link to Static Libraries (-Xstatic)

-Xstatic
Link against static (.a) libraries rather than shared (.so) libraries. Use this
option when both static and shared libraries are available. For VxWorks RTP
application development.

Stop on Redeclaration (-Xstop-on-redeclaration)

By default, the linker issues a warning each time it encounters a redeclaration.
If -Xstop-on-redeclaration is specified, the linker halts with an error on the
first redeclaration.

Stop on Warning (-Xstop-on-warning)

-Xstop-on-warning
Request that the linker stop the first time it finds a problem with severity of
warning or greater.

Suppress Leading Dots “.” (-Xsuppress-dot)

-Xsuppress-dot
Suppress leading dots “.” in the object files following this option.

Suppress Section Names (-Xsuppress-section-names)

-Xsuppress-section-names
Do not output section names to the symbol table. This option is for other tools
which cannot process these names.

Suppress Paths in Symbol Table (-Xsuppress-path)

-Xsuppress-path
In the symbol table, suppress any pathname in “file” symbols (type STT_FILE,
see Table F-3).

Wind River Compiler for SPARC
User’s Guide, 5.4

372

Suppress Leading Underscores ‘_’ (-Xsuppress-underscore)

-Xsuppress-underscore
Suppress leading underscores “_” in the object files following this option. Note
that for symbols with more than one leading underscore, only the first will be
removed.

Remove/Keep Unused Sections (-Xunused-sections...)

-Xunused-sections-remove
Same as -Xremove-unused-sections (Remove Unused Sections
(-Xremove-unused-sections), p.369).

-Xunused-sections-keep
Same as -Xremove-unused-sections-off (Remove Unused Sections
(-Xremove-unused-sections), p.369).

-Xunused-sections-list
Print a list of removed sections.

373

 25
Linker Command Language

25.1 Example “bubble.dld” 374

25.2 Syntax Notation 376

25.3 Numbers 377

25.4 Symbols 377

25.5 Expressions 378

25.6 Command File Structure 379

25.7 MEMORY Command 380

25.8 SECTIONS Command 381

25.9 Assignment Command 389

25.10 Examples 390

The linker command language can:

■ Specify input files and options.

■ Specify how to combine the input sections into output sections.

■ Specify how memory is configured and assign output sections to memory
areas.

■ Assign addresses or other values to symbols.

A default linker command file, default.dld, is present in the conf directory. See
24.2 Defaults, p.356 for its use.

Wind River Compiler for SPARC
User’s Guide, 5.4

374

25.1 Example “bubble.dld”

Some examples in this chapter are drawn from the bubble.dld command file on
the next page for the “bubble sort” program in the Getting Started manual. This
example is distributed with the compiler suite in directory
version_path/example/sparc. The chapter ends with additional unrelated examples.
Some notes follow the figure.

25 Linker Command Language
25.1 Example “bubble.dld”

375

25

Figure 25-1 bubble.dld Linker Command File Extract

Linker Commands Explanation

MEMORY
{
rom1: org = 0x20000, len = 0x10000
rom2: org = 0x30000, len = 0x10000
ram: org = 0x80000, len = 0x30000
stack: org = 0xb0000, len = 0x10000

}

Define four memory areas.

SECTIONS
{
.text : { *(.text)

*(.init) *(.fini)
.ctors ALIGN(4):

{ ctordtor.o(.ctors) *(.ctors) }
.dtors ALIGN(4):

{ ctordtor.o(.dtors) *(.dtors) }
} > rom1

Collect code sections from all input files into a single output .text
section and locate it in rom1 (except for .text2 code sections).

.ctors and .dtors sections for startup and termination invocation.

.text2 : { *(.text2)
__DATA_ROM = .;

} > rom2

Collect all .text2 sections and locate in rom2.

Define __DATA_ROM as equal to the current location. The
symbols defined this way are used within this file and during
initialization.

GROUP : { Group .data and .bss output sections together in the order given.

__DATA_RAM = .;
.data LOAD(__DATA_ROM) : {}

__DATA_END = .;

Collect initialized data sections (.data) from all input files “{ }” into
a single output .data section and logically locate in ram.

But use LOAD to place the actual data after the .text2 section in
rom2. __init_main() will move the actual data from rom2 to
ram.

__BSS_START = .;
.bss : {}
__BSS_END = .;

Reserve space for all .bss sections in ram after the .data section.
Any remaining space will be used as heap by malloc().

__HEAP_START = .;
} > ram

}

Define other symbols used by crt0.s, init.c, and sbrk.c to control
initialization and memory allocation.
... Start of heap memory for sbrk.c.

__HEAP_END = ADDR(ram)+SIZEOF(ram);
__SP_INIT = ADDR(stack)+SIZEOF(stack);
__SP_END = ADDR(stack);

... End of heap memory for sbrk.c.

... Initial address of stack pointer for crt0.s

... Only used when stack probing for sbrk.c.

Wind River Compiler for SPARC
User’s Guide, 5.4

376

Notes for bubble.dld

Two features of bubble.dld are especially noteworthy:

■ The use of the LOAD specification to create two images of variables having
initial values, a physical image containing the initial values and intended for
some form of read-only memory, and a logical image where the variables will
reside during execution. See the LOAD Specification, p.386 and Copying Initial
Values From “ROM” to “RAM”, Initializing .bss, p.253 for details.

■ The definition of nine of the symbols:

– __DATA_ROM, __DATA_RAM, and __DATA_END used in copying the
initial values and __BSS_START and __BSS_END used in clearing static
uninitialized variables (see Copying Initial Values From “ROM” to “RAM”,
Initializing .bss, p.253).

– __HEAP_START and __HEAP_END to define the heap for use by malloc()
and related functions. See 15.4.7 Dynamic Memory Allocation - the heap,
malloc(), sbrk(), p.255.

– __SP_INIT and __SP_END to define the stack. See 15.4.6 Stack Initialization
and Checking, p.255.

25.2 Syntax Notation

Italic words such as area-name represent items you must supply. The required type
of each item — symbol name or number, can be gathered from the examples.

The following special characters are parts of commands and are required where
shown:

{ } () , ; > *

The following characters are used only in the command descriptions and not in the
linker command language itself. They have the meanings shown:

|
“or”

[]
The enclosed construct is optional. When several optional items are adjacent,
they may be given in any order.

25 Linker Command Language
25.3 Numbers

377

25

...
The preceding item or construct may be repeated.

For example

a [b | c] ...

means that a is required, then any number of b or c.

Note that the “{“ and “}” characters are part of commands and do not indicate a set
of alternatives from which one must be chosen.

Long lists of alternative tokens are given by following the phrase “one of” with a
list of the tokens on one or more lines, as in

assign-op: one of
= += -= *= /=

25.3 Numbers

Several linker commands require a number, for example to specify an address or a
size.

Numbers are hexadecimal if they begin with “0X” or “0x”, else octal if they begin
with “0”, else decimal. Hexadecimal digits are “0“ - “9“, “a“ - “f“, and “A“ - “F“;
octal digits are “0“ - “7“; decimal digits are “0V - “9“.

25.4 Symbols

A symbol, once defined, may be used anywhere a number is required except in a
MEMORY command. Symbols are defined in object files or by assignment
commands (see 25.9 Assignment Command, p.389).

A symbol defined in an assignment command is an identifier following the rules of
the C language with the addition of “$“ and “.“ as valid characters. Symbols may
be up to 1,000 characters long.

Wind River Compiler for SPARC
User’s Guide, 5.4

378

25.5 Expressions

A linker expression is allowed anywhere a number is required, and is one of the
following forms from the C language:

number
symbol
unary-op expression
expression binary-op expression
expression ? expression : expression
(expression)

where the operators are the following operators from the C language:

unary-op: one of

! ~ -

binary-op: one of

* / %
+ -
>> <<
== != >< <= >=
&
|
&&
||

The operators have their meaning and precedence as in C. Parentheses can be used
to change the precedence.

When a symbol name is used in an expression, the address of that symbol is used.
The symbol”.” means the current location counter (allowed only within a
statement list in a SECTIONS command).

The following pseudo functions are valid in expressions. Forward references are
permitted.

NOTE: A symbol or filename which does not follow these rules may be given by
quoting it with double-quote characters, for example, an object file named
“1234o.o”.

25 Linker Command Language
25.6 Command File Structure

379

25

SIZEOF (section-name)
Size of the named section (see Example 25-6Empty Sections, p.393 for an
important limitation when using the SIZEOF operator).

SIZEOF (memory-area-name)
Size of a memory area defined with the MEMORY command.

ADDR (section-name)
Address of the named section.

ADDR (memory-area-name)
Address of a memory area.

NEXT (expr)
First multiple of expr that falls into unallocated memory.

HEADERSZ
Total size of all the headers.

FILEOFFSET (section-name)
File offset of the named section.

ALIGN (value)
((. + value–1) & ~(value–1))

25.6 Command File Structure

A command file is a list of commands. These are:

MEMORY { memory-area-definition }
SECTIONS { section-or-group-definition ... }
assignment-command
object-filename
archive-filename
command-line-option

The above commands may each be repeated as many times as required and may
be given in any order as long as names are defined before use.

Each of these commands is described below except for the last three: in addition to,
or instead of, being given as arguments on the command line, object and archive
library files and command-line options may be given as commands.

Wind River Compiler for SPARC
User’s Guide, 5.4

380

The command language is free format. More than one command may be given on
a line, and a command may be written on multiple lines without need for any
special continuation character.

Identifiers are as in C with the addition of period “.” and “$” as a valid identifier
characters; identifiers may be up to 1,000 characters long.

Whitespace is generally required as in C around identifiers and numbers but not
special characters.

C-style comments are allowed anywhere whitespace would be.

25.7 MEMORY Command

MEMORY {
area-name : { origin | org | o } = start-address [,]

{ length | len | l } = number-of-bytes [,]
...

}

The MEMORY command names one or more areas of memory, e.g. “rom”, “ram”.
Each area is defined by a start address and a length in bytes. A later
section-definition command can then direct that an output section be located in a
named area. The linker will warn if the total length of the sections assigned to any
area exceeds the area’s length. Example:

MEMORY {
rom1: org = 0x010000, len = 0x10000
rom2: org = 0x020000, len = 0x10000
ram: org = 0x100000, len = 0x70000
stack: org = 0x170000, len = 0x10000

}

Symbols (25.4 Symbols, p.377) cannot be used within the MEMORY command;
start-address and number-of-bytes must be numeric expressions.

NOTE: While different object files may be named on both the command line and in
a linker command file, do not duplicate the same object filename in both places.
This may cause sections from the duplicated object file to be duplicated in memory.

25 Linker Command Language
25.8 SECTIONS Command

381

25

25.8 SECTIONS Command

SECTIONS {
section-definition | group-definition
...

}

The SECTIONS command does most of the work in a linker command file. Each
input object file consists of input sections. The primary task of the linker is to collect
input sections and link them into output sections. The SECTIONS command defines
each output section and the input sections to be made part of it. Within the
SECTIONS command, a GROUP statement may be used to collect several output
sections together.

The components of the SECTIONS command are described next. See Figure 25-1
for example illustrating many of the possibilities.

Section-Definition

At a minimum, each section-definition defines a new output section and specifies the
input sections that are to be put into that output section. Optional clauses may:

■ Specify an address for the output section or place the output section in a
memory area defined by an earlier MEMORY command.

■ Align the section.

■ Fill any holes in the section with a fixed value.

■ Define symbols to be used later in the linker command file or in the code being
linked.

The full form of a section-definition is shown in Figure 25-2. For clarity, each clause
is written on a separate line and is identified to its right for description below.

Wind River Compiler for SPARC
User’s Guide, 5.4

382

Note that most clauses are optional, and section modifiers (those preceding the “:”)
may be in any order. Thus, the minimum section-definition has the form:

output-section-name : { section-contents }

Section Contents

section-contents is required in a section-definition. section-contents is a sequence of one
or more of the forms from Figure 25-1 separated by whitespace or comment:

<empty>
That is, { } with no explicitly named section-contents: include in the output
section all sections from all input object files which have the same name as the
output-section-name. Example:

.data : { }

filename
Include all sections from the named object file which have the same name as
the output-section-name. Example:

.data : { test1.o, test2.o }

Figure 25-2 section-definition

Syntax Element

output-section-name
[([=]{BSS|COMMENT|CONST|DATA|TEXT|

BTEXT}[OVERLAY][NOLOAD])]
[address-value | BIND (expression)]
[ALIGN (expression)]
[LOAD (expression)]

[OVERFLOW (size-expression, overflow-section-name)
:
{ section-contents }
[=fill-value | =(fill-value[, size[, alignment]])]
[> area-name]

type-spec

address-spec
align-spec
load-spec
overflow-spec

fill-spec
area-spec

NOTE: Exercise caution when naming custom sections. Section names that begin
with a dot (.) may conflict with the compilation environment’s namespace.

NOTE: The <empty> form is processed only after the linker has examined and
processed all other input specifications. Thus, input sections loaded directly or
indirectly as a result of other more explicit specifications will not be re-loaded
by an { } form, even if they appear after it.

25 Linker Command Language
25.8 SECTIONS Command

383

25

* (input-section-spec ...)
input-section-spec may be one of four forms:

section-name
Include the named sections from all input object files but do not include
input sections already included earlier. Example:

.data : { *(.data) }

section-name[symbol]
Include the section defining the given symbol. The “[“ and “]” characters
do not mean “optional” in this case but rather are to be used as shown.
Example:

.text : { *(.text[malloc]) }

This form is especially useful with option -Xsection-split. See
5.4.109 Generate Each Function in a Separate CODE Section Class
(-Xsection-split), p.102.

*
Include all sections.

input-section-spec=n
Include sections according to input-section-spec and assign them priority n.
(See 23.6 Sorted Sections, p.349.)

object-filespec (input-section-spec ...)
Include the named sections from the named object file, where input-section-spec
is as defined immediately above and object-filespec is a pattern expression.*
Example:

.rom1 : { rom1.o(.data), rom1.o(.sdata) }

archive-filespec[member-name] (input-section-spec ...)
Include the named sections from the named object file, where
input-section-spec is as defined above, and archive-filespec and member-name
are pattern expressions.* Example:

.text : { libproj.a[malloc.o](.text) }

[COMMON]
For explicit placement of COMMON sections. See Linker Command File
Requirements with COMMON, p.348 for additional information.

[SCOMMON]
For explicit placement of SCOMMON sections. See SCOMMON Section, p.349
for additional information.

Wind River Compiler for SPARC
User’s Guide, 5.4

384

assignment-command
Define a symbol or change the program counter to create a “hole” (which may
be filled by a fill-value). See 25.9 Assignment Command, p.389.

ASSERT (expression[, text])
Evaluate expression and display an error message if expression is zero. Optional
text is included in error message.

STORE (expression, size-in-bytes)
Reserve and initialize storage (see STORE Statement, p.388).

*A pattern expression has the syntax:
filename | { expression }

where expression is one of the following:

! expression
expression | expression
expression & expression
(expression)
filename

and filename can include the following special characters:

* matches any string, including the null string.
? matches any single character.
[...] matches any one of the enclosed characters. A pair of characters
separated by a comma denotes a range.

Note that any pattern more complex than * should be enclosed in double quotes.
For example,

text_libimpfp.a (TEXT) :
libimpfp.a[*] (.text)

will read in all .text sections from all object files beginning with libimpfp.a. To read
in sections named .text and .Text from only those object files whose names begin
with libimpfp.asfpf, use

text_libimpfp.a (TEXT) :
libimpfp.a[“sfpf*”] (“.[Tt]ext”)

For more information, consult documentation on POSIX regular expressions.

The order of the sections listed in the section-contents is undefined as is the order of
output sections in a SECTIONS command. A GROUP definition may be used to
ensure the order of a set of output sections. (See GROUP Definition, p.389.)

25 Linker Command Language
25.8 SECTIONS Command

385

25

Type Specification: ([=]BSS), ([=]COMMENT), ([=]CONST), ([=]DATA), ([=]TEXT), ([=]BTEXT);
OVERLAY, NOLOAD

The type-spec clause sets the type of the output section. If absent, the type will be
determined by the types of the input sections. If all input sections in a given output
section are of the same type, the type of the output section will be that of the input
sections and no type-spec clause is necessary. Mixing input sections of different
types in a single output section is not recommended. If input sections do have
different types, the linker will choose a type from the input sections in the
following order from highest priority to least: TEXT, CONST, DATA, BSS, and
COMMENT.

To force the linker to choose the specified type regardless of the types of the input
sections, use the “=” form. For example, (=DATA) will force the output section to
have the DATA type.

type-spec can also be used when linking files produced by third-party tools which
do not tag each section with its type.

The alternative type specifications indicate the expected contents of the section:

(BSS)
Section contains uninitialized data space.

(COMMENT)
Section debug or other information not part of the program memory
space.

(CONST)
Section contains initialized data space.

(DATA)
Section contains initialized variables.

(TEXT)
Section contains code and/or constants.

(BTEXT)
Blank text section.

NOTE: A section-contents specification must have at least one non-COMMENT
input section, e.g., a BSS, CONST, DATA, or TEXT section, or the type of the output
section will default to COMMENT, and it will not be allocated any memory. See
below regarding section types.

Wind River Compiler for SPARC
User’s Guide, 5.4

386

OVERLAY tells the linker that the section can overlap other sections. The section
should have BIND specification; memory is not allocated for it. Example:

.text1 (TEXT OVERLAY) BIND(ADDR(.text)) : { }

NOLOAD tells the linker not to mark the section as loadable.

Address Specification

The form of the address-spec is:

address-value | BIND (expression)

The address-spec clause specifies the address for the first byte of the output section.
It is either an absolute address, address-value, or the word BIND followed by an
expression that can contain the functions SIZEOF, ADDR, and NEXT (see
25.5 Expressions, p.378). An address-spec is not allowed inside a GROUP (see
GROUP Definition, p.389).

ALIGN Specification

The form of the align-spec is:

ALIGN (expression)

An align-spec clause causes the linker to align the section on the byte boundary
given by the value of expression.

LOAD Specification

The form of the load-spec is:

LOAD (expression)

In a typical embedded system, the values for all variables with explicit
initialization must be stored in some type of read-only memory before the system
is “powered up”. During execution, the variables must themselves be located in
RAM so they can be set (except for const variables which can remain in ROM).
Thus, during startup, the initial values for these variables must be copied from
ROM to RAM.

NOTE: A section with an address specification (address-spec) does not need a
memory-area specification (area-spec), since the linker automatically marks the
corresponding address range as reserved. If both an address-spec and an area-spec
are provided, the linker checks that the address range is completely inside the
memory area and displays a warning if it is not.

25 Linker Command Language
25.8 SECTIONS Command

387

25

To distinguish these two locations, we refer to the physical and logical addresses of
the output section.

■ physical address: This is the address given by the expression in the load-spec. It is
this address which is used in the section header when the section is written to
the linked output file. Thus, if a dynamic loader loads the section, or the
section data is burned into a ROM, it will be at this physical address.

■ logical address: This address is set by an address-spec or an area-spec in the
section-definition. This will be actual address of the section during execution.
Thus, when linking references to a variable in the section, the linker will use
the variable’s logical address.

The following example is from Figure 25-1:

OVERFLOW Specification

The overflow specification enables you to specify the size limit of a section and to
request that the linker place input sections which will not fit into the initial section
into a different section, called the overflow section.

NOTE: The load-spec only controls the physical/logical addressing of the section.
Typically, assignment statements are used to define symbols for the physical and
logical addresses of the section and its length. These symbols are then used by
startup code to copy the physical data from ROM to its logical location in RAM.
See the examples in this chapter, as well as default.dld in the conf directory and
crt0.s in the appropriate target directory for the startup copying code.

Also, copying code in the startup module, init.c, copies only a single contiguous
physical section. Thus, while more than one LOAD specification is permitted, the
output sections named in the expressions must be contiguous.

GROUP : { ...
.data LOAD(__DATA_ROM) : {}
...

} > ram

output
section
name

collect all sections with
the same name as the
output section (.data)
from all input files

assign
logical
address in
ram

assign physical
“load” address at
__DATA_ROM
defined elsewhere

Wind River Compiler for SPARC
User’s Guide, 5.4

388

The form of the overflow-spec is:

OVERFLOW (size-expression, overflow-section-name)

The size-expression specifies the size of the initial section in bytes, and
overflow-section-name names the section that is to receive the input sections that
cannot fit into the initial section.

Fill Specification

The form of the fill-spec is

=fill-value

or

=(fill-value[, size[, alignment]])

The fill-spec instructs the linker to fill any holes in an output section with a two-byte
pattern. A hole is created when an assignment statement is used to advance the
location counter “.”. The linker also creates holes to align input sections according
to alignment. size and alignment are in bytes; valid values are 1, 2, and 4.

Area Specification

The form of the area-spec is

> area-name

where area-name is defined by an earlier MEMORY command (see 25.7 MEMORY
Command, p.380).

An area-spec causes the linker to locate the output section at the next available
location in the given area (subject to any ALIGN clause, see ALIGN Specification,
p.386).

STORE Statement

The STORE statement reserves and initializes memory space. Its form is:

STORE (expression, size-in-bytes)

where expression is the value to be stored at the current address, and size-in-bytes is
the size of the storage area, normally 4 for 32-bit values. Example:

_ptr_to_main = .;
STORE(_main, 4)

will create a label _ptr_to_main that contains the 4-byte pointer to the label _main.

25 Linker Command Language
25.9 Assignment Command

389

25

GROUP Definition

A SECTIONS command may contain group-definitions as well as section-definitions
(see 25.8 SECTIONS Command, p.381).

A group treats several output sections together and ensures they are located in a
continuous memory block in the order given in the group-definition. When sections
are not in a group, their order is not defined, although it may be dictated implicitly
by, for example, address-spec clauses.

The full form of a group-definition is shown below. For clarity, each clause is written
on a separate line and is identified to its right.

The clauses in a GROUP are defined above: address-spec in Address Specification,
p.386, align-spec in ALIGN Specification, p.386, section-definition in Section-Definition,
p.381, and area-spec in Area Specification, p.388.

25.9 Assignment Command

An assignment command defines or redefines the value of a symbol. Assignment
commands are allowed at the outer-most level of a linker command file, and as
items in the section-contents of a section-definition (see Section Contents, p.382).

GROUP

[address-value | BIND (expression)]
[ALIGN (expression)]
:

{ section-definition ... }
[> area-name]

address-spec
align-spec

area-spec

NOTE: The address-value and BIND clauses may not be used on a section-definition
inside a GROUP, only on the GROUP itself.

Both a section-definition and a group-definition can end with an area-spec. Usually
when defining a group, an area-spec is used only on the group-definition and not on
the section-definitions enclosed within it.

Wind River Compiler for SPARC
User’s Guide, 5.4

390

An assignment command may have either of the following forms:

symbol assign-operator expression ;
create an absolute symbol and assign it the value of expression

symbol @ {section-name | symbol2 }assign-operator expression ;
create a symbol in the given section, or the same section as symbol2, and
assign it the value of expression

where:

symbol and symbol2: an identifier following the rules of the C language with the
addition of “$” and “.” as valid characters and limited to 1,000 characters.

assign-operator: one of

= += -= *= /=

The assign”;” is required.

When the assignment is inside a section-definition, the special symbol “.” is allowed
on either the left or right and refers to the current location counter.

A “hole” can be created in a section by incrementing the “.” symbol. If the fill-spec
is used on the section-definition, the reserved space is filled with the fill-value.

Example: create a 100 byte gap in a section:

. += 100;

Example - define the beginning of the stack for use by initialization code:

__SP_INIT = ADDR(stack) + SIZEOF(stack);

25.10 Examples

Example 25-1 Avoiding Long Command Lines

A simple command file to avoid having to give a long command line when
invoking the linker could look as follows:

main.o
load.o
read.o
arch.a
-m2

25 Linker Command Language
25.10 Examples

391

25

This means: load files main.o, load.o and read.o, search archive arch.a, and
generate a detailed memory map.

The output sections for the above, not being defined in the command file itself, and
absent -Bd and/or -Bt options on the command line, will be as described for these
options (see Set Address for Data and tExt (-Bd=address, -Bt=address), p.359), and
using default addresses for each which are appropriate to the target.

Example 25-2 Basic

The command file:

MEMORY
{

mem1 : origin = 0x2000, length = 0x4000
mem2 : origin = 0x8000, length = 0xa000

}

SECTIONS
{

.text : {} > mem2

.data : {} > mem1

.bss : {} > mem1
}

_start_addr = start;

means that all .text sections are collected together and positioned in the memory
area starting at 8000 hex. The sections .data and .bss are placed in order in the
mem1 area beginning at 2000 hex. The symbol _start_addr is defined to be the
same as the address of the symbol start from one of the input files.

The input object files for the above linker command file are those given on the
command line (and any others extracted from libraries to satisfy unresolved
external symbols in those files).

Example 25-3 Define a Symbol, Create a “Hole”

The command file

SECTIONS
{

.text : {}

.data ALIGN(8) :
{

f1.o (.data)
_af1 = .;
. = . + 2000;

Wind River Compiler for SPARC
User’s Guide, 5.4

392

* (.data)
} = 0x1234
.bss : {}

}

means first load the .text sections. Align on 8 and load the .data section from the
file f1.o. Set the symbol _af1 to the current address. Create a hole in the output
section with a size of 2000 decimal bytes. Load the rest of the .data sections from
the files given on the command line. Fill the hole with the value 0x1234. Load the
.bss sections thereafter.

Example 25-4 Groups

The command file

MEMORY
{

a: org = 0x100a8, len = 0x7ffeff58
}

SECTIONS
{

.text BIND((0x10000 + HEADERSZ+7) & (~7)) :
{

*(.init) *(.text)
}

GROUP BIND(NEXT(0x10000) +
((ADDR(.text) + SIZEOF(.text)) % 0x2000)) :

{
.data : {}
.bss : {}

}
}

means that all input sections called .init or .text are combined into the output
section .text. This output section is allocated at the address “0x10000 + size of all
headers aligned on 8”.

If HEADERSZ is 0xe0, the address becomes 0x100e0.

The sections .data and .bss are grouped together and put at the next multiple of
0x10000 added to the remainder of the end address of .text divided by 0x2000.

If .text is 0x23450 bytes long, the values are defined to be:

NEXT(0x10000) = 0x40000
ADDR(.text) = 0x100e0
SIZEOF(.text) = 0x23450
(ADDR(.text)+SIZEOF(.text))%0x2000 = 0x01530
address of .data = 0x41530

25 Linker Command Language
25.10 Examples

393

25

This is a typical default algorithm in a paged system where it is important to align
the section addresses on the file-offset in the executable file.

Example 25-5 Document With C-Style Comments

The following command file is documented with C-style comments.

/*
* The following section defines two memory areas:
* one 1 MB RAM area starting at address 0
* one 1 MB ROM area starting at address 0x1000000
*/
MEMORY
{

ram: org = 0x0, len = 0x100000
rom: org = 0x1000000, len = 0x100000

}

/*
* The following section defines where to put the
* different input sections. .text contains all
* code + optionally strings and constant data, .data
* contains initialized data, and .bss contains
* uninitialized data.
*/

SECTIONS
{

/* Allocate code in the ROM area. */

.text : {} > rom

/*
* Allocate data in the RAM area.
* Initialized data is actually put at the end of the
* .text section with the LOAD specification.
*/
GROUP : {

.data LOAD(ADDR(.text)+SIZEOF(.text)) : {}

.bss : {}
} > ram

}

Note the use of the LOAD clause to allocate the .data section to a physical address
in ROM, after the .text section, while the logical address (the address used during
execution) is in the RAM. The initialized data in .data has to be moved from the
physical address to the logical address during start up.

Example 25-6 Empty Sections

It may be an error to define a section without any input sections. This extended
example begins with a sample linker command file extract likely to be faulty, and

Wind River Compiler for SPARC
User’s Guide, 5.4

394

then discusses some potential workarounds. Recommended solutions are at the
end of the example. While some of the workarounds are not recommended, they
serve to illustrate a number of principles in linker command file construction.

Consider the following example:

SECTIONS
{

...

.stack : {
stack_start = .;
stack_end = stack_start + 0x10000;

} > ram
...

}

The above is apparently intended to reserve space for a stack and to define symbols
marking its beginning and end.

There are four potential problems:

■ The address of the current location, “.”, and therefore of stack_start, is not
well-defined. If there are no input sections named .stack in the input files, then
stack_start will be at the “next” unfilled location in ram, or at the beginning of
the ram memory area if no other commands directing output to ram precede
the above .stack output section definition.

However, if .stack sections do appear in the input files, these will be
automatically included in this .stack output section — but whether they will
appear before or after the address given to stack_start is undefined (the rules
are complex and subject to change, so no guarantee of order is made for this
poorly constrained case).

If .stack sections do appear in the input files, the definition of “.” and therefore
of .stack_start can be made well defined by adding an input section
specification as follows:

.stack ALIGN(4) : {
stack_start = .;
*(.stack)
stack_end = .;

} > ram

■ stack_start may not be aligned as required. Lacking an align-spec as in the case
above, the alignment will be 1, which may not be valid if the .stack section
definition is preceded by a section with, for example, an odd length.

This problem could be solved by providing an align-spec:

.stack ALIGN(4) : { ... }

25 Linker Command Language
25.10 Examples

395

25

■ The assignment to stack_end will as expected define it to be stack_start plus
0x10000 bytes, but this assignment in and of itself does not allocate/reserve memory.
If other section definitions result in object bytes in what is intended to be the
stack area, the linker will not warn of the conflict.

This problem could be solved by incrementing the current location:

stack_start = .;
. += 0x10000;
stack_end = .;

Incrementing “.” creates a “hole”. The hole will be zero-filled (absent
specification of a different constant with option -f — see Specify “fill” Value (-f
value, size, alignment), p.360).

A reminder: the current location symbol, “.”, may appear only in a SECTIONS
command, either between section definitions, or within a section-definition
(Section-Definition, p.381) or a group-definition (GROUP Definition, p.389).

■ Creating a hole by incrementing “.” actually uses space in the output image
(which could be more of an issue with larger stack). If the area reserved for the
stack is expected to be 0, this unnecessary space in the output image can be
eliminated by a BSS type-spec (Type Specification: ([=]BSS), ([=]COMMENT),
([=]CONST), ([=]DATA), ([=]TEXT), ([=]BTEXT); OVERLAY, NOLOAD, p.385):

.stack (BSS) ALIGN(4) : { ... }

Combining all of the above, the following is at least valid and likely to produce an
acceptable result if there are no .stack sections in input files.

SECTIONS
{

...

.stack (BSS) ALIGN(4): {
stack_start = .;
. += 0x10000;
stack_end = .;

} > ram
...

}

However, because of its potential problems as described in this example, this
approach is not recommend. A recommended way to define a stack, especially in
combination with a heap, is to use GROUP definitions to locate sections in the
desired order, and then to define a stack and heap from the end of the final GROUP
(using assignment commands as above). Another way is to define a separate
memory area for the heap or stack with the MEMORY command. These approaches
are combined in the default.dld linker command file. See 25. Linker Command
Language for details.

Wind River Compiler for SPARC
User’s Guide, 5.4

396

Example 25-7 Right and Wrong Ways to Use SIZEOF

Adding the size of a section to its address is not a reliable way to calculate the
address of the next section to follow because there may be an alignment gap
between the sections. For example, the following figure shows incorrect and
correct ways to define the physical address in a LOAD specification and to define
a heap symbol. Incorrect commands in the incorrect method and changes in the
correct method are in bold.

Figure 25-3 Correct and Incorrect Use of SIZEOF

MEMORY (Used by both incorrect and correct examples.)
{

rom1: org = 0x20000, len = 0x10000 /* 3rd 64KB */
rom2: org = 0x30000, len = 0x10000 /* 4th 64KB */
ram: org = 0x80000, len = 0x30000 /* 512KB - 703KB */
stack: org = 0xb0000, len = 0x10000 /* 7043B - 768KB */

}

Incorrect LOAD Specification and Symbol Definition Using SIZEOF

SECTIONS
{

GROUP : {
.text : { *(.text) *(.init) *(.fini) }
.ctors ALIGN(4):{ ctordtor.o(.ctors) *(.ctors) }
.dtors ALIGN(4):{ ctordtor.o(.dtors) *(.dtors) }

} > rom1

.text2 : { *(.text2) } > rom2

GROUP : {
.data LOAD(ADDR(.text2) + SIZEOF(.text2)) : {}
.bss : {}

} > ram
...

__HEAP_START = ADDR(.bss) + SIZEOF(.bss); (Alignment gap after .bss could
make __HEAP_START wrong.)

__HEAP_END = ADDR(ram) + SIZEOF(ram); (Memory areas are fixed size;
SIZEOF use is correct.)

25 Linker Command Language
25.10 Examples

397

25

Example 25-8 Copying Code from “ROM” to “RAM”

In embedded systems, code and data are typically burned into a ROM-type device,
and then initial values for global and static variables are copied to RAM during
system startup. The startup code can automatically copy such initial values as
described in Copying Initial Values From “ROM” to “RAM”, Initializing .bss, p.253,
which makes reference to the linker LOAD specification. (See LOAD Specification,
p.386.)

Copying code, not just initial data values, to high speed RAM can increase
performance because it can be much faster to access than ROM. This example
shows how to modify a simplified version the version_path/conf/sample.dld file
shipped with the compiler suite to support this. In addition, a new copy_to_ram()
function is required, and crt0.s is modified to call it.

This example assumes an understanding of the startup code and the LOAD
specification referred to above.

Corrected

SECTIONS
{

GROUP : {
.text : { *(.text) *(.init) *(.fini) }
.ctors ALIGN(4):{ ctordtor.o(.ctors) *(.ctors) }
.dtors ALIGN(4):{ ctordtor.o(.dtors) *(.dtors) }

} > rom1

.text2 : { *(.text2) } > rom2

__DATA_ROM= .; (Define symbol for use in LOAD.)

} > rom2

GROUP : {
.data LOAD(__DATA_ROM) : {}
.bss : {}

} > ram
...

__HEAP_END = ADDR(ram) + SIZEOF(ram); Memory areas are fixed size;
__SP_INIT = ADDR(stack) + SIZEOF(stack); SIZEOF use is correct.)
__SP_END = ADDR(stack);

Figure 25-3 Correct and Incorrect Use of SIZEOF (cont’d)

Wind River Compiler for SPARC
User’s Guide, 5.4

398

The first part of this discussion describes changes that are made to the linker
command file. The following SECTIONS directive can be used to locate code
physically in ROM but logically in RAM:

SECTIONS
{

.text LOAD (ROM_ADDRESS) :{}
} > ram

The LOAD instruction tells the linker where code is to be loaded in ROM at load
time — the physical address (for example, when the PROM is burned). The area
specification (the > ram part of the statement) tells the linker where the code will
be during execution — the logical address. Note that this SECTIONS directive does
not copy the data from ROM to RAM; it only tells the linker where to resolve
references to functions, labels, string constants located with code, and so forth. In
this example a user-supplied function called copy_to_ram() does the actual
copying of code from ROM to RAM during system startup.

If a LOAD directive and an area specification such as those shown above are used
for the initialization code, that code will not be accessible. This is because the linker
would resolve references to the initialization code in the ram area, and so the
initialization code would never be found. One solution to this “chicken and egg”
problem is to refrain from copying the initialization code, crt0.o and
copy_to_ram(), to RAM, leaving it in ROM.

Here are the details:

1. Locate initialization code into ROM only, in a section called .startup. The
startup code consists of crt0.o and copy_to_ram().

2. Locate the rest of the code, and all global and static variables, physically in
ROM but logically in RAM, except for uninitialized variables, which is only
placed in RAM.

3. Assign symbols to keep track of important addresses in RAM and ROM. See
the diagram below.

25 Linker Command Language
25.10 Examples

399

25

The symbols __SOURCE (in ROM) and __DESTINATION (in RAM) mark the
beginning of the code areas (not including the initialization code).
__DATA_ROM_START marks the beginning of data in ROM, and __TEXT_END
marks the end of the .text section in RAM. __DATA_END marks the end of the code
and variable sections that are to be copied.

The next two pages show the simplified sample.dld, before and after changes are
made. Comments have been reduced to improve readability and unnecessary
details have been omitted; changes appear in bold text in the second version of
sample.dld. See bubble.dld for another example of more complete linker
command files in 25. Linker Command Language.

In the “after” linker command file (Figure 25-5), note that __DATA_ROM and
__DATA_RAM are made equal to each other in order to prevent crt0.o from
redundantly copying data. (crt0.o copies data from ROM to RAM if those symbols
are not equal; see Copying Initial Values From “ROM” to “RAM”, Initializing .bss,
p.253.)

RAM

ROM

__SOURCE

__DESTINATION

crt0.s and copy_to_ram()

data (global, static variables)

uninitialized data

code text

copy of data (global, static variables)

__DATA_ROM_START

__TEXT_END

copy of code text

__DATA_END

Wind River Compiler for SPARC
User’s Guide, 5.4

400

Figure 25-4 sample.dld As It Is Distributed

MEMORY
{
rom: org=0x0, len=0x100000
ram: org=0x100000, len=0x100000
stack: org=0x300000, len=0x100000

}

Specify memory layout.

SECTIONS
{
GROUP :
{
.text (TEXT) :{
*(.text) *(.rodata) *(.rdata)
*(.frame_info) *(.j_class_table)
*(.init) *(.fini)

.ctors ALIGN(4):{ ctordtor.o(.ctors)
*(.ctors) }

.dtors ALIGN(4):{ ctordtor.o(.dtors)
*(.dtors) }

}

__DATA_ROM = .;
} > rom

The first GROUP contains code and constant
data, and is allocated in the rom memory area.

GROUP : {
__DATA_RAM = .;

The second GROUP allocates space for
initialized and uninitialized data in the ram
memory area, as directed by > ram at the end of
the GROUP. This is the “logical” location;
references to symbols in the GROUP are to
ram.

.data (DATA) LOAD(__DATA_ROM) :
{ *(.data) *(.j_pdata) }

__DATA_END = .;

But the LOAD specification on the .data output
section causes that section to follow be at
__DATA_ROM in the GROUP above in the
actual image (the "physical" address).

__BSS_START = .;
.bss (BSS) : {}
__BSS_END = .;

__HEAP_START= .;
} > ram

}

Allocate uninitialized sections.

25 Linker Command Language
25.10 Examples

401

25

A simple copy program can be used to copy from ROM to RAM, using
__DATA_END and __DESTINATION to calculate the number of bytes to copy.

/* These symbols are defined in a linker command file. */

extern int __SOURCE[], __DESTINATION[], __DATA_END[];

#pragma section CODE ".startup"

void copy_to_ram(void) {

Figure 25-5 sample.dld Highlighting Changes Made for Copying from ROM to RAM

MEMORY { ... }

SECTIONS
{
.startup (TEXT) : {
crt0.o(.text)
*(.startup)
__SOURCE = (. + 3) & ~3;

} > rom

Create a startup section for initialization code,
crt0.o and copy_to_ram(), that will only be placed
in ROM. __SOURCE is the beginning address for
the ROM to RAM copy.

Make sure __SOURCE is aligned.

GROUP :
{
__DESTINATION = .;
.text (TEXT) LOAD(__SOURCE) : {

*(.text) ...
}

Combine the rest of the code and data into a group
located in RAM. Use LOAD directives to place all
of this group (except uninitialized data) in ROM.
__DESTINATION is the address in RAM for the
ROM-to-RAM copy. Some details (such as .ctors
and .dtors) have been removed.

__TEXT_END = .;
__DATA_ROM_START = __SOURCE +

__TEXT_END - __DESTINATION;

.data (DATA) LOAD(__DATA_ROM_START) :
{ *(.data) *(.j_pdata) }

__TEXT_END marks the end of code.

__DATA_ROM_START marks the beginning of
data in ROM.

__DATA_END = .;
__DATA_END marks the end of data to be copied.

__BSS_START = .;
.bss (BSS) : {}
__BSS_END = .;

__HEAP_START = .;
} > ram

}

Allocate uninitialized sections.

__DATA_ROM = 0;
__DATA_RAM = __DATA_ROM;

Make __DATA_ROM and __DATA_RAM equal
so initialization code will not copy initial values
from ROM to RAM.

Wind River Compiler for SPARC
User’s Guide, 5.4

402

unsigned int i;
unsigned int n;
/* Calculate length of the region in ints */
n = __DATA_END - __DESTINATION;

for (i = 0; i < n; i++) {
__DESTINATION[i] = __SOURCE[i];

}
}

crt0.s must call copy_to_ram(). The following is added after the comment “insert
other initialization code here,” before calling __init_main().

call copy_to_ram
nop

NOTE: An alternative to using copy_to_ram(), which is implemented with a for
loop, would be to call memcpy() from crt0.o, but then memcpy() would remain
in ROM, with its slow access.

403

PART V

Wind River Compiler Utilities

26 Utilities .. 405

27 D-AR Archiver ... 407

28 D-BCNT Profiling Basic Block Counter 413

29 D-DUMP File Dumper ... 417

30 dmake Makefile Utility .. 425

31 WindISS Simulator and Disassembler 427

Wind River Compiler for SPARC
User’s Guide, 5.4

404

405

 26
Utilities

The following chapters describe utility tools that accompany the compiler suite.

26.1 Common Command-Line Options

All tools in the Wind River suite accept the following command-line options where
meaningful. They are repeated here for convenience.

Show Option Summary (-?)

-?, -h,
--help

Show synopsis of command-line options.

Read Command-Line Options from File or Variable
(-@name, -@@name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the tool first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then it tries to open a file with given name

Wind River Compiler for SPARC
User’s Guide, 5.4

406

and substitutes the contents of the file. If neither an environment variable or a
file can be found, an error message is issued and the tool terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@O=file
Redirect any output to standard output to the given file.

Use of “+” instead of “=” will append the output to the file.

407

 27
D-AR Archiver

27.1 Synopsis 407

27.2 Syntax 407

27.3 Description 408

27.4 Examples 411

27.1 Synopsis

Create and maintain an archive of files of any type, with special features for object
files.

27.2 Syntax

dar command [position-name] archive-file [name] ...

Wind River Compiler for SPARC
User’s Guide, 5.4

408

27.3 Description

The dar command maintains files in an archive. Archives can contain files of any
kind. However, object files are handled in a special way. If any of the included files
is an object file, the archiver will generate an invisible symbol table in the archive.
This symbol table is used by the linker to search for missing identifiers without
scanning through the whole archive.

command is composed of a hyphen (-) followed by a command letter. One or more
optional modifier letters for some commands may either be concatenated to the
command letter, or may be given as separate option arguments (see below for
examples).

position-name is the name of a file in the archive used for relative positioning with
the -r and -m commands.

archive-file is the archive file pathname.

name is one or more files in the archive. Multiple name arguments are separated by
whitespace.

27.3.1 dar Commands

dar commands and modifiers are as follows. Modifiers are shown in brackets. See
also 26.1 Common Command-Line Options, p.405.

-d [lv]
Delete the named files from the archive.

-m [abiv]
Move the named files. If any of the [abi] modifiers are employed, the
position-name argument must be present and the files will be positioned in the
same manner as with the -r command. Otherwise the files are moved to the
end of the archive.

-p [sv]
Print the contents of the named files on the standard output. This is useful only
with text files in an archive; binary files, e.g., object files, are not converted and
so are not normally printable.

NOTE: An archive file consisting only of object files is also called a library, and so
the archiver is often referred to as a librarian.

27 D-AR Archiver
27.3 Description

409

27

-q [cflv]
Quickly append the named files at the end of the archive without checking
whether the files already exists. If the archive contains any object files, the
symbol table file will be updated. If the [f] modifier is used, the files will be
appended without updating the symbol table file, which is considerably faster.
Use the -s command when all files have been inserted in the archive to update
the symbol table.

-r [abciluv]
Replace the named files in the archive. New files are placed at the end of the
archive unless one of the [abi] modifiers is used. If so, position-name must be
given to specify a position in the archive. With the [bi] modifiers, the named
files will be positioned before position-name; with the [a] modifier, after it.

If the archive does not exist, create it.

If the [u] modifier is specified, then only files with a modification date later
than the corresponding files in the archive will be replaced.

-s [lR]
Update the symbol table file in the archive. Used when the archive is created
with the -qf command.

-t [sv]
List a table of contents for the archive on the standard output.

-V
Print the version number of dar.

-x [lsv]
Extract the named files from the archive and place them in the current
directory. The archive is not changed.

Table 27-1 dar Command Modifiers

Use With
Commands

a -m -r Insert the named files in the archive after the file
position-name.

b -m -r Insert the named files in the archive before the file
position-name. Same as “i” modifier.

c -q -r Does not display any message when a new archive
archive-file is created.

Wind River Compiler for SPARC
User’s Guide, 5.4

410

D pathname

-q -r When adding to or replacing files in an archive, prefix
pathname to name of each file to be stored to access it in the
file system (but do not store the additional pathname in the
symbol table).

f -q Append files to the archive, without updating the symbol
table file. If any of the files already exist, multiple copies will
exist in the archive. The next time the -s command is used
dar will delete all copies but the last of the files with the
same name.

i -m -r Insert the named files in the archive before the file
position-name. Same as “b” modifier.

j -q -r Store a path prefix if given with an object file in the archive
symbol table instead of just the base filename.

NOTE: The path prefix becomes part of the name in the
archive. Thus, if a single file x.o is added once as x.o and a
second time as lib/x.o using the “j” option, it will be stored
twice in the archive.

l -d -q -r -s -x Place temporary files in the current directory instead of the
directory specified by the environment variable TMPDIR, or
in the default temporary directory.

s -p -t -x Same as the -s command.

u -r Replace those files that have a modification date later than
the files in the archive.

v -d -m -p
-q -r -t -x

Verbose output.

R -s Sort object files in the archive so that the linker does not
have to scan the symbol table in multiple passes.

Table 27-1 dar Command Modifiers (cont’d)

Use With
Commands

27 D-AR Archiver
27.4 Examples

411

27

27.4 Examples

Some later examples build on earlier examples.

Example 27-1 New Archive

Create a new archive lib.a and add files f.o and h.o to it (the -r command could also
be used):

dar -q lib.a f.o h.o

Example 27-2 Modify Above Archive: Replace File, Add File

Replace file f.o, and insert file g.o in archive lib.a, and also display the version of
dar. Without the “a” modifier, the new file g.o would be appended to the end of the
archive. With the “a” modifier and the first f.o acting as the position-name in the
command, new file g.o is inserted after the replaced f.o:

dar -rav f.o lib.a f.o g.o

Example 27-3 Alternative command for Example 2

Example 27-1 - Example 27-2 can also be given in the following form with the
modifier letters given as separate options. The first item following dar must always
be the command from 27.3.1 dar Commands, p.408.

dar -r -a -v f.o lib.a f.o g.o

Example 27-4 Quick Append to Archive

Quickly append f.o to the archive lib.a, without checking if f.o already exists. This
operation is very fast and can be used as long as the archive is later cleaned with
the -sR command (see below):

dar -qf lib.a f.o

Example 27-5 Cleanup Archive After Quick Appends

Cleanup archive lib.a by creating a new sorted symbol table and removing all but
the last of files with the same name. This is useful after many files have been added
with the -qf option:

dar -sR lib.a

Wind River Compiler for SPARC
User’s Guide, 5.4

412

Example 27-6 Extract File from Archive Without Changing Archive

Extract file.c from archive source.a and place it in the current directory. The
archive is unchanged.

dar -x source.a file.c

Example 27-7 Delete File from Archive Permanently

Delete file.c files from archive source.a. The file is deleted without being written
anywhere:

dar -d source.a file.c

413

 28
D-BCNT Profiling Basic Block

Counter

28.1 Synopsis 413

28.2 Syntax 413

28.3 Description 414

28.4 Files 415

28.5 Examples 415

28.6 Coverage 416

28.7 Notes 416

28.1 Synopsis

Display profile data collected from one or more runs of a program.

28.2 Syntax

dbcnt [-f profile-file] [-h n] [-l n] [-n] [-t n] source-file, ...

Wind River Compiler for SPARC
User’s Guide, 5.4

414

28.3 Description

The dbcnt command displays the number of times each line in a source program
has been executed. It can also be used to show “coverage” information (see
28.6 Coverage, p.416).

The files to be measured must be compiled with the -Xblock-count option. By
definition, a basic block is a segment of code with exactly one entrance and one
exit. Thus, all statements in a basic block will have the same count. Compiling with
-Xblock-count causes the compiler to insert code into each basic block to record
each execution of the block. Each time the resulting program is run, the profile data
is stored in the file named in the environment variable DBCNT. If DBCNT is not set,
the file dbcnt.out will be used. If the program is executed more than once, the new
profile data will be added to the existing DBCNT file.

After the profile data has been collected and returned to the host, to display one or
more source files together with their line counts, enter the command:

dbcnt [options] source-file1, source-file2, ...

If the name of the DBCNT file is not dbcnt.out, use the -f option to provide the
pathname of the actual file with the line counting information. See below for
examples.

dbcnt options are as follows. See also 26.1 Common Command-Line Options, p.405.

28.3.1 dbcnt Options

-f file
Read profile data from file instead of dbcnt.out.

-h n
Do not print lines executed more than n times.

-l n
Do not print lines executed fewer than n times.

-n
Print the line number of every source line.

-t n
Print the n most frequently executed lines.

-V
Print the version number of dbcnt.

28 D-BCNT Profiling Basic Block Counter
28.4 Files

415

28

28.4 Files

28.4.1 Output File for Profile Data

dbcnt.out
Default output file for profile data.

DBCNT
Environment variable giving the name of the profile data file.

28.5 Examples

The file file.c (shown annotated below) is compiled with:

dcc -Xblock-count -o file file.c

When executed, the following output is produced:

47 numbers are multiples of 3 or 5.

dbcnt is used to show how many times each line is executed:

dbcnt file.c

dbcnt produces the following output:

file.c (1 run(s)):
main()
{

1 int i = 100, n = 0;
1
101 while(i > 0) {
100 if ((i % 3) == 0 || (i % 5) == 0) {
67
47 n++;
47 }
100 i--;
100 }
1 printf("%d numbers are multiples of 3 or 5.\n",n);

}

NOTE: Files processed by dbcnt must be unique in their first 16 characters.

Wind River Compiler for SPARC
User’s Guide, 5.4

416

The following will find the 100 most frequently executed source lines in a program:

dbcnt -n -t100 *.c

28.6 Coverage

The following will find all source lines which did not execute in a program:

dbcnt -h0 -l0 -n *.c

(The second option, -l0, is hyphen, lower-case L, 0.)

28.7 Notes

The functions __dbinic() and__dbexit() must exist in the standard library in order
for the linker to be able to link the files compiled with the -Xblock-count option.

For information on support for file I/O and environment variables in an
embedded environment, see 15.8.2 File I/O, p.261 and 15.11 Target Program
Arguments, Environment Variables, and Predefined Files, p.266.

See 15.12 Profiling in An Embedded Environment, p.268 for an additional example.

NOTE: When a source line contains more than one basic block, such as the if
statement above, empty lines are added to show the count of the basic blocks after
the first.

417

 29
D-DUMP File Dumper

29.1 Synopsis 417

29.2 Syntax 417

29.3 Description 418

29.4 Examples 423

29.1 Synopsis

Dump or convert all or parts of object files and archive files.

29.2 Syntax

ddump [command] [modifiers] file, ...

Wind River Compiler for SPARC
User’s Guide, 5.4

418

29.3 Description

An object file consists of several different parts which can be individually dumped
or converted with the ddump command.

ddump accepts both object files and archive files; in the latter case, each file in the
archive is processed by the ddump command. ddump can generate debugging
information only for code that is fully bound at link time; it does not work on
relocatable object files.

command is composed of a hyphen (-) followed by one or more command letters.
One or more optional modifier letters for some commands may either be
concatenated to the command letter, or may be given as separate option
arguments. Commands and options are all represented by unique letters and so
may be mixed in any order. Typically modifiers consisting of a single letter are
concatenated with commands, while modifiers taking a separate argument are
given as separate options (e.g., -Rv versus -R -o name).

See also 26.1 Common Command-Line Options, p.405.

29.3.1 ddump commands

-a
Dump the archive header for all the files in an archive file.

-B
Convert a hexadecimal file to binary format. Each pair of hexadecimal
numbers is translated to one byte in the output file. Whitespace (spaces, tabs,
and newlines) are ignored. Unless the -o modifier is used, the output file will
be named bin.out.

-C
Generate a difference file (either a SingleStep .blk file or an S-Record) from two
ELF executable files. Usage:

ddump -C [modifiers] file1 file2

The following special modifiers are available:

-h
Generate differences for read-only sections and a complete dump for
writable sections. Useful when the original executable has already run on
the target and has modified some writable information.

29 D-DUMP File Dumper
29.3 Description

419

29-v
Generate differences for initialized sections. Useful when the executable
has initialized uninitialized data.

-p2
Generate an S-Record instead of a .blk file.

-c
Dump the string table in each object file.

-D
Dump the DWARF debugging information in each object file.

-F
Demangle C++ names entered interactively, one per line (no files are
processed). Enter Ctrl-C or the end-of-file character to terminate interactive
mode. If combined with other options, prints demangled names. See 13.5 C++
Name Mangling, p.225 for details on how names are mangled.

-f
Dump the file header in each object file.

-g
Dump the symbols in the global symbol table in each archive file.

-H
Display the contents of any file in hexadecimal and ASCII formats. The -p
modifier will display hexadecimal only.

-h
Dump the section headers in each object file.

-l
Dump the line number information in each object file.

-N
Dump the symbol table information in each object file. Similar to the UNIX nm
command. The following special modifiers are available. See also the -t option
below for a more readable dump but without further options.

-x
Display numbers in hexadecimal.

-o
Display numbers in octal.

-u
Display only undefined symbols.

Wind River Compiler for SPARC
User’s Guide, 5.4

420

-p
Display symbols in BSD format.

-h
Suppress header.

-r
Display filename before symbol name.

-g
Emulate GNU nm output.

-o
Dump the optional header in each object file.

-R
Convert an executable (usually, or object) file to different formats, especially
Motorola S-Record format. The output file will be named srec.out unless the -o
modifier is used (see 29.3.1 ddump commands, p.418). Sections may be selected
with the -n or -d and +d modifiers as usual.

The following special modifiers are available:

-mt
Write S-Records of the given type: 1 for 16-bit addresses, 2 for 24
bit-addresses, 3 for 32-bit addresses (the default). No space is permitted
between “m” and t.

-p
Write a plain ASCII file in hexadecimal (not S-Record format).

-u
Write a binary file (not S-Record format). Inter-section gaps of size less
than or equal to 10KB are filled with 0. The size may be changed with the
-y option described in 29.3.1 ddump commands, p.418. A larger gap will
cause an error.

-v
Do not output the .bss or .sbss section (applies to all output formats).

NOTE: -o is both a command and an option. If any of the commands -B, -I, or
-R are encountered, then a following -o is assumed to specify the output file
for the -B, -I, or -R command. If -o is encountered first, then it is the command.
See the -o modifier on 29.3.1 ddump commands, p.418.

29 D-DUMP File Dumper
29.3 Description

421

29Without -v, S-Records will be generated to set .bss and .sbss sections to 0.
This will increase transmission or programming time when sending
S-Records to PROM programmers or other devices and may not be
desirable.

-wn
Set the line width of the S-records to represent n data characters. The actual
line length is 2n plus the size of other fields such as the address field. The
default value of n is 20. 2n is used instead of n because it takes 2n hex digits
to represent n characters. No space is permitted between “w” and n.

-r
Dump the relocation information in each object file.

-S

Display the size of the sections. Similar to the UNIX size command. By using
the -f modifier, the section names will be included in the output. By default,
only the .text, .data, and .bss sections will be included. By using the -v
modifier, all sections will be included.

-s
Dump the section contents in each object file.

-t
Dump the symbol table information in each object file.

-tindex
Dump the symbol table information for the symbol indexed by index in the
symbol table.

+tindex
Dump the symbol table information for the symbols in the range given by the
-t option through the +t option. If no -t was given, 0 is used as the lower limit.

-V
Print the version number of ddump.

-zname
Dump the line number information for the function name.

-zname,number
Dump the line number information in the range number to number2 given by
+z for the function name.

NOTE: Use of the v modifier, that is, -sv, is highly recommended.

Wind River Compiler for SPARC
User’s Guide, 5.4

422

+znumber2
Provide the upper limit for the -z option.

Table 29-1 ddump command modifiers

Use With
Command

-d
number

-h -l -R -s Dump information for sections greater than or equal to
number. Sections are numbered 1, 2, etc.

+d
number

-h -l -R -R -s Dump information for sections less than or equal to
number.

-n
namelist

-h -l -R -s -t Dump the information associated with each section
name in a comma-separated list of section names.

-o name -I -R Specify an output filename for the -B, -I, and -R
commands. (See note regarding the -o command in
29.3.1 ddump commands, p.418.)

-p any but -I Suppress printing of headers. Special meaning with -R.

-p name -I only Set the processor name in the “Module Begin” record. If
this option is not specified the processor name is taken
from the magic number of the input file. A list of
processor names and magic numbers can be found in
the IEEE 695 specification.

-u any Underline filenames. Special meaning with -R.

-v any Dump information in verbose mode. Special meaning
with -R.

-yn -Ru Change the size of the gap zero-filled by the -Ru
command to n (see 29.3.1 ddump commands, p.418). For
example:

ddump -Ru -y20000 ...

will permit gaps from 1 through 20,000 bytes.

29 D-DUMP File Dumper
29.4 Examples

423

2929.4 Examples

Example 29-1 Dump File Header and Symbol Table for Files in Archive

Dump the file header and symbol table from each object file in an archive in
verbose mode:

ddump -ftv lib.a

Example 29-2 Convert Executable File to Motorola S-Records

Convert an executable file named test.out to Motorola S-Record format, naming
the output file test.rom. Use the -v option to suppress the .bss section (without -v,
S-Records would be generated to fill the .bss section with zeros).

ddump -Rv -o test.rom test.out

Example 29-3 Generate S-Records Only for “data” Sections

Same as the prior example but convert and output only section .data and call the
result data.rom.

ddump -R -n .data, -o data.rom test.out

Example 29-4 Display Section Sizes

Use -Sf to show the size of all sections loaded on the target. See below:

ddump -Sf a.out
9056(.text+.sdata2) + 772(.data+.sdata) + 428(.sbss+.bss) =

10256

Example 29-5 Demangle C++ Names

Demangle C++ names with ddump -F:

ddump -F command entry
mymain__FiPPc user entry
mymain(int , char **) demangled result
init__7myclassFv user entry
myclass::init(void) demangled result

Wind River Compiler for SPARC
User’s Guide, 5.4

424

425

 30
dmake Makefile Utility

30.1 Introduction 425

30.2 Installation 425

30.3 Using dmake 426

30.1 Introduction

Rebuilding the Wind River libraries requires the special make utility, dmake, by
Dennis Vadura. dmake is shipped and installed automatically with the tools.

dmake supports the standard set of basic rules and features supported by most
“make” utilities — see the documentation for other “make” utilities for details.

30.2 Installation

The dmake executable is shipped in the bin directory and requires no special
installation.

Wind River Compiler for SPARC
User’s Guide, 5.4

426

30.3 Using dmake

Use dmake as a typical “make” utility. For example, enter dmake without
parameters to cause it to look for a makefile named, on Windows, makefile
(case-insensitive), and on UNIX, first makefile and then Makefile.

Enter dmake -h for a list of command-line options.

dmake requires a “startup” file unless the -r option is given on the command line,
and will look for the file in the following locations in order:

■ The value of the macro MAKESTARTUP if defined on the command line.

■ The value of the MAKESTARTUP environment variable if defined.

■ The file version_path/dmake/startup.mk (supplied as shipped).

427

 31
WindISS Simulator and

Disassembler

31.1 Synopsis 427

31.2 Simulator Mode 428

31.3 Batch Disassembler Mode 433

31.4 Interactive Disassembler Mode 434

31.5 Examples 435

31.1 Synopsis

WindISS, the Wind River Instruction Set Simulator, is a simulator for executables
and a disassembler for object files and executables. The disassembler mode
provides both batch and interactive disassembly. The three modes of operation are
selected by:

windiss ...
Simulation (with no -i option).

windiss -i ...
Batch disassembly.

windiss -ir ...
Interactive disassembly.

The modes of operation are described the next three sections.

Wind River Compiler for SPARC
User’s Guide, 5.4

428

31.2 Simulator Mode

In simulator mode, windiss can take command-line arguments, input from
standard input, and send output to standard output.

Table 31-1 Syntax (Simulator Mode)

windiss [-b binary-offset] Load file at address; requires -t option.

[-d debug-mask] Write debugging information.

[-D] Trace execution, show disassembly and register state.

[-Df trace-file] Send -D... trace output to file.

[-Di trigger-address[.. stop-address] Trace only on execution in address range;

[, trace-count]] trace for count instructions.

[-Dm range-start[.. range-stop] Start trace on first read/write in address range.

[, trace-count]] trace for count instructions.

[-Ds skip-count[, trace-count]] Start trace after skip-count instructions; trace for
count.

[-Dx max-count] Execute max-count instructions, then stop.

[-e entry-point] Set entry point address.

[-h hex-offset] Load at offset; requires -t option.

[-I mem-init-value] Initialize memory to low byte of value, else to 0.

[-m mem-size] Set memory size in bytes; suffixes K (kilo) or M
(mega).

[-ma] Allocate memory automatically when accessed.

[-mm range-start[..range-end] [r][w][x]
[,range-start[..range-end] [r][w][x]] [,
...]]

Specify memory map in address range(s); r, w, and x
set memory type to read, write, and execute.

[-M address-mask] Specify address mask applied to simulated target.

[-N nice-value] Run with lower priority on windows; nice-value can
be 0 (default) to 6 (lowest priority).

31 WindISS Simulator and Disassembler
31.2 Simulator Mode

429

31

31.2.1 Compiling for the WindISS Simulator

The simulator is easiest to use with ELF files that were compiled for the windiss
environment, without hardware floating point support (which windiss does not
provide). To select the windiss environment when compiling, assembling, and
linking, either:

■ Use -ttof:windiss on the compiler, assembler, or linker command line.

■ Use dctrl -t to specify the target and environment. When dctrl prompts Select
environment, select other, and then enter windiss.

If object files were not compiled with ELF object file coding, the linker option -Xelf
can be used to produce ELF file executables. Also, special switches described
below allow for simulation using binary and hex files.

31.2.2 Simulator Mode Command and Options

The following shows options for running windiss in simulator mode. The space
between the option and its value is optional unless otherwise noted. When an
option has multiple values, no other spaces are allowed. All numeric values may
be specified in decimal or hex, e.g., 16 or 0x10.

[-p] Generate count profile without using -Xprof...
options.

[-q] Quiet mode — no messages except user output.

[-r] Internal use by RTA.

[-s clock-speed] Set clock speed (in megahertz).

[-S stack-address] Specify initial value of stack and environment area.

[-t target-name] Set target. target-name may be set to SPARC.

[-V] Display version number.

[-X exception-mask] Set exception mask.

filename [argument...] Executable file to simulate and arguments to it if any.

Table 31-1 Syntax (Simulator Mode)

Wind River Compiler for SPARC
User’s Guide, 5.4

430

-b address
Load binary file at address. The -t option must be used to indicate the target.

-d debug-mask
Write debugging information using debug-mask to indicate options. Mask bits
may be ORed and are specified in hex, e.g. 0xc. Mask bits not listed below are
reserved. The mask bits are as follows:

-D

Show initial register state; trace execution, showing disassembly for all
instructions; show values for all registers that are changed.

-Df trace-file
Direct output from all -D tracing options (-D, -Di, -Dm, and -Ds) to the
trace-file.

-Di trigger-address
[.. stop-address]
[, trace-count]
Enable tracing, displaying each instruction as it executes and any registers
modified by it on stdout. No space is allowed in the arguments except after
-Di.

Start tracing when the PC enters the range from trigger-address..stop-address.
The default for stop-address gives a range of one instruction at the
trigger-address.

Addresses may be symbols.

Stop tracing when execution reaches the stop-address or after trace-count
instructions. If neither is present, tracing continues until the program
terminates. Note that the program does not terminate when tracing stops —
the program always runs until completion unless the -Dx option is present.

If trace-count is 0, tracing is enabled as long as the PC is within the specified
function or range. When the PC is outside of range (e.g. when executing a
subroutine), tracing is disabled.

1, 2 Turn logging on for the RTA server. Bit 2 requests more detail
than bit 1.

4 Cannot be used without bit 8. When used with bit 8, windiss
displays the contents of buffers for POSIX calls.

8 Log POSIX calls.
16 Log exceptions, if exceptions are enabled. For example, the

timer interrupt can be logged.
64 Log target memory handling.

31 WindISS Simulator and Disassembler
31.2 Simulator Mode

431

31

Program output to stdout is intermixed with trace output unless the -Df
option is used to redirect trace output to a different file. Examples:

windiss -Di main hello.out
Trace beginning at main.

windiss -Di main,1 hello.out
Trace one instruction beginning at main.

windiss -Di main..printf hello.out
Trace from main through the first entry to printf.

windiss -Di printf,0 hello.out
Trace printf, skipping subroutine calls.

Note: simulation is slower with this option.

-Dm range-start [.. range-stop] [, trace-count]
Start tracing on the first read or write to any memory location in the given
range. Stop tracing after trace-count instructions if present.

See -Di for other details and related examples.

-Ds skip-count[, trace-count]
Execute at full speed until skip-count instructions have been executed and then
begin tracing each instruction as executed. Stop tracing after trace-count
instructions if present.

See -Di for other details and related examples.

-Dx max-count
Execute max-count instructions and then stop.

-e entry-point
Specify the entry point of binary file.

-El
-Eb

Specify endianity for a binary file: -Eb for big-endian, or -El for little-endian.

-h address
Load hex file at address. The -t option must be used to indicate the target.

-I mem-init-value
Initialize memory to the low-order byte of the given value. Memory is cleared
to 0 without this option.

-mmem-size
Specify size of memory in simulator. Sizes can be specified in bytes, kilobytes
with “k” or “K”, or megabytes with “m” or “M”. For example, the following
are equivalent: -m 2M, -m 2048K, -m 2097152, and -m 0x200000. The program
terminates with an error if the end of memory is reached.

Wind River Compiler for SPARC
User’s Guide, 5.4

432

-ma

Use automatic memory allocation. Memory is allocated when accessed.

-mm range-start[..range-end] [r][w][x] [,range-start[..range-end] [r][w][x]] [, ...]
Specify a memory map starting at range-start and ending at range-end. The r, w,
and x flags set the memory type to read, write, and execute; the default is rwx.
Multiple ranges can be specified.

-Mmemory-mask
Specify an address mask to be applied to all target addresses before access to
the simulated memory. Used to mask off high address bits to fit applications
linked to high memory.

-N nice-value
Run windiss using lower priority on windows. nice-value can be 0 to 6, where
0 is the default (normal execution) and 6 is the lowest priority.

(none) or -?

Use windiss alone on the command line to see a list of windiss options.

-p

Generate count profile data even for programs not compiled with -Xprof-...
options, effectively using -Xprof-count (97; hierarchical profile data not
available). Without -r, upon program completion, the profile data is written to
stdout. With -r, the RTA collects the profile data.

-q

Run in quiet mode: do not print messages other than output from the user’s
program.

-r

Not for direct use. Used for connection to the RTA.

-s clock-speed
Set simulated clock speed in megahertz. The default is 10 (MHz). clock-speed
must be an integer. This does not change the execution speed of windiss itself;
rather, it changes the simulated time reported by windiss.

-S stack-address
Specify the initial value of the stack and environment area. The default is to use
the highest available memory address, or 0x80000000 if automatic memory
allocation is used (see -ma above).

-t target-name
Specify target processor for program. Not needed for ELF files. Abbreviated
names are used for specifying target processors: ARM, M32R, MC68K, MCF
(for ColdFire), MCORE, MIPS, NEC, PPC, SH, SPARC, and X86. (Note that
these abbreviated names are only the initial part of the t component of the

31 WindISS Simulator and Disassembler
31.3 Batch Disassembler Mode

433

31

-ttof:environ option to the compiler, linker and assembler. Only the abbreviated
forms shown are currently permitted with windiss.)

-V
Print windiss version.

-X exception-mask
Not implemented at this time for SPARC microprocessors.

31.3 Batch Disassembler Mode

31.3.1 Syntax (Disassembler Mode)

windiss -i[o | e | l] [label] [-R1 start-address [-R2 end-address]] [-R3 section] filename

label is used only with the l modifier.

For the -ir option, see 31.4 Interactive Disassembler Mode, p.434.

31.3.2 Description

Batch disassembly mode is selected by the -i option with no “r” modifier. In batch
disassembler mode, windiss disassembles ELF object files and executables and
writes the assembly code to standard output. The -i stands for instructions.
windiss can disassemble programs compiled either:

■ For the windiss environment, without hardware floating point support. See
31.2.1 Compiling for the WindISS Simulator, p.429.

■ For other environments, if there are no floating point instructions.

The modifiers o, e, and l are appended to the -i without an additional hyphen and
with no spaces allowed. Modifiers may be used together in any order. To
disassemble code use:

■ -i alone to disassemble the whole file.

■ [e] -R1 start-address [-R2 end-address] to specify code addresses. Use 0x for hex
numbers. If part of a function is specified by a -R1 and -R2 options, the entire
function is disassembled unless the “e” option is used to request exact

Wind River Compiler for SPARC
User’s Guide, 5.4

434

addresses. A space is required between either the -R1 or -R2 option and the
address.

■ -R3 section to specify a section index in the object file. If the specified section
has zero length, the option is ignored.

■ o to also show machine code.

■ l label to specify the name of a function to be disassembled.

31.4 Interactive Disassembler Mode

31.4.1 Syntax (Interactive Disassembler Mode)

windiss -ir[o] filename

31.4.2 Description

In interactive disassembler mode, windiss prints the disassembled ELF object
code and executables interactively. The -i stands for instructions; the r modifier
selects interactive mode; the o modifier shows hex machine code in addition to
assembly language. windiss can disassemble programs compiled either:

■ For the windiss environment, without hardware floating point support. See
31.2.1 Compiling for the WindISS Simulator, p.429.

■ For other environments, if there are no floating point instructions.

To disassemble code in interactive mode:

d[isasm] label | [-e] start-address [end-address]

If part of a function is specified, the entire function will be disassembled unless the
-e option is given. The -e option requests that exact addresses be disassembled,
without other code.

To quit interactive mode:

q[uit]

31 WindISS Simulator and Disassembler
31.5 Examples

435

31

31.5 Examples

Example 31-1 Simulate Using All Defaults

Run windiss in simulator mode. The program output is 17.

windiss a.out

17
windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled

Example 31-2 Simulate with Specified Memory Sizes

Run windiss in simulator mode, specifying memory size as 20,000 bytes, and then
1 megabyte:

windiss -m 20000 a.out

windiss: loading outside of memory, EA=0x4c00 (increase by using -m
<size>)

windiss -m 1M a.out

17
windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled

Example 31-3 Simulate Showing POSIX Calls

Run windiss in simulator mode, and use the debug option with a mask to show
POSIX calls.

windiss -d 8 a.out
%% posix call 120: isatty(1), ret=1, errno=0
%% posix call 4: write(1, 0x6bfc, 4)

17
windiss: task finished, exit code: 83521, Instructions executed: 2118
windiss: interrupts were never enabled

Example 31-4 Batch Disassemble Entire File

Disassemble a.out:

windiss -i a.out

Example 31-5 Batch Disassemble One Function in File

Disassemble main in a.out:

windiss -il main a.out

Wind River Compiler for SPARC
User’s Guide, 5.4

436

Example 31-6 Batch Disassemble Functions in Address Range

Disassemble all code in function which includes addressees from 0x9c to 0x4e:

windiss -i -R1 0x9c -R2 0x4e a.out

Disassemble only code from 0x9c to 0x4e:

windiss -ie -R1 0x9c -R2 0x4e a.out

Example 31-7 Interactive Disassembly

Disassemble a.out in interactive mode, examine main and addresses 0xa0 to 0xa4:

windiss -ir a.out Command line
d main Interactive command
d -e 0xa0 0xa4 Exact address range

q Quit

437

PAR T VI

C Library

32 Library Structure, Rebuilding 439

33 Header Files .. 453

34 C Library Functions ... 459

Wind River Compiler for SPARC
User’s Guide, 5.4

438

439

 32
Library Structure, Rebuilding

32.1 Introduction 439

32.2 Library Structure 440

32.3 Library Sources, Rebuilding the Libraries 449

32.1 Introduction

These chapters describe the C libraries provided with Wind River compiler.

The libraries are compliant with the following standards and definitions:

■ ANSI X3.159-1989
■ ISO/IEC 9945-1:1990
■ POSIX IEEE Std 1003.1
■ SVID Issue 2

For C++ specific headers, see 13.1 Header Files, p.219.

Wind River Compiler for SPARC
User’s Guide, 5.4

440

32.2 Library Structure

The Wind River library structure supports a wide range of processors, types of
floating point support, and execution environments. This section describes that
structure and the mechanism used by the linker to select particular libraries.

This section should be read in conjunction with the following:

■ 2. Configuration and Directory Structure.
■ 4. Selecting a Target and Its Components.

These sections describe the location of the components of the tools and the
configuration variables (and their equivalents — environment variables and
command-line options) used to control their operation. That knowledge is
assumed here.

32.2.1 Libraries Supplied

The next table shows the libraries distributed with the tools. This does not include
libc.a, which is not an archive library, but is instead a text file which includes other
libraries (see 32.2.3 libc.a, p.445). These libraries are distributed in various
subdirectories of version_path as described following the table.

libcfp.a

Floating point functions called by user code, including, for example, the printf
and scanf formatting functions (but not the actual device input/output code).
The version selected depends on the type of floating point selected: hardware,
software, or none as described below.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.445).

libchar.a

Basic operating system functions using simple character input/output for
stdin and stdout only (stderr and named files are not supported). This is an
alternative to libram.a.

Sometimes included automatically by libc.a, see 32.2.3 libc.a, p.445.

NOTE: Libraries are usually selected automatically by the -t option to the linker, or
by default as set by dctrl -t. This section is provided for user customization of the
process and can be skipped for standard use.

32 Library Structure, Rebuilding
32.2 Library Structure

441

32

libcomplex.a

C++ complex math class library for use with older compiler releases. See Older
Versions of the Compiler, p.214.

Not automatic; include with -l complex option.

libd.a

Additional standard library and support functions delivered with C++ only
(libc.a is also required).

Included automatically in the link command generated by dplus. If the linker
is invoked directly (command dld), then must be included by the user with the
-ld option.

libdold.a

Additional standard library and support functions delivered with C++ only
(libc.a is also required) for use with older compiler releases. See Older Versions
of the Compiler, p.214.

Included automatically in the link command generated by dplus when the
-Xc++-old option is used. If the linker is invoked directly (command dld), then
must be included by the user with the -ldold option.

libi.a

General library containing all standard ANSI C functions except those in
libcfp.a, libchar.a, and libram.a.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.445).

libimpfp.a

Conversions between floating point and other types. There are three versions:
one for use with hardware floating point, one for software floating point, and
an empty file when “none” is selected for floating point.

libimpl.a

Utility functions called by compiler-generated or runtime code for constructs
not implemented in hardware, e.g. low-level software floating point (except
conversions), 64-bit integer support, and register save/restore when absent in
the hardware.

Typically included automatically by libc.a (see 32.2.3 libc.a, p.445).

libios.a

C++ iostream class library for use with older compiler releases. See Older
Versions of the Compiler, p.214.

Not automatic; include with -lios option.

Wind River Compiler for SPARC
User’s Guide, 5.4

442

libm.a

Advanced math function library.

Not automatic; include with an -lm option.

libstl.a

Alias for libstlstd.a.

Not automatic; include with -lstl (or -lstlstd) option.

libstlabr.a

Abridged standard C++ library. Does not provide exception-handling
functions or the type_info class for RTTI support. For more information, see
13.2 C++ Standard Libraries, p.220.

Not automatic; include with -lstlabr option.

libstlstd.a

C++ iostream and complex math class libraries.

Not automatic; include with -lstlstd (or -lstl) option.

libwindiss.a

Support library required by the windiss core instruction-set simulator. This
library is included automatically whenever a -t option ending in “:windiss” is
used, for example, -tSPARCliteES:windiss. See 31. WindISS Simulator and
Disassembler for details.

libpthread.a

Unsupported implementation of POSIX threads for use with the example
programs. Text file which includes sub-libraries libdk*.a.

libram.a

Basic operating system functions using Ram-disk file input/output—an
alternative to libchar.a.

Sometimes included automatically by libc.a (see 32.2.3 libc.a, p.445).

The tools accommodate requirements for different floating point and target
operating system and input/output support using two mechanisms:

■ libc.a is a text file which includes a number of the libraries listed above.
Several libc.a files which include different combinations are delivered for each
target.

■ The configuration information held in the configuration variables DTARGET,
DOBJECT, DFP, and DENVIRON causes dcc or dplus to generate a particular set
of paths used by the linker to search for libraries. By setting these configuration
variables appropriately, the user can control the search and consequently the

32 Library Structure, Rebuilding
32.2 Library Structure

443

32

particular libc.a or other libraries used by the linker to resolve unsatisfied
externals.

As described in 4. Selecting a Target and Its Components, these four configuration
variables are normally set indirectly using the -ttof:environ option on the
command line invoking the compiler, assembler, or linker or by default with
the dctrl program.

■ The DENVIRON configuration variable (set from the environ part of
-ttof:environ) designates the “target operating system” environment. The tools
use two standard values: simple and cross, which as shown below, help define
the library search paths.

In addition, the tools may be supplied with directories and files to support
other environ operating-system values. See the release notes and other relevant
documentation for details on any particular operating system supported.

The remainder of this section describes these mechanisms in more detail.

32.2.2 Library Directory Structure

For SPARC microprocessors:

■ The library directories all begin with “SPARC” as shown in Table 32-1.

■ The object module format specifier — the o part of the -ttof:environ option or its
equivalent, is “L” for ELF.

■ The tools have been installed in the version_path directory as described in
Table 2-1.

Given the above assumptions, and following the pattern described in 4. Selecting a
Target and Its Components, the libraries above (32.2.1 Libraries Supplied, p.440) will
be arranged as follows:

Table 32-1 Library Directory Locations

Directory / file Contents

SPARCE/ Directories and files for ELF components (final “E” in SPARCE).

libc.a Text file which includes other ELF libraries as described below
— no input/output support.

Wind River Compiler for SPARC
User’s Guide, 5.4

444

libchar.a ELF basic operating system functions using character
input/output for stdin and stdout only (stderr and named
files are not supported).

libi.a ELF standard ANSI C functions.

libimpl.a ELF functions called by compiler-generated or runtime code.

libd.a ELF additional C++ standard and support functions.

libram.a ELF basic operating system functions using RAM-disk
input/output.

cross/libc.a ELF libc.a which includes the RAM-disk input/output library
libram.a.

simple/libc.a ELF libc.a which includes the basic character input/output
library libchar.a.

windiss/libwindiss.a Support library for WindISS instruction-set simulator when
supplied. Note: implicitly also uses cross/libc.a.

SPARCEN/ ELF floating point stubs for floating point support of “None”.

libcfp.a Stubs to avoid undefined externals.

libimpfp.a Empty file required by different versions of libc.a.

SPARCES/ ELF software floating point libraries:

libcfp.a Floating point functions called by user code.

libcomplex.a Old C++ complex math class library.

libimpfp.a Conversions between floating point and other types.

libios.a Old C++ iostream class library.

libm.a Math library.

libpthread.a Unsupported implementation of POSIX threads for use with the
example programs. Text file which includes sub-libraries
libdk*.a.

Table 32-1 Library Directory Locations (cont’d)

Directory / file Contents

32 Library Structure, Rebuilding
32.2 Library Structure

445

32

32.2.3 libc.a

There are three libc.a files in the table above. Each of these is a short text file which
contains -l option lines, each line naming a library. The -l option is the standard
command-line option to specify a library for the linker to search. When the linker
finds that libc.a is a text file, it reads the -l lines in the libc.a and then searches the
named libraries for unsatisfied externals. (As with any -l option, only the portion
of the name following “lib” is given; thus, -li identifies library libi.a.)

This approach allows the functions in libc.a to be factored into groups for different
floating point and input/output requirements. Three of the libc.a files delivered
with the tools are:

Notes:

■ Only one of the simple or cross (or similar) libraries should be used.

■ windiss is a pseudo-value for environ: it selects the windiss/libwindiss.a
library silently and in addition selects the cross/libc.a library.

libstlstd.a C++ iostream and complex math class libraries.

Table 32-1 Library Directory Locations (cont’d)

Directory / file Contents

Table 32-2 libc.a Files Delivered With the Tools

liba.c files Contents Use

SPARCE/libc.a -li
-lcfp
-limpl
-limpfp

Standard C runtime but with no
input/output support; if input/output calls
are made they will be undefined.

SPARCE/simple/libc.a -li
-lcfp
-lchar
-limpl
-limpfp

Supports character input/output by adding
libchar.a for stdin and stdout only (stderr
and named files are not supported).

SPARCE/cross/libc.a -li
-lcfp
-lram
-limpl
-limpfp

Supports RAM-disk input/output by
adding libram.a. Used automatically by
windiss.

Wind River Compiler for SPARC
User’s Guide, 5.4

446

■ The order of the lines in each liba.c file determines the order in which the
linker will search for unsatisfied externals.

The particular libc.a found, as well as the directories for the libraries listed in each
libc.a, are determined by the search path given to the linker as described in the
next section.

32.2.4 Library Search Paths

When dcc or dplus is invoked, it invokes the compiler, assembler, and linker in
turn. The generated linker command line includes:

■ an -lc option to cause the linker to search for libc.a

■ for C++, an -ld option to cause the linker to search for libd.a

■ a -Y P option which specifies the directories to be searched for these libraries
and also for the libraries named in the selected libc.a (and any others specified
by the user with -l libname options)

The -Y P option generated for each target is a function of the -ttof:environ option or
its equivalent environment variables, and is defined in 4.2 Selected Startup Module
and Libraries, p.24.

Following the pattern there, the assumptions made here will generate a -Y P option
listing the following directories in the order given for each setting of the floating
point f part of the -t:tof option or its equivalent, and where environ is either simple
or cross:

Table 32-3 Directories Searched for Libraries

‘f’ Directories Environment
Floating point
support

N version_path/SPARCEN/environ
version_path/SPARCEN
version_path/SPARCE/environ
version_path/SPARCE

specific
generic
specific
generic

None
None
not applicable
not applicable

S version_path/SPARCES/environ
version_path/SPARCES
version_path/SPARCE/environ
version_path/SPARCE

specific
generic
specific
generic

Software
Software
not applicable
not applicable

32 Library Structure, Rebuilding
32.2 Library Structure

447

32

Notes:

■ There is no error if a directory given with the -Y P option does not exist.

■ The difference between “None” floating point support and “not applicable” is
that the directories for the “not applicable” cases do not contain any floating
point code, only integer, while the “None” cases will use the
SPARCEN/libcfp.a and SPARCEN/libimpfp.a libraries. SPARCEN/libcfp.a
provides stubs functions that call printf with an error message for floating
point externals used by compiler-generated or runtime code so that these
externals will not be undefined; SPARCEN/libimpfp is an empty file needed
because each libc.a is common to all types of floating point support.

The following table gives examples of the libraries found given the above directory
search order. Note that the search for the libraries included by a libc.a is
independent of the search for libc.a. That is, regardless of which directory supplies
libc.a, the search for the libraries it names begins anew with the first directory in
the selected row of Table 32-3 above. In all cases, a library is taken from the first
directory in which it is found.

Table 32-4 Examples of Libraries Found for Different -t Options

-t option Libraries Found Notes

-tSPARCEN:simple SPARCE/simple/libc.a

SPARCE/libi.a
SPARCEN/libcfp.a
SPARCE/libchar.a
SPARCE/libimpl.a
SPARCEN/libimpfp.a

libc.a is specific to the environment, but
never to the floating point support. It is
found in the third directory searched. It
names four libraries:

■ libi.a and libimpl.a are common to all
SPARCE systems and are found in the
fourth directory SPARC.

■ The floating point support is
independent of the environment and
comes from the second directory
SPARCEN.

■ The character input/output support is
independent of the floating point
support, and while it has been selected
because of the simple environment
setting, it resides in the generic fourth
directory SPARC.

Wind River Compiler for SPARC
User’s Guide, 5.4

448

-tSPARCES:cross SPARCE/cross/libc.a

SPARCE/libi.a
SPARCES/libcfp.a
SPARCE/libram.a
SPARCE/libimpl.a
SPARCES/libimpfp.a

Again, libc.a is specific to the environment
but not the floating point support, and is
found in the third directory SPARCE/cross.
It again names four libraries:

■ libi.a and libimpl.a are in the fourth
directory SPARCE as before.

■ The software floating point library
libcfp.a is from the second directory,
now SPARCES.

■ This time libram.a has been selected by
SPARCE/cross/libc.a instead of
libchar.a (but still from the fourth
directory SPARCE as before).

-tSPARCES:windiss In addition to the libraries found for -tSPARCES:cross, searches
windiss/libwindiss.a before searching for SPARCE/cross/libc.a.

Table 32-4 Examples of Libraries Found for Different -t Options (cont’d)

-t option Libraries Found Notes

32 Library Structure, Rebuilding
32.3 Library Sources, Rebuilding the Libraries

449

32

32.3 Library Sources, Rebuilding the Libraries

32.3.1 Sources

This section describes how to re-build the libraries from source.

The libraries and makefiles are contained in three subdirectories of
version_path/libraries:

-tSPARCES:cust SPARCE/cust/libc.a

SPARCE/libi.a
SPARCES/libcfp.a
SPARCE/cust/libchar.a
SPARCE/libimpl.a
SPARCES/libimpfp.a

The customer has defined a new libc.a in a
new SPARCE/cust directory for a C++
project using software floating point. This
libc.a text file consists of the following five
lines:

-li
-lcfp
-lchar
-limpl
-limpfp

Thus, based on the search order implied by
the -tSPARCES:cust option, the standard
libraries SPARCE/libi.a,
SPARCE/libimpl.a, SPARCES/libcfp.a,
and SPARCES/libimpfp.a will be searched.

In addition, the library
SPARCE/cust/libchar.a, a special character
I/O package for the customer’s SPARCE -t
environment, will also be searched. Because
directory SPARCES/cust is searched before
SPARCE, the linker will find the customer’s
libchar.a library rather than the standard
SPARCE/libchar.a.

Table 32-4 Examples of Libraries Found for Different -t Options (cont’d)

-t option Libraries Found Notes

Wind River Compiler for SPARC
User’s Guide, 5.4

450

build/*

There are subdirectories for each of SPARCE, SPARCEH, SPARCEN, etc. Each
subdirectory contains a main Makefile and supporting makefiles.

Only the SPARCE/Makefile is to be used directly by the user. It in turn
invokes the makefiles in SPARCEH, SPARCEN, etc. These latter makefiles are
self-documenting and begin with comments that should be read before
re-building the libraries.

include/
include.cxx/*
include.unx/*

Include files used by for the C++ (but not C), and C libraries respectively.

src/*

Source for all generally distributed library files.

32.3.2 Rebuilding the Libraries

The following steps rebuild the libraries:

1. If you do not want to run make against all of the libraries, edit the Makefile at
both the SPARCE level and the SPARCEH, SPARCEN, etc., levels to remove
any unwanted libraries.

2. Change directory to version_path/libraries/build/SPARCE.

3. Enter the command:

dmake -vd

Note: to change the arguments that the libraries build with, change the
CFLAGS macro defined in version_path/libraries/build/defs.mk.

4. Each library will be built in its corresponding build directory, that is,
version_path/libraries/build/SPARCE,
version_path/libraries/build/SPARCEH, etc.

5. Move the successfully built libraries to the version_path/SPARCE,
version_path/SPARCEH, etc. corresponding directories, replace each existing
file with the newly built file.

Alternatively, leave the libraries where they are, or move them to some other
location, and provide -Y P options as described in the first part of this chapter.

32 Library Structure, Rebuilding
32.3 Library Sources, Rebuilding the Libraries

451

3232.3.3 C++ Libraries

The Wind River tools include two versions of the standard C++ library: the
complete version (libstlstd.a) and the abridged version (libstlabr.a). For
information about these libraries, see 13.2 C++ Standard Libraries, p.220. By default,
libstlstd.a is compiled with the full library sources and exception-handling
enabled, while libstlabr.a is compiled with the abridged library sources and
exception-handling disabled. You can compile these libraries in a different
configuration by redefining either or both of the macros
__CONFIGURE_EMBEDDED and __CONFIGURE_EXCEPTIONS. These macros are
defined in dtools.conf and automatically reset by compiler flags such as -Xc++abr;
hence their definitions must be overridden on the command line if you wish to
change them. Setting __CONFIGURE_EMBEDDED to 1 uses the abridged library
sources and setting __CONFIGURE_EXCEPTIONS to 1 enables exception-handling.
For example, to compile the libstlstd.a without exception-handling, add
__CONFIGURE_EXCEPTIONS=0 to the command line.

NOTE: The Dinkum C++ libraries are built with the GNU make utility (gmake),
not with dmake.

Wind River Compiler for SPARC
User’s Guide, 5.4

452

453

 33
Header Files

33.1 Files 453

33.2 Defined Variables, Types, and Constants 455

33.1 Files

The following list is a subset of the header files provided. Each is enclosed in angle
brackets, < >, whenever used in text to emphasize their inclusion in the standard
C library.

All header files are found in version_path/include. See 2. Configuration and Directory
Structure for additional information.

33.1.1 Standard Header Files

<ar.h>

Archive header.

<assert.h>

assert() macro.

NOTE: In this manual, some paths are given using UNIX format, that is, using a “/”
separator. For Windows, substitute a”\” separator.

Wind River Compiler for SPARC
User’s Guide, 5.4

454

<ctype.h>

Character handling macros.

<dcc.h>

Prototypes not found elsewhere.

<errno.h>

error macros and errno variable.

<fcntl.h>

creat(), fcntl(), and open() definitions.

<float.h>

Floating point limits.

<limits.h>

Limits of processor and operating system.

<locale.h>

Locale definitions.

<malloc.h>

Old malloc() definitions. Use <stdlib.h>.

<math.h>

Defines the constant HUGE_VAL and declares math functions.

<mathf.h>

Single precision versions of <math.h> functions.

<memory.h>

Old declarations of mem*(). Use <string.h>.

<mon.h>

monitor() definitions.

<netdb.h>

Berkeley socket standard header file.

<netinet/in.h>

Berkeley socket standard header file.

<netinet/tcp.h>

Berkeley socket standard header file.

<regexp.h>

Regular expression handling.

<search.h>

Search routine declarations.

<setjmp.h>

setjmp() and longjmp() definitions.

33 Header Files
33.2 Defined Variables, Types, and Constants

455

33

<signal.h>

Signal handling.

<stdarg.h>

ANSI variable arguments handling.

<stddef.h>

ANSI definitions.

<stdio.h>

stdio library definitions.

<stdlib.h>

ANSI definitions.

<string.h>

str*() and mem*() declarations.

<sys/socket.h>

Berkeley socket standard header file.

<sys/types.h>

Type definitions.

<time.h>

Time handling definitions.

<unistd.h>

Prototypes for UNIX system calls.

<values.h>

Old limits definitions. Use <limits.h> and <float.h>.

<varargs.h>

Old variable arguments handling. Use <stdarg.h>.

33.2 Defined Variables, Types, and Constants

The following list is a subset of the variables, types, and constants defined in the
header files in the C libraries.

NOTE: If the macro __lint is set (#define __lint), the header files will not use any
C language extensions. This is useful for checking code before running it with a
third party lint facility.

Wind River Compiler for SPARC
User’s Guide, 5.4

456

errno.h

Declares the variable errno holding error codes. Defines error codes; all starting
with E. See the file for more information.

fcntl.h

Defines the following constants used by open() and fcntl():

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.

O_RDWR
Open for reading and writing.

O_NDELAY
No blocking.

O_APPEND
Append all writes at the end of the file.

float.h

Defines constants handling the precision and range of floating point values. See
the ANSI C standard for reference.

limits.h

Defines constants defining the range of integers and operating system limits. See
the ANSI C and POSIX 1003.1 standards for reference.

math.h

Defines the value HUGE_VAL that is set to IEEE double precision infinity.

33 Header Files
33.2 Defined Variables, Types, and Constants

457

33

mathf.h

Defines the value HUGE_VAL_F that is set to IEEE single precision infinity.

setjmp.h

Defines the type jmpbuf, used by setjmp() and longjmp().
Defines the type sigjmpbuf, used by sigsetjmp() and siglongjmp().

signal.h

Defines the signal macros starting with SIG.
Defines the volatile type sig_atomic_t that can be used by signal handlers.
Defines the type sigset_t, used by POSIX signal routines.

stdarg.h

Defines the type va_list used by the macros va_start, va_arg, and va_end.

stddef.h

Defines ptrdiff_t which is the result type of subtracting two pointers.
Defines size_t which is the result type of the sizeof operator.
Defines NULL which is the null pointer constant.

stdio.h

Defines size_t which is the result type of the sizeof operator.
Defines fpos_t which is the type used for file positioning.
Defines FILE which is the type used by stream and file input and output.
Defines the BUFSIZ constant which is the size used by setbuf().
Defines the EOF constant which indicates end-of-file.
Defines NULL which is the null pointer constant.
Declares stdin as a pointer to the FILE associated with standard input.
Declares stdout as a pointer to the FILE associated with standard output.
Declares stderr as a pointer to the FILE associated with standard error.

Wind River Compiler for SPARC
User’s Guide, 5.4

458

stdlib.h

Defines size_t which is the result type of the sizeof operator.
Defines div_t and ldiv_t which are the types returned by div() and ldiv().
Defines NULL which is the null pointer constant.
Defines the EXIT_FAILURE and EXIT_SUCCESS constants returned by exit().

string.h

Defines NULL which is the null pointer constant.
Defines size_t which is the result type of the sizeof operator.

time.h

Defines CLOCKS_PER_SEC constant which is the number of clock ticks per second.

459

 34
C Library Functions

34.1 Format of Descriptions 459

34.2 Reentrant Versions 461

34.3 Function Listing 462

34.1 Format of Descriptions

This chapter briefly describes the functions and function-like macros provided in
the Wind River C libraries. For more detailed descriptions, and for information
about the C++ libraries, see the references cited in Additional Documentation, p.8.

Each function description is formatted as follows:

name
header files
prototype definition
brief description

NOTE: The standard C libraries documented here are not the ones used for
VxWorks applications. If you specify the :rtp or :vxworksx.x execution
environment, the tools will automatically link a different set of C libraries. See the
documentation that accompanied your VxWorks development tools for more
information.

Wind River Compiler for SPARC
User’s Guide, 5.4

460

OS calls: optional; see below
Reference: see below

34.1.1 Operating System Calls

Some of the functions described in this chapter make calls on operating system
functions that are standard in UNIX environments. In embedded environments,
such functions cannot be used unless the embedded environment includes a
real-time operating system providing these operating system functions.

The functions which call operating system functions, directly or indirectly, have all
the required operating system functions listed. The non-UNIX user can employ
this list to see what system functions need to be provided in order to use a
particular function.

Some functions refer to standard input, output, and error — the standard
input/output streams found in UNIX and Windows environments. For embedded
environments, see 15.8.1 Character I/O, p.260 and 15.8.2 File I/O, p.261 for
suggestions for file system support.

34.1.2 References

The function descriptions refer to the following standards and definitions:

ANSI
The function/macro is defined in ANSI X3.159-1989.

ANSI 754
The function is define in ANSI/IEEE Std 754-1985.

DCC
The function/macro is added to Wind River C.

POSIX
The function/macro is defined in IEEE Std 1003.1-1990.

SVID
The function/macro is defined in System V Interface Definition 2.

UNIX
The function/macro is provided to be compatible with Unix V.3.

34 C Library Functions
34.2 Reentrant Versions

461

34

Other references:

MATH
The math libraries must be specified at link time with the -lm option.

SYS
The function must be provided by the operating system or emulated in a
stand-alone system.

REENT
The function is reentrant. It does not use any static or global data.

REERR
The function might modify errno and is reentrant only if all processes
ignore that variable. But see 34.2 Reentrant Versions, p.461 below.

Most functions in the libraries have a synonym to conform to various standards.
For example, the function read() has the synonym _read(). In ANSI C, read() is
not defined, which means that the user is free to define read() as a new function.
To avoid conflicts with such user-defined functions, library functions, e.g. fread(),
call the synonym defined with the leading underscore, e.g. _read().

34.2 Reentrant Versions

In some cases, non-reentrant standard functions are supplied in special reentrant
versions. These reentrant versions are not separately documented, but they are
easy to find because their names end in _r. For example, localtime() (in gmtime.c)
has a reentrant counterpart called localtime_r() (in gmtime_r.c).

All functions that modify the errno variable call the wrapper function
__errno_fn(), defined in cerror.c. When a function is marked as REERR in the
listing below, you can make it completely reentrant by modifying __errno_fn() to
preserve the value of errno.

For information about malloc() and free(), see 15.10 Reentrant and “Thread-Safe”
Library Functions, p.265.

Wind River Compiler for SPARC
User’s Guide, 5.4

462

34.3 Function Listing

This section lists all functions in the library in alphabetic order. Leading
underscores “_” are ignored with respect to the alphabetic ordering.

a64l()

#include <stdlib.h>
long a64l(const char *s);

Converts the base-64 number, pointed to by *s, to a long value.

Reference: SVID, REENT.

abort()

#include <stdlib.h>
int abort(void);

Same as exit(), but also causes the signal SIGABRT to be sent to the calling process.
If SIGABRT is neither caught nor ignored, all streams are flushed prior to the signal
being sent and a core dump results.

OS calls: close, getpid, kill, sbrk, write.

Reference: ANSI.

abs()

#include <stdlib.h>
int abs(int i);

Returns the absolute value of its integer operand.

Reference: ANSI, REENT.

access()

#include <unistd.h>
int access(char *path, int amode);

Determines accessibility of a file.

34 C Library Functions
34.3 Function Listing

463

34

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

acos()

#include <math.h>
double acos(double x);

Returns the arc cosine of x in the range [0, π]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM, and a message indicating a
domain error is printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

acosf()

#include <mathf.h>
float acosf(float x);

Returns the arc cosine of x in the range [0, π]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM, and a message indicating a
domain error is printed on the standard error output. This is the single precision
version of acos().

OS calls: write.

Reference: DCC, MATH, REERR.

advance()

#include <regexp.h>
int advance(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression
in expbuf. See SVID for more details.

Reference: SVID.

Wind River Compiler for SPARC
User’s Guide, 5.4

464

asctime()

#include <time.h>
char *asctime(const struct tm *timeptr);

Converts time in timeptr into a string in the form exemplified by

"Sun Sep 16 01:03:52 1973\n".

Reference: ANSI.

asin()

#include <math.h>
double asin(double x);

Returns the arc sine of x in the range [-π/2, π/2]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM and a message indicating a
domain error is printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

asinf()

#include <mathf.h>
float asinf(float x);

Returns the arc sine of x in the range [-π/2, π/2]. x must be in the range [-1, 1].
Otherwise zero is returned, errno is set to EDOM and a message indicating a
domain error is printed on the standard error output. This is the single precision
version of asin().

OS calls: write.

Reference: DCC, MATH, REERR.

assert()

#include <assert.h>
void assert(int expression);

Puts diagnostics into programs. If expression is false, assert() writes information
about the particular call that failed (including the text of the argument, the name
of the source file, and the source line number — the latter are respectively the

34 C Library Functions
34.3 Function Listing

465

34

values of the preprocessing macros __FILE__ and __LINE__) on the standard error
file. It then calls the abort() function. assert() is implemented as a macro. If the
preprocessor macro NDEBUG is defined at compile time, the assert() macro will
not generate any code.

OS calls: close, getpid, kill, sbrk, write.

Reference: ANSI.

atan()

#include <math.h>
double atan(double x);

Returns the arc tangent of x in the range [-π/2, π/2].

OS calls: write.

Reference: ANSI, MATH, REERR.

atanf()

#include <mathf.h>
float atan(float x);

Returns the arc tangent of x in the range [-π/2, π/2]. This is the single precision
version of atan().

OS calls: write.

Reference: DCC, MATH, REERR.

atan2()

#include <math.h>
double atan2(double x, double y);

Returns the arc tangent of y/x in the range [-π, π], using the signs of both arguments
to determine the quadrant of the return value. If both arguments are zero, then zero
is returned, errno is set to EDOM and a message indicating a domain error is
printed on the standard error output.

OS calls: write.

Reference: ANSI, MATH, REERR.

Wind River Compiler for SPARC
User’s Guide, 5.4

466

atan2f()

#include <mathf.h>
float atan2(float x, float y);

Returns the arc tangent of y/x in the range [-π, π], using the signs of both arguments
to determine the quadrant of the return value. If both arguments are zero, then zero
is returned, errno is set to EDOM and a message indicating a domain error is
printed on the standard error output. This is the single precision version of
atan2().

OS calls: write.

Reference: DCC, MATH, REERR.

atexit()

#include <stdlib.h>
void atexit(void (*func) (void));

Registers the function whose address is func to be called by exit().

Reference: ANSI.

atof()

#include <stdlib.h>
double atof(const char *nptr);

Converts an ASCII number string nptr into a double.

Reference: ANSI, REERR.

atoi()

#include <stdlib.h>
int atoi(const char *nptr);

Converts an ASCII decimal number string nptr into an int.

Reference: ANSI, REENT.

34 C Library Functions
34.3 Function Listing

467

34

atol()

#include <stdlib.h>
long atol(const char *nptr);

Converts an ASCII decimal number string nptr into a long.

Reference: ANSI, REENT.

bsearch()

#include <stdlib.h>
void *bsearch(const void *key, const void *base, size_t nel, size_t size,
int (*compar)());

Binary search routine which returns a pointer into a table indicating where a
datum may be found. The table must be previously sorted in increasing order. key
points to a datum instance to search for in the table, base points to the element at
the base of the table, nel is the number of elements in the table. compar is a pointer
to the comparison function, which is called with two arguments that point to the
elements being compared.

Reference: ANSI, REENT.

calloc()

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Allocates space for an array of nmemb objects of the size size. Returns a pointer to
the start (lowest byte address) of the object. The array is initialized to zero. See
malloc() for more information.

OS calls: sbrk, write.

Reference: ANSI.

ceil()

#include <math.h>
double ceil(double x);

Returns the smallest integer not less than x.

OS calls: write.

Wind River Compiler for SPARC
User’s Guide, 5.4

468

Reference: ANSI, MATH, REENT.

ceilf()

#include <mathf.h>
float ceilf(float x);

Returns the smallest integer not less than x. This is the single precision version of
ceil().

OS calls: write.

Reference: DCC, MATH, REENT.

_chgsign()

#include <math.h>
double _chgsign(double x);

Returns x copies with its sign reversed, not 0 - x. The distinction is germane when
x is +0 or -0 or NaN. Consequently, it is a mistake to use the sign bit to distinguish
signaling NaNs from quiet NaNs.

Reference: ANSI 754, MATH, REENT.

clearerr()

#include <stdio.h>
void clearerr (FILE *stream);

Resets the error and EOF indicators to zero on the named stream.

Reference: ANSI.

clock()

#include <time.h>
clock_t clock(void);

Returns the number of clock ticks of elapsed processor time, counting from a time
related to program start-up. The constant CLOCKS_PER_SEC is the number of ticks
per second.

OS calls: times.

34 C Library Functions
34.3 Function Listing

469

34

Reference: ANSI.

close()

#include <unistd.h>
int close(int fildes);

Closes the file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

compile()

#include <regexp.h>
int compile(char *instring, char *expbuf, char *endbuf, int eof);

Compiles the regular expression in instring and produces a compiled expression
that can be used by advance() and step() for pattern matching.

Reference: SVID.

_copysign()

#include <math.h>
double _copysign(double x, double y);

Returns x with the sign of y. Hence, abs(x) = _copysign(x, 1.0) even if x is NaN.

Reference: ANSI 754, MATH, REENT.

cos()

#include <math.h>
double cos(double x);

Returns the cosine of x measured in radians. Accuracy is reduced with large
argument values.

OS calls: write.

Reference: ANSI, MATH, REERR.

Wind River Compiler for SPARC
User’s Guide, 5.4

470

cosf()

#include <mathf.h>
float cosf(float x);

Returns the cosine of x measured in radians. Accuracy is reduced with large
argument values. This is the single precision version of cos().

OS calls: write.

Reference: DCC, MATH, REERR.

cosh()

#include <math.h>
double cosh(double x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with
large argument values.

OS calls: write.

Reference: ANSI, MATH, REERR.

coshf()

#include <mathf.h>
float coshf(float x);

Returns the hyperbolic cosine of x measured in radians. Accuracy is reduced with
a large argument values. This is the single precision version of cosh().

OS calls: write.

Reference: DCC, MATH, REERR.

creat()

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int creat(char *path, mode_t mode);

Creates the new file path.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

34 C Library Functions
34.3 Function Listing

471

34

Reference: POSIX, SYS.

ctime()

#include <time.h>
char *ctime(const time_t *timer);

Equivalent to calling asctime(localtime(timer)).

Reference: ANSI.

difftime()

#include <time.h>
double difftime(time_t t1, time_t t0);

Returns the difference in seconds between the calendar time t0 and the calendar
time t1.

Reference: ANSI, REENT.

div()

#include <stdlib.h>
div_t div(int numer, int denom);

Divides numer by denom and returns the quotient and the remainder as a div_t
structure.

Reference: ANSI, REENT.

drand48()

#include <stdlib.h>
double drand48(void);

Generates pseudo-random, non-negative, double-precision floating point
numbers uniformly distributed over the half-open interval [0.0, 1.0[(i.e. excluding
1.0), using the linear congruential algorithm and 48-bit integer arithmetic. It must
be initialized using the srand48(), seed48(), or lcong48() functions.

Reference: SVID.

Wind River Compiler for SPARC
User’s Guide, 5.4

472

dup()

#include <unistd.h>
int dup(int fildes);

Duplicates the open file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

ecvt()

#include <dcc.h>
char *ecvt(double value, int ndigit, int *decpt, int *sign);

Converts value to a null-terminated string of ndigit digits and returns a pointer to
it. The high-order digit is non-0 unless value is zero. The low-order digit is rounded
to the nearest value (5 is rounded up). The position of the decimal point relative
the beginning of the string is stored through decpt (negative means to the left of the
returned digits). If the sign of the result is negative, the integer pointed to by sign
is set to one, otherwise it is set to zero.

Reference: DCC.

erf()

#include <math.h>
double erf(double x);

Returns the error function of x.

Reference: SVID, MATH, REENT.

erff()

#include <mathf.h>
float erff(float x);

Returns the error function of x. This is the single precision version of erf().

Reference: DCC, MATH, REENT.

34 C Library Functions
34.3 Function Listing

473

34

erfc()

#include <math.h>
double erfc(double x);

Complementary error function = 1.0 - erf(x). Provided because of the extreme loss
of relative accuracy if erf(x) is called for large x and the result subtracted from 1.0.

Reference: SVID, MATH, REENT.

erfcf()

#include <mathf.h>
float erfcf(float x);

Complementary error function = 1.0 - erff(x). Provided because of the extreme loss
of relative accuracy if erff(x) is called for large x and the result subtracted from 1.0.
This is the single precision version of erfc().

Reference: DCC, MATH, REENT.

exit()

#include <stdlib.h>
void exit(int status);

Normal program termination. Flushes all open files. Executes all functions
submitted by the atexit() function. Does not return to its caller. The following
status constants are provided:

OS calls: _exit, close, sbrk, write.

Reference: ANSI.

_exit()

#include <unistd.h>
void _exit(int status);

Program termination. All files are closed. Does not return to its caller.

EXIT_FAILURE unsuccessful termination
EXIT_SUCCESS successful termination

Wind River Compiler for SPARC
User’s Guide, 5.4

474

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

exp()

#include <math.h>
double exp(double x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value
would overflow or 0 when the correct value would underflow, and sets errno to
ERANGE.

OS calls: write.

Reference: ANSI, MATH, REERR.

expf()

#include <mathf.h>
float expf(float x);

Returns the exponential function of x. Returns HUGE_VAL when the correct value
would overflow or 0 when the correct value would underflow and sets errno to
ERANGE. This is the single precision version of exp().

OS calls: write.

Reference: DCC, MATH, REERR.

fabs()

#include <math.h>
double fabs(double x);

Returns the absolute value of x.

Reference: ANSI, MATH, REENT.

fabsf()

#include <mathf.h>
float fabsf(float x);

34 C Library Functions
34.3 Function Listing

475

34

Returns the absolute value of x. This is the single precision version of fabs().

Reference: DCC, MATH, REENT.

fclose()

#include <stdio.h>
int fclose(FILE *stream);

Causes any buffered data for the named stream to be written out, and the stream to
be closed.

OS calls: close, sbrk, write.

Reference: ANSI.

fcntl()

#include <fcntl.h>
int fcntl(int fildes, int cmd, ...);

Controls the open file fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

fcvt()

#include <dcc.h>
char *fcvt(double value, int ndigit, int *decpt, int *sign);

Rounds the correct digit for printf format "%f" (FORTRAN F-format) output
according to the number of digits specified. See ecvt().

Reference: DCC.

fdopen()

#include <stdio.h>
FILE *fdopen(int fildes, const char *type);

Wind River Compiler for SPARC
User’s Guide, 5.4

476

See fopen(). fdopen() associates a stream with a file descriptor, obtained from
open(), dup(), creat(), or pipe(). The type of stream must agree with the mode of
the open file.

OS calls: fcntl, lseek.

Reference: POSIX.

feof()

#include <stdio.h>
int feof (FILE *stream);

Returns non-zero when end-of-file has previously been detected reading the
named input stream.

Reference: ANSI.

ferror()

#include <stdio.h>
int ferror (FILE *stream);

Returns non-zero when an input/output error has occurred while reading from or
writing to the named stream.

Reference: ANSI.

fflush()

#include <stdio.h>
int fflush(FILE *stream);

Causes any buffered data for the named stream to be written to the file, and the
stream remains open.

OS calls: write.

Reference: ANSI.

fgetc()

#include <stdio.h>
int fgetc(FILE *stream);

34 C Library Functions
34.3 Function Listing

477

34

Behaves like the macro getc(), but is a function. Runs more slowly than getc(),
takes less space, and can be passed as an argument to a function.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

fgetpos()

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Stores the file position indicator for stream in *pos. If unsuccessful, it stores a
positive value in errno and returns a nonzero value.

OS calls: lseek.

Reference: ANSI.

fgets()

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Reads characters from stream into the array pointed to by s, until n-1 characters are
read, or a new-line character is read and transferred to s, or an EOF is encountered.
The string is terminated with a null character.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

fileno()

#include <stdio.h>
int fileno (FILE *stream);

Returns the integer file descriptor associated with the named stream; see open().

Reference: POSIX.

_finite()

#include <math.h>
double _finite(double x);

Wind River Compiler for SPARC
User’s Guide, 5.4

478

Returns a non-zero value if -∞ < x < +∞, and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

floor()

#include <math.h>
double floor(double x);

Returns the largest integer (as a double-precision number) not greater than x.

Reference: ANSI, MATH, REENT.

floorf()

#include <mathf.h>
float floorf(float x);

Returns the largest integer (as a single-precision number) not greater than x. This
is the single precision version of floor().

Reference: DCC, MATH, REENT.

fmod()

#include <math.h>
double fmod(double x, double y);

Returns the floating point remainder of the division of x by y, zero if y is zero or if
x/y would overflow. Otherwise the number is f with the same sign as x, such that
x=iy+f for some integer i, and absolute value of f is less than absolute value of y.

Reference: ANSI, MATH, REENT.

fmodf()

#include <mathf.h>
float fmodf(float x, float y);

Returns the floating point remainder of the division of x by y, zero if y is zero or if
x/y would overflow. Otherwise the number is f with the same sign as x, such that
x=iy+f for some integer i, and absolute value of f is less than absolute value of y.
This is the single precision version of fmod().

34 C Library Functions
34.3 Function Listing

479

34

Reference: DCC, MATH, REENT.

fopen()

#include <stdio.h>
FILE *fopen(const char *filename, const char *type);

Opens the file named by filename and associates a stream with it. Returns a pointer
to the FILE structure associated with the stream. type is a character string having
one of the following values:

A "b" can also be specified as the second or third character in the above list, to
indicate a binary file on systems where there is a difference between text files and
binary files. Examples: "rb", "wb+", and "a+b".

OS calls: lseek, open.

Reference: ANSI.

fprintf()

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...);

Places output argument on named output stream. See printf().

OS calls: isatty, sbrk, write.

Reference: ANSI.

"r" open for reading
"w" truncate or create for writing
"a" append; open for writing at EOF, or create for writing
"r+" open for update (read and write)
"w+" truncate or create for update
"a+" append; open or create for update at EOF

NOTE: By default in most environments, fprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.516, with a NULL buffer pointer after opening but before writing to
the stream:

setbuf(*stream, 0);

Wind River Compiler for SPARC
User’s Guide, 5.4

480

fputc()

#include <stdio.h>
int fputc(int c, FILE *stream)

Behaves like the macro putc(), but is a function. Therefore, it runs more slowly,
takes up less space, and can be passed as an argument to a function.

OS calls: isatty, sbrk, write.

Reference: ANSI.

fputs()

#include <stdio.h>
int fputs(const char *s, FILE *stream);

Writes the null-terminated string pointed to by s to the named output stream.

OS calls: isatty, sbrk, write.

Reference: ANSI.

fread()

#include <stdio.h>
#include <sys/types.h>
int fread(void *ptr, size_t size, int nitems, FILE *stream);

Copies nitems items of data from the named input stream into an array pointed to
by ptr, where an item of data is a sequence of bytes of length size. It leaves the file
pointer in stream pointing to the byte following the last byte read.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

free()

#include <stdlib.h>
void free(void *ptr);
extern int __no_malloc_warning;

Object pointed to by ptr is made available for further allocation. ptr must
previously have been assigned a value from malloc(), calloc(), or realloc().

34 C Library Functions
34.3 Function Listing

481

34

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on
the stderr stream. The warning can be suppressed by assigning a non-zero value
to the integer __no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write.

Reference: ANSI.

freopen()

#include <stdio.h>
FILE *freopen(const char *filenam, const char *type, FILE *stream);

See fopen(). freopen() opens the named file in place of the open stream. The
original stream is closed, and a pointer to the FILE structure for the new stream is
returned.

OS calls: close, lseek, open, sbrk, write.

Reference: ANSI.

frexp()

#include <math.h>
double frexp(double value, int *eptr);

Given that every non-zero number can be expressed as x*(2n), where 0.5<=|x|< 1.0
and n is an integer, this function returns x for a value and stores n in the location
pointed to by eptr.

Reference: ANSI, REENT.

frexpf()

#include <mathf.h>
float frexpf(float value, int *eptr);

Given that every non-zero number can be expressed as x*(2n), where 0.5<=|x|<
1.0 and n is an integer, this function returns x for a value and stores n in the location
pointed to by eptr. This is the single precision version of frexp().

Reference: DCC, MATH, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

482

fscanf()

#include <stdio.h>
int fscanf(FILE *stream, const char *format, ...);

Reads formatted data from the named input stream and optionally assigns
converted data to variables specified by the format string. Returns the number of
successful conversions (or EOF if input is exhausted). See scanf().

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

fseek()

#include <stdio.h>
int fseek(FILE *stream, long offset, int whence);

Sets the position of the next input or output operation on the stream. The new
position is at the signed distance offset bytes from the beginning, from the current
position, or from the end of the file, according to whence. The next operation on a
file opened for update may be either input or output. whence has one of the
following values:

OS calls: lseek, write.

Reference: ANSI.

fsetpos()

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Sets the file position indicator for stream to *pos and clears the EOF indicator for
stream. If unsuccessful, stores a positive value in errno and returns a nonzero value.

OS calls: lseek, write.

Reference: ANSI.

SEEK_SET offset is absolute position from beginning of file.
SEEK_CUR offset is relative distance from current position.
SEEK_END offset is relative distance from the end of the file.

34 C Library Functions
34.3 Function Listing

483

34

fstat()

#include <sys/types.h>
#include <sys/stat.h>
int fstat(int fildes, struct stat *buf);

Gets file status for the file descriptor fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

ftell()

#include <stdio.h>
long ftell(FILE *stream);

See fseek(). Returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

OS calls: lseek.

Reference: ANSI.

fwrite()

#include <stdio.h>
#include <sys/types.h>
int fwrite(const void *ptr, size_t size, int nitems, FILE *stream);

Appends at most nitems items of data from the array pointed to by ptr to the named
output stream. See fread().

OS calls: isatty, sbrk, write.

Reference: ANSI.

gamma()

#include <math.h>
double gamma(double x);
extern int signgam;

Wind River Compiler for SPARC
User’s Guide, 5.4

484

Returns the natural logarithm of the absolute value of the gamma function of x.
The argument x must be a positive integer. The sign of the gamma function is
returned as -1 or 1 in signgam.

OS calls: write.

Reference: UNIX, MATH, REERR.

gammaf()

#include <mathf.h>
float gammaf(float x);
extern int signgamf;

Returns the natural logarithm of the absolute value of the gamma function of x.
The argument x must be a positive integer. The sign of the gamma function is
returned as -1 or 1 in signgamf. This is the single precision version of gamma().

OS calls: write.

Reference: DCC, MATH, REERR.

gcvt()

#include <dcc.h>
char *gcvt(double value, int ndigit, char *buf);

See ecvt(). Converts value to a null-terminated string in the array pointed to by buf
and returns buf. Produces ndigit significant digits in FORTRAN F-format if
possible, otherwise E-format. Any minus sign or decimal point will be included as
part of the string. Trailing zeros are suppressed.

Reference: DCC.

getc()

#include <stdio.h>
int getc(FILE *stream);

Returns the next character (i.e. byte) from the named input stream. Moves the file
pointer, if defined, ahead one character in stream.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

34 C Library Functions
34.3 Function Listing

485

34

getchar()

#include <stdio.h>
int getchar(void);

Same as getc, but defined as getc(stdin).

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

getenv()

#include <stdlib.h>
char getenv(char *name);

Searches the environment list for a string of the form name=value, and returns a
pointer to value if present, otherwise a null pointer.

Reference: ANSI, REENT.

getopt()

#include <stdio.h>
int getopt(int argc, char *const *argv, const char *optstring);

extern char *optarg;
extern int optind, opterr;

Returns the next option letter in argv that matches a letter in optstring, and supports
all the rules of the command syntax standard. optarg is set to point to the start of
the option-argument on return from getopt(). getopt() places the argv index of the
next argument to be processed in optind. Error message output may be disabled by
setting opterr to 0.

OS calls: write.

Reference: SVID.

getpid()

#include <unistd.h>
pid_t getpid(void);

Gets process ID.

Wind River Compiler for SPARC
User’s Guide, 5.4

486

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

gets()

#include <stdio.h>
char *gets(char *s);

Reads characters from stdin into the array pointed to by s, until a new-line
character is read or an EOF is encountered. The new-line character is discarded and
the string is terminated with a null character. The user is responsible for allocating
enough space for the array s.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

getw()

#include <stdio.h>
int getw(FILE *stream);

Returns the next word (i.e., the next integer) from the named input stream, and
increments the file pointer, if defined, to point to the next word.

OS calls: isatty, read, sbrk, write.

Reference: SVID.

gmtime()

#include <time.h>
struct tm *gmtime(const time_t *timer);

Breaks down the calendar time timer into sections, expressed as Coordinated
Universal Time.

Reference: ANSI.

34 C Library Functions
34.3 Function Listing

487

34

hcreate()

#include <search.h>
int hcreate(unsigned nel);

Allocates sufficient space for a hash table. See hsearch(). The hash table must be
allocated before hsearch() is used. nel is an estimate of the maximum number of
entries the table will contain.

OS calls: sbrk.

Reference: SVID.

hdestroy()

#include <search.h>
void hdestroy(void);

Destroys the hash table, and may be followed by another call to hcreate(). See
hsearch().

OS calls: sbrk, write.

Reference: SVID.

hsearch()

#include <search.h>
ENTRY *hsearch(ENTRY item, ACTION action);

Hash table search routine which returns a pointer into the hash table, indicating
the location where an entry can be found. item.key points to a comparison key, and
item.data points to any other data for that key. action is either ENTER or FIND and
indicates the disposition of the entry if it cannot be found in the table. ENTER
means that item should be inserted into the table and FIND indicates that no entry
should be made.

OS calls: sbrk.

Reference: SVID.

hypot()

#include <math.h>
double hypot(double x, double y);

Wind River Compiler for SPARC
User’s Guide, 5.4

488

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows.

Reference: UNIX, MATH, REERR.

hypotf()

#include <mathf.h>
float hypotf(float x, float y);

Returns sqrt(x * x + y * y), taking precautions against unwarranted overflows. This
is the single precision version of hypot().

Reference: DCC, MATH, REERR.

irand48()

#include <stdlib.h>
long irand48(unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, n-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: UNIX.

isalnum()

#include <ctype.h>
int isalnum(int c);

Tests for any letter or digit. Returns non-zero if test is true.

Reference: ANSI, REENT.

isalpha()

#include <ctype.h>
int isalpha(int c);

Tests for any letter. Returns non-zero if test is true.

Reference: ANSI, REENT.

34 C Library Functions
34.3 Function Listing

489

34

isascii()

#include <ctype.h>
int isascii(int c);

Tests for ASCII character, code between 0 and 0x7f. Returns non-zero if test is true.

Reference: SVID, REENT.

isatty()

#include <unistd.h>
int isatty(int fildes);

Tests for a terminal device. Returns non-zero if fildes is associated with a terminal
device.

Although not a system call in the UNIX environment, it needs to be implemented
as such in an embedded environment using the stdio functions.

Reference: POSIX.

iscntrl()

#include <ctype.h>
int iscntrl(int c);

Tests for control character (0x7f or less than 0x20). Returns non-zero if test is true.

Reference: ANSI, REENT.

isdigit()

#include <ctype.h>
int isdigit(int c);

Tests for digit [0-9]. Returns non-zero if test is true.

Reference: ANSI, REENT.

isgraph()

#include <ctype.h>
int isgraph(int c);

Wind River Compiler for SPARC
User’s Guide, 5.4

490

Tests for printable character not including space. Returns non-zero if test is true.

Reference: ANSI, REENT.

islower()

#include <ctype.h>
int islower(int c);

Tests for lower case letter. Returns non-zero if test is true.

Reference: ANSI, REENT.

_isnan()

#include <math.h>
double _isnan(double x);

Returns a non-zero value if x is a NaN, and returns 0 otherwise.

Reference: ANSI 754, MATH, REENT

isprint()

#include <ctype.h>
int isprint(int c);

Tests for printable character (including space). Returns non-zero if test is true.

Reference: ANSI, REENT.

ispunct()

#include <ctype.h>
int ispunct(int c);

Tests for printable punctuation character. Returns non-zero if test is true.

Reference: ANSI, REENT.

isspace()

#include <ctype.h>
int isspace(int c);

34 C Library Functions
34.3 Function Listing

491

34

Tests for space, tab, carriage return, new-line, vertical tab, or form-feed. Returns
non-zero if test is true.

Reference: ANSI, REENT.

isupper()

#include <ctype.h>
int isupper(int c);

Tests for upper-case letters. Returns non-zero if test is true.

Reference: ANSI, REENT.

isxdigit()

#include <ctype.h>
int isxdigit(int c);

Tests for hexadecimal digit (0-9, a-f, A-F). Returns non-zero if test is true.

Reference: ANSI, REENT.

j0()

#include <math.h>
double j0(double x);

Returns the Bessel function of x of the first kind of order 0.

OS calls: write.

Reference: UNIX, MATH, REERR.

j0f()

#include <mathf.h>
float j0f(float x);

Returns the Bessel function of x of the first kind of order 0. This is the single
precision version of j0().

OS calls: write.

Reference: DCC, MATH, REERR.

Wind River Compiler for SPARC
User’s Guide, 5.4

492

j1()

#include <math.h>
double j1(double x);

Returns the Bessel function of x of the first kind of order 1.

OS calls: write.

Reference: UNIX, MATH, REERR.

j1f()

#include <mathf.h>
float j1f(float x);

Returns the Bessel function of x of the first kind of order 1. This is the single
precision version of j1().

OS calls: write.

Reference: DCC, MATH, REERR.

jn()

#include <math.h>
double jn(double n, double x);

Returns the Bessel function of x of the first kind of order n.

OS calls: write.

Reference: UNIX, MATH, REERR.

jnf()

#include <mathf.h>
float jnf(float n, float x);

Returns the Bessel function of x of the first kind of order n. This is the single
precision version of jn().

OS calls: write.

Reference: DCC, MATH, REERR.

34 C Library Functions
34.3 Function Listing

493

34

jrand48()

#include <stdlib.h>
long jrand48(unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [-231, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. The calling program must place the initial value Xi into the xsubi array
and pass it as an argument.

Reference: SVID.

kill()

#include <signal.h>
int kill(int pid, int sig);

Sends the signal sig to the process pid.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

krand48()

#include <stdlib.h>
long krand48(unsigned short xsubi[3], unsigned short n);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, n-1], using the linear congruential algorithm and 48-bit integer
arithmetic.

Reference: UNIX.

l3tol()

#include <dcc.h>
void l3tol(long *lp, char *cp, int n);

Converts the list of n three-byte integers packed into the character string pointed
to by cp into a list of long integers pointed to by *lp.

Reference: UNIX, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

494

l64a()

#include <stdlib.h>
char *l64a(long l);

Converts the long integer l to a base-64 character string.

Reference: SVID.

labs()

#include <stdlib.h>
long labs(long i);

Returns the absolute value of i.

Reference: ANSI, REENT.

lcong48()

#include <stdlib.h>
void lcong48(unsigned short param[7]);

Initialization entry point for drand48(), lrand48(), and mrand48(). Allows the
user to specify parameters in the random equation: Xi is param[0-2], multiplier a is
param[3-5], and addend c is param[6].

Reference: UNIX.

ldexp()

#include <math.h>
double ldexp(double value, int exp);

Returns the quantity: value * (2exp). See also frexp().

Reference: UNIX, REERR.

ldexpf()

#include <mathf.h>
float ldexpf(float value, int exp);

Returns the quantity: value * (2exp). See also frexpf(). This is the single precision
version of ldexp().

34 C Library Functions
34.3 Function Listing

495

34

Reference: DCC, MATH, REERR.

ldiv()

#include <stdlib.h>
ldiv_t ldiv(long int numer, long int denom);

Similar to div(), except that arguments and returned items all have the type long
int.

Reference: ANSI, REENT.

_lessgreater()

#include <math.h>
double _lessgreater(double x, double y);

The value of x <> y is non-zero only when x < y or x > y, and is distinct from
NOT(x = y) per Table 4 of the ANSI 754 standard.

Reference: ANSI 754, MATH, REENT.

lfind()

#include <stdio.h>
#include <search.h>
void *lfind(const void *key, const void *base, unsigned *nelp, int size,

int (*compar)());

Same as lsearch() except that if datum is not found, it is not added to the table.
Instead, a null pointer is returned.

Reference: UNIX, REENT.

link()

#include <unistd.h>
int link(const char *path1, const char *path2);

Creates a new link path2 to the existing file path1.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

Wind River Compiler for SPARC
User’s Guide, 5.4

496

localeconv()

#include <locale.h>
struct lconv *localeconv(void);

Loads the components of an object of the type struct lconv with values appropriate
for the formatting of numeric quantities (monetary and otherwise) according to the
rules of the current locale. See also setlocale().

Reference: ANSI.

localtime()

#include <time.h>
struct tm *localtime(const time_t *timer);

Breaks down the calendar time timer into sections, expressed as local time.

Reference: ANSI.

log()

#include <math.h>
double log(double x);

Returns the natural logarithm of a positive x.

OS calls: write.

Reference: ANSI, MATH, REERR.

_logb()

#include <math.h>
double _logb(double x);

Returns the unbiased exponent of x, a signed integer in the format of x, except that
logb(NaN) is NaN, logb(infinity) is +∞, and logb(0) is -∞ and signals the division
by zero exception. When x is positive and finite the expression scalb(x, -logb(x))
lies strictly between 0 and 2; it is less than 1 only when x is denormalized.

Reference: ANSI 754, MATH, REENT.

34 C Library Functions
34.3 Function Listing

497

34

logf()

#include <mathf.h>
float logf(float x);

Returns the natural logarithm of a positive x. This is the single precision version of
log().

OS calls: write.

Reference: DCC, MATH, REERR.

log10()

#include <math.h>
double log10(double x);

Returns the logarithm with base ten of a positive x.

OS calls: write.

Reference: ANSI, MATH, REERR.

log10f()

#include <mathf.h>
float log10f(float x);

Returns the logarithm with base ten of a positive x. This is the single precision
version of log10().

OS calls: write.

Reference: DCC, MATH, REERR.

longjmp()

#include <setjmp.h>
void longjmp(jmp_buf env, int val);

Restores the environment saved in env by a corresponding setjmp() function call.
Execution will continue as if the setjmp() had just returned with the value val. If
val is 0 it will be set to 1 to avoid conflict with the return value from setjmp().

Reference: ANSI, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

498

lrand48()

#include <stdlib.h>
long lrand48(void);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

lsearch()

#include <stdio.h>
#include <search.h>
void *lsearch(const void *key, const void *base, unsigned *nelp, int size,

int (*compar)());

Linear search routine which returns a pointer into a table indicating where a datum
may be found. If the datum is not found, it is added to the end of the table. base
points to the first element in the table. nelp points to an integer containing the
number of elements in the table. compar is a pointer to the comparison function
which the user must supply (for example, strcmp()).

Reference: SVID, REENT.

lseek()

#include <unistd.h>
off_t lseek(int fildes, off_t offset, int whence);

Moves the file pointer for the file fildes to the file offset offset. whence has one of the
following values:

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

SEEK_SET offset is absolute position from beginning of file
SEEK_CUR offset is relative distance from current position
SEEK_END offset is relative distance from the end of the file

34 C Library Functions
34.3 Function Listing

499

34

ltol3()

#include <dcc.h>
void ltol3(char *cp, long *lp, int n);

Converts a list of long integers to three-byte integers. It is the inverse of l3tol().

Reference: UNIX, REENT.

mallinfo()

#include <malloc.h>
struct mallinfo mallinfo(void)

Used to determine the best setting of malloc() parameters for an application. Must
not be called until after malloc() has been called.

Reference: SVID.

malloc()

#include <stdlib.h>
void *malloc(size_t size);

Allocates space for an object of size size. Returns a pointer to the start (lowest byte
address) of the object. Returns a null pointer if no more memory can be obtained
by the OS.

The first time malloc() is called, it checks the following environment variables:

DMALLOC_INIT=n
If set, malloc() initializes allocated memory with the byte value n. This is
useful when debugging programs that may depend on malloc() areas
always being set to zero.

DMALLOC_CHECK
If set, malloc() and free() check the free-list every time they are called.
This is useful when debugging programs that may trash the free-list.

OS calls: sbrk.

NOTE: malloc() and related functions must be initialized by the function __init()
in crtlibso.c. See the note at the end of 15.4.3 Notes for crtlibso.c and ctordtor.c, p.252
for details. See also 15.10 Reentrant and “Thread-Safe” Library Functions, p.265.

Wind River Compiler for SPARC
User’s Guide, 5.4

500

Reference: ANSI.

__malloc_set_block_size()

#include <malloc.h>
size_t __malloc_set_block_size(size_t blocksz);

To avoid excess execution overhead, malloc() acquires heap space in 8KB master
blocks and sub-allocates within each block as required, re-using space within each
8KB block when individual allocations are freed. The default 8KB master block size
may be too large on systems with small RAM. To change this, call this
__malloc_set_block_size function. The argument must be a power of two.

mallopt()

#include <malloc.h>
int mallopt(int cmd, int value);

Used to allocate small blocks of memory quickly by allocating a large group of
small blocks at one time. This function exists in order to be compatible to SVID, but
its use is not recommended, since the malloc() function is already optimized to be
fast.

Reference: SVID.

matherr()

#include <math.h>
int matherr(struct exception *x);

Invoked by math library routines when errors are detected. Users may define their
own procedure for handling errors, by including a function named matherr() in
their programs. The function matherr() must be of the form described above.
When an error occurs, a pointer to the exception structure x will be passed to the
user-supplied matherr() function. This structure, which is defined by the
<math.h> header file, includes the following members:

int type;
char *name;
double arg1, arg2, retval;

The member type is an integer describing the type of error that has occurred from
the following list defined by the <math.h> header file:

34 C Library Functions
34.3 Function Listing

501

34

The member name points to a string containing the name of the routine that
incurred the error. The members arg1 and arg2 are the first and second arguments
with which the routine was invoked.

The member retval is set to the default value that will be returned by the routine
unless the user’s matherr() function sets it to a different value.

If the user’s matherr() function returns non-zero, no error message will be printed,
and errno will not be set.

If the function matherr() is not supplied by the user, the default error-handling
procedures, described with the math library routines involved, will be invoked
upon error. errno is set to EDOM or ERANGE and the program continues.

Reference: SVID, MATH.

matherrf()

#include <mathf.h>
int matherrf(struct exceptionf *x);

This is the single precision version of matherr().

Reference: DCC, MATH.

mblen()

#include <stdlib.h>
int mblen(const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that
constitute the next multi-byte character, or -1 if the next n (or the remaining bytes)
do not compromise a valid multi-byte character. A terminating null character is not
included in the character count. If s is a null pointer and the multi-byte characters
have a state-dependent encoding in current locale, the function returns nonzero;
otherwise, it returns zero.

Reference: ANSI, REENT.

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

Wind River Compiler for SPARC
User’s Guide, 5.4

502

mbstowcs()

#include <stdlib.h>
size_t mbstowcs(wchar_t *pwc, const char *s, size_t n);

Stores a wide character string in the array whose first element has the address pwc,
by converting the multi-byte characters in the string s. It converts as if by calling
mbtowc(). It stores at most n wide characters, stopping after it stores a null wide
character. It returns the number of wide characters stored, not counting the null
character.

Reference: ANSI, REENT.

mbtowc()

#include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

If s is not a null pointer, the function returns the number of bytes in the string s that
constitute the next multi-byte character. (The number of bytes cannot be greater
than MB_CUR_MAX). If pwc is not a null pointer, the next multi-byte character is
converted to the corresponding wide character value and stored in *pwc. The
function returns -1 if the next n or the remaining bytes do not constitute a valid
multi-byte character. If s is a null pointer and multi-byte characters have a
state-dependent encoding in current locale, the function stores an initial shift state
in its internal static duration data object and returns nonzero; otherwise it returns
zero.

Reference: ANSI, REENT.

memccpy()

#include <string.h>
void *memccpy(void *s1, const void *s2, int c, size_t n);

Copies characters from s2 into s1, stopping after the first occurrence of character c
has been copied, or after n characters, whichever comes first.

Reference: SVID, REENT.

memchr()

#include <string.h>
void *memchr(const void *s, int c, size_t n);

34 C Library Functions
34.3 Function Listing

503

34

Locates the first occurrence of c (converted to unsigned char) in the initial n
characters of the object pointed to by s. Returns a null pointer if c is not found.

Reference: ANSI, REENT.

memcmp()

#include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Compares the first n character of s1 to the first n characters of s2. Returns an integer
greater than, equal to, or less than zero according to the relationship between s1
and s2.

Reference: ANSI, REENT.

memcpy()

#include <string.h>
void *memcpy(void *s1, const void *s2, size_t n);

Copies n character from the object pointed to by s2 into the object pointed to by s1.
The behavior is undefined if the objects overlap. Returns the value of s1.

Reference: ANSI, REENT.

memmove()

#include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Copies n characters from the object pointed by s2 into the object pointed to by s1.
It can handle overlapping while copying takes place as if the n characters were first
copied to a temporary array, then copied into s1. Returns the value of s1.

Reference: ANSI, REENT.

memset()

#include <string.h>
void *memset(void *s, int c, size_t n);

Copies the value of c into each of the first n characters of the object pointed to by s.
Returns the value of s.

Wind River Compiler for SPARC
User’s Guide, 5.4

504

Reference: ANSI, REENT.

mktemp()

#include <stdio.h>
char *mktemp (char *template);

Replaces the contents of the string pointed to by template with a unique filename,
and returns the address of template. The template string should look like a filename
with six trailing Xs, which will be replaced with a letter and the current process ID.

OS calls: access, getpid.

Reference: SVID.

mktime()

#include <time.h>
time_t mktime(struct tm *timeptr);

Converts the local time stored in timeptr into a calendar time with the same
encoding as values returned by the time() function, but with all values within
their normal ranges. It sets the structure members tm_mday, tm_wday, tm_yday.

Reference: ANSI, REENT.

modf()

#include <math.h>
double modf(double value, double *iptr);

Returns the fractional part of value and stores the integral part in the location
pointed to by iptr. Both the fractional and integer parts have the same sign as value.
See also frexp().

Reference: ANSI, REENT.

modff()

#include <mathf.h>
float modff(float value, float *iptr);

34 C Library Functions
34.3 Function Listing

505

34

Returns the fractional part of value and stores the integral part in the location
pointed to by iptr. Both the fractional and integer parts have the same sign as value.
See also frexpf(). This is the single precision version of modf().

Reference: DCC, MATH, REENT.

mrand48()

#include <stdlib.h>
long mrand48(void);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [-231, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic. Must be initialized using srand48(), seed48(), or lcong48() functions.

Reference: SVID.

_nextafter()

#include <math.h>
double _nextafter(double x, double y);

Returns the next representable neighbor of x in the direction toward y. The
following special cases arise: if x = y, then the result is x without any exception
being signaled; otherwise, if either x or y is a quiet NaN, then the result is one or
the other of the input NaNs. Overflow is signaled when x is finite but _nextafter(x,
y) lies strictly between +2Emin and -2Emin. In both cases, inexact is signaled.

Reference: ANSI 754, MATH, REENT.

nrand48()

#include <stdlib.h>
long nrand48(unsigned short xsubi[3]);

Generates pseudo-random non-negative long integers uniformly distributed over
the interval [0, 231-1], using the linear congruential algorithm and 48-bit integer
arithmetic.

Reference: SVID.

offsetof()

Wind River Compiler for SPARC
User’s Guide, 5.4

506

#include <stddef.h>
size_t offsetof(type, member);

Returns the offset of the member member in the structure type. Implemented as a
macro.

Reference: ANSI, REENT.

open()

#include <fcntl.h>
int open(const char *path, int oflag, int mode);

Opens the file path for reading or writing according to oflag. Usual values of oflag
are:

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

perror()

#include <stdio.h>
void perror(const char *s);

extern int errno;
extern char *sys_errlist[];
extern int sys_nerr;

Produces a message on the standard error output describing the last error
encountered during a call to a system or library function. The array of message
strings sys_errlist[] may be indexed by errno to access the message string directly
without the new-line. sys_nerr is the number of messages in the table. See
strerror().

OS calls: write.

Reference: ANSI.

pow()

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing

34 C Library Functions
34.3 Function Listing

507

34

#include <math.h>
double pow(double x, double y);

Returns the value of xy. If x is zero, y must be positive. If x is negative, y must be an
integer.

OS calls: write.

Reference: ANSI, MATH, REERR.

powf()

#include <mathf.h>
float powf(float x, float y);

Returns the value of xy. If x is zero, y must be positive. If x is negative, y must be an
integer. This is the single precision version of pow().

OS calls: write.

Reference: DCC, MATH, REERR.

printf()

#include <stdio.h>
int printf(const char *format, ...);

Places output arguments on stdout, controlled by format. Returns the number of
characters transmitted or a negative value if there was an error. A summary of the
printf() conversion specifiers is shown below. Each conversion specification is
introduced by the character %. Conversion specifications within brackets are
optional.

% {flags} {field_width} {.precision} {length_modifier} conversion

flags

Single characters which modify the operation of the format as follows:

-
left adjusted field

+
signed values will always begin with plus or minus sign

space
values will always begin with minus or space

Wind River Compiler for SPARC
User’s Guide, 5.4

508

#
Alternate form. Has the following effect: For o (octal) conversion, the first
digit will always be a zero. G, g, E, e and f conversions will always print a
decimal point. G and g conversions will also keep trailing zeros. X, x (hex)
and p conversions will prepend non-zero values with 0x (or 0X)

0
zero padding to field width (for d, i, ll, o, q, u, x, X, e, E, f, g, and G
conversions)

field_width
Number of characters to be printed in the field. Field width will be padded
with space if needed. If given as “*”, the next argument should be an integer
holding the field width.

.precision
Minimum number of digits to print for integers (d, i, ll, o, q, u, x, and X).
Number of decimals printed for floating point values (e, E, and f). Maximum
number of significant digits for g and G conversions. Maximum number of
characters for s conversion. If given as “*” the next argument should be an
integer holding the precision.

length_modifier
The following length modifiers are used:

h
Used before d, i, o, n, u, x, or X conversions to denote a short int or
unsigned short int value.

l
Used before d, i, o, n, u, x, or X conversions to denote a long int or
unsigned long int value.

L
Used before e, E, f, g, or G conversions to denote a long double value.
Used before d, i, o, u, x, or X conversions to denote a long long value.

conversion
The following conversion specifiers are used:

d
Write signed decimal integer value.

i
Write signed decimal integer value.

34 C Library Functions
34.3 Function Listing

509

34

ll
Write signed long long decimal integer value.

o
Write unsigned octal integer value.

q
Write signed long long decimal integer value.

u
Write unsigned decimal integer value.

x
Write unsigned hexadecimal (0-9, abc...) integer value.

X
Write unsigned hexadecimal (0-9, ABC...) integer value.

e
Write floating point value: [-]d.ddde+dd .

E
Write floating point value: [-]d.dddE+dd .

f
Write floating point value: [-]ddd.ddd .

g
Write floating point value in f or e notation depending on the size of the
value (“best” fit conversion).

G
Write floating point value in f or E notation depending on the size of the
value (“best” fit conversion).

c
Write a single character.

s
Write a string.

p
Write a pointer value (address).

n
Store current number of characters written so far. The argument should be
a pointer to integer.

Wind River Compiler for SPARC
User’s Guide, 5.4

510

%
Write a percentage character.

The floating point values Infinity and Not-A-Number are printed as inf, INF, nan,
and NAN when using the e, E, f, g, or G conversions.

OS calls: isatty, sbrk, write.

Reference: ANSI.

putc()

#include <stdio.h>
int putc(int c, FILE *stream)

Writes the character c onto the output stream at the position where the file pointer,
if defined, is pointing.

OS calls: isatty, sbrk, write.

Reference: ANSI.

putchar()

#include <stdio.h>
int putchar(int c)

Similar to putc() but writes to stdout.

OS calls: isatty, sbrk, write.

Reference: ANSI.

putenv()

#include <stdlib.h>
int putenv(char *string);

NOTE: By default in most environments, printf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.516, with a NULL buffer pointer after opening but before writing to
the stream:

setbuf(*stream, 0);

34 C Library Functions
34.3 Function Listing

511

34

string points to a string of the form name=value, and putenv() makes the value of
the environmental variable name equal to value. The string pointed to by string
becomes part of the environment, so altering string alters the environment.

OS calls: sbrk, write.

Reference: SVID.

puts()

#include <stdio.h>
int puts(const char *s);

Writes the null-terminated string pointed to by s, followed by a new-line character,
to stdout.

OS calls: isatty, sbrk, write.

Reference: ANSI.

putw()

#include <stdio.h>
int putw(int w, FILE *stream)

Writes the word (i.e., integer) w to the output stream at the position at which the file
pointer, if defined, is pointing.

OS calls: isatty, sbrk, write.

Reference: SVID.

qsort()

#include <stdlib.h>
void qsort(void *base, size_t nel, size_t size, int (*compar)());

Sorts a table in place using the quick-sort algorithm. base points to the element at
the base of the table, nel is the number of elements. size is the size of each element.
compar is a pointer to the user supplied comparison function, which is called with
two arguments that point to the elements being compared.

Reference: ANSI, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

512

raise()

#include <signal.h>
int raise(int sig);

Sends the signal sig to the executing program.

OS calls: getpid, kill.

Reference: ANSI.

rand()

#include <stdlib.h>
int rand(void);

Returns a pseudo random number in the interval [0, RAND_MAX].

Reference: ANSI.

read()

#include <unistd.h>
int read(int fildes, void *buf, unsigned nbyte);

Reads max nbyte bytes from the file associated with the file descriptor fildes to the
buffer pointed to by buf.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: SYS.

realloc()

#include <stdlib.h>
void *realloc(void *ptr, size_t size);
extern int __no_malloc_warning;

Changes the size of the object pointed to by ptr to the size size. ptr must have
received its value from malloc(), calloc(), or realloc(). Returns a pointer to the
start address of the possibly moved object, or a null pointer if no more memory can
be obtained from the OS.

34 C Library Functions
34.3 Function Listing

513

34

If the pointer ptr was freed or not allocated by malloc(), a warning is printed on
the stderr stream. The warning can be suppressed by assigning a non-zero value
to the integer variable __no_malloc_warning. See malloc() for more information.

OS calls: sbrk, write.

Reference: ANSI.

remove()

#include <stdio.h>
int remove(const char *filename);

Removes the file filename. Once removed, the file cannot be opened as an existing
file.

OS calls: unlink.

Reference: ANSI.

rename()

#include <stdio.h>
int rename(const char *old, const char *new);

Renames the file old to the file new. Once renamed, the file old cannot be opened
again.

OS calls: link, unlink.

Reference: ANSI.

rewind()

#include <stdio.h>
void rewind(FILE *stream);

Same as fseek(stream, 0L, 0), except that no value is returned.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

sbrk()

Wind River Compiler for SPARC
User’s Guide, 5.4

514

#include <unistd.h>
void *sbrk(int incr);

Gets incr bytes of memory from the operating system.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: UNIX, SYS.

_scalb()

#include <math.h>
double _scalb(double x, int N);

Returns y * 2N for integeral values N without computing 2N.

Reference: ANSI 754, MATH, REENT.

scanf()

#include <stdio.h>
int scanf(const char *format, ...);

Reads formatted data from stdin and optionally assigns converted data to
variables specified by the format string. Returns the number of successful
conversions (or EOF if input is exhausted).

If the format string contains white-space characters, input is scanned until a
non-white-space character is found.

A conversion specification is introduced by the character %.

If the format string neither contains a white-space nor a %, the format string and
the input characters must match exactly.

A summary of the scanf() conversion specifiers is shown below. Conversion
specifications within braces are optional.

% {*} {field_width} {length_modifier} conversion

*
No assignment should be done (just scan the field).

field_width
Maximum field to be scanned (default is until no match occurs).

34 C Library Functions
34.3 Function Listing

515

34

length_modifier
The following length modifiers are used:

l
Used before d, i, or n to indicate long int or before o, u, x to denote the
presence of an unsigned long int. For e, E, g, G, and f conversions the l
character implies a double operand.

h
Used before d, i, or n to indicate short int or before o, u, or x to denote the
presence of an unsigned short int.

L
For e, E, g, G, and f conversions the L character implies a long double
operand. For d, i, o, u, x, and X conversions the L character implies a
long long operand.

conversion
The following conversions are available:

d
Read an optionally signed decimal integer value.

i
Read an optionally signed integer value in standard C notation. Default is
decimal notation, but octal (0n) and hex (0xn, 0Xn) notations are also
recognized.

ll
Read an optionally signed long long decimal integer value.

o
Read an optionally signed octal integer.

q
Read an optionally signed long long decimal integer value.

u
Read an unsigned decimal integer.

x, X
Read an optionally signed hexadecimal integer.

f, e, E, g, G
Read a floating point constant.

s
Read a character string.

Wind River Compiler for SPARC
User’s Guide, 5.4

516

c
Read field_width number of characters (1 is default).

n
Store the number of characters read so far. The argument should be a
pointer to an integer.

p
Read a pointer value (address).

[
Read characters as long as they match any of the characters that are within
the terminating]. If the first character after [is a ^, the matching condition
is reversed. If the [is immediately followed by] or ^], the] is assumed to
belong to the matching sequence, and there must be another terminating
character. A range of characters may be represented by first-last, thus [a-f]
equals [abcdef].

%
Read a % character.

Notes: Except for the [, c, or n specifiers leading white-space characters are
skipped. Variables must always be expressed as addresses in order to be assignable
by scanf.

OS calls: isatty, read, sbrk, write.

Reference: ANSI.

seed48()

#include <stdlib.h>
unsigned short *seed48(unsigned short seed16v[3]);

Initialization entry point for drand48(), lrand48(), and mrand48().

Reference: SVID.

setbuf()

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

May be used after the stream has been opened but before reading or writing to it. It
causes the array pointed to by buf to be used instead of an automatically allocated

34 C Library Functions
34.3 Function Listing

517

34

buffer. If buf is the null pointer, then input/output will be unbuffered. The constant
BUFSIZ in <stdio.h> defines the required size of buf.

OS calls: isatty, sbrk, write.

Reference: ANSI.

setjmp()

#include <setjmp.h>
int setjmp(jmp_buf env);

Saves the current execution environment in env for use by the longjmp() function.
Returns 0 when invoked by setjmp() and a non-zero value when returning from a
longjmp() call.

Reference: ANSI, REENT.

setlocale()

#include <locale.h>
char *setlocale(int category, const char *locale);

Selects the appropriate portion of the program’s locale as specified by the category
and locale arguments. Can be used to change or query the program’s entire locale
with the category LC_ALL; the other values for category name only portions of the
program’s locale. LC_COLLATE affects the behavior of the strcoll() and strxfrm()
functions. LC_CTYPE affects the behavior of the character handling functions and
the multi-byte functions. LC_MONETARY affects the monetary formatting
information returned by the localeconv() function. LC_NUMERIC affects the
decimal-point character for the formatted input/output functions and the string
conversion functions, as well as the non-monetary formatting information
returned by the localeconv() function. LC_TIME affects the behavior of the
strftime() function.

A value of “C” for locale specifies the minimal environment for C translation; a
value of "" for locale specifies the implementation-defined native environment.
Other implementation-defined strings may be passed as the second argument to
setlocale().

At program start-up, the equivalent of setlocale(LC_ALL, "C") is executed.

The compiler currently supports only the “C” locale.

Reference: ANSI.

Wind River Compiler for SPARC
User’s Guide, 5.4

518

setvbuf()

#include <stdio.h>
void setvbuf(FILE *stream, char *buf, int type, size_t size);

See setbuf(). type determines how the stream will be buffered:

size specifies the size of the buffer to be used; BUFSIZ in <stdio.h> is the suggested
size.

OS calls: sbrk, write.

Reference: ANSI.

signal()

#include <signal.h>
void (*signal(int sig, void (*func)()))(void);

Specifies the action on delivery of a signal. When the signal sig is delivered, a signal
handler specified by func is called.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: ANSI, SYS.

sin()

#include <math.h>
double sin(double x);

Returns the sine of x measured in radians. It loses accuracy with a large argument
value.

OS calls: write.

Reference: ANSI, MATH, REERR.

_IOFBF causes stream to be fully buffered
_IOLBF causes stream to be line buffered
_IONBF causes stream to be unbuffered

34 C Library Functions
34.3 Function Listing

519

34

sinf()

#include <mathf.h>
float sinf(float x);

Returns the sine of x measured in radians. It loses accuracy with a large argument
value. This is the single precision version of sin().

OS calls: write.

Reference: DCC, MATH, REERR.

sinh()

#include <math.h>
double sinh(double x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large
argument value.

Reference: ANSI, MATH, REERR.

sinhf()

#include <mathf.h>
float sinhf(float x);

Returns the hyperbolic sine of x measured in radians. It loses accuracy with a large
argument value. This is the single precision version of sinh().

Reference: DCC, MATH, REERR.

sprintf()

#include <stdio.h>
int sprintf(char *s, const char *format , ...);

Places output arguments followed by the null character in consecutive bytes
starting at *s; the user must ensure that enough storage is available. See printf().

Reference: ANSI, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

520

sqrt()

#include <math.h>
double sqrt(double x);

Returns the non-negative square root of x. The argument must be non-negative.

OS calls: write.

Reference: ANSI, MATH, REERR.

sqrtf()

#include <mathf.h>
float sqrtf(float x);

Returns the non-negative square root of x. The argument must be non-negative.
This is the single precision version of sqrt().

OS calls: write.

Reference: DCC, MATH, REERR.

srand()

#include <stdlib.h>
void srand(unsigned seed);

Resets the random-number generator to a random starting point. See rand().

Reference: ANSI.

srand48()

#include <stdlib.h>
void srand48(long seedval);

Initialization entry point for drand48(), lrand48(), and mrand48().

Reference: SVID.

sscanf()

#include <stdio.h>
int sscanf(const char *s, const char *format, ...);

34 C Library Functions
34.3 Function Listing

521

34

Reads formatted data from the character string s, optionally assigning converted
data to variables specified by the format string. It returns the number of successful
conversions (or EOF if input is exhausted). See scanf().

Reference: ANSI, REENT.

step()

#include <regexp.h>
int step(char *string, char *expbuf);

Does pattern matching given the string string and a compiled regular expression
expbuf. See SVID for more details.

Reference: SVID.

strcat()

#include <string.h>
char *strcat(char *s1, const char *s2);

Appends a copy of the string pointed to by s2 (including a null character) to the
end of the string pointed to by s1. The initial character of s2 overwrites the null
character at the end of s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

strchr()

#include <string.h>
char *strchr(const char *s, int c);

Locates the first occurrence of c in the string pointed to by s.

Reference: ANSI, REENT.

strcmp()

#include <string.h>
int strcmp(const char *s1, const char *s2);

Compares s1 to s2. Returns an integer greater than, equal to, or less than zero
according to the relationship between s1 and s2.

Wind River Compiler for SPARC
User’s Guide, 5.4

522

Reference: ANSI, REENT.

strcoll()

#include <string.h>
int strcoll(const char *s1, const char *s2);

Compares s1 to s2, both interpreted as appropriate to the LC_COLLATE category of
the current locale. Returns an integer greater than, equal to, or less than zero
according to the relationship between s1 and s2.

Reference: ANSI, REENT.

strcpy()

#include <string.h>
char *strcpy(char *s1, const char *s2);

Copies the string pointed to by s2 (including a terminating null character) into the
array pointed to by s1. The behavior is undefined if the objects overlap.

Reference: ANSI, REENT.

strcspn()

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely
of characters not from s2.

Reference: ANSI, REENT.

strdup()

#include <string.h>
char *strdup(const char *s1);

Returns a pointer to a new string which is a duplicate of s1.

OS calls: sbrk.

Reference: SVID.

34 C Library Functions
34.3 Function Listing

523

34

strerror()

#include <string.h>
char *strerror(int errnum);

Maps the error number in errnum to an error message string.

Reference: ANSI, REENT.

strftime()

#include <time.h>
size_t strftime(char *s, size_t maxsize, const char *format,

const struct tm *timeptr);

Uses the format format and values in the structure timeptr to generate formatted
text. Generated characters are stored in successive locations in the array pointed to
by s. It stores a null character in the next location in the array. Each non-% character
is stored in the array. For each % followed by a character, a replacement character
sequence is stored as shown below. Examples are in parenthesis.

%a abbreviated weekday name (Mon)

%A full weekday name (Monday)

%b abbreviated month name (Jan)

%B full month name (January)

%c date and time (Jan 03 07:22:43 1990)

%d day of the month (04)

%H hour of the 24-hour day (13)

%I hour of the 12-hour day (9)

%j day of the year, Jan 1 = 001 (322)

%m month of the year (11)

%M minutes after the hour (43)

%p AM/PM indicator (PM)

%S seconds after the minute (37)

%U Sunday week of the year, from 00 (34)

%w weekday number, Sunday = 0 (3)

Wind River Compiler for SPARC
User’s Guide, 5.4

524

Reference: ANSI, REENT.

strlen()

#include <string.h>
size_t strlen(const char *s);

Computes the length of the string s.

Reference: ANSI, REENT.

strncat()

#include <string.h>
char *strncat(char *s1, const char *s2, size_t n);

Appends not more than n characters from the string pointed to by s2 to the end of
the string pointed to by s1. The initial character of s2 overwrites the null character
at the end of s1. The behavior is undefined if the objects overlap. A terminating null
character is always appended to the result.

Reference: ANSI, REENT.

strncmp()

#include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Compares not more than n characters (characters after a null character are ignored)
in s1 to s2. Returns an integer greater than, equal to, or less than zero according to
the relationship between s1 and s2.

%W Monday week of the year, from 00 (23)

%x date (Jan 23 1990)

%X time (23:33:45)

%y year of the century (90)

%Y year (1990)

%Z time zone name (PST)

%% percent character (%)

34 C Library Functions
34.3 Function Listing

525

34

Reference: ANSI, REENT.

strncpy()

#include <string.h>
char *strncpy(char *s1, const char *s2, size_t n);

Copies not more than n characters from the string pointed to by s2 (including a
terminating null character) into the array pointed to by s1. The behavior is
undefined if the objects overlap. If s2 is shorter than n, null characters are
appended.

Reference: ANSI, REENT.

strpbrk()

#include <string.h>
char *strpbrk(const char *s1, const char *s2);

Locates the first occurrence of any character from the string pointed to by s2 within
the string pointed to by s1.

Reference: ANSI, REENT.

strrchr()

#include <string.h>
char *strrchr(const char *s, int c);

Locates the last occurrence of c within the string pointed to by s.

Reference: ANSI, REENT.

strspn()

#include <string.h>
size_t strspn(const char *s1, const char *s2);

Computes the length of the maximum initial segment of s1 which consists entirely
of characters from s2.

Reference: ANSI, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

526

strstr()

#include <string.h>
char *strstr(const char *s1, const char *s2);

Locates the first occurrence of the sequence of characters (not including a null
character) in the string pointed to by s2 within the string pointed to by s1.

Reference: ANSI, REENT.

strtod()

#include <stdlib.h>
double strtod(const char *str, char **endptr);

Returns as a double-precision floating point number the value represented by the
character string pointed to by str. The string is scanned to the first unrecognized
character. Recognized characters include optional white-space character(s),
optional sign, a string of digits optionally containing a decimal point, optional e or
E followed by an optional sign or space, followed by an integer. At return, the
pointer at *endptr is set to the first unrecognized character.

Reference: ANSI, REERR.

strtok()

#include <string.h>
char *strtok(char *s1, const char *s2);

Searches string s1 for address of the first element that equals none of the elements
in string s2. If the search does not find an element, it stores the address of the
terminating null character in the internal static duration data object and returns a
null pointer. Otherwise, searches from found address to address of the first
element that equals any one of the elements in string s2. If it does not find element,
it stores address of the terminating null character in the internal static duration
data object. Otherwise, it stores a null character in the element whose address was
found in second search. Then it stores address of the next element after end in the
internal duration data object (so next search starts at that address) and returns
address found in initial search.

Reference: ANSI.

34 C Library Functions
34.3 Function Listing

527

34

strtol()

#include <stdlib.h>
long strtol(const char *str, char **endptr, int base);

Returns as a long integer the value represented by the character string pointed to
by str. The string is scanned to the first character inconsistent with the base.
Leading white-space characters are ignored. At return, the pointer at *endptr is set
to the first unrecognized character.

If base is positive and less then 37, it is used as the base for conversion. After an
optional sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base: after an optional leading sign a
leading zero indicates octal, a leading “0x” or “0X” indicates hexadecimal, else
decimal conversion is used.

Reference: ANSI, REERR.

strtoul()

#include <stdlib.h>
long strtoul(const char *, char **endptr, int base);

Returns as an unsigned long integer the value represented by the character string
pointed to by s. The string is scanned to the first character inconsistent with the
base. Leading white-space characters are ignored. This is the same as strtol(),
except that it reports a range error only if the value is too large to be represented as
the type unsigned long.

Reference: ANSI, REERR.

strxfrm()

#include <string.h>
size_t strxfrm(char *s1, char *s2, size_t n);

Transforms s2 and places the result in s1. No more than n characters are put in s1,
including the terminating null character. The transformation is such that if
strcmp() is applied to the two strings, it returns a value greater than, equal to, or
less than zero, corresponding to the result of the strcoll() function applied to the
same two original strings. Copying between objects that overlap causes undefined
results.

Reference: ANSI, REENT.

Wind River Compiler for SPARC
User’s Guide, 5.4

528

swab()

#include <dcc.h>
void swab(const char *from, char *to, int nbytes)

Copies nbytes bytes pointed to by from to the array pointed to by to. nbytes must be
even and non-negative. Adjacent even and odd bytes are exchanged.

Reference: SVID, REENT.

tan()

#include <math.h>
double tan(double x);

Returns the tangent of x measured in radians.

OS calls: write.

Reference: ANSI, MATH, REERR.

tanf()

#include <mathf.h>
float tanf(float x);

Returns the tangent of x measured in radians. This is the single precision version
of tan().

OS calls: write.

Reference: DCC, MATH, REERR.

tanh()

#include <math.h>
double tanh(double x);

Returns the hyperbolic tangent of x measured in radians.

Reference: ANSI, MATH, REENT.

34 C Library Functions
34.3 Function Listing

529

34

tanhf()

#include <mathf.h>
float tanhf(float x);

Returns the hyperbolic tangent of x measured in radians. This is the single
precision version of tanh().

Reference: DCC, MATH, REENT.

tdelete()

#include <search.h>
void *tdelete(const void *key, void **rootp, int (*compar)());

The tdelete() function deletes a node from a binary search tree. The value for rootp
will be changed if the deleted node was the root of the tree. Returns a pointer to the
parent of the deleted node. See tsearch().

Reference: SVID.

tell()

#include <dcc.h>
long tell(int fildes);

Returns the current location in the file descriptor fildes. This is the same as
lseek(fildes,0L,1).

OS calls: lseek.

Reference: DCC.

tempnam()

#include <stdio.h>
char *tempnam(const char *dir, const char *pfx);

Creates a unique filename, allowing control of the choice of directory. If the
TMPDIR variable is specified in the user’s environment, it is used as the temporary
file directory. Otherwise, the argument dir points to the name of the directory in
which the file is to be created. If dir is invalid, the path-prefix P_tmpdir (<stdio.h>)
is used. If P_tmpdir is invalid, /tmp is used. See tmpnam().

Reference: SVID.

Wind River Compiler for SPARC
User’s Guide, 5.4

530

tfind()

#include <search.h>
void *tfind(void *key, void *const *rootp, int (*compar)());

tfind() will search for a datum in a binary tree, and return a pointer to it if found,
otherwise it returns a null pointer. See tsearch().

Reference: SVID, REENT.

time()

#include <time.h>
time_t time(time_t *timer);

Returns the system time. If timer is not a null pointer, the time value is stored in
*timer.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: ANSI, SYS.

tmpfile()

#include <stdio.h>
FILE *tmpfile(void);

Creates a temporary file using a name generated by tmpnam() and returns the
corresponding FILE pointer. File is opened for update ("w+"), and is automatically
deleted when the process using it terminates.

OS calls: lseek, open, unlink.

Reference: ANSI.

tmpnam()

#include <stdio.h>
char *tmpnam(char *s);

Creates a unique filename using the path-prefix defined as P_tmpdir in <stdio.h>.
If s is a null pointer, tmpnam() leaves the result in an internal static area and
returns a pointer to that area. At the next call to tmpnam(), it will destroy the
contents of the area. If s is not a null pointer, it is assumed to be the address of an

34 C Library Functions
34.3 Function Listing

531

34

array of at least L_tmpnam bytes (defined in <stdio.h>); tmpnam() places the
result in that array and returns s.

OS calls: access, getpid.

Reference: ANSI.

toascii()

#include <ctype.h>
int toascii(int c);

Turns off all bits in the argument c that are not part of a standard ASCII character;
for compatibility with other systems.

Reference: SVID, REENT.

tolower()

#include <ctype.h>
int tolower(int c);

Converts an upper-case letter to the corresponding lower-case letter. The argument
range is -1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

_tolower()

#include <ctype.h>
int _tolower(int c);

Converts an upper-case letter to the corresponding lower-case letter. Arguments
outside lower-case letters return undefined results. The speed is somewhat faster
than tolower().

Reference: SVID, REENT.

toupper()

#include <ctype.h>
int toupper(int c);

Wind River Compiler for SPARC
User’s Guide, 5.4

532

Converts a lower-case letter to the corresponding upper-case letter. The argument
range is -1 through 255, any other argument is unchanged.

Reference: ANSI, REENT.

_toupper()

#include <ctype.h>
int _toupper(int c);

Converts a lower-case letter to the corresponding upper-case letter. Arguments
outside lower-case letters return undefined results. The speed is somewhat faster
than toupper().

Reference: SVID, REENT.

tsearch()

#include <search.h>
void *tsearch(const void *key, void ** rootp, int (*compar)());

Used to build and access a binary tree. The user supplies the routine compar to
perform comparisons. key is a pointer to a datum to be accessed or stored. If a
datum equal to *key is in the tree, a pointer to that datum is returned. Otherwise,
*key is inserted, and a pointer to it is returned. rootp points to a variable that points
to the root of the tree.

Reference: SVID.

twalk()

#include <search.h>
void twalk(void *root, void (*action)());

twalk() traverses a binary tree. root is the root of the tree to be traversed, and any
node may be the root for a walk below that node. action is the name of the user
supplied routine to be invoked at each node, and is called with three arguments.
The first argument is the address of the node being visited. The second argument
is a value from the enumeration data type typedef enum {preorder, postorder,
endorder, leaf} VISIT (see <search.h>), depending on whether this is the first,
second, or third time the node has been visited (during a depth-first, left-to-right
traversal of the tree), or whether the node is a leaf. The third argument is the level
of the node in the tree, with the root as level zero. See tsearch().

34 C Library Functions
34.3 Function Listing

533

34

Reference: SVID, REENT.

tzset()

#include <sys/types.h>
#include <time.h>
void tzset(void);

tzset() uses the contents of the environment variable TZ to override the value of
the different external variables for the time zone. It scans the contents of TZ and
assigns the different fields to the respective variable. tzset() is called by asctime()
and may be called explicitly by the user.

Reference: POSIX.

ungetc()

#include <stdio.h>
int ungetc(int c, FILE *stream);

Inserts character c into the buffer associated with input stream. The argument c will
be returned at the next getc() call on that stream. ungetc() returns c and leaves the
file associated with stream unchanged. If c equals EOF, ungetc() does nothing to the
buffer and returns EOF. Only one character of push-back is guaranteed.

Reference: ANSI.

unlink()

#include <unistd.h>
int unlink(const char *path);

Removes the directory entry path.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

_unordered()

#include <math.h>
double _unordered(double x, double y);

Wind River Compiler for SPARC
User’s Guide, 5.4

534

Returns a non-zero value if x is unordered with y, and returns zero otherwise. See
Table 4 of the ANSI 754 standard for the meaning of unordered.

Reference: ANSI 754, MATH, REENT.

vfprintf()

#include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE *stream, const char *format, va_list arg);

This is equivalent to fprintf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, sbrk, write.

Reference: ANSI.

vfscanf()

#include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE *stream, const char *format, va_list arg);

This is equivalent to fscanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.

Reference: DCC.

vprintf()

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char *format, va_list arg);

NOTE: By default in most environments, vfprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.516, with a NULL buffer pointer before after opening but before
writing to the stream:

setbuf(*stream, 0);

34 C Library Functions
34.3 Function Listing

535

34

This is equivalent to printf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, sbrk, write.

Reference: ANSI.

vscanf()

#include <stdarg.h>
#include <stdio.h>
int vscanf(const char *format, va_list arg);

This is equivalent to scanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.

Reference: DCC.

vsprintf()

#include <stdarg.h>
#include <stdio.h>
int vsprintf(char *s, const char *format, va_list arg);

This is equivalent to sprintf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, sbrk, write.

Reference: ANSI, REENT.

vsscanf()

#include <stdarg.h>
#include <stdio.h>
int vsscanf(const char *s, const char *format, va_list arg);

NOTE: By default in most environments, vprintf buffers its output until a newline
is output. To cause output character-by-character without waiting for a newline,
call setbuf(), p.516, with a NULL buffer pointer before after opening but before
writing to the stream:

setbuf(*stream, 0);

Wind River Compiler for SPARC
User’s Guide, 5.4

536

This is equivalent to sscanf(), but with the argument list replaced by arg, which
must have been initialized with the va_start macro.

OS calls: isatty, read, sbrk, write.

Reference: DCC, REENT.

wcstombs()

#include <stdlib.h>
size_t wcstombs(char *s, const wchar_t *wcs, size_t n);

Stores a multi-byte character string in the array whose first element has the address
s by converting each of the characters in the string wcs. It converts as if calling
wctomb(). It stores no more than n characters, stopping after it stores a null
character. It returns the number of characters stored, not counting the null
character; unless there is an error, in which case it returns -1.

Reference: ANSI.

wctomb()

#include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

If s is not a null pointer, the function determines the number of bytes needed to
represent the multi-byte character corresponding to the wide character wchar. It
converts wchar to the corresponding multi-byte character and stores it in the array
whose first element has the address s. It returns the number of bytes required, not
counting the terminating null character; unless there is an error, in which case it
returns -1.

Reference: ANSI.

write()

#include <unistd.h>
int write(int fildes, const void *buf, unsigned nbyte);

Writes nbyte bytes from the buffer buf to the file fildes.

The C libraries provide an interface to this operating system call. Please see your
OS manual for a complete definition.

Reference: POSIX, SYS.

34 C Library Functions
34.3 Function Listing

537

34

y0()

#include <math.h>
double y0(double x);

Returns the Bessel function of positive x of the second kind of order 0.

OS calls: write.

Reference: UNIX, MATH, REERR.

y0f()

#include <mathf.h>
float y0f(float x);

Returns the Bessel function of positive x of the second kind of order 0. This is the
single precision version of y0().

OS calls: write.

Reference: DCC, MATH, REERR.

y1()

#include <math.h>
double y1(double x);

Returns the Bessel function of positive x of the second kind of order 1.

OS calls: write.

Reference: UNIX, MATH, REERR.

y1f()

#include <mathf.h>
float y1f(float x);

Returns the Bessel function of positive x of the second kind of order 1. This is the
single precision version of y1().

OS calls: write.

Reference: DCC, MATH, REERR.

Wind River Compiler for SPARC
User’s Guide, 5.4

538

yn()

#include <math.h>
double yn(double n, double x);

Returns the Bessel function of positive x of the second kind of order n.

OS calls: write.

Reference: UNIX, MATH, REERR.

ynf()

#include <mathf.h>
float ynf(float n, float x);

Returns the Bessel function of positive x of the second kind of order n. This is the
single precision version of yn().

OS calls: write.

Reference: DCC, MATH, REERR.

539

PAR T VII

Appendices

A Configuration Files ... 541

B Compatibility Modes: ANSI, PCC, and K&R C . 555

C Compiler Limits .. 561

D Compiler Implementation Defined Behavior 563

E Assembler Coding Notes 571

F Object and Executable File Format 573

G Compiler -X Options Numeric List 583

H Messages .. 587

Wind River Compiler for SPARC
User’s Guide, 5.4

540

541

 A
Configuration Files

A.1 Configuration Files 541

A.2 How Commands, Environment Variables, and Configuration Files
Relate 542

A.3 Standard Configuration Files 544

A.4 The Configuration Language 548

A.1 Configuration Files

The compiler drivers and other tools are controlled by options from two sources:
the command line, and standard configuration files installed automatically as part
of the compiler suites.

Configuration files permit options to be constructed from string constants and
variables using assignment, if, switch, include, and other statements.

For the most part, configuration files are used internally by the compiler suites to
support multiple target processors. The current default target configuration is
stored in the version_path/conf/default.conf configuration file (see 4.3 Alternatives
for Selecting a Target Configuration, p.25).

This appendix explains configuration file processing and the configuration
language. It will be useful to those wishing to create configuration files, or to
understand or modify the standard configuration files normally used by the tools.

Wind River Compiler for SPARC
User’s Guide, 5.4

542

A.2 How Commands, Environment Variables, and Configuration
Files Relate

If a tool is executed with no options on the command line, no configuration file,
and no environment variables set, then all options will have their default values as
described here.

In practice, each tool is usually executed with some options on the command line,
perhaps some options set with environment variables, and a number of
site-dependent defaults set in configuration files, with remaining options having
default values.

A.2.1 Configuration Variables and Precedence

Variables may be set in three places:

■ In the operating system environment (see 2.3 Environment Variables, p.15).

■ On the command line using the -WD option for any variable, the -WC option
for configuration variable DCONFIG, and the -t option to implicitly set
configuration variables DTARGET, DOBJECT, DFP, and DENVIRON.

■ In configuration files using assignment statements.

These are in order of precedence from lowest to highest: a variable defined on the
command line overrides an environment variable of the same name, and a variable
set in a configuration overrides both a command line and an environment variable
of the same name. (Thus, in a configuration file, it is usual to test whether a variable
has a value before assigning it a default value — see examples below.)

NOTE: Configuration files are used when the dcc, dplus, das, or dld programs are
executed explicitly, e.g., from the command line or in a makefile. In this chapter,
the term tool refers to any of these programs when executed explicitly.

When the dcc or dplus command automatically invoke the das or dld commands,
configuration file processing is done for the dcc or dplus command and not again
for the implicit das or dld command.

A Configuration Files
A.2 How Commands, Environment Variables, and Configuration Files Relate

543

A

A.2.2 Startup

Here is how each tool processes the command line and configuration files at
startup.

1. The tool scans the command line for an -@ option followed by the name of
either an environment variable or a file, and replaces the option with the
contents of the variable or file.

2. The tool scans the command line for each -WD variable=value option. If a
variable matches an existing environment variable, the new value effectively
replaces the existing value for the duration of the command (the operating
system environment is not changed).

The option -WC config-file-name is equivalent to
-WDDCONFIG=config-file-name. Thus, if both -WC and -WDDCONFIG options
are present, the config-file-name will be taken from the final instance, and if
either is present, they will override any DCONFIG environment variable.

3. The tool finds the main configuration file by checking first for a value of
variable DCONFIG, and then if that is not set, looking in the standard location
as given in Table A-1. The tool parses each statement in the configuration file
as described in the following subsections.

4. After parsing the configuration file, the tool processes each of the input files on
the command line using the options set by command-line and
configuration-file processing.

Figure A-1 below, provides a simplified example of how the above works.

The remainder of this chapter provides additional details and examples and
explains each of the statements allowed in a configuration file.

NOTE: Order is important. If a variable is given a value, or an option appears more
than once, the final instance is taken unless noted otherwise.

Figure A-1 Example of Command-Line and Configuration-File Processing

Situation

An engineer works on Project 1 and normally uses target1 with standard optimization (-O
option). Now the engineer has a target2 prototype and wants to use extended optimization
(-XO).

Environment variables (set using operating system commands not shown)

Wind River Compiler for SPARC
User’s Guide, 5.4

544

A.3 Standard Configuration Files

Wind River recommends the use of three configuration files in a hierarchy.
Standard versions of two of the files, dtools.conf and default.conf are shipped
with the tools.

The tool identifies the main configuration file using the DCONFIG variable as
described in A.2.2 Startup, p.543. If DCONFIG is not set, it then looks for the file
dtools.conf. Its standard location is the conf subdirectory of the directory holding
the selected version of the tools as shown in the following table (see also Table 2-1).

DFLAGS: -O As described in 2.3.1 Environment Variables
Recognized by the Compiler, p.15, DFLAGS
is a convenient way to give options with an
environment variable.

Command line

dcc -ttarget2 -XO test1.c

The command line is used to select the special
processor target2 and extended optimization.

Excerpts from configuration file dtools.conf

if (!$DTARGET) DTARGET=target1
...

If the target had not been set on the command
line or elsewhere, it would default to target1.

$DFLAGS
$*

$DFLAGS evaluates to -O. $* is a special variable
evaluating to all of the command-line
arguments. The -XO option from the command
line overrides the related -O option from the
DFLAGS environment variable.

Figure A-1 Example of Command-Line and Configuration-File Processing (cont’d)

Table A-1 Main Configuration File: Standard Name and Location

System Path and Name

UNIX /usr/lib/diab/version/conf/dtools.conf

Windows 95, 98, and NT c:\diab\version\conf\dtools.conf

A Configuration Files
A.3 Standard Configuration Files

545

A

The standard location of the main configuration file can be changed by setting the
DCONFIG environment variable, by using the -WC option, or by using the
-WDDCONFIG option.

The standard dtools file is structured broadly as shown in Figure A-2 on the next
page dtools shows how the compiler combines the various environment variables
and command-line options. dtools also serves as an example of how to write the
configuration language.

Avoid altering dtools. Instead, set defaults and specific options by using the -t
option on the command line to set DTARGET, DOBJECT, DFP, and DENVIRON (see
4.1 Selecting a Target, p.21), or otherwise modifying default.conf, and/or by
providing your own user.conf.

As shown in Figure 4-b, the dtools configuration file includes default.conf and
then user.conf near the beginning. These files must be located in the same
directory as dtools.conf (no path is allowed on include statements in configuration
files). If you want a private copy of these files, copy all the configuration files to a
local directory and change the location of dtools.conf as described at the beginning
of this section.

No error is reported if an include statement names a non-existent file; therefore,
both files are optional.

A.3.1 DENVIRON Configuration Variable

Configuration variable DENVIRON is set in default.conf and may be overridden
by setting an environment variable of the same name or by providing a -ttof:environ
option on the command line executing dcc, dplus, das, or dld.

As shown in Figure A-2, if a file named $DENVIRON.conf exists in the conf
subdirectory, it will be included by dtools.conf. The tools are delivered with
several such “environment” .conf files. These are used to set options as required
for several different target operating systems support by Wind River.

The DENVIRON configuration variable also controls the default search path use by
the linker to find libraries. See the environ entry in the Table 4-1 and the section
4.2 Selected Startup Module and Libraries, p.24 for details.

Wind River Compiler for SPARC
User’s Guide, 5.4

546

Figure A-2 Standard dtools.conf Configuration File - Simplified Structure

1. Variables and assignments used to customize selection and operation of the tools.

2. include
default.conf

Read the second of the two configuration files included with the
tools. This file records the target configuration in variables
DTARGET, DOBJECT, and DFP, and DENVIRON, and is updated
automatically during installation or by dctrl -t.

3. include
user.conf

ASCII file to be created by the user to set, for example, default
-X options and optimizations, additional default include files and
libraries, default preprocessor macros, etc.

4. Switch and other statements using DTARGET, DOBJECT, and DFP to set options and flags,
especially with respect to different targets. Also selection of tools if not customized above.

5. include
$DENVIRON.conf

This optional file sets options for a specific target operating system.
See A.3.1 DENVIRON Configuration Variable, p.545.

6. dcc, dplus section

$UFLAGS1

Standard options to be used unless overridden by $UFLAGS2. To be
set by the user in the user.conf configuration file.

$DFLAGS As described in 2.3.1 Environment Variables Recognized by the Compiler,
p.15, $DFLAGS is a convenient way to set an environment variable
for widely used options. Because it follows $UFLAGS1, an option in
$DFLAGS will override the same option in $UFLAGS1.

$* All arguments from the command line (-t, -WD, and -WC options are
not re-processed). Options here will override the same options in
both $UFLAGS1 and $DFLAGS.

$UFLAGS2 Overrides for $UFLAGS1, $DFLAGS, and the command line. To be set
by the user in the user.conf configuration file.

7. das section

$UAFLAGS1
$*
$UAFLAGS2

$UAFLAGS1 and $UAFLAGS2 can be set in user.conf to provide
options for the assembler when it is executed explicitly, with
$UFLAGS1 options processed before command-line options and
$UFLAGS2 options processed after.

8. dld section

$ULFLAGS1
$*
$ULFLAGS2

And similarly, $ULFLAGS1 and $ULFLAGS2 can be set in user.conf to
set options for the linker when it is executed explicitly.

A Configuration Files
A.3 Standard Configuration Files

547

A

A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables

Configuration file processing gives you several ways to provide options. The
standard configuration files shipped with the tools are intended to be used as
follows:

■ UFLAGS1 and UFLAGS2 are intended for compiler options that should
“always” be used. It is intended that UFLAGS1 and UFLAGS2 be set in a local
configuration file, user.conf, that you supply. Since you will not want to
change this frequently, options set there will be “permanent” unless
overridden.

As shown in Figure A-2 above, UFLAGS1 is expanded before command-line
options and files, and UFLAGS2 after command-line options.

Example: to make sure that the lint facility is always on and that the compiler
checks for prototypes, create a user.conf with the following lines:

File: user.conf
Always perform lint + check for prototypes. (Note: as
assignment, quotes are required with embedded spaces.)
UFLAGS1="-Xlint -Xforce-prototypes"

If there is a site-wide user.conf, the tools administrator can make sure that any
user using it will not require too much memory by adding the following to
user.conf:

Limit memory for optimization.
UFLAGS2=-Xparse-size=1000

■ DFLAGS is intended to be an environment variable for options that change
more frequently than those in the configuration files, but not with every
compile. For example, it may be conveniently used to select levels for
optimization and debugging information.

DFLAGS applies only to explicit execution of dcc and dplus, not to explicit
execution of das or dld. However, some options are passed by dcc and dplus
to the assembler or linker, e.g., the -L or -Y P options to specify a library search
directory for the linker, or the -Wa,arguments or -Wl,arguments options to pass
arguments to the assembler or linker. If DFLAGS includes such options, they
will be passed along as usual.

NOTE: Variables are referenced with a “$”, e.g., $UFLAGS1 as shown in
Figure A-2, but are written without a “$” when being set by an assignment
statement.

Wind River Compiler for SPARC
User’s Guide, 5.4

548

■ Options for a specific compilation are given on the command line. These
override any options set with UFLAGS1, DFLAGS, but not UFLAGS2 since
UFLAGS2 occurs after $* in dtools.conf.

A.3.3 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2 Configuration Variables

Similar to the way UFLAGS1 and UFLAGS2 are intended to provide “permanent”
options to be processed before and after command-line options for the compiler,
UAFLAGS1 and UAFLAGS2 provide before-and-after options for the assembler and
ULFLAGS1 and ULFLAGS2 provide before-and-after options for the linker.

As with UFLAGS1 and UFLAGS2, it is expected that these options will be assigned
values in a user-supplied user.conf configuration file, and because they are reset to
the empty string at the beginning of dtools.conf they cannot be set as environment
variables. See Figure A-2 for additional details.

A.4 The Configuration Language

As noted above, the ultimate purpose and effect of configuration file processing is
to provide values for options. The simplest type of configuration file is an ordinary
text file containing multiple lines where each line sets a single option.

Beyond this, a straight-forward configuration language allows greater control over
configuration file processing, so that different options and their values may be set
depending on options present on the command line, on environment variables,
and on variables defined by the user within a configuration file or a file included
by a configuration file.

The remainder of this section describes the configuration language and ends with
an extended example.

NOTE: UFLAGS1 and UFLAGS2 (and UAFLAGS1, UAFLAGS2, ULFLAGS1,
ULFLAGS2) cannot be overridden by environment variables of the same name.
This is because they are reset to empty strings at the beginning of dtools.conf
before being read from user.conf. This is in contrast to DFLAGS which is not so
reset and can therefore be an environment variable.

A Configuration Files
A.4 The Configuration Language

549

A

A.4.1 Statements and Options

A configuration file consists of a sequence of statements and options separated by
whitespace. A # token at any point on a line not in a quoted string introduces a
comment; the rest of the line is ignored. Thus, a line may contain multiple
statements and options ending in a comment.

A statement is either an assignment statement or starts with one of the keywords
error, exit, include, if (and else), print, or switch (and case, break, and endsw).

In general, it is preferable to write one statement or option per line. This makes a
configuration file easier to understand and modify. An exception to this rule is
made for lines containing an if or else statement, each of which governs the
remaining statements and options on a line as described below.

Whitespace, consisting of spaces or tabs, may be used freely between statements
and/or options for readability. Blank lines are ignored.

A line may not be continued to a second line, but there is no practical limit on the
length of a line except that which may be imposed by an operating system or text
editor.

Any text which is not a statement or comment per the above is taken as options. In
general, options have one of four forms, each introduced by a single character
option letter x:

-x
-x name
-x value
-x name=value

Either the name or the value may a quoted or unquoted string of characters as
allowed by a particular option, and either may include variables introduced by a
“$” character (see A.4.4 Variables, p.550 below). Examples:

-O
-XO "O" is a name
-o test.out "test.out" is a value
-Xlocal-data-area=0
-I$HOME/include "$HOME" is a variable

A.4.2 Comments

A # token at any point on a line not in a quoted string introduces a comment — the
rest of the line is ignored. Examples:

.......... # This is a comment through the end of the line.
not_a_comment = "# This is an assignment, not a comment"

Wind River Compiler for SPARC
User’s Guide, 5.4

550

A.4.3 String Constants

A string constant is any sequence of characters ending in whitespace (spaces and
tabs) or at end-of-line. To include whitespace in a string constant, enclose the entire
constant in double quotes. Also, a string may include a variable prefixed with a “$”
character.

There is no practical length limit except that imposed by the maximum length of a
line. Examples:

Simple_string_constant
"string constant with embedded spaces"
"$XFLAGS -Xanother-X-flag" # $XFLAGS will be expanded

A.4.4 Variables

All variables are of type string. Variable names are any sequence of letters, digits,
and underscores, beginning with a letter or underscore (letters are “A” - “Z” and
“a” - “z”, digits are “0” - “9”). There is no practical length limit to a variable name
except that imposed by the maximum length of a line.

Variables are case sensitive.

To set a variable in a configuration file use an assignment statement. (See
A.4.5 Assignment Statement, p.551).

To evaluate a variable, that is, to use its value, precede it with a “$” character. See
A.2.1 Configuration Variables and Precedence, p.542 for a discussion of how
environment variables and variables used in configuration files relate and their
precedence.

Variables are not declared. A variable which has not been set evaluates to a
zero-length string equivalent to “ “.

The special variable $* evaluates to all arguments given on the command line.
(However -WC and -WD arguments have already been processed and are
effectively ignored.) See examples below and also Figure A-2.

The special variable $-x, where x is one or more characters, evaluates to any user
specified option starting with x, if given previously (on the command line or in the
configuration file). Otherwise it evaluates to the zero-length string. If more than
one option begins with x, only the first is used.

For example, if the command line includes option -Dtest=level9, then $-Dtest
evaluates to -Dtest-level9.

A Configuration Files
A.4 The Configuration Language

551

A

The special variable $$ is replaced by a dollar sign “$”.

The special variable $/ is replaced by the directory separation character on the host
system: “/” on UNIX and “\” on Windows. (On any specific system, you can just
use the appropriate character. Wind River uses “$/” for portability.)

Examples: assume that the environment variable DFLAGS is set to “-XO”, and that
the following command is given:

dcc -Dlevel99 -g2 -O -WDDFP=soft file.c

The following table shows examples of how variables are set given these
assumptions.

A.4.5 Assignment Statement

The assignment statement assigns a string to a variable. Its form is:

variable = [string-constant]

As noted above, a string-constant may include a variable — see the last example.

Examples:

DLIBS= # Set to empty string.
XLIB=$HOME/lib # Variable XLIB is set.
YFLAGS="$XFLAGS -X12" # Use "" for spaces in a string.
if (...) PF=-p GF=-g # Two on one line (see if below).
$XFLAGS="$XFLAGS -Xanother-flag" # Inner $XFLAGS will be expanded.

Table A-2 Variable Evaluation in Configuration Files

Variable Evaluates To Comment (see assumptions above)

$DFLAGS “-XO” Environment variable.

$DFP “soft” Value is as if -WD set the DFP configuration
variable (see 5.3.26 Define Configuration
Variable (-W Dname=value), p.42).

$-WDFP “-WDDFP=soft” In the form $-x, x is the entire WD option.

$-Dlevel “-Dlevel99” In the form $-x, x need match only the
beginning of an option.

$* “-Dlevel99 ...
file.c”

Evaluates to the entire command minus the
initial dcc.

Wind River Compiler for SPARC
User’s Guide, 5.4

552

A.4.6 Error Statement

The error statement terminates configuration file processing with an error. See the
switch statement for an example.

A.4.7 Exit Statement

The exit statement stops configuration file processing. This is useful, for example,
in an header file that specifies all compiler options, but does not want the compiler
to continue the parsing in default.conf and dtools.conf.

A.4.8 If Statement

The if statement provides for conditional branching in a configuration file. There
are two forms:

if (expression) statements and/or options

and

if (expression) statements and/or options
else statements and/or options

If expression is true, the rest of the same line is interpreted and, if the next line
begins with else, the remainder of that line is ignored. If expression is false, the
remainder of the line is skipped, and, if the next line begins with else, the
remainder of that line is interpreted. Blank lines are not allowed between if and
else lines.

expression is one of:

Note that because any statement can follow else, one may write a sequence of the
form

if
else if
else if
. . .
else

string true if string is non-zero length
!string true if string is zero length
string1 == string2 true if string1 is equal to string2
string1 != string2 true if string1 is not equal to string2

A Configuration Files
A.4 The Configuration Language

553

A

Examples:

if (!$LIB) LIB=/usr/lib # if LIB s not defined, set it
if ($OPT == yes) -O # option -O if OPT is "yes"
else -g # else option -g

A.4.9 Include Statement

The include permits nesting of configuration files. Its form is:

include file

The contents of file file are parsed as if inserted in place of the include statement.
The file must be located in the same directory as the main configuration file since
no path is allowed in include statements. (See A.3 Standard Configuration Files,
p.544.)

If the given file does not exist, the statement is ignored. Example:

include user.con

A.4.10 Print Statement

The print statement outputs a string to the terminal. Its form is:

print string

Example:

if (!$DTARGET) print "Error: DTARGET not set"

A.4.11 Switch Statement

The switch provides for multi-way branching based on patterns. It has the form:

switch (string)
case pattern1:

...

break
case pattern-n:

...
endsw

Wind River Compiler for SPARC
User’s Guide, 5.4

554

where each pattern is any string, which can contain the special tokens “?”
(matching any one character), “*” (matching any string of characters, including the
empty string) and “[“ (matching any of the characters listed up to the next “]”).
When a switch statement is encountered, the case statements are searched in order
to find a pattern that matches the string. If such a pattern is found, interpretation
continues at that point. If no match is found, interpretation continues after the
endsw statement. If more than one pattern matches the string, the first will be used.

If a break statement is found within the case being interpreted, interpretation
continues after endsw. If no break is present at the end of a case, interpretation falls
through to the next case.

Example:

switch ($DTARGET)
case CHIP*: # any DTARGET beginning withCHIP

...
break

case *: # any other DTARGET
print Error: DTARGET not set"
error

endsw

555

 B
Compatibility Modes: ANSI,

PCC, and K&R C

The Wind River compiler supports various standards, including full ANSI C89,
partial ANSI C99, and full ANSI C++. Many existing C programs are coded in
accordance with slightly varying standards. To ease porting of these programs, C
modules can be compiled in four different modes as selected by an option from the
following table:

NOTE: This section relates to C, not C++. Of the options listed in Table B-1, only
-Xdialect-strict-ansi (equivalent to -Xstrict-ansi) affects the C++ compiler.

Table B-1 Compatibility Mode Options for C Programs

Mode Option Meaning

C89 -Xdialect-c89 Conform to the ISO/IEC 9899:1990 standard
for C.

C99 -Xdialect-c99 Conform to the ISO/IEC 9899:1999 standard
for C. NOTE: Only a subset of this standard
is supported.

ANSI -Xdialect-ansi Conform to ANSI X3.159-1989 with some
additions as shown in the table below.

Strict ANSI -Xdialect-strict-ansi Conform strictly to the ANSI X3.159-1989
standard. Equivalent to -Xstrict-ansi.

Wind River Compiler for SPARC
User’s Guide, 5.4

556

The following table describes the differences among these modes. If not otherwise
noted, “y” means “yes” and “n” means “no”.

K & R -Xdialect-k-and-r Conform to the pre-ANSI “standard”
defined in The C Programming Language by
Kernighan and Ritchie, with most ANSI
extensions activated.

PCC -Xdialect-pcc Emulate the behavior of System V.3 UNIX
compilers.

Table B-1 Compatibility Mode Options for C Programs (cont’d)

Mode Option Meaning

Table B-2 Features of Compatibility Modes for C Programs

Functionality K&R ANSI
Strict
ANSI PCC

long float is same as double. y n n y

The long long type is defined; but a warning (w) is
generated when long long is used.

y y w y

The asm keyword is defined. y y n y

The volatile, const, and signed keywords are
defined.

y y y n

“Double underscore” keywords (e.g. __inline__ and
__attribute__) are defined.

y y n y

The type of a hexadecimal constant >= 0x80000000 is
unsigned int (u) or int (i).

i u u i

In ANSI it is legal to initialize automatic arrays,
structures, and unions. The compiler always accepts
this and is either silent (s) or gives a warning (w).

s s s w

A scalar type can be cast explicitly to a structure or
union type, if the sizes of the types are the same. Such
typecasts generate a warning (w).

w w n w

B Compatibility Modes: ANSI, PCC, and K&R C

557

B

When two integers are mixed in an expression, they
cause conversions and the result type is either
“unsigned wins” (u) or “smallest possible wins” (s).
Example:

((unsigned char)1 > -1)

which is 0 if (u) and 1 if (s).

u s s u

When a bit-field is promoted to a larger integral type,
sign is always preserved.

y y n y

When prototypes are used and the arguments do not
match an error (e) or warning (w) is generated.

w e e w

Float expressions are computed in float (f) or double
(d).

f f f d

When an array is declared without a dimension in an
invalid context an error (e) or warning (w) is
generated.

e e e w

When an array is declared with a zero dimension,
generates a warning.

n n y n

Incompletely braced structure and array initializers
can either be parsed top-down (t) or bottom-up (b).
May be controlled by the -Xbottom-up-init option
(5.4.13 Parse Initial Values Bottom-up
(-Xbottom-up-init), p.60).

t t t b

When pointers and integers are mismatched,
generates an error (e) or a warning (w). May be
controlled by the -Xmismatch-warning (5.4.86 Warn
On Type and Argument Mismatch
(-Xmismatch-warning), p.92).

e e e w

Trigraphs, e.g. “??” sequences, are recognized. y y y n

Table B-2 Features of Compatibility Modes for C Programs (cont’d)

Functionality K&R ANSI
Strict
ANSI PCC

Wind River Compiler for SPARC
User’s Guide, 5.4

558

Illegal structure references generate either an error
(e) or a warning (w). If more than one defined
structure contains a member, an error is always
generated. Example:

int *p; p->m = 1;

p is both a pointer to an int and a pointer to a
structure containing member m. This is likely an
error.

e e e w

Comments are replaced by nothing (n) or a space (s). n s s n

Macro arguments are replaced in strings and
character constants. Example:

#define x(a) if (a) printf("a\n");

The “a” in the printf string will be replaced only for
K&R and PCC.

y n n y

A missing parameter name after a # in a macro
declaration generates an error.

n n y n

Characters after an #endif directive will generate a
warning.

n n y n

Preprocessor errors are either errors (e) or warnings
(w).

e e e w

Preprocessor recognizes vararg macros. (Not
available with -Xpreprocessor-old option.)

y y y n

__STDC__ macro is predefined to (0), (1) or is not
predefined (n).

n 0 1 n

__STDC__ macro can be undefined with #undef. y y n y

__STRICT_ANSI__ macro is predefined. n n y n

Spaces are legal before cpp #-directives. n y y n

Table B-2 Features of Compatibility Modes for C Programs (cont’d)

Functionality K&R ANSI
Strict
ANSI PCC

B Compatibility Modes: ANSI, PCC, and K&R C

559

B

Parameters redeclared in the outer most level of a
function will generate an error (e) or warning (w).

w e e w

If the function setjmp() is used in a function,
variables without the register attribute will be forced
to the stack (s) or can be allocated to registers (r).

r r r s

C++ comments “//” are recognized in C files. y y n y

Predefined macros without leading underscores,
e.g., unix, are available.

y y n y

The following construct, in which a newly defined
type is used to declare a parameter, is legal:

f(i) typedef int i4; i4 i; {}

n n n y

Table B-2 Features of Compatibility Modes for C Programs (cont’d)

Functionality K&R ANSI
Strict
ANSI PCC

Wind River Compiler for SPARC
User’s Guide, 5.4

560

561

 C
Compiler Limits

The C and C++ compiler limits usually relate to the size of internal data structures.
Most internal data structures are dynamically allocated and are therefore limited
only by total available virtual memory.

The following shows the minimum limits required by Section 2.2.4.1 of the ANSI
X3.159-1989 C standard. The Wind River Compiler meets or exceeds these limits in
all cases. When not limited by available memory (effectively unlimited), the C and
C++ limit is shown in parentheses. “No limit” is shown in some cases for emphasis.

■ 15 nesting levels of compound statements, iteration control, and selection
control structures

■ 8 nesting levels for #include directives (Wind River: 100)

■ 8 nesting levels of conditional inclusion

■ 12 pointer, array, and function declarators modifying a basic type in a
declaration

■ 127 expressions nested by parentheses

■ 31 initial characters are significant in an internal identifier or a macro name
(Wind River: no limit)

■ 6 significant initial characters in an external identifier (Wind River: no limit)

■ 511 external identifiers in one source file (Wind River: no limit)

■ 127 identifiers with block scope in one block

■ 1,024 macro identifiers simultaneously defined in one source file

■ 31 parameters in one function definition and call

Wind River Compiler for SPARC
User’s Guide, 5.4

562

■ 31 parameters in one macro definition and invocation

■ 509 characters in a logical source line

■ 509 characters in a string literal (after concatenation)

■ 32,767 bytes in an object

■ 255 case labels in a switch statement

The length of a symbol output by the compiler is limited to approximately 8,000
characters. In C++ projects with complex hierarchies, it is possible, though
unlikely, that mangled names will run up against this limit, resulting in assembler
errors, linker errors, or unexpected runtime behavior (when the wrong function or
variable is accessed).

Memory is dynamically allocated as required, and is a function of:

■ The size of the largest function in the source file. The size is measured in
number of expression nodes, where each operand and operator generate one
node in addition to several nodes per function. After code generation, the
memory used by a function is reused.

■ Optimization level. Some optimizations use a large amount of memory.
Reaching analysis uses memory proportional to the number of basic blocks
multiplied by the number of variables used in the function.

■ Large initialized arrays.

In addition, the number of KBytes the compiler is allowed to use to delay code
generation in order to perform interprocedural optimizations is limited internally.
The default value is 3000KB with -O and 6MB with -XO. It can be changed with
option -Xparse-size (see 5.4.93 Specify Optimization Buffer Size (-Xparse-size), p.95).

The compiler does not generate correct debug information if there are more than
1023 included files.

563

 D
Compiler Implementation

Defined Behavior

D.1 Introduction 563

D.2 Translation 564

D.3 Environment 566

D.4 Library functions 567

D.1 Introduction

The ANSI C standard X3.159-1989 leaves certain aspects of a C implementation to
the tools vendor. This appendix describes how Wind River has implemented these
details. Note that there are differences between C and C++; this appendix
addresses C only.

NOTE: This chapter contains material applicable to execution environments
supporting file I/O and other operating system functions. Much of it therefore
depends on the operating system present, if any, and may not be relevant in an
embedded environment.

Wind River Compiler for SPARC
User’s Guide, 5.4

564

D.2 Translation

Diagnostics

See H. Messages.

Identifiers

There are no limitations on the number of significant characters in an identifier.
The case of identifiers is preserved.

Characters

ASCII is the character set for both source and for generated code (constants, library
routines).

There are no shift states for multi-byte characters.

A character consists of eight bits.

Each character in the source character set is mapped to the same character in the
execution set.

There may be up to four characters in a character constant. The internal
representation of a character constant with more than one character is constructed
as follows: as each character is read, the current value of the constant is multiplied
by 256 and the value of the character is added to the result. Example:

'abc' == (('a'*256)+'b')*256+'c'

By default, wide characters are implemented as long integers (32 bits). See also
5.4.138 Define Type for wchar (-Xwchar=n), p.111.

Unless specified by the use of the -Xchar-signed or -Xchar-unsigned options
(5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.63), the
treatment of plain char as a signed char or an unsigned char is as defined in
Table 8-1.

Integers

Integers are represented in two’s-complement binary form. The properties of the
different integer types are defined in 8.1 Basic Data Types, p.161.

Bitwise operations on signed integers treat both operands as if they were unsigned,
but treat the result as signed.

The sign of the remainder on integer division is the same as that of the divisor on
all supported processors.

D Compiler Implementation Defined Behavior
D.2 Translation

565

D

Right shifting a negative integer divides it by the corresponding power of 2, with
an odd integer rounded down. In the binary representation (on all supported
processors), the sign bit is propagated to the right as bits are dropped from the
right end of the number.

Floating Point

The floating point types use the IEEE 754-1985 floating point format on all
supported processors. The properties of the different floating point types are
defined in 8.1 Basic Data Types, p.161.

The default rounding mode is “round to nearest”.

Arrays and Pointers

The maximum number of elements in an array is equal to (UINT_MAX–
4)/sizeof(element-type). For UINT_MAX, see limits.h.

Pointers are implemented as 32 bit entities. A cast of a pointer to an int or long, and
vice versa, is a bitwise copy and will preserve the value.

The type required to hold the difference between two pointers, ptrdiff_t, is int (this
is sufficient to avoid overflow).

Registers

All local variables of any basic type, declared with or without the register storage
class can be placed in registers. struct and union members can also be put in
registers.

Variables explicitly marked as having the auto storage class are allocated on the
stack.

Structures, Unions, Enumerations, and Bit-fields

If a member of a union is accessed using a member of a different type, the value
will be the bitwise copy of original value, treated as the new type.

See pages 161 to 165 for more information about the implementation of structures
and unions, bit-fields, and enumerations.

Qualifiers

Volatile objects are treated as ordinary objects, with the exception that all read /
write / read-modify-write accesses are performed prior to the next sequence-point
as defined by ANSI.

Wind River Compiler for SPARC
User’s Guide, 5.4

566

Declarators

There is no limit to how many pointer, array, and function declarators are able to
modify a type.

Statements

There is no limit to the number of case labels in a switch statement.

Preprocessing Directives

Single-character constants in #if directives have the same value as the same
character constant in the execution character set. These characters can be negative.

Header files are searched for in the order described for the -I command-line option
(see Set Header Files Directory (-I path), p.276). The name of the included file is
passed to the operating system (after truncation if necessary to conform to
operating system limits).

The #pragma directives supported are described in 6.3 Pragmas, p.121.

The preprocessor treats a pathname beginning with “/”, “\”, and a “driver letter”
(c:) as an absolute pathname. All other pathnames are taken as relative.

D.3 Environment

The function called at startup is called main(). It can be defined in three different
ways:

■ With no arguments:

int main(void) {...}

■ With two arguments, where the first argument (argc) has a value equal to the
number of program parameters plus one. Program parameters are taken from
the command line and are passed untransformed to main() in the second
argument argv[], which is a pointer to a null-terminated array of pointers to
the parameters. argv[0] is the program name. argv[argc] contains the null
pointer

int main(int argc, char *argv[]) {...}

D Compiler Implementation Defined Behavior
D.4 Library functions

567

D

■ With three arguments, where argc and argv are as defined above. The
argument env is a pointer to a null-terminated array of pointers to
environment variables. These environment variables can be accessed with the
getenv() function

int main(int argc, char *argv[], char *env[]) {...}

D.4 Library functions

The NULL macro is defined as 0.

The assert function, when the expression is false, will write the following message
on standard error output and call the abort function:

Assertion failed: expression, file file, line-number

The ctype functions test for the following characters:

Table D-1 ctype Functions

Function Decimal ASCII Value and Character

isalnum 65-90 (“A”-”Z”) 97-122 (“a”-”z”) 48-57 (“0”-”9”)

isalpha 65-90 (“A”-”Z”) 97-122 (“a”-”z”)

iscntr l0-31

isdigit 48-57 (“0”-”9”)

isgraph 33-126

islower 97-122 (“a”-”z”)

isprint 32-126

ispunct 33-47 58-64 91-96 123-126

isspace 9-13 (TAB, NL, VT, FF, CR) 32 (“ “)

isupper 65-90 (“A”-”Z”)

isxdigit 48-57 (“0”-”9”) 65-70 (“A”-”F”) 97-102 (“a”-”f”)

Wind River Compiler for SPARC
User’s Guide, 5.4

568

The mathematics functions do not set errno to ERANGE on undervalue errors.

The first argument is returned and errno is set if the function fmod has a second
argument of zero.

Information about available signals can be found in the target operating system
documentation.

The last line of a text stream need not contain a new-line character.

All space characters written to a text stream appear when read in.

No null characters are appended to text streams.

A stream opened with append (“a”) mode is positioned at the end of the file unless
the update flag (“+”) is specified, in which case it is positioned at the beginning of
the file.

A write on a text stream does not truncate the file beyond that point.

The libraries support three buffering schemes: unbuffered streams, fully buffered
streams, and line buffered streams. See function setbuf(), p.516 and setvbuf(), p.518
for details.

Zero-length files exist.

The rules for composing valid filenames can be found in the documentation of the
target operating system.

The same file can be opened multiple times.

If the remove function is applied on an opened file, it will be deleted after it is
closed.

If the new file already exists in a call to rename, that file is removed.

The %p conversion in fprintf behaves like the %X conversion.

The %p conversion in fscanf behaves like the %x conversion.

The character “-” in the scanlist for “%[“ conversion in the fscanf function denotes
a range of characters.

On failure, the functions fgetpos and ftell set errno to the following values:

EBADF if file is not an open file descriptor.
ESPIPE if file is a pipe or FIFO.

The messages are generated by the perror and strerror functions may be found in
file errno.h in the sys subdirectory of the include subdirectory (see Table 2-2 for
the location of include).

D Compiler Implementation Defined Behavior
D.4 Library functions

569

D

The memory allocation functions calloc, malloc, and realloc return NULL if the
size requested is zero. The function abort flushes and closes any open file(s).

Any status returned by the function exit other than EXIT_SUCCESS indicates a
failure.

The set of environment variables defined is dependent upon which variables the
system and the user have provided. See 15.11 Target Program Arguments,
Environment Variables, and Predefined Files, p.266. These variables can also be
defined with the setenv function.

The system function executes the supplied string as if it were given from the
command line.

The local time zone and the Daylight Saving Time are defined by the target
operating system.

The function clock returns the amount of CPU time used since the first call to the
function clock if supported.

Wind River Compiler for SPARC
User’s Guide, 5.4

570

571

 E
Assembler Coding Notes

E.1 Instruction Mnemonics 571

E.2 Operand Addressing Modes 572

This chapter describes the conventions used in the assembler to specify instruction
mnemonics and addressing modes.

E.1 Instruction Mnemonics

The assembler supports all SPARClite instructions as described in the SPARClite
User’s Guide. Consult manufacturer’s manual for SPARC.

Wind River Compiler for SPARC
User’s Guide, 5.4

572

E.2 Operand Addressing Modes

E.2.1 Registers

This section specifies the valid names for registers. See 9.6 Register Use, p.178 for
details on register use.

Registers can be specified in the following ways, in either lower or upper case:

E.2.2 Expressions

See Chapter 19. Assembler Expressions, for a complete description of valid
expressions. There are no limits on the complexity of an expression as long as all
the operands are constants. When a label is used in the expression, the assembler
will generate a relocation entry so that the linker can patch the instruction with the
correct address.

Table E-1 Register Names and Uses

Register Name Software Name Description

%r0 - %r7 %g0 - %g7 Global registers.

%r8 - %r15 %o0 - %o7 “Out” registers, stack pointer, return address.

%r16 - %r23 %l0 - %l7 “Local” registers.

%r24 - %r31 %i0 - %i7 “In” registers, stack pointer, return address.

573

 F
Object and Executable File

Format

F.1 Executable and Linking Format (ELF) 573

F.1 Executable and Linking Format (ELF)

This section describes the Executable and Linking Format (ELF). The form
NAME(n) means that the symbolic value NAME has the value shown in the
parentheses.

F.1.1 Overall Structure

The ELF Object Format is used both for object files (.o extension) and executable
files. Some of the information is only present in object files, some only in the
executable files.

ELF files consist of the following parts. The ELF header must be in the beginning
of the file; the other parts can come in any order (the ELF header gives offsets to
the other parts).

ELF header
General information; always present.

Program header table
Information about an executable file; usually only present in executables.

Wind River Compiler for SPARC
User’s Guide, 5.4

574

Section data
The actual data for a section; some sections have special meaning, i.e. the
symbol table and the string table.

Section headers
Information about the different ELF sections; one for each section.

The following figure shows a typical ELF file structure:

F.1.2 ELF Header

The ELF header contains general information about the object file and has the
following structure from the file elf.h (Elf32_Half is two bytes, the other types are
four bytes):

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf32_Half e_e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shstrndx;

};

ELF Header

Program Header Table

Section 1 Data

. . .
Section n Data

Section Header Table

F Object and Executable File Format
F.1 Executable and Linking Format (ELF)

575

F

Table F-1 ELF Header Fields

Field Description

e_ident Sixteen byte long string with the following content:

4-byte file identification: "\x7FELF"

1-byte class: 1 for 32-bit objects

1-byte data encoding: little-endian: 1, big-endian: 2

1-byte version: 1 for current version

9-byte zero padding

e_type The file type: relocatable: 1, executable: 2

e_machine Target architecture:

2 SPARClite and SPARC

e_version Object file version: set to 1.

e_entry Programs entry address.

e_phoff File offset to the Program Header Table.

e_shoff File offset to the Section Header Table.

e_flags Not used.

e_ehsize Size of the ELF Header.

e_phentsize Size of each entry in the Program Header Table.

e_phnum Number of entries in the Program Header Table.

e_shentsize Size of each entry in the Section Header Table.

e_shnum Number of entries in the Section Header Table.

e_shstrndx Section Header index of the entry containing the String Table
for the section names.

Wind River Compiler for SPARC
User’s Guide, 5.4

576

F.1.3 Program Header

The program header is an array of structures, each describing a loadable segment
of an executable file. The following structure from the file elf.h describes each
entry:

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

ELF Program Header Fields

p_type

Type of the segment; only PT_LOAD(1) is used by the linker.

p_offset

File offset where the raw data of the segment resides.

p_vaddr

Address where the segment resides when it is loaded in memory.

p_paddr

Not used.

p_filesz

Size of the segment in the file; it may be zero.

p_memsz

Size of the segment in memory; it may be zero.

p_flags

Bit mask containing a combination of the following flags:

PF_X (1) Execute
PF_W (2) Write
PF_R (4) Read

p_align

Alignment of the segment in memory and in the file.

F Object and Executable File Format
F.1 Executable and Linking Format (ELF)

577

F

F.1.4 Section Headers

There is incitation header for each section in the ELF file, specified by the e_shnum
field in the ELF Header. Section headers have the following structure from the file
elf.h:

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

Table F-2 ELF Section Header Fields

Field Description

sh_name Specifies the name of the section; it is an index into the section
header string table defined below.

sh_type Type of the section and one of the below:

SHT_NULL (0) inactive header

SHT_PROGBITS (1) code or data defined by the program

SHT_SYMTAB (2) symbol table

SHT_STRTAB (3) string table

SHT_RELA (4) relocation entries

SHT_NOBITS (8) uninitialized data

SHT_COMDAT (12) like SHT_PROGBITS except that the linker
removes duplicate SHT_COMDAT sections
having the same name and removes
unreferenced SHT_COMDAT sections (used
in C++ template instantiation — see
Templates, p.223).

Wind River Compiler for SPARC
User’s Guide, 5.4

578

sh_flags Combination of the following flags:

SHF_WRITE (1) contains writable data

SHF_ALLOC (2) contains allocated data

SHF_EXECINSTR (4) contains executable instructions

sh_addr Address of the section if the section is to be loaded into memory.

sh_offset File offset to the raw data of the section; note that the SHT_NOBITS
sections does not have any raw data since it will be initialized by the
operating system.

sh_size Size of the section; an SHT_NOBITS section may have a non-zero
size even though it does not occupy any space in the file.

sh_link Link to the index of another section header:

SHT_COMDAT section with which this section should be
combined

SHT_RELA the symbol table

SHT_NOBITS section with which this section should be
combined

SHT_PROGBITS section with which this section should be
combined

SHT_SYMTAB the string table

sh_info Contains the following information:

SHT_RELA the section to which the relocation applies

SHT_SYMTAB index of the first non-local symbol

sh_addralign Alignment requirement of the section.

sh_entsize Size for each entry in sections that contains fixed-sized entries, such
as symbol tables.

Table F-2 ELF Section Header Fields (cont’d)

Field Description

F Object and Executable File Format
F.1 Executable and Linking Format (ELF)

579

F

The following table shows the correspondence between the type-spec as defined on
385 and the ELF section type and flags assigned to the output section.

F.1.5 Special Sections

Following are the names of some typical sections and explains their contents:

.text

Machine instructions.

.data

Initialized data.

.bss

Uninitialized variables.

.comment

Comments from #ident directives in C.

.ctors

Code that is to be executed before the main() function.

.dtors

Code that is to be executed when the program has finished execution.

.debug

Symbolic debug information using the DWARF format.

.line

Line number information for symbolic debugging.

.relaname
Relocation information for the section name.

Table F-3 type-spec – ELF Section Type and Flags Correspondence

Type-spec Section Type (sh_type) Section Flags (sh_flags)

BSS SHT_NOBITS SHF_ALLOC | SHF_WRITE

COMMENT SHT_PROGBITS (none)

CONST SHT_PROGBITS SHF_ALLOC

DATA SHT_PROGBITS SHF_ALLOC | SHF_WRITE

TEXT SHT_PROGBITS SHF_ALLOC | SHF_EXECINSTR

Wind River Compiler for SPARC
User’s Guide, 5.4

580

.shstrtab

Section names.

.strtab

String Table for symbols in the Symbol Table.

.symtab

Contains the Symbol Table.

F.1.6 ELF Relocation Information

Relocation Information sections contain information about unresolved references.
Since compilers and assemblers do not know at what absolute memory address a
symbol will be allocated, and since they are unaware of definitions of symbols in
other files, every reference to such a symbol will create a relocation entry. The
relocation entry will point to the address where the reference is being made, and
to the symbol table entry that contains the symbol that is referenced. The linker will
use this information to fill in the correct address after it has allocated addresses to
all symbols.

When an offset is added to a symbol in the assembly source

ld [%o0+%lo(var+16)],%o0

that offset is stored in the r_addend field, so that adding the real address of the
symbol with the address field will yield a correct reference.

The relocation section does not normally exist in executable files.

A relocation entry has the following structure from the file elf.h:

typedef struct {
Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;

ELF Relocation Entry Fields

r_offset

Relative address of the area within the current section to be patched with the
correct address.

r_info >> 8

Upper 24 bits of r_info is an index into the symbol table pointing to the entry
describing the symbol that is referenced at r_offset.

F Object and Executable File Format
F.1 Executable and Linking Format (ELF)

581

F

r_info & 255

Lower 8 bits is the relocation type that describes what addressing mode is
used; it describes whether the mode is absolute or relative, and the size of the
addressing mode. See the table below for a description of the various
relocation types.

r_addend

A constant to be added to the symbol when computing the value to be stored
in the relocatable field.

The relocation types for each supported target are documented in
version_path/include/elf_target.h.

F.1.7 Line Number Information

The line number information section .line contains the mapping from source line
numbers to machine instruction addresses used by symbolic debuggers. This
information is only available if the -g option is specified to the compiler.

F.1.8 Symbol Table

The symbol table section .symtab is an array of entries containing information
about the symbols referenced in the ELF file. A symbol table entry has the
following structure from the file elf.h:

typedef struct {
ELF32_Word st_name;
ELF32_Addr st_value;
ELF32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

ELF Symbol Table Fields

st_name
Index into the symbol string table which holds the name of the symbol.

st_value
Value of the symbol:

Wind River Compiler for SPARC
User’s Guide, 5.4

582

The alignment requirement of symbols whose section index is
SHN_COMMON.

■ The offset from the beginning of a section in relocatable files.
■ The address of the symbol in executable files.

st_size
Size of an object.

st_info >> 4
Upper four bits define the binding of the symbol:

STB_LOCAL (0) symbol is local to the file
STB_GLOBAL (1) symbol is visible to all object files
STB_WEAK (2) symbol is global with lower precedence

st_info & 15
Lower four bits define the type of the symbol:

STT_NOTYPE (0) symbol has no type
STT_OBJECT (1) symbol is a data object (a variable)
STT_FUNC (2) symbol is a function
STT_SECTION (3) symbol is a section name
STT_FILE (4) symbol is the filename

st_other
Currently not used.

st_shndx
Index of the section where the symbol is defined. Special section numbers
include:

SHN_UNDEF (0x0000) undefined section
SHN_ABS (0xfff1) absolute, non-relocatable symbol
SHN_COMMON (0xfff2) unallocated, external variable

F.1.9 String Table

The string table sections, .strtab and .shstrtab, contain the null terminated names
of symbols in the symbol table and section names. Those symbols point into the
string table through an offset. The first byte of the string table is always zero and
after that all strings are stored sequentially.

583

 G
Compiler -X Options Numeric

List

The compiler -X options are listed in alphabetic order in 5.4 Compiler -X Options,
p.48 and following, with the internal numeric equivalent shown for each option.

However, when -Xshow-configuration=1 is combined with -S or
-Xkeep-assembly-file to create an assembly file, the -X options are shown in
numeric form only.

This appendix lists compiler -X options that have numeric equivalents in numeric
order.

Each option is shown in the form:

-Xn -Xname (page number)

Wind River Compiler for SPARC
User’s Guide, 5.4

584

-X2 -Xmismatch-warning (92)
-X3 -Xfp-min-prec-... (77)
-X4 -Xmemory-is-volatile (91)
-X5 -Xlocals-on-stack (88)
-X6 -Xtest-at-... (108)
-X7 -Xdialect-... (69)
-X8 -Xenum-is-... (71)
-X9 -Xforce-... (76)
-X10 -Xstack-probe (104)
-X11 -Xpass-source (95)
-X12 -Xbit-fields-... (59)
-X13 -Xswap-cr-nl (107)
-X14 -Xsuppress-warnings (107)
-X15 -Xunroll (110)
-X16 -Xunroll-size (110)
-X18 -Xstring-align (106)
-X19 -Xinline (82)
-X20 -Xparse-size (95)
-X21 -Xbottom-up-init (60)
-X22 -Xtruncate (109)
-X23 -Xchar-... (63)
-X24 -Xblock-count (60)
-X25 -Xopt-count (94)
-X26 -XO (93)
-X27 -Xkill-opt (85)
-X28 -Xkill-reorder (85)
-X29 -Xrestart (100)
-X34 -Xadd-underscore (56)
-X39 -Xtarget (108)
-X54 -Xalign-functions (57)
-X56 -Xsoft-float (104)
-X60 -Xcharset-asci (62)
-X63 -Xident-... (79)
-X64 -Xrtc (101)
-X65 -Xargs-not-aliased (58)
-X66 -Xclib-optim-off (63)
-X67 -Xdollar-in-ident (70)
-X68 Xfeedback-frequent (75)
-X69 -Xfeedback-seldom (75)
-X70 -Xfp-... (77)
-X71 -Xunderscore-... (109)
-X73 -Xsize-opt (103)
-X74 -Xconst-in-... (66)
-X75 -Ximport (80)
-X76 -Xstruct-min-align (107)
-X77 -Xextend-args (73)

-X78 -Xkeywords (84)
-X81 -Xstatic-addr-... (104)
-X82 -Xieee754-pedantic (79)
-X83 -Xbss-... (61)
-X84 -Xlint (86)
-X85 -Xstop-on-warning (105)
-X86 -Xwchar (111)
-X87 -Xinit-locals (81)
-X88 -Xmember-max-align (91)
-X89 -Xoptimized-debug-... (95)
-X90 -Xinit-value (82)
-X91 -Xinit-section (81)
-X92 -Xstruct-arg-warning (106)
-X93 -Xalign-min (57)
-X96 -Xdouble-... (70)
-X99 -Xdebug-mode (68)
-X115 -Xlocal-data-area (87)
-X116 -Xdebug-struct-... (69)
-X117 -Xcpp-no-space (67)
-X119 -Xbool-is-... (60)
-X120 -Xcomdat (65)
-X122 -Xsect-pri-... (102)
-X123 -Xprof-... (97)
-X125 -Xfull-pathname (78)
-X129 -Xsection-split (102)
-X135 -Xbit-fields-compress-... (58)
-X136 -Xexplicit-inline-factor (73)
-X137 -Xold-inline-asm-cast (94)
-X138 -Xlicense-wait (85)
-X139 -Xconservative-static-... (66)
-X143 -Xswitch-table (107)
-X146 -Xstruct-assign-split-max (106)
-X147 -Xstruct-assign-split-diff (106)
-X152 -Xsection-pad (101)
-X153 -Xdebug-dwarf... (67)
-X154 -Xintrinsic-mask (83)
-X155 -Xpreprocessor-old (97)
-X156 -Xmake-dependency (88)
-X157 -Xmacro-in-pragma (88)
-X158 -Xcpp-dump-symbols (66)
-X161 -Xarray-align-min (58)
-X163 -Xinline-explicit-force (83)
-X165 -Xpreprocessor-lineno-off (97)
-X166 -Xlocal-data-area-static-only (88)
-X167 -Xvoid-prt-arith-ok (111)
-X170 -Xdebug-align (67)

G Compiler -X Options Numeric List

585

G

-X171 -Xmacro-undefined-warn (88)
-X172 -Xincfile-missing-ignore (80)
-X173 -Xstderr-fully-buffered (105)
-X200 -Xexceptions-... (72)
-X201 -Xjmpbuf-size (84)
-X202 -Xdigraphs-... (70)
-X205 -Xrtti-... (101)
-X207 -Ximplicit-templates-... (80)
-X213 -Xbool-... (60)
-X214 -Xwchar-... (111)
-X215 -Xsyntax-warning-... (108)
-X216 -Xmax-inst-level (90)
-X217 -Xfor-init-scope-... (76)
-X218 -Xclass-type-name-... (63)
-X219 -Xnamespace-on (93)
-X220 -Xpch-automatic (96)
-X221 -Xpch-messages (96)
-X222 -Xpch-diagnostics (96)
-X223 -Xusing-std-... (110)
-X230 -Xdialect-c{8,9}9 (69)

Wind River Compiler for SPARC
User’s Guide, 5.4

586

587

 H
Messages

H.1 Introduction 587

H.2 Compiler Messages 588

H.3 Assembler Messages 644

H.4 Linker Messages 644

H.1 Introduction

This appendix provides additional information on messages generated by the
compilers and some of the other tools.

In analyzing messages, remember that a message can be generated for code which
is apparently correct. Such a message is often the result of earlier errors. If a
message persists after all other errors have been cleared, please report the
circumstances to Customer Support.

Wind River Compiler for SPARC
User’s Guide, 5.4

588

H.2 Compiler Messages

H.2.1 Compiler Message Format

Compiler messages have the form:

"file", line #: severity-level (compiler:error #): message

Messages have one of four severity-level values as follows. The severity level for each
message is shown in parentheses in the message description; for example, (w) for
a warning message.

In each message, “compiler” identifies the compiler reporting the error: dcc for the
C compiler or dplus for the C++ compiler.

Example:

"err1.c", line 2: error (dcc:1525): identifier i not declared

NOTE: The severity level of a message can be changed with the -e command-line
option. See 5.3.8 Change Diagnostic Severity Level (-e), p.36. See also option Pragma,
p.126 to put this or other options in, for example, a header file for use in other
source files, or A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.547
to specify options “permanently” in environment variables or configuration files.

Table H-1 Compiler Message Severity Levels

Severity
Level Type

Compilation
Continues

Object File
Produced Notes

i Information Yes Yes Usually provides detailed
information for an earlier
message.

w Warning Yes Yes

e Error Yes No

f Fatal No No

H Messages
H.2 Compiler Messages

589

H

H.2.2 Errors in asm Macros and asm Strings

Errors in assembly code embedded in C or C++ using asm macros or asm string
statements are caught by the assembler, not by the compiler.

If the -S option is not used, the compiler will generate a temporary assembly file
which is discarded after assembly. To preserve the assembly file for use in
diagnosing errors reported in asm macros or asm strings, either:

■ Use the -Xkeep-assembly-file and -Xpass-source command-line options to
generate an annotated assembly file along with the object file.

■ Use the -S option to stop after compilation, along with the -Xpass-source
option, and then assemble the file explicitly using das.

H.2.3 C Compiler Message Detail

Numbered messages are issued by the compiler subprogram. Unnumbered
messages are issued by the driver and are listed first.

(driver) can’t find program program_name
program_name will be the name of some component of the compiler or other
tool. (f)

Possible causes:

■ The compiler is not installed properly.

■ One of the compiler files has been deleted, hidden, or protected.

■ The dtools.conf or other configuration file is incorrect.

(driver) can’t fork
The system cannot start a new process. (f)

(driver) missing comma in -Y option
The -Yc,dir option must include a comma. (f)

NOTE: These messages are generated by ctoa (the C compiler) and dtoa (the older
C++ compiler), not by etoa (the current C++ compiler). If you are compiling C++
code without the -Xc++-old option, a different set of C++ diagnostics is generated
(see H.2.4 C++ Messages, p.643). When a message is shared by compilers, the same
number is used for all instances.

Wind River Compiler for SPARC
User’s Guide, 5.4

590

(driver) illegal output name file
Specific output filenames given with the -o option are invalid to avoid
common typing mistakes. (f)

dplus a.c -o b.c # b.c is an illegal output file name

(driver) invalid option unknown
The driver was started with an unrecognizable -W or -Y option. Note: -X
options that are not recognized generate an “unknown option” message, and
unrecognized but otherwise valid non -X options are passed to the linker. (f)

(driver) program tool-name terminated

The given executable has detected an internal error. May result from other
errors reported earlier. If the problem does not appear to be a consequence of
some earlier error, please report it to Customer Support. (f)

1000: (general compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1001: illegal argument type
The operand cannot be used with the operator. (e)

if (i > pointer) . . .

1003: function takes no arguments
Function was defined without arguments, but was called with arguments. (e)

int fun (){}
main(){

fun(1);
}

1004: wrong number of arguments
Number of arguments given does not match prototype or function definition,
(w) in C modules if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise.

int fn(int, int); ... fn(1,2,3);

1006: string in string
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1007: ambiguous conversion -- cannot cast operand
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

H Messages
H.2 Compiler Messages

591

H

1010: Operator, type-designator, argument must be of pointer or integral type
An operator that requires an integral or pointer type was applied to a different
type.

float f;
f = ~f;

1012: operator, type-designator, argument must be of pointer or arithmetic type
The operator requires a pointer or arithmetic type operand. (e)

struct S {
int i;

}s;
struct S *p;
*p -> i =3; //

1013: left argument must be of integral type
The left operand must be an integral type. (e)

pointer | 3;

1015: type-designator, operator, type-designator, left argument must be of arithmetic
type

The operand to the left of the operator must be of arithmetic type. (e)

pointer * 2;
pointer / 2;

1017: right argument must be of integral type
The right operand must be an integral type. (e)

7 | pointer;

1019: type-designator, operator, type-designator, right argument must be of arithmetic
type

The operand on the right of the operator must be of arithmetic type. (e)

2 * pointer;
2 / pointer;

1025: division by zero
The compiler has detected a source expression that would result in a division
by 0 during target execution. (w)

int z = 0; fn(10/z);

1028: type-designator [type-designator] requires a pointer and an int
A subscripted expression requires a pointer and an integer. (e)

main(){
int x;
x[3]=4;

}

Wind River Compiler for SPARC
User’s Guide, 5.4

592

1030: can’t take address of main
Special rules for the function main() are violated. (e)

int *p;
p = main;

1031: can’t take address of a cast expression
The address operator requires an lvalue for its operand. (e)

int i, *p;
float f;
p = &(int)f;

1032: (anachronism) address of bound member function
The correct way to refer to the address of a member function is to use the “::”
operator. The C method, using the dot “.” operator, causes the compiler to
generate the “anachronism” warning. (w)

class C {
public:

fun();
} c;

main(){
class C * p;
p= &c.fun; // Old way to reference a function

}

1033: can’t take address of expression
Cannot use “&” or other means to find the address of the expression. (e)

int *pointer;
&pointer++;

1034: can’t take address of bit-field expression
The address of bit-fields is not available. (e)

int *p;
struct {

int i:3;
}s;
p = &s.i;

1041: returning from function with address of local variable
A return statement should not return the address of a local variable. That stack
area will not be valid after the return. (w)

int i;
return &i;

1042: ?"type-designator":" type-designator, bad argument type(s)
Incompatible types have been used with the conditional operator. (e)

H Messages
H.2 Compiler Messages

593

H

int i, *pointer, *p;
p = (2>1) ? i : pointer;

1043: trying to decrement object of type bool
A a boolean cannot be decremented. (e)

bool b;
b--;

1044: assignment to constant expression
A constant cannot be assigned a value after the constant is defined. (e)

const int i=5;
i=7;

1045: assignment to non-lvalue of type type-designator
The operand being assigned is not an lvalue type. (e)

const c = 5;
c = 7;

1046: assignment from type-designator to type-designator
An attempt has been made to assign a type to an incompatible type. (e)

int i, j;
i = &j;

1047: trying to assign "ptr to const" to "ptr"
A pointer to a const cannot be assigned to an ordinary pointer. (e)

const int *pc; int pi; ... pi = pc;

1050: bad left argument to operator operator not a pointer
The operator requires a pointer for its left operand. (e)

int int1, j;
int1 -> j=3;

1051: not a class/struct/union expression before ...
The left hand side of a “.” or “.*” or “->” or “->*” operator must be of type class
or pointer to class. (e)

5->a = 128; // 5 is not a pointer to a class

1055: illegal function call
The function call is not valid. (e)

int i;
i();

1056: illegal function definition
A function definition is invalid. (e)

fun(iint i);

Wind River Compiler for SPARC
User’s Guide, 5.4

594

1057: main() may not be called from within a program
Calling main() is not permitted. (e)

fun(){
main();

}

1059: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1060: assignment operator "=" found where "==" expected
Encountered a conditional where the left hand side is assigned a constant
value: (w)

if (i = 0) ... /* should possibly be i == 0) */

1061: illegal cast from type-designator to type-designator
An attempt is made to perform a cast to an invalid type, i.e., a structure or
array type. (e)

struct a = (struct abc)x;

1063: ambiguous conversion from type-designator to type-designator
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

1074: illegal cast
An attempt is made to perform a cast to an invalid type, i.e., a structure or
array type. (e)

1075: friend declaration outside class/struct/union declaration
The keyword friend is used in a invalid context (e)

friend class foo {
...

};

1076: static only allowed inside { } in a linkage specification
Attempt to declare a static object in a one-line linkage specification. (e)

extern "C" static int i; // static + extern at same time?

1077: typedefs cannot have external linkage
Linkage specification ignored for typedef, cannot have "C" or "C++" linkage.
(w)

extern "C" typedef int foo;

1079: identifier name previously declared linkage
The identifier was already declared with another linkage specification. (e)

H Messages
H.2 Compiler Messages

595

H

int foo;
extern "C" int foo;

1080: inconsistent storage class specification for name
The identifier was already declared, with another storage class. (e)

bar()
{

int foo; // foo is auto by default
static int foo; // now static

}

1081: illegal storage class
External variables cannot be automatic. Parameters cannot be automatic,
static, external, or typedef. (e)

int fn(i)
static int i; { ... }

1082: illegal storage class
A variable has been declared, but cannot legally be assigned to storage. (e)

register int r; // Outside of any function

1083: only functions can be inline
The inline keyword was applied to a non-function, for example, a variable. (e)

1084: only non-static member functions can be virtual
For example, operators new and delete cannot be virtual.

virtual void *operator new(size_t size){...}

1086: redeclaration of identifier
It is invalid to redeclare a variable on the same block level. (e)

int a; double a;

1087: redeclaration of function
A function was already declared. May be caused by mis-typing the names of
similar functions. (e)

1088: illegal declaration
Common causes and examples: (e)

A scalar variable can only be initialized to a single
value of its type.

int i = 1, 2;

Functions cannot return arrays or functions. char fn()[10];

Variables cannot be of type void. (Usually caused by
a missing asterisk, e.g. void *p; is correct.)

void a;

Wind River Compiler for SPARC
User’s Guide, 5.4

596

1089: illegal initializer
An initializer is not of the proper form for the object being initialized. Often
caused by a type mismatch or a missing member in a structure constant. (e)

1090: static/external initializers must be constant expressions
Static initializations can only contain constant expressions. (e)

static int i = j+3;

1091: string too long
A string initializer is larger than the array it is initializing. (e)

char str[3] = "abcd";

1092: too many initializers
The number of initializers supplied exceeds the number of members in a
structure or array. (e)

int ar[3] = { 1,2,3,4 };

1094: illegal type for identifier identifier
This can indicate a template was instantiated with the wrong arguments. (e)

template<class T>
class C{};

C<int, int> WrongArgs;

1096: typedef may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1097: function-declaration in wrong context
A function may not be declared inside a struct or union declaration. (e)

struct { int f(); };

1098: only non-static member functions can be string
Only non-static member functions can be const or volatile.

class A {
static foo() const;

};

1099: all dimensions must be specified for non-static arrays
For an array in a class all dimensions must be specified, even if the array is not
static. (e)

Only one void is allowed as function argument. int fn(void, void);

An array cannot contain functions.

H Messages
H.2 Compiler Messages

597

H

1100: member is incomplete
The structure member has an incomplete type, i.e., an empty array or
undefined structure. (e)

struct { int ar[]; };

1101: anonymous union member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1102: anonymous unions can’t have member functions

1103: anonymous unions can’t have protected or private members

1104: name of anonymous union member name already defined
An identifier with the same name as an anonymous union member was
already declared in the scope. (e)

int i;
static union {

int i; // i already declared
}

1105: anonymous unions in file scope must be static
A special rule for an anonymous unions is violated. (e)

1106: friends can’t be virtual
A friend is not a member of the class; it cannot be virtual. (e)

1107: conversion functions must be members of a class
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1108: member function declared as friend in its own class
Invalid declaration. (e)

class A {
foo(int);
friend A::foo(int);

}

1110: identifier identifier is not a member of class class-name
The identifier to the right of :: is not in the class on the left side. (e)

1111: identifier identifier not member of struct/union
The expression on the right side of a “.” or “->” operator is not a member of the
left side’s struct or union type. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

598

1112: member declaration without identifier
A struct or union declaration contains an incomplete member having a type
but no identifier. (w)

struct foo { int; ...};
struct { struct bar { ... }; ... };

1113: identifier name used both as member and in access declaration
A use of the name would be ambiguous. (e)

class A {
public:
int foo;

};

struct B : private A {
int foo;
A::foo;

};

1114: array is incompletely specified
An array cannot be declared with an incomplete type. (e)

int a[]; // No array size

1115: type ... is incomplete
Attempt to access a member in an incomplete type. (e)

1117: identifier identifier not an argument
An identifier that is not in the parameter list was encountered in the
declaration list of an old-style function. (e)

f(a) int b; { ... }

1120: constant expression expected
The expression used in an enumerator list is not a constant. (e)

enum a { b = f(), c };

1121: integer constant expression expected
The size of an array must be computable at compile time. (e)

int ar[fn()];

1123: illegal type of switch-expr
A switch expression is of a non-integral type. (e)

1124: duplicate default labels
A switch has should not have more than one default label.

1125: int constant expected
A bit-field width must be an integer constant. (e)

H Messages
H.2 Compiler Messages

599

H

1126: case expression should be integral constant
Case expressions must be integral constants. (e)

int i,j;
switch (i) {
case j:
i = 8;

}

1127: duplicate case constants
A case constant should not occur more than once in a switch statement. (e)

case 1: ... case 1:

1127: duplicate case constants
Duplicate case constants were detected. (e)

main(){
int year,j;
switch (year) {
case 2000:
j = 8;

case 2000:
j = 9;

}
}

1128: function must return a value
Found a return statement with no value in a function. (e)

int foo()
{

return; // Must return a value.
}

1129: constructor and destructor may return no value
A constructor or destructor must not return a value. (e)

1130: parameter decl. not compatible with prototype
There is a mismatch between a prototype and the corresponding function
declaration in either number of parameters or parameter types. (e)

int fn(int, int);
int fn(int a, float b) { ... }

1131: multiple initializations
A variable was initialized more than once. (e)

static int a = 4;
static int a = 5;

1133: extern objects can only be initialized in file scope
An extern object cannot be initialized inside a function. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

600

main(){
extern int i=7;

}

1133: extern objects can only be initialized in file scope
Attempt to initialize an extern object in a function. (e)

foo()
{

extern int one = 1;
}

1134: can’t initialize arguments
It is not valid to attempt to initialize function parameters. (e)

f(i) int i = 5; { ... }

1135: can’t init typedefs
A typedef declaration cannot have an initializer. (e)

typedef unsigned int uint = 5;

1136: initialization of automatic aggregates is an ANSI extension
When the compiler is run in PCC compatibility mode on a C module (-Xpcc),
it will report initialization of automatic aggregate types. (w)

f() { int ar[3] = {1,2,3}; ... }

1140: too many parameters for operator ...

Overloaded operator declared with too many parameters. (e)

1141: too few parameters for operator ...
Overloaded operator declared with too few parameters. (e)

1142: second argument to postfix operator "++" or "--" must be of type int
The argument is of the wrong type. (e)

struct A {
operator++(double); // Arg type must be int

};

1143: operator->() must return class or reference to class

1144: operator ... can only be overloaded for classes
The operators “,” and “=” and the unary “&” can only be overloaded for
classes. (e)

1145: operator . . . must be a non-static member function
The operators (), [], and -> must be non-static member functions. These
operators can only be defined for classes. (e)

H Messages
H.2 Compiler Messages

601

H

1146: non-member operator function must take at least one argument of class or
enum type or reference to class or enum type

A non-member operator function must take at least one argument, which is of
a class or enum type or a reference to a class or enum type. (e)

Date operator+(int i, j){...}

1147: constructors can’t be declared string
Constructors cannot be declared static or virtual.

1148: constructors can’t have a return type
A constructor declaration is invalid. (e)

1149: constructor is illformed, must have other parameters
A constructor declaration is invalid. (e)

1151: can’t have a destructor in a nameless class/struct/union
A nameless class cannot have a destructor since the destructor takes its name
from the class. (e)

class {
~foo();

};

1152: destructors must have same name as the class/struct/union
The destructor declaration is invalid. (e)

1153: destructors may have no return type
const ~k(){}

1154: destructors can’t be declared string
Destructors cannot be declared static.

1155: destructors may take no arguments
The destructor declaration is invalid. (e)

1156: conversion functions may take no arguments
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1157: conversion to original class or reference to it
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1159: no type found for identifier, can be omitted for member functions only
The identifier has not been declared. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

602

1160: class already has operator delete with number of argument(s)
The delete operator cannot be overloaded. (e)

1161: member operator functions can’t be static
Operator functions in a class cannot be declared static. (e)

1162: member of abstract class
A class member cannot be of abstract type. (e)

1163: unions can’t have virtual member functions
Union cannot have virtual functions as members. (e)

1164: member function of local class must be defined in class definition
Because functions cannot be defined in other functions, any function in a local
class must be defined in the class body. (e)

1165: redeclaration of member identifier

A member occurs more than once in a struct, union, or class. (e)

struct { int m1; int m1; };

1166: member name already declared
Attempt to re-declare a member. (e)

class A {
int a;
int a; // Already declared

};

1167: static data member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1168: a local class can’t have static data members
Only non-static members can be used in a local class. (e)

1169: unions can’t have static data members
Union cannot have static data members. (e)

1170: illegal union member
An object of a class with a constructor, a destructor, or a user defined
assignment operator cannot be a member of a union. (e)

1171: illegal storage class for class member
A class member cannot be auto, register, or extern. (e)

1172: parameter has no identifier
When declaring a function, a name as well as a type, must be supplied for each
parameter. (e)

H Messages
H.2 Compiler Messages

603

H

int fn(int a, int) { ... }

1173: compiler out of sync: probably missing ";" or "}

’

1174: ellipsis not allowed as argument to overloaded operator
Cannot declare an overloaded operator with “...” as arguments. (e)

1175: ellipsis not allowed in pascal functions
Functions declared with the pascal keyword are not allowed to have a variable
number of arguments as indicated by an ending ellipsis “...”. (e)

1176: argument n to string must be of type size_t
For example, operator delete’s second argument must be of type size_t

void operator delete(void *type, int x){
free(type);

}

1177: string must return void *
For example the operator new must return a void pointer.

int *operator new(size_t size){...}

1179: string takes one or two arguments
For example, operator delete takes one or two arguments (e).

void operator delete(void *type, size_t size, int x){...}

1180: operator delete must have a first argument of type void *
The first argument of delete must be of type void*.

void operator delete(int x){
free(x);

}

1181: string must return void
For example, operator delete must return void.

int operator delete(void *type){...}

1182: class class-name has no constructor
It is invalid to initialize an object that does not have a constructor by using the
constructor initialization syntax. (e)

struct A {
int b, c;

};
A a(1,2);

int i int j; missing ’;" after i
dribble f; should be double

Wind River Compiler for SPARC
User’s Guide, 5.4

604

1183: temporary inserted for non-const reference
The compiler made a temporary copy of a variable used in an assignment to a
C++ reference. (w)

void getCount(unsigned int& count)
{

count = 5;
return;

}
...
signed int x = 100;
getCount(x);

In this example, the compiler makes a temporary copy of x and passes the copy
(cast to unsigned int) to getCount. Hence it is the copy of x, and not x itself,
that is modified by getCount; after the function executes, the value of x is still
100, not 5.

1184: temporary inserted for reference return
vint& constant1()
{

return 1;
}

1186: const member identifier must have initializer
A constant member of a class must be initialized. (e)

class line{
const int length;

...
};

1188: jump past initializer
An object cannot be accessed before it has been constructed.

class C
{

public:
int i;
C(int ii) : i(ii) {}

};

void AllAlarmsOnOff (int function)
{

switch (function)
{

case 1:
C c(0);
break;

default:
c.i = 12; // invalid access
break;

}
}

H Messages
H.2 Compiler Messages

605

H

1190: this cannot be used outside a class member function body

1192: mismatching parenthesis, bracket or ? : around expression
Mostly likely, a parenthesis or bracket was left out of an expression, or the “?”
and “:” in a conditional expression where interchanged. (e)

int i = (5 + 4]; //] should have been a)

1193: missing operand for operator
An operand is missing. (e)

i & ;

1194: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

1195: missing operand somewhere before
An operand was left out of an expression. (e)

1196: missing expression inside parenthesis
An expression was expected between the parentheses. (e)

i =() ;

1197: missing operand for operator ... inside parenthesis
An operand was left out of an expression. (e)

1198: too many operands inside parenthesis
An operator between the operands is missing. (e)

1199: missing expression inside brackets
An expression was expected between the brackets. (e)

int x[5];
int i = x[]; // x must be subscripted

1200: missing operand for operator ... inside brackets

1201: too many operands inside brackets

1202: missing operator before string
An operator is needed before string.

i = (2>1) 3: 4; // Conditional operator needs '?'

1205: operator ? without matching :
Operator “?” must be followed by a “:” . (e)

int i = 4 ? 5; // Missing : part

Wind River Compiler for SPARC
User’s Guide, 5.4

606

1207: syntax error near token
The parser has found an unexpected token. (e)

if (a == 1 (/* missing ')' */

1208: expression expected
Could not find an expression where it was expected. (e)

if () { // The condition is missing.
...

}

1209: illegal expression
There was something wrong with the expression. Another error has probably
already been reported. (e)

1210 to 1216: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

For users searching online: 1211, 1212, 1213, 1214, 1215, 1216.

1219: (internal error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1221: don’t know size of object
The sizeof operator is used on an incompletely specified array or undefined
structure, or an array of objects of unknown size is declared. (e)

extern int ar[]; sz = sizeof(ar);

1224: type must have default constructor
The class must have a default constructor. (e)

1227: EOF in comment
The source file ended in a comment. (w) if -Xpcc, (e) otherwise.

1228: too many characters in character constant
A character constant has more than four characters. The limit is four on 32 bit
machines. (e)

int i1 = 'abcd'; /* ok */
int i2 = 'abcde'; /* not ok */

1229: EOF in character constant
The source file ended at an unexpected place during parsing. (f)

H Messages
H.2 Compiler Messages

607

H

1230: newline in character constant
vchar TAB = '\t;

1231: empty character constant
There are no characters in a character constant. If an empty string is desired,
use string quotes "". (e)

int i3 = ''; /* This is two single quotes characters. */

1232: too many characters in wide character constant

1234: newline in wide character constant
A newline is in a wide character constant.

Example: in the following, the wide character constant is intended to be L'ab',
but is broken across two lines.

int i = L'a
b';

1235: empty wide character constant
Empty wide character constants are not allowed:

int i = L'';

1236: EOF in string constant
The source file ended at an unexpected place during parsing. (f)

1237: newline in string constant
The end of a line was found while parsing a string constant. Usually caused by
a missing double quote character at the end of the constant. (e)

char * message = "Not everything that counts can be counted.

1238: illegal hex constant
Reported whenever an “x” or “X” is found in a numeric constant and is not
prefixed with a single zero. (e)

i = 1xab;

1239: too long constant
A numeric constant is longer than 256 characters. (e)

1240: floating point value (...) out of range
A floating point constant exceeds the range of the representation format. (e)

double d = 1e10000;

1241: floating point overflow
Floating point overflow occurred during constant evaluation. (e)

float f=4E200;

Wind River Compiler for SPARC
User’s Guide, 5.4

608

1242: bad octal constant
A numeric constant with a leading zero is an octal constant and can only
contain digits 0 through 7. (w)

i = 078; // '8' is invalid in an octal constant

1243: constant out of range
Constant overflows its type. (e)

int i = 4294967299; // Constant bigger than ULONG_MAX

1243: constant out of range [operator]
A constant is out of the range of the context in which it is used. If the operator
is present, it shows the operator near the use of the invalid constant. (w)

int j = 0xffffffffff;

1244: constant out of range (string)
An invalid constant was used. (w)

const int x=0xfffffffff;
if ((char)c==257) ...

1245: illegal character: 0n (octal)
The source file contains a character with octal code n that is not defined in the
C language. This can only occur outside of a string constant, character
constant, or comment. (e)

name$from$PLM = 1;

1246: no value associated with token
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1247: syntax error after string, expecting string
The expression is missing a semicolon or some token. (e)

int i

1248, 1249: label identifier already exists
A label can only refer to a single place in a function. (e)

1250: label identifier not defined
The label used in a goto statement is not defined. (e)

1251: label identifier not used
The label is never used. One possible cause is the misspelling of a label. This
message appears if the -Xlint option is used. (w)

H Messages
H.2 Compiler Messages

609

H

main(){
agian: // typo?

goto again;
}

1252: typedef specifier may not be used in a function definition
Bad use of the typedef specifier. (e)

typedef int foo()
{
}

1253: virtual specifier may only be used inside a class declaration
Function cannot be declared virtual outside class body. (e)

struct A {
foo();

};
virtual A::foo() {} // Not virtual in the class declaration

1254: redefinition of function
The function is already defined. (e)

int foo() {}
int foo() {}

1255: unions may not have base classes
Union cannot have base classes. (e)

1256: unions can’t be base classes
Union cannot be used as base classes. (e)

1257: inconsistent exception specifications
Two function declarations specify different exceptions. (e)

int foo() throw (double);
int foo() throw (int);

1258: exception handling disabled
Exception handling has been turned off. Use -Xexception=1 to enable it. (e)

1259: rtti disabled
RTTI (run-time type information) can be enabled or disabled through the
-Xrtti-... option. See 5.4.107 Enable Run-time Type Information (-Xrtti, -Xrtti-off),
p.101.

1260: non-unique struct/union reference
In PCC mode (-Xpcc) the compiler attempts to locate a member of another
struct if given an invalid reference. If no unique member can be found, this
error is issued. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

610

struct a { int i; int m; };
struct b { int m; int n; };
int i; ... i->m = 1;

1261: insufficient access rights to member-name in base-class-name base class of
derived-class-name

Attempt to access a member in a private or protected base class. (e)

1264: main can’t be overloaded
Special rules for the function main() are violated. (e)

1265: can’t distinguish function_name1 from function_name2
Two overloaded functions cannot be distinguished from each other; they
effectively have the same number and types of arguments in the same order.
(e)

int foo(int);
int foo(int &);

1266: function function-name already has “C” linkage
Only one of a set of overloaded functions can have "C" linkage. (e)

extern "C" foo(int);
extern "C" foo(double);

1268: only virtual functions can be pure
Pure specifier found after non-virtual function. (e)

class foo {
bar() = 0 // Must be virtual

};

1269: Identifier is not a struct/class/union member
The identifier is not a member of a structure, class, or union. (e)

int i;
i.j = 3; // j is not a member of a structure.

1272: member name used outside non-static member function
Attempt to reference a class member directly in a static member function or an
inlined friend function. That is invalid in a function where keyword this
cannot be used. (e)

1275: error string
This error number can indicate a number of different kinds of errors. In some
cases, this message gives additional information about an error message
displayed above this one. For example, if a function call is ambiguous, this
error prints the names of candidate functions.

H Messages
H.2 Compiler Messages

611

H

1276: can’t use ... in default argument expression
Class members can only be used in default arguments if they are static.
Function arguments cannot be used in default arguments. Local variables
cannot be used unless they are declared extern. (e)

int foo(int a, int b = a)
{

...
}

1278: can’t restrict access to identifier
An access declaration cannot restrict access to a member that is accessible in
the base class, nor can an access declaration enable access to a member that is
not accessible in the base class. (e)

1279: can’t enable access to identifier

1281: no function matches call to string
The compiler did not find a match for a class method, or a template function.
This can also indicate that a class does not have a default constructor. (e)

class line{
public:

line(){}
};
line l(5,6);

Second example:

template< class T> T max(T a, T b) {
return(a>b) ? a : b;

main(){
int i;
char c;
max(i,c);

}

1282: can’t resolve function call, possible candidates:
An overloaded function was called, but the function arguments did not match
any prototype. (e)

fun(int i){}
fun(char c){}

main(){
float f;
fun(f);

}

1285: ambiguous reference to identifier, could be candidate1 candidate2 ...
The identifier could not be resolved unambiguously. The error message is
followed by a list of possible candidates. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

612

struct A { int a; };
struct B { int a; };
struct C : public A, public B {};

foo()
{

C c;
c.a = 1; // Which a, A::a or B::a?

}

1288: return type not compatible with ...
A virtual function has a return type that is incompatible with the return type
of the virtual function in the base class. (w)

1292: too many arguments for function style cast to string
Function style casts to a basic type or a union type can only take a single
argument. (e)

int i = int(3.4, 5.6);

1293: non-type in new expression
A new expression requires a type.

class list {};
. . .
class list * cp;
cp = new lis; // Spelled wrong

1294: type in new expression is abstract
The type in a new expression must not be abstract.

1295: first dimension must be an integral expression
The first dimension of an array type in a new expression must be an integral
expression. (e)

double d;
int *p = new int[d];

1296: can’t create void objects
The type in a new expression was void.

void *p = new void;

1297: type in new expression is incompletely specified

1298: object of abstract class
Attempt to declare an object of an abstract class. (e)

1298: can’t construct object of abstract type
The type in a new expression is of abstract class. (e)

H Messages
H.2 Compiler Messages

613

H

struct A {
virtual foo() = 0;

};
A *p = new A;

1299: can’t construct objects of array type
Array elements in an array allocated with new cannot be given initial values.
(e)

struct A {};
A *p = new A[5](1,2,3,4,5);

1304: already volatile
A variable was declared volatile more than once. (w)

int * volatile volatile foo;

1305 to 1336: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

For users searching online: 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313,
1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327,
1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, and 1336.

1337: EOF in inline function body
The end of the source file was found while parsing an inline function. (f)

1338: arguments do not match template
The actual template argument types must match the declaration exactly. (e)

template<int size>
class foo {

// ...
};

foo<7, 7> qux;

1339: arguments do not match template template name
The arguments do not match the template.

template<class T>
class C{};

C<int, int> WrongArgs;

1340: can’t recover from earlier errors
Certain earlier errors have made it impossible for the parser to continue. (f)

Wind River Compiler for SPARC
User’s Guide, 5.4

614

1341: compiler out of sync: mismatching parens in inline function
The compiler is unable to parse an inline function. Check the function to see if
the parentheses are nested correctly. (f)

1344: syntax error - unexpected end of file
The parser has found an unexpected token. (e)

1347: identifier name used as template name
The identifier cannot be used as a class, struct, or union tag since it is already
a template name. (e)

template<class T>
class foo {

...
};

struct foo {
}

1354: "0" expected in pure specifier
A value other than 0 was found in a pure specifier. (e)

class foo {
virtual bar() = 5; // Should have been 0

}

1355: all dimensions but the first must be positive constant integral expressions
The first dimension of an array may be empty in some contexts. In a
multi-dimensional array, no other dimensions may be empty (and none may
be negative). (e)

int array[-4];

1360: base class expected
Base class not found after “:” or “,” in a class definition. (e)

class A : {}; // The base class is missing

1361: can’t initialize ... with a list
An object of a class which has constructors, bases, or non-public members
cannot be initialized as an aggregate.

struct foo {
private:

int i
public:

int j, k;
};

foo bar = { 1, 2, 3 }; // i is private

1362: can’t nest function definitions
Functions cannot be defined inside other functions.

H Messages
H.2 Compiler Messages

615

H

void foo()
{

void bar() { } // No nesting
}

1367: class class-name used twice as direct base class
Cannot use the same class as a base class more than once. (e)

class A {};

class B : A, A {};

1368: class name expected after ~
Encountered “~” in a class, apparently to declare a destructor, but it was not
followed by the class name. (e)

class foo {
~;

};

1370: class/struct/union cannot be declared specifier
A function specifier is applied to a definition of a class, struct, or union. (e)

inline class foo { /* inline is invalid for a class */
...

};

1371: conflicting declaration specifiers: specifier1 specifier2
Illegal mixing of auto, static, register, extern, typedef and/or friend. (e)

extern static int foo;

1372: conflicting type declarations
More than one type specified in a declaration. (e)

int double foo;

1373: enumerator may not have same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1376: function function name is not a member of class class name
A function was not declared, it was misspelled, or the parameters were not
used consistently. (e)

class line{
lint(int l); // Misspelled

};
line::line(int l){}

1378: function function name is not found
A function call referred to a function that was not found. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

616

static int fun();
main(){

fun();
}

1379, 1380: identifier ... declared as struct or class. Use struct or class specifier
identifier ... declared as union. Use union specifier

There was a type mismatch between the declaration and the use of an
identifier. (e)

union u {
...

};

struct u foo; // u was a union, cannot also be struct

1381: identifier name not a nested class nor a base class
Something that is not a class was used as a base class. (e)

1383: identifier identifier is not a type
What appeared to be a declaration began with an identifier that is not the name
of a type.

INT I;

1384: identifier name not a direct member
Attempt to initialize a variable that is not a direct member of the class. (e)

struct B { int b; };

struct C : public B {
int c;
C(int i) : c(i), b(i) {} // Can’t initialize b here

}

1385: identifier identifier not a static member of class class name
Invalid declaration. (e)

struct A {
int i;

};

int A::i;

1386: identifier identifier not declared in string
An identifier is used but not declared. Check the identifier for spelling errors.
(e)

1388: identifier identifier not declared
An identifier was used without being declared. (e)

1391: identifier name is not a class
An identifier that is not a class was used before “::”.

H Messages
H.2 Compiler Messages

617

H

1394: illegal expression
A break statement is only allowed inside a for, while, do or switch statement.
(e)

A continue is only allowed inside a for, while or do statement. (e)

A default or case label is only allowed inside a switch statement. (e)

1395: illegal function specifier for argument
A parameter cannot be declared inline or virtual.

void foo(inline int);

1397: illegal storage class for class/struct/union
A storage class other than extern is specified for a definition of a class, struct,
or union. (e)

auto class foo {
...

};

1403: main can’t be declared string
Special rules for the function main() are violated. (e)

1404: mem initializers only allowed for constructors
Members can only be initialized with the member initializer syntax in
constructors. (e)

class A {
int i;
int foo() : i(4711) {} // Not a constructor

}

1405: missing argument declaration
Argument declaration omitted. (e)

class bar {
foo(, int);

};

1410: no default arguments for overloaded operators
Overloaded operators cannot have default arguments. (e)

1411: no redefinition of default arguments
An argument can be given a default value only once in a set of overloaded
functions. (e)

void foo(int = 17);
void foo(int = 4711);

1412: no return type may be specified for conversion functions
The return type of conversion function is implicit. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

618

class foo {
double operator int(); // Cannot specify type

}

1414: non-extern object name of type type-name must be initialized
A const object must be initialized unless it is extern.

1415: non-extern reference name must be initialized
References and const objects, which are not declared extern, must be
initialized. So must objects of classes that have constructors but no default
constructors. (e)

const struct S &structure;

1417: only functions can have pascal calling conventions
int pascal i;

1418: only static constant member of integral type may have initializer
A member that is a static integral type can be initialized; others cannot. (e)

struct {
const int *p =0x3333;

}s;

1419: operator ... cannot be overloaded
It is invalid to overload any of the operators “.” or “.*” or “? :” .

1420: parenthesized expression-list expected after type typename

1423: redeclaration of symbol ...
A symbol in an enumerated type clashes with an earlier declaration. (e)

1427: static function declared in a function
There is no use declaring a static function inside another function. (e)

void foo()
{

static void bar();

bar(); // Call to bar, but where can it be defined?
}

1428: static member ... can’t be initialized
A static class member cannot be initialized in a member initializer. (e)

class A {
static int si;
A(int ii) : si(ii) {}

};

1429: string literal expected in asm definition
String missing in an asm statement.

asm(); // the parentheses should contain an instruction

H Messages
H.2 Compiler Messages

619

H

1430: subsequent argument without default argument
Only the trailing parameters may have default arguments. (e)

void foo(int = 4711, double);

1431: syntax error - catch handler expected after try
The parser has found an unexpected token. (e)

1432: syntax error - catch without matching try
The parser has found an unexpected token. (e)

1433: syntax error - class key seen after type. Missing ;?
The parser has found an unexpected token. (e)

1434: syntax error - class name expected after ::
The parser has found an unexpected token. (e)

1435: syntax error - colon expected after access specifier
The parser has found an unexpected token. (e)

1436: syntax error - declarator expected after ...
The parser has found an unexpected token. (e)

1437: syntax error - declarator expected after type
The parser has found an unexpected token. (e)

1438: syntax error - declarator or semicolon expected after class definition
The parser has found an unexpected token. (e)

1439: syntax error - else without matching if
The parser has found an unexpected token. (e)

1441: syntax error - identifier expected after ...
The parser has found an unexpected token. (e)

1442: syntax error - initializer expected after =
The parser has found an unexpected token. (e)

1444: syntax error - keyword operator must be followed by an operator or a type
specifier

The parser has found an unexpected token. (e)

1446: syntax error - type tag expected after keyword enum
The parser has found an unexpected token. (e)

1454: type defined in return type (forgotten “;”?)
It is illegal to define a type in the function return type. (e)

struct foo {} bar()
{
}

Wind River Compiler for SPARC
User’s Guide, 5.4

620

1455: type definition in bad context
A type was defined where it was not allowed. (e)

1456: type definition in condition
Types cannot be defined in conditions. (e)

if (struct foo { int i } bar) {
// ...

}

1457: type definition not allowed in argument list
Types cannot be defined in argument lists. (e)

int foo(struct bar int a; } barptr);

1460: type expected after new
A new expression requires a type. (e)

p = new;

1461: type expected for ...
No type found in declaration of a variable. (e)

1462: type expected in template parameter
This could indicate a misspelling of a template parameter. (e)

template<classT> ...;

1463: type expected in arg-declaration-clause
An argument type is missing in a function declaration. (e)

class bar {
foo(imt);

};

1464: type expected in cast
Found something that was not a type in a cast expression. (e)

1465: type expected
Found an expression that was not a type where a type was expected. (e)

1466: type in new expression can’t be string
A type in a new expression cannot be pascal or asm.

1467: type in new expression may not contain class/struct/enum declarations
Cannot declare types in a new expression. Nor can the types used in a new
expression be const, volatile, pascal, or asm. The type used must be
completely specified and cannot have pure virtual functions. (e)

void *p = new enum foo { bar };

1469: unknown language string in linkage specifier: ...
Only "C" and "C++" allowed in linkage specifiers. (e)

H Messages
H.2 Compiler Messages

621

H

extern "F77 { // Don’t know anything about F77 linkage}

1477: already const
A variable was declared const more than once. (w)

int * const const foo;

1479: comma at end of enumerator list ignored
A superfluous comma at the end of a list of enumerators was ignored. (w)

enum foo { bar, };

1480: enumerators can’t have external linkage
extern cannot be specified for enum declarations. (e)

extern enum foo { bar };

1481: function function-name not declared
If the -Xforce-declarations option is used, the compiler will generate this error
message when a function is used before it has been declared. (w)

1484: missing declarator in typedef
No declarator was given in a typedef statement. (e)

typedef class foo {
// ...

};

1485: old style function definition
A function was defined using the older K & R C syntax. This is invalid in C++.
(w)

int foo(a, b)
int a, b
{

...
}

1486: initializer that is a brace-enclosed list may contain only constant
expressions

A variable was initialized using a brace-enclosed list containing an expression
(such as a variable) that cannot be evaluated during compilation.

int i = 12;
...
int x[] = { 1, 2, 3 , i };

This is allowed in C++ but not in C.

1488: redeclaration of parameter identifier
One of a function’s parameters is shadowed by a declaration within the
function, (w) if -Xpcc or -Xk-and-r, (e) otherwise.

f1(int a) { int a; ... }

Wind River Compiler for SPARC
User’s Guide, 5.4

622

1489: redundant semicolon ignored
Found an extra semicolon among the members of a function. (w)

class A {
int a;
;

};

1492: virtual specified both before and after access specifier
Syntax error. (w)

class A {};
class B : virtual public virtual A {};

1493: redeclaration of ...
A function has been redeclared to something else. (e)

int i(int);
double i(int);
double i(int i) {...}

1494: non-extern object identifier of type type-designator must be initialized
This message may indicate that a const member of a class/structure/union
was not initialized. (e)

class C {
const int ci;

} c;

1495: non-extern const object name must be initialized
A const object must be initialized unless it is extern.

const char c;

1497: too many declaration levels
An internal stack overflowed. This is unlikely to happen in the absence of
other errors. (f)

1498: internal table-overflow
Internal stack overflowed. May occur with extremely complex, deeply nested
code. To work-around, simplify or modularize the code. If the problem does
not appear to be a consequence of some earlier error, please report it to
Customer Support. (f)

1500: function <function_name> has no prototype
The function function_name was used without a preceding prototype
declaration. In C,

void f();

is a declaration but not a prototype declaration—it declares f to be a function
but says nothing about the number or type of arguments it takes. This warning

H Messages
H.2 Compiler Messages

623

H

is returned when an attempt has been made to use f without making a
prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1501: function-pointer has no prototype
A function pointer was used but was declared to have a type that lacks a
prototype. In C,

void (*f)();

declares f to be a function pointer but says nothing about the number or type
of arguments it takes. This warning is returned when an attempt has been
made to use f without making a prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1504: arglist in declaration
An old style function declaration is found in the wrong context. (w)

f1() { int f2(a,b,c); ... }

1507: end of memory
Ran out of virtual memory during compilation. The compiler first attempts to
skip some optimizations in order to use less memory, however this error can
occur for large functions on machines with limited memory. Note: initialized
arrays require the compiler to hold all initial data and can contribute to this
error. If the problem does not appear to be a consequence of some earlier error,
please report it to Customer Support. (f)

1509: expression involving packed member too complicated
This indicates that the processor does not support “compound assignment”
for volatile members of packed structures.

struct1.a |=3; // May have to use struct1.a = struct1.a|3

1511: can’t access short or int bit-fields in packed structures unless the
architecture supports atomic unaligned accesses (-Xmin-align=1)

Packed structures cannot contain bit-fields unless the architecture support
atomic unaligned access. To see if the architecture supports atomic unaligned
access, compile a file with the -S option and then examine the .s assembly file.
Look for the -X93 option in the header. If X93=1, the architecture supports
atomic unaligned access. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

624

#pragma pack(1)
struct S {

int j:3;
};

1513: byte swapped structures can’t contain bit-field
Bit-fields are not allowed in byte-swapped structures. (e)

#pragma pack (,,1) // Byte swap
struct s {

int j:3;
}

1515: profile information out of date
The file given with the -Xfeedback option is out of date or has an old format.
Re-compile with the -Xblock-count option and create a new profiling file. (e)

1516: parameter parameter name is never used
A parameter to a function is not used. This message appears if the -Xlint
option is used. (w)

fun(int i){};

1517: function function name is never used
A function was declared but not used. This message appears if the -Xlint
option is used. In the example, the file consists of one line. (w)

static fun();

1518: variable identifier is never used
A variable is never used. This message appears if the -Xlint option is used. (w)

fun(){
int i;

}

1519: expression not used
The compiler has detected all or part of an expression which will never be
used. (w)

a+b; /* statement with no side effects */
a=(10,b+c); /* 10 is not used */
s++; / the '*' is not needed: s++; /

Note: the compiler will not issue this warning for an expression consisting
solely of a reference to a volatile variable.

1520: large structure is used as argument

The size of a structure passed as an argument to a function equals or exceeds
the size specified by -Xstruct-arg-warning. (This message is returned only
when the command-line option -Xstruct-arg-warning is used.) (w)

H Messages
H.2 Compiler Messages

625

H

1521: missing return expression
A function is defined with a return type, but does not return a value. This
message appears if the -Xlint option is used. (w)

float fun(){
return;

}

1522: statement not reached
A statement can never be executed. This message appears if the -Xlint option
is used. (w)

main(){
int never;
return 0;
never=6;

}

1523: can’t recognize storage mode unknown
The storage mode specified in an asm macro is unknown. See 7. Embedding
Assembly Code for more details. (e)

1524: too many enhanced asm parameters
There can be a maximum of 20 parameters and labels used in an asm macro.
See 7. Embedding Assembly Code for details.

1525: identifier identifier not declared
An identifier was not declared. (e)

fun(){
return i;
}

1526: asm macro line too long
A very long line was given in an asm macro. See 7. Embedding Assembly Code
for more details. (e)

1527: non-portable mix of old and new function declarations
A function declaration was made in accordance to an older C standard. In K &
R C, chars and shorts are promoted to int, and floats are promoted to double
just before a call is made to a function. However, in ANSI C, the arguments
match the prototype at the call site. (w)

1528: can’t initialize variable of type type_designator
Some types do not allow initialization. (e)

void a = 1;

1534: only first array size may be omitted
The size of the first dimension of an array can be omitted; all others must be
specified. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

626

int x[3][];

1535: illegal width of bit-field
A bit-field width is greater than the underlying type used for the bit-field. (e)

Example for a target with 32 bit integers:

struct { int i:33; }

1536: bit-field must be int or unsigned
The compiler detected an unsupported bit-field type. (e)

struct { float a:4; };

1541: redeclaration of struct/union/enum ...
A struct, union, or enum tag name was used more than once: (e)

struct t1 { ... }; struct t1 { ... };

1542: redeclaration of member variable name
A member has been declared more than once. (e)

struct{
int i;
int i;

};

1543: negative subscript not allowed
The size of an array cannot be negative. (e)

int ar[-10];

1544: zero subscript not allowed
An array of zero size cannot be declared when compiling for strict ANSI C
(-X7=2, or -Xdialect-strict-ansi). (w)

int x[0];

1546: dangerous to take address of member of packed or swapped structure
Using the address of a packed or byte-swapped structure is not recommended.
(w)

#pragma pack (2,2,1)
. . .
ptr = &(struct1.i);

1547: can’t take address of object
Trying to take the address of a function, constant, or register variable that is not
stored in memory. (e)

register int r; fn(&r);

1548: can’t do sizeof on bit-field
The sizeof function does not work on bit-fields. (e)

H Messages
H.2 Compiler Messages

627

H

struct {
int j:3;

} struct1;
i = sizeof(struct1.j);

1549: illegal value
Only certain expressions can be on the left hand side of an assignment. (e)

a+b = 1;
(a ? b : c) = 2; /* not valid in C modules*/

1550: can’t push identifier
It is invalid to use an expression of type function or void as an argument. (e)

void *pv; int (*pf)(); fn(*pv,*pf);

1551: argument [identifier] type does not match prototype
The type of an argument to a function is not compatible with its type as given
in the function’s prototype. (w) if -Xpcc or -Xk-and-r or -Xmismatch-warning,
(e) otherwise.

int f(char *), i; ... i = f(&i);

1552: initializer type "type" incompatible with object type "type"
The type of an initializer is not compatible with the type of the variable, (w) if
-Xpcc or -Xmismatch-warning, (e) otherwise.

char c; int *ip = &c;

1553: too many errors, good bye
The compiler has found so many errors that it does not seem worthwhile to
continue. (f)

1554: illegal type(s): type-signatures
The operators of an expression do not have the correct or compatible types, (w)
if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise. This message
may also indicate an attempt has been made to find the sum of two pointers.

int *pi, **ppi; ... if (pi == ppi) ...
#illegal types: ptr-to-int '==' ptr-to-ptr-to-int

int *p, *q;
p = p + q; // Attempt to add pointers
#illegal types: ptr-to-int '+' ptr-to-ptr-to-int

1555: not a struct/union reference
The left hand side of a “->” or “.” expression is not of struct or union type. If
-Xpcc is specified the offset of the given member name in another struct or
union is used. (w) if -Xpcc, -Xk-and-r, or -Xmismatch-warning, (e) otherwise.

Wind River Compiler for SPARC
User’s Guide, 5.4

628

1556: volatile packed member cannot be accessed atomically
For the selected processor, a packed member cannot be accessed atomically if
it is volatile. (w)

#pragma pack(1, 1)

struct {
volatile int v;

} s;
s.v =3; /* generates error 1556 */

1560: unknown pragma
The pragma is not recognized. (w)

#pragma tist

1561: unknown option -Xunknown
The compiler was started with an -X option that is not recognized. (w)

1562: bad #pragma use_section: section section name not defined
A #pragma use_section command has not been correctly given. (w)

#pragma section DATA3 // Correct
#pragma use_section x // Omitted section class name DATA3

1563: bad #pragma [name]
If issued without the name, the compiler did not recognize the pragma. If
issued with a name, there is a problem with either the operands to the pragma
or the context in which it appears. (w)

1564: bad #pragma pack
The #pragma pack statement is not correct. (w)

#pragma pack(1,2,3,4) // Takes up to three arguments

1565: illegal constant in #pragma pack
An invalid constant has been used in a pack pragma. (w)

#pragma pack(7) // Must use powers of 2 for alignment

1566 to 1572: obsolete messages
Messages numbered 1566 to 1572 should not appear because they refer to
obsolete features.

1573: user’s error string
Error number 1573 can be used to display any string the user chooses when

■ the compiler compiles this file, by use of #pragma error string:

#pragma error Now compiling test.c; // compilation continues

■ the compiler stops because of an error, by use of error string:

H Messages
H.2 Compiler Messages

629

H

#error // This terminates the compilation process

1574: can’t open file for input
The given file cannot be opened. (f)

1575: can’t open file for output
The given file cannot be opened. (f)

1577: can’t open profiling file file
The file given with the -Xfeedback=file option cannot be opened. (w)

1578: profile file is of wrong version (file)
The file given with the -Xfeedback option is out of date or has an old format.
Re-compile with the -Xblock-count option and create a new profiling file. (e)

1579: profile file file is corrupted
The file given with the -Xfeedback option is corrupted. Re-compile with the
-Xblock-count option and create a new profiling file. (e)

1580: can’t find current module in profile file ...
No data about the current source file is available in the profiling file. (w)

Possible causes:

■ No function in the current file was actually executed during profiling.
■ The profiling file belongs to another executable program.

1584: illegal declaration-attribute
A declaration contains an invalid combination of declaration specifiers. (w)

unsigned double foo;

1585: global register register name is already used
The global register has already been reserved. (w)

#pragma global_register counter = r14
#pragma global_register kounter = r14

1586: cannot use scratch registers for global register variables
Scratch registers cannot be used for global register variables. (w)

#pragma global_register counter=scratch-register-name

1587: global register register-name is invalid
Found an unrecognized register name in a global_register pragma. (w)

1588: no .cd file specified!
The target description (.cd) file was not specified.

The compiler reads a target description file during initialization (see “Targets,”
Table 2-2). Normally, when the dcc command is given, the .cd file is

Wind River Compiler for SPARC
User’s Guide, 5.4

630

automatically specified. To find out the .cd filename for your selected target
configuration, run dcc with the -# option to display all of the commands
generated, and look at the -M option for the ctoa program. (f)

Likely causes:

■ The compiler is not installed properly.
■ One of the compiler files has been deleted, hidden, or protected.
■ The dtools.conf or other configuration file is incorrect.

1589: can’t open .cd file!
See error 1588 for a description of the .cd file and likely causes.

1590: .cd file is of wrong type!
See error 1588 for a description of the .cd file and likely causes.

1591: .cd file is of wrong version!
See error 1588 for a description of the .cd file and likely causes.

1592: cd file file too small?!
See error 1588 for a description of the .cd file and likely causes.

1593: rite error
Write to output file failed. (f)

1595: illegal arg to function name
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1596: test version of compiler: File is too big!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1597: test version of compiler: Can’t continue!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1598: no matching asm pattern exists
While scanning an asm macro, no storage-mode-line matching the given
parameters was found. See 7. Embedding Assembly Code for details.

1599: expression too complex. Try to simplify
Can occur if an expression is too complex to compile. Should not happen on
most modern processors. Can occur on a processor with few registers and no
built-in stack support. (f)

H Messages
H.2 Compiler Messages

631

H

1600: no table entry found!
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1601: address taken in initializer (PIC)
Position-independent code. A static initializer containing the address of a
variable or string has been found when generating position-independent code.
Such address values cannot be position-independent. (w) or (e) depending on
whether -Xstatic-addr-warning or -Xstatic-addr-error is used.

1602: variable ... is incomplete
A variable is defined with a type that is incomplete. (e)

struct a;
struct a b;

1603: logic error in internal-identification
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1604: useless assignment to variable identifier. Assigned value not used
The variable assignment has no effect, since the assigned value is not used.
This message appears if the -Xlint option is used. (w)

fun(){
int i=1;

}

1605: not enough memory for reaching analysis
Certain optimizations, called “reaching analysis”, will be skipped if the host
machine cannot provide enough memory to execute them. The compiler
continues, but produces less than optimal code. (w)

1606: conditional expression or part of it is always true/false
A conditional test is made, but the results will always be the same. This
message appears if the -Xlint option is used. (w)

int main(){
int i = 3;
if (i < 6)

return 4;
}

1607: variable name is used before set
During optimization, the compiler discovers a variable that is used before it is
set. (w)

func() { int a; if (a == 0) ... }

Wind River Compiler for SPARC
User’s Guide, 5.4

632

1608: variable identifier might be used before set
A variable may have been used before it was given a value. (w)

fun(){
int i,j;
i = j; // j is used before set

}

1609: illegal option -Dinvalid_name
The preprocessor was invoked with the -D option and an invalid name. Names
must start with a letter or underscore. (w)

1611: argument list not terminated
The end of the source file was found in a macro argument list. (w) if -Xpcc, (e)
otherwise.

1612: EOF inside #if
The source file ended before a terminating #endif was found to match an
earlier #if or #ifdef. If not caused by a missing #endif, then it is frequently
caused by an unclosed comment or unclosed string. (w) if -Xpcc, (e) otherwise.

1617: syntax error in #if
The expression in an #if directive is incorrect, (w) if -Xpcc, (e) otherwise.

#if a *

1618: too complex #if expression
The expression in an #if directive overflowed an internal stack. This is unlikely
to happen in the absence of other errors, (w) if -Xpcc, (e) otherwise.

1619: include nesting too deep
The preprocessor cannot nest header files deeper than 100 levels, (w) if -Xpcc,
(e) otherwise.

1621: can’t find header file unknown
The preprocessor cannot find a file named in an #include directive. (w) if
-Xpcc, (e) otherwise.

1622: found #elif, #else, or endif without #if
Found an #elif, #else, or #endif directive without a matching #if or #ifdef. (w)
if -Xpcc, (e) otherwise.

1623: bad include syntax
The #include directive is not followed by < or " or the filename is too long. (w)
if -Xpcc, (e) otherwise.

H Messages
H.2 Compiler Messages

633

H

1624, 1625: illegal macro name
illegal macro definition

Macro names and arguments must start with a letter or underscore, (w) if
-Xpcc, (e) otherwise.

1626: illegal redefinition of macro_name
__LINE__, __FILE__, __DATE__, __TIME__, defined, and __STDC__ cannot be
redefined, (w) if -Xpcc, (e) otherwise.

1627: macro macro name redefined
The macro was previously defined. (w)

#define PI 3.14
#define PI 3.1416

1629: undefined control
Undefined or unsupported directive found after #, (w) if -Xpcc, (e) otherwise.

#pragmo

1630: illegal assert name
An #assert name must be an identifier and must be preceded by a “#”
character, (w) if -Xpcc, (e) otherwise.

1631: macro identifier: argument mismatch
Either too few or too many arguments supplied when using a macro, (w) if
-Xpcc, (e) otherwise.

#define M(a,b) (a+b)
i = M(1,2,3);

1632: recursive macro macro name
A recursive macro has been detected. The error occurs when the macro
substitution occurs, line 4 in this case: (e)

#define max(A,B) A>B ? A : max(A,B)
main(){

int i=1,j=2,k;
k = max(i,j); // Reports error for this line.

}

1633: parse error
The complier was not able to parse the expression. (e)

x = multiply(y,); // Comma, but no second argument
main(} // Typed } instead of)

1635: license error: error message
An error occurred when checking the license for the software tools. The error
message describes the problem (no server for this feature, etc.). Please refer to
your Getting Started manual or contact Customer Support. (f)

Wind River Compiler for SPARC
User’s Guide, 5.4

634

1638: illegal error level error level in option option name
The -exn option was used with an invalid error level. The -e option is used for
increasing the severity of error messages for a particular error. (w)

dcc -e99 test.c // 99 is invalid error level

1640: illegal error message number message number
The -exn option was used with an invalid error message number. The -e option
is used for increasing the severity of error messages for a particular error. (w)

dcc -ew10000 test.c // There is no message number 10000

1641: cannot reduce severity of error message number below error level
% dcc -ew1614 test.c
warning (dcc:1641): Cannot reduce severity
of message 1641 below "error"

1643: narrowing or signed-to-unsigned type conversion found: type to type
A type conversion from signed to unsigned, or a narrowing type conversion
has been found. This message appears if the -Xlint option is used. (w)

main(){
int i;
char c;
c = i;

}

1647: non-string method invocation expression on string object expression
This error indicates a mismatch between an invocation and the declaration of
a method.

For example, non-const method invocation in const object. Methods of const
objects must be const.

class C {
int i;

public:
f() { i = 12; }
C() {}

};

const C c;

main() {
c.f();

}

"x.cpp", line 11: error (1647): non-const method
invocation f() on const object c

1650: no profiling information found in database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

H Messages
H.2 Compiler Messages

635

H

A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found in the database directory. The
normal sequence of events is:

a. A program is compiled with an -Xprof-type option that adds profiling code
to the program.

b. The program is run and profiling information is collected using the RTA.

c. The program is compiled with the -Xprof-feedback option, and the
compiler uses the profiling information to optimize the code.

Possible causes of the error:

■ The wrong database directory was specified.
■ The database does not contain profiling data.

1651: can’t find profiling information for function in database
A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found for the function. See error 1650,
above, for a brief explanation of the situations where this error occurs. (w)

Possible causes of the error:

■ The module was not compiled with an -Xprof-type option that would add
code for instrumentation.

■ The program was not run, and so profiling data was not collected.

1657: initializer method name initializes neither a direct base nor a member
Only classes that are direct bases or virtual bases can be used in a member
initializer. (e)

struct A { A(int); };
struct B : public A { B(int); };

struct C : public B {
C(int i) : A(i) {} // Can’t initialize A here

};

1663: inline of function does not occur in routine function - try increasing value
of -Xinline

This warning is generated whenever the inline keyword is specified but the
compiler does not inline the function. Increasing the value of -Xinline or
-Xparse-size can help, but there are other reasons for not inlining a function.

1665: long long bit-fields are not supported
long long cannot be used with bit-fields. (w)

Wind River Compiler for SPARC
User’s Guide, 5.4

636

struct {
long long story:3;

}

1671: non-portable behavior: operands of type are promoted to unsigned type
only in non-ANSI mode

When a non-ANSI compilation mode is used, for example, -Xpcc, this warning
appears when the compiler selects an unsigned integral type for an expression
which would have been signed under ANSI mode. This message appears if the
-Xlint option is used. Use -Xlint=0x200 to suppress this message. (w)

1672: scope of tag tag is only this declaration/definition
The tag referred to in a parameter list does not have a prior definition. (w)

/* struct bar does not have a definition before this point */
foo(struct bar a);

1674: template argument argument should be pointer/reference to object with
external linkage

Arguments for template functions need to be pointers or references to objects
with external linkage. (e)

template <class T, int& Size>
class Base {
....
};

class A {
...
} ;

static int local_linkage_int;

Base<A, local_linkage_int> ob;

1675: sizeof expression assumed to contain type-id type-id (use "typename")
When a type-id is used in a sizeof expression, the compiler assumes that this
is intended; otherwise a typename should be used instead. (w)

template <class T, int& Size>
class Base {
...

void incr()
{

Size = Size + sizeof(A);
}

...
};

1676: class class is abstract because it doesn’t override pure virtual function
A class that has un-overridden pure virtual functions is an “abstract class” and
cannot be instantiated. (i)

H Messages
H.2 Compiler Messages

637

H

1677: executable executable name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The specified executable was not found.

1678: snapshot snapshot name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The snapshot containing profiling information was not found.

1679: no definition found for inline function function
The template member function referred to has no definition. (w)

1680: delete called on incomplete type type
The delete operator is called on a pointer to a type whose full declaration has
been deferred. (w)

1682: "(unsigned) long long" type is not supported by the ANSI standard
The ANSI standard does not support the long long type. (w; future error)

long long x;

1683: non-int bit-fields are not supported by the ANSI standard
The ANSI standard allows bit-fields of integer type only. (w; future error)

struct foo {
char x:2;

};

1696: intrinsic function name must have n argument(s)
The number of arguments passed to an intrinsic function is incorrect. (e)

int a, b;
...
a = __ff1(a, b);

1697: invalid types on arguments to intrinsic function name
An argument of an invalid type is passed to an intrinsic function. (e)

char *ptr;
int a;
...
a = __ff1(ptr);

1700: implicit intrinsic function name must have n argument(s) - when the
intrinsic is enabled, optional user prototype must match

When an enabled intrinsic function is redefined, the number of arguments
must be the same. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

638

unsigned int __ff1(unsigned int x, unsigned int y)
{

...
}

1701: invalid types on prototype to intrinsic function name - when the intrinsic is
enabled, optional user prototype must match

When an enabled intrinsic function is redefined, the prototypes must match.
(e)

unsigned int __ff1(int a)
{

...
}

1702: prototype return type of intrinsic function name should be type - when the
intrinsic is enabled, optional user prototype must match

When an enabled intrinsic function is redefined, the return type must match.
(e)

void __ff1(unsigned int a)
{

...
}

1703: function name matches intrinsic function name - rename function or disable
the intrinsic with -Xintrinsic-mask

A function with the same name as an intrinsic function has been defined. The
function should be renamed or intrinsic functions should be disabled. (w)

unsigned int __ff1(unsigned int x)
{

...
}

1704: structure or union cannot contain a member with an incomplete type
Structures or unions should not contain fields of incomplete type. (w; future
error)

struct x
{

void a;
};

1707: invalid pointer cast/assignment from/to __X mem/__Y mem
The pointer assignment is invalid because it is between locations in two
different memory banks. (e)

1708: cannot take address of an intrinsic function
An intrinsic function, which represents a specific CPU instruction, has no
location in memory.

H Messages
H.2 Compiler Messages

639

H

1709: unsupported GNU Extension : inline assembler code
The compiler does not translate extended GNU inline assembler syntax (such
as register usage specification). (e)

1710: macro macroname: vararg argument count does not match. expected n or
more but given m

Too few arguments are passed to a vararg macro. (w)

#define TEST_INFO_1(fmt, val, ...) printf(fmt, val, __VA_ARGS__)
...
TEST_INFO_1("val1 = %d, val2 = %d", 12);

1711: undefined identifier identifier used in constant expression
An undefined macro name occurs in a #if preprocessor directive. To disable
this warning, use -Xmacro-undefined-warn. (w)

#if (FooDef1 == FooDef2)
...
#endif

1712: only vector literals may be used in vector initializations
Vectors can be initialized only with vector constants. (e)

vector int a[2] = {1, 2};

Wind River Compiler for SPARC
User’s Guide, 5.4

640

1713: invalid assert name name

1714: invalid macro name name

1715: no input file given

1716: memory unavailable

1717: unterminated comment

1718: unterminated character or string constant

1719: duplicate parameter name param in macro macro

1720: implicit include file “file” not found

1721: missing ">" in ‘#include <filename> syntax"

1722: junk after "#include <filename>"

1723: junk after "#include “filename”

1724: "#include" expects <filename> or “filename”

1725: #if nesting too deep

1726: #include file nesting too deep. possible recursion

1727: unmatched condition. block starts on line n

1728: unmatched condition

1729: unbalanced condition

1730: undefined control after expr

1731: EOF inside #... conditional

1732,
1733: illformed macro parameter list in macro macro

1734: invalid macro name name

1735: invalid argument to macro

1736: illformed macro invocation

1737: invalid assert name name

1738: "##" at start of macro definition

1739: "#" precedes non macro argument name or empty argument

1740: macro macro: argument count does not match. expected n but given m

H Messages
H.2 Compiler Messages

641

H

1741: redefinition of macro "macro". previously defined here

1742: predefined macro macro redefined

1743: empty token-sequence in "#assert"

1744: no closing ")" in "#assert"

1745: garbage at the end of "#assert"

1746: invalid number in #line

1747: only a string is allowed after #line <num>

1748: string expected after #error

1749: string expected after #ident

1750: # directive not understood

1751: "defined" without an identifier

1752: no closing ")" in "defined"

1753: bad digit in number

1754: bad number in #if...

1755: floating point number not allowed in #if...

1756: wide character constant value undefined

1757: undefined escape sequence in character constant

1758: empty character constant

1759: multi-character character constant

1760: octal character constant does not fit in a byte

1761: hex character constant does not fit in a byte

1762: character constant taken as unsigned

1763: garbage at the end of condition argument

1764: illegal identifier identifier in condition

1767: can’t find include file file in the include path

1768: invalid "vector bool" constant, valid values 0, 1 or -1

1769: the called object is not a function

1770: array is too large

Wind River Compiler for SPARC
User’s Guide, 5.4

642

There is a physical limitation on the amount of space that can be allocated for
an array. (e)

1771: reserved identifiers "__FUNCTION__" and "__PRETTY_FUNCTION__" may
only be used inside a function

The special identifiers __FUNCTION__ and __PRETTY_FUNCTION__, which
return the name of the current function, can be used only within a function. (e)

1772: possible redundant expression
The compiler has encountered a valid but redundant operation, such as x&x.
This message appears if the -Xlint option is used. (w)

1773: quoted section name cannot be empty, set to: default name
Quoted section names cannot be empty (“” or “ ”). For example,

.section " ",4,rx

will be changed to:

.section "default_section_name",4,rx

where the default section name is determined by context. (w)

1774: asm macro must be completed with "}" in the very first position
An asm macro must conclude with a right brace ("}") in the first column of a
new line. The example below shows a valid asm macro. (e)

asm void setsr (unsigned short value)
{
%mem value;

move.w value,d0
move.w d0,sr

}

1775: Deprecated use of constructor/destructor ignored, use attribute keyword
The compiler encountered an initialization or finalization function declared
with the obsolete prefix _STI__nn_ or _STD__nn_. Use the __attribute__
keyword to identify initialization and finalization functions, or specify
-Xinit-section=2 to use old-style initialization and finalization sections. (f)

1776: constructor/destructor priority out of range (number)
The specified priority is out of range. The default range is 0-65535; but if
-Xinit-section=2 is enabled, the range is 0-99. (e)

1777: default constructor/destructor priority out of range, setting to lowest
The priority for default constructors and destructors has been set with
-Xinit-section-default-pri to a value that is out of range. The default range is
0-65535; but if -Xinit-section=2 is enabled, the range is 0-99. (w)

H Messages
H.2 Compiler Messages

643

H

1778: option -Xc++-old is deprecated and dtoa will be removed in a future
release

-Xc++-old, which invokes an obsolete version of the C++ compiler, will not be
supported indefinitely. Legacy projects should be ported to the latest C++
compiler. See Older Versions of the Compiler, p.214 for more information. (w)

1779: CODE section without execute access mode: section-name
A CODE section has been created with a specified access mode that does not
include execute permission. For example:

#pragma section CODE ".SOME_CODE_SECTION" RW far-code

In this example, RW (read-write) is not a valid access mode, since a CODE
section must allow execution. X (execute) should be added to the access mode.
(e)

1780: non-int bitfields not allowed in packed structures
Bit-fields of type char or short are nonstandard. Depending on the compilation
target, such bit-fields can result in faulty code when they occur in packed
structures. For example:

struct {
...
unsigned short foo:11;
...

} __attribute__((packed)) struct1

Replace unsigned short with int. (e)

1793: conflicting types for section section:
An attempt has been made to mix types of information in a single object-file
section; for example, constant data (such as a string constant) into a section
reserved for code or variables.

In this example, the compiler assumes from the first statement that the section
.mydata is intended to be of the DATA section class, whereas the second
statement assumes that .mydata will be a CONST section class:

__attribute__((section(".mydata"))) int var = 1;
__attribute__((section(".mydata"))) const int const_var = 2;

H.2.4 C++ Messages

The C++ compiler generates additional messages and diagnostics numbered 4xxx
and 5xxx. No further documentation is currently available for these messages. If a
message if unclear, contact Customer Support.

Wind River Compiler for SPARC
User’s Guide, 5.4

644

If you are compiling C++ code with the -Xc++-old option, see H.2.3 C Compiler
Message Detail, p.589 for a list of diagnostics.

The severity of some C++ diagnostics (information, warning, error, or fatal) varies
according to the circumstances under which the message is generated.

H.3 Assembler Messages

Assembler messages have the format:

"file", line #: severity: message

Three kinds of messages are generated. The severity values for each as they appear
in messages are as follows.

warning
Warning: a message will be printed, assembly will continue, and an output file
will be produced.

error
Error: a message will be printed, assembly will continue, but no output will be
generated.

fatal
Fatal: a message will be printed and assembly aborted.

Assembler messages are intended to be clear in the context of the error and are not
listed here. Please report unclear assembler error messages to Customer Support.

H.4 Linker Messages

H.4.1 Linker Message Format

Linker messages have the format:

DLD.EXE: message

H Messages
H.4 Linker Messages

645

H

Where relevant, the file and line are included in the message.

The severity level for each message is shown in parentheses in the message
description. A warning (w) generates a diagnostic message, but linking continues
and an output file is produced. An error (e) causes the linker to abort.

H.4.2 Linker Message Detail

"." (0x...) is assigned invalid value: 0x...
Assignment to “.” creates a gap in section data. The size of this gap should not
be negative and should be less 0x4000000. (e)

Absolute section has invalid name: name
Absolute section name must be “.abs.hexNumber”. (e)

An unknown or incorrect option has been provided
The linker does not recognize an option flag that has been passed to it. (w)

Archive file filename does not have symbol table
An archive file must have a symbol table to be usable by the linker. Use dar to
create the table. (e)

ASSERT failed: assertion
(Message may include the assert expression.) Contact Customer Support. (e)

Assignment to symbol "symbol" in the LECL file is ignored
The symbol is defined in an input object file

The linker command file cannot redefine a symbol that is already defined in an
input object file. (w)

Cannot allocate 0x... bytes of memory for "name"
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough
space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Cannot allocate branch island
The linker cannot calculate the address or size of a branch island. The circular
dependencies are too complex. (e)

Cannot calculate address of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

646

Cannot calculate address of section section
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot calculate OVERFLOW size expression
Complex circular dependencies cannot be resolved. An expression value
depends on the address or size of a symbol or section, which in turn depends
directly or implicitly on the expression value. Example:

X = SIZEOF(Y); Y (DATA) : { . = . + X; }

Linker command language and implicit linking rules constitute an equation
system which can be unsolvable, resulting in this or similar error message. (e)

Cannot calculate size of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot create branch island - section section is too large
Branch islands are created between input sections. If an input section is too
large it might not be possible to create an island for that branch.

Cannot create Branch Island for Arm to Thumb call, function name
Contact Customer Support. (e)

Cannot create Branch Island for Thumb to Arm call, function name
Contact Customer Support. (e)

Cannot create position independent branch island: __SDA2_BASE_ is undefined
-Xpic-only needs the symbol __SDA2_BASE_ to be defined. (e)

Cannot evaluate expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate fill value expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate value of symbol symbol
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

H Messages
H.4 Linker Messages

647

H

Cannot find matching input sections for "..."
Input section specification does not match any input. (w)

Cannot find overflow output section "section"
Invalid section name in OVERFLOW statement. No such section defined in
linker command file. (e)

Cannot get current directory name
Call to getcwd() failed. (e)

Cannot rename "filename", error: message
The host operating system reported an error renaming the file. Check the
permissions on the directory where the file resides. This usually means that
you are not permitted to write in that directory. (e)

Cannot write relocation table: relocation type 0x... is not supported by COFF
This can occur when input and output have different formats (ELF to COFF)
and some relocations cannot be converted. (e)

Cannot allocate memory (NEXT)
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough
space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Cannot calculate size of section "section": "." (0x...) is assigned invalid value: 0x...

Can’t calculate size of section section: it depends on section address ...

Can’t calculate size of section section: it depends on section address....
The section might require alignment specification

Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Can’t create file name

Can’t create file name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

Can’t create tempfile name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

648

Can’t find file: filename
The linker cannot locate the specified file. (e)

Can’t find library: libname.a
The linker cannot locate the specified library. (e)

Can’t find output section section
Invalid section name in linker command language expression. (e)

Can’t find section section
Invalid section name in linker command language expression. (e)

Can’t lseek on name: ...
Possibly an external task has shortened the file. More likely, this represents an
internal error in the dld code. Please collect a test case to reproduce the
problem and contact Customer Support. (e)

Can’t open filename: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can’t open tempfile name: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can’t search unused sections, main entry symbol "symbol" is undefined
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Can’t search unused sections, main entry symbol "symbol" has absolute address
This warning should not be generated since the current linker deletes such
symbols silently. (w)

COMMON object is eclipsed by a function definition:
Function name: name
File: filename

A symbol of type function is defined with the same name as a COMMON
object. (w)

Compression switch function "function" is undefined

PowerPC compressed code only. When -Xmixed-compression is on, symbols
__switch_to_uncompressed and __switch_to_compressed must be defined in
an input object files. (e)

H Messages
H.4 Linker Messages

649

H

Don’t know where to allocate input section:
no matching input specification found in linker command file.
Section name: section
File: filename

Change linker command file to include explicit instructions on how to link this
section. If the “section name” referred to in the message is .ctors or .dtors, you
may be using an old linker command file that specifies .init and .fini instead
of .ctors and .dtors. (w)

Don’t know where to put COMMONs! No .bss and no COMMON directive
Found a COMMON variable but linker command file has no .bss nor
COMMON. (e)

Don’t know where to put small COMMONs! No .sbss and no SCOMMON
directive

Found a small COMMON variable but linker command file has no .sbss nor
SCOMMON. (e)

End of memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Environment variable "RTAPROJECT" must be set
The variable must be set when -Xgenerate-vmap is used. (This option is not
intended to be set by the user.) (e)

Failed to read file name: ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read file name: file is empty
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to read file name from archive name
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: ...

Wind River Compiler for SPARC
User’s Guide, 5.4

650

Failed to read from file name(...): ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: end of file
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to write to file name: ...
The host operating system reported a write error. Perhaps the file’s
permissions were changed by another task after dld opened it successfully.
Perhaps the file partition has filled up, leaving insufficient room for the file. (e)

File filename does not have symbol table section

File filename(...) does not have symbol table section
Invalid input file: no symbol table. (e)

File filename has invalid relocation section
File filename(...) has invalid relocation section

Invalid input file: invalid reference to relocation information. (e)

File has wrong byte order, file filename
Invalid ELF header: Byte order neither big-endian nor little-endian. (e)

File has wrong class, file filename
Invalid or unsupported ELF class in input file header. (e)

File has wrong version, file filename
Invalid or unsupported ELF version in input file header. (e)

File is not an ELF file, file filename
Linker assumed file to be ELF but it does not have valid ELF header. (e)

File filename is not of known format
Supported formats are COFF, ELF, archive, and linker command language. (e)

File "filename", section "section", offset 0x...: Invalid relocation:
Input object file has relocation entry which cannot be processed. (e)

File type is not COFF, file filename
Contact Customer Support. (e)

File type is not ELF, file filename
Contact Customer Support. (e)

H Messages
H.4 Linker Messages

651

H

Generation of relocation entries without a symbol table is not possible
Invalid -s option. (e)

... has BIND address, "> area-name" specification is ignored
Contact Customer Support. (w)

Illegal -B option
-B must be followed by “=”. (e)

Illegal expression
Contact Customer Support. (e)

Illegal filename prefix[COMMON], only * is allowed
Input specification must be *[COMMON], not xyz.o[COMMON]. (e)

Illegal option option
Option is not recognized. (w or e)

Illegal option -Xoption
Option is not recognized. (e)

Illegal usage of HEADERSZ in LECL file
Contact Customer Support. (e)

Illegal -Y option
-Y must be followed by “,”. (e)

In file "filename", Section "section
Section offset 0x..,
Symbol "symbol"
Invalid relocation entry

Input file has broken symbol table or relocation information. (e)

In file filename, symbol symbol has invalid value:
symbol is undefined (state 0x...), but value is not zero - 0x...

Invalid input file: The symbol table is defective. (w)

In LECL file "filename", line number,
name is not allocable, "> name" specification is ignored

Section or group is not allocatable; see ELF for section attributes. (w)

Input contains mix of little-endian and big-endian object files:
Aborted...

Linking a mix of little-endian and big-endian object files is not supported. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

652

Input contains mix of PPC COFF and ELF object files:
PPC COFF and ELF object files have incompatible calling conventions

Mixing PowerPC COFF and PowerPC ELF is dangerous. (w)

Input files contain code for mixed processors:
Only one file for each processor type is listed

Mixing code generated for different CPU types is dangerous. (w)

Insufficient memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Internal error: cannot calculate COFF header size
Contact Customer Support. (e)

Internal error: cannot calculate ELF header size
Contact Customer Support. (e)

Internal error: can’t ADD symbol to non-hashed table
Contact Customer Support. (e)

Internal error: error counting undefines
Contact Customer Support. (e)

Internal error: illegal output file type
Contact Customer Support. (e)

Internal error: illegal/unsupported output format ...
Contact Customer Support. (e)

Internal error: no output file type set
Contact Customer Support. (e)

Internal error: not relocinfo
Contact Customer Support. (e)

Internal error: output buffer overflow
Contact Customer Support. (e)

Internal error: should not happen
Contact Customer Support. (e)

Invalid archive format, file filename
Archive file has invalid format. (e)

H Messages
H.4 Linker Messages

653

H

Invalid archive symbol table, file: filename
Invalid input file: The symbol table is defective. (e)

Invalid file header, file filename in archive archive
Contact Customer Support. (e)

Invalid fill pattern alignment, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid fill pattern size, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid option format: option
Valid format is -optionName[=number]. (e)

Invalid relocation info:
File "filename”
Section "section”
Section address 0x...size 0x...
Relocating reference at address 0x...
Can’t relocate

Input object file has broken relocation information. (e)

Invalid section header in file "filename", section name "name"
Invalid input file: Invalid COMDAT section header. (e)

Invalid value of -Xmax-long-branch= option
The option sets the maximum branch offset which does not need a branch
island. Some targets (like the PowerPC) have short and long branch
instructions. Valid values are 2..0x7fffffff; using the option without a value is
an error. (e)

Invalid value of -Xmax-short-branch= option
Valid values are 2..0x7fffffff. Using the option without a value is an error. (e)

Machine type not supported, file filename
Machine type not supported, file filename(...)

Invalid input file: unsupported target CPU. (e)

Memory area "area-name" is full
Memory area specified in “> area-name” is full. (e)

Memory area "area-name" is undefined
Invalid name in “> area-name” specification. (e)

Memory block extends over 32 bit address range: ...
memory address + memory size >= 0x100000000. (w)

Wind River Compiler for SPARC
User’s Guide, 5.4

654

Next alignment with zero!
Invalid argument of NEXT(). (e)

No main entry point defined
Executable output needs an entry point. (e)

No section names in file filename
Invalid input file: no section names string table. (e)

No string table in file filename
Invalid input file: no string table. (e)

Nothing to link
No object files are given in the command line. (e)

Only one COMMON allowed in LECL file
More than one input specification like *[COMMON] is not allowed in the linker
command file. (e)

Only one SCOMMON allowed in LECL file
More than one input specification like *[SCOMMON] is not allowed in the
linker command file. (e)

Out of memory reading archive archive
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Output file format not specified
Contact Customer Support. (e)

Output section "section" contains mix of compiled for compression and normal
sections: The output section will not be prepared for compression

Mixing compressed and normal code in one section is illegal. (w)

Output sections: have overlapping load addresses
Incompatible specification of output sections. (e)

Output sections: have overlapping run-time addresses
Incompatible specification of output sections. (e)

Overlapping memory block block
Two or more MEMORY directives define the same memory area. (w)

Redeclaration of symbol
More than one definition of a symbol which is not COMMON or weak.

H Messages
H.4 Linker Messages

655

H

Register number in REGISTER() section specification must be in 0..n range
Invalid register specification. (e)

Relocation error in file filename: section section refers to local symbol symbol in
section section and section section is not taken to output

Linker failed to remove unused sections properly. file a SPR. Contact
Customer Support. (e)

Relocation error in file filename:
section section refers to local symbol symbol at section section and
section section is purged COMDAT section

Linker failed to remove unused COMDAT sections. Contact Customer
Support. (e)

Relocation info is not properly sorted, file filename, section section
Relocation info is not properly sorted, file filename(...), section section

Input file has broken relocation information. (e)

Section .data (DATA) is not defined
COFF output must have a .data section. (e)

Section e_shstrndx is not a SHT_STRTAB in file "filename"

Section e_shstrndx is not a SHT_STRTAB in file "filename(...)"
Invalid input file: invalid ELF header. (e)

Section section extends over 32-bit address range
section address + section size >= 0x100000000. (w)

Section .text (TEXT) is not defined

COFF output must have a .text section. (e)

Symbol "symbol" can’t be declared relative
Symbol is declared as "... @ ... = ...
Section "section" is empty - can’t be used for relative declaration

A section must have some input section to make relative declaration possible.
(w)

Symbol "symbol" can’t be declared relative
Symbol is declared as "... @ ... = ..."
Symbol "symbol" is absolute - can’t be used for relative declaration

Base symbol must be declared inside a section. (w)

Symbol definition "name" not found
Symbol name is used in linker command file but symbol is undefined. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

656

Symbol definitions missing at index index in name
Contact Customer Support. (e)

Symbol "symbol" has unknown binding type
Contact Customer Support. (e)

Symbol symbol has unknown section index
Invalid symbol table in input ELF file. (w)

Symbol symbol has unknown symbol type
Input file has a symbol of an unknown or unsupported type. (e)

Symbol symbol in name is defined in unknown section
Invalid section table in input ELF file. (w)

Symbol symbol is declared with more than one size
Symbol symbol is declared with more than one size (n and m)

Conflicting definition for a COMMON variable. (w)

Symbol symbol is undefined but not used
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Symbol name missing. Must be defined when using shared libraries.
This message is no longer used. (e)

Symbol or section "name" not found
Invalid name in relative symbol definition in linker command file. (e)

Symbol _SDA_BASE_ is undefined
Symbol _SDA2_BASE_ is undefined
Symbol _SDA3_BASE_ is undefined

The symbol _SDAx_BASE_ is needed to process SDA (Small Data Area)
relocations. (e)

Target architecture is not specified
Unknown target. (e)

Undefined symbol "symbol"
Undefined symbol "symbol" in file "filename"
Undefined symbol "symbol" in file "filename(...)"

An undefined symbol is referenced. (w)

Undefined symbols found - no output written
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough

H Messages
H.4 Linker Messages

657

H

space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Unknown relocation type in name
Contact Customer Support. (e)

Unsupported file format: "name"
Supported formats are COFF, ELF, archive, and linker command language. (e)

Unsupported file type in archive
Supported formats in archives are COFF and ELF. (e)

Unsupported output file format
Selected combination of object-file format and target is not supported. (e)

Unsupported relocation type ...
Unsupported relocation type in file "filename"

Input file has unsupported relocation type. (e)

Unused symbols search failure, symbol: symbol
The linker failed while attempting to find and delete unused symbols in object
files. This could be caused by a linker bug, or by an object file that is corrupt,
invalid, or in an unsupported format. (e)

Use -Xmixed-compression command line option to enable generation of
compression switches

PowerPC compressed code only. The switches are codes which change the
CPU mode from compressed code to normal code and back. (e)

Value of "." is undefined outside a section or group
Illegal use of “.” in linker command file. (e)

-Xstop-on-warning is on, linking aborted
The linker stopped after issuing a warning because the -Xstop-on-warning
option is enabled. (e)

Wind River Compiler for SPARC
User’s Guide, 5.4

658

659

Index

Symbols
comment delimiter, assembler 289
comments in configuration file 549
!= binary not equal to, assembler operator 303
!H 153
!L 153
% binary modulo assembler operator 303
%, assembler binary constant prefix 294
%f format specifier 475
%hi unary operator 302
%lo unary operator 302
%p conversion, implementation-defined

behavior 568
%S field, with -Xsubtitle 285
%T field with -Xtitle 285
%X conversion, implementation-defined

behavior 568
%x conversion, implementation-defined

behavior 568
& binary bitwise and, assembler operator 303
&& concatenating macro parameter 331
* assembler comment delimiter 289
* binary multiply assembler operator 303
+ binary add assembler operator 303
+ unary assembler add 302
- binary subtract assembler operator 303
- unary assembler negate 303
/ binary divide assembler operator 303

:= expression assembler directive 306
; comment delimiter 289
; statement separator 284
< binary less than assembler operator 303
<< binary shift left assembler operator 303
<= binary less than or equal to assembler

operator 303
=: defines global symbol 291
=: expression assembler directive 306
== binary equal to, assembler operator 303
>
> binary greater than assembler operator 303
>= binary greater than or equal to assembler

operator 303
>> binary shift left assembler operator 303
-? command-line options 34
@, assembler octal constant prefix 294
-@ name assembler option, options from file or

variable 278
-@ name common option, options from file or

variable 405
-@ name compiler option, options from file or

variable 48
-@@ name common option, options from file or

variable 543
-@@ name assembler option, options from file or

variable 278
-@@ name common option, options from file or

variable 405
-@@ name compiler option, options from file or

Wind River Compiler for SPARC
User’s Guide, 5.4

660

variable 48
-@E common option, redirecting output 406
-@E compiler option, redirects output 48
-@E linker option, redirects output 358
-@O assembler option, redirecting output 278
-@O common option, redirecting output 406
-@O compiler option, redirects output 48
-@O linker option, redirects output 358
-# option 278

display linker command lines 357
print command lines as executed 47

-## compiler option, prints command lines 47
-### compiler option, prints subprograms 47
@h unary operator 302
@l unary operator 302
\@ special macro parameter 332
\0 special macro parameter 331
^ binary exclusive or, assembler operator 303
| bitwise or 303
~ unary assembler complement 303
‘\’ backslash escape sequence 295
‘\b’ backspace escape sequence 294
’ single quote escape sequence 295
’\f’ form feed escape sequence 295
’\n’ line feed (newline) escape sequence 295
’\r’ return escape sequence 295
’\t’ horizontal tab escape sequence 294
’\v’ vertical tab escape sequence 295
⁄ , assembler hexadecimal constant prefix 294

Numerics
0, assembler octal constant prefix 294
0x, assembler hexidecimal constant prefix 294
.2byte assembler directive 306
.4byte assembler directive 306

A
-A compiler option

define assertion 34, 118
-A- compiler option

ignore macros and assertions 34
.a file extension, archive library 19
.a files. See libraries, shared libraries
-a linker option, forcing -r to allocate common

variables 359
-A linker option, link files from archive 358
-a option

ddump 418
a64lconversion function 462
abort function

definiton 462
implementation-defined behavior

calling, assert function 567
flushing and closing files 569

abridged C++ library 220
abs absolute value function 462
.abs.nnnnnnnn section. See sections
absolute

assembler expressions 301
expressions 301
sections. See sections
variables

accessing at specific addresses 264
accesssing with symbolic debugger 241

absolute (__attribute__ keyword) 138
access function determining file accessiblility 462
access I⁄ O function

RAM-disk support, checking file
accessibility 261

access modes
COMDAT section, with O access mode 238
defining section accessibility 238
RW, default for use 237, 237
RX, default for use 237

access modes
default values for predefined section

classes 237
in pragma section & pragma use_section 234
read, write, execute 238

accessing variables and functions at specific
addresses 263

acc-mode. See access modes
acos function 463
acosf function 463
ADDR pseudo function 379

 Index

661

Index

addressing modes
code generated by compiler for each 242
far-absolute 243
operands 572
standard 243

advance function, definition 463
aliasing

pointer arguments 58
variables, #pragma no_alias 124

.align assembler directive, definition 307
ALIGN keyword 386
align pragma 121
aligned (__attribute__ keyword) 139
alignment

array 164
classes 165
minimum for target memory access, -

Xalign-min 57
packed structures 128

output sections 368
#pragma align 121
#pragma pack 127
scalar types 162
strings, -Xstring-align 106
structures 165

-Xmember-max-align 135
-Xstruct-max-align 91

unions 165
.alignn assembler directive 307
alloca function

dynamic stack space allocation 144
__alloca intrinsic function 143
alloca intrinsic function 143
allocate

storage 298
ANSI

C
mode invoked with -Xdialect-ansi 69

C standard
additions to 115
conformance to 6
implementation-defined behavior 563
library functions disregarded with -Xclib-

optim-off 63
recommended reference 8

C++ standard
additions to 115
conformance to 6
differences from ANSI C 222
recommended reference 8

compiler limits 561
references 460
standards conformance 6, 555

a.out
default linked output object file 362
naming by default, single executable file 112

archiver, dar 11
argc argument

environment 566
argc defining for target program with setup 266
argument address optimization

explanation 192
interprocedural optimizations 199

argument passing 175
C++ 176
class, struct, union 176
floating point 77
hidden

passed in register $4 178
hidden, call a function with a return type of

class, struct, or union 178
pointers to members 177
spill area, used to save argument registers if

function is a variable argument 174
argv

argument 566
defining for target program with setup 266
using in init.c 254
using in init.c 254

arrays
alignment 164
implementation defined behavior 565
incomplete initialization

parsing controlled, -Xbottom-up-init 60
treatment in different modes 557

initialization of automatic arrays in different
modes 556

large initialized and compiler limits 562
size of 164

.ascii assembler directive 307

Wind River Compiler for SPARC
User’s Guide, 5.4

662

.asciz assembler directive 308

.asciz directive 308
asctime function

calling .tzset function 533
definition 464

asin function 464
asinf function 464
asm

macro 152
See also assembler macros

string statement
disabling optimizations 157

strings 149
asm keyword

See assembler macros
__asm__ keyword 133
asm keyword 133

allowing in different modes 556
assembler

directives
direct assignment 301
operand field format 289

embedding within compiled programs 263
error messages 644
macros 149
mixing C and assembler functions 263
options 274
relocation types, table of 242

assembler decimal constants 294
assembler directives

.2byte 306
assembler macros

asm 150, 151, 152
C++ 152
register list line 154
storage mode for parameters

con 153
storage mode line 152

assembler operator precedence, table of 304
assembler supported constants 293
assembly

code
generating for each addr-mode 242

file
keep 84

preprocess 97
temporary 84

output 35, 114
including source, -Xpass source 95

.section directive 235
assert

function
definition 464
implementation-defined behavior 567

macro, <assert.h>, standard header files 453
preprocessor directive 118

assertions
See also assert, -A compiler option
dumping symbol information 66

assignment
command 389
command in section-definition 384
pop optimization 194
statements, with -WD complier option 42

assignment statements
configuration files 542
configuration language, definition 551

atan function 465
atan2 function 465
atan2f function 466
atanf function 465
atexit function

definition 466
exit function 473

atof function 466
atoi function 466
atol function 467
__attribute__ keyword 137
attribute specifiers 137
auto storage class 565
automatic variables 122

B
-B option

ddump 418
b, assembler binary constant suffix 294
backslash escape sequence, ‘\’ 295
backspace escape sequence, ’\b’ 294

 Index

663

Index

backward compatibility 214
.balign assembler directive 308
basic data types, table of 162
-Bd, -Bt options 359
__BIG_ENDIAN__ preprocessor predefined

macro 115
binary operators, table of 303
binary representation of data 145
binding (VxWorks shared libraries) 365
bit-fields

char type 164
definiton 164
enum type 164
implementation-defined behavior 565
int plain, sign of 217
int type 164
long long

not permitted in long long variables 135
type not allowed 164

long type 164
making signed with signed keyword 164
plain treating as

signed with -Xbit-fields-signed 59
unsigned with -Xbit-fields-unsigned 59

reducing size with -Xbit-fields-compress-... 58
short type 164

blanks in macro arguments, -Xmacro-arg-space-
off 283

.blkb assembler directive 308
bool

__bool preprocessor predefined macro 115
type. See type, bool

branch
complex optimization 196
predicting in feedback optimization 202
with tail recursion 190

break statement, configuration language 554
bsearch function 467
.bsect assembler directive 308
.bss assembler directive 308
.bss section. See sections
BSS section type 385
__BSS_START, __BSS_END symbols

initializing static variables to zero 254

using in clearing static uninitialized
variables 376

-Bsymbolic linker option 360
BTEXT section class. See section classes
BUFSIZ constant

defining required size of buf 517
defining, stdio.h function 457
with setvbuf 518

building, rebuilding, the libraries 450
.byte assembler directive 308
byte ordering 163
byte-swapping using #pragma pack 127

C
C

C++ compatibility
exception handling 351
functions 221

driver program, dcc 10
function calls, optimization of 63
standard, recommended reference 8
standards conformance 6
to C++ migration 221

.C file extension, C++ source 19
-C option 34

ddump 418
-c option

during separate compilation 113
stopping after assembly, producing object 35
-Xkeep-object-file 84

C++
argument passing 176
calling C functions 221
classes 165
code, #pragma inline vs. keyword, linkage 191
driver program, dplus 10
exception-handling

and C functions 351
stack-unwinding 351

features and compatibility 219
library 44

abridged 220
complete 220

Wind River Compiler for SPARC
User’s Guide, 5.4

664

nonstandard functions 221
standard

conformance to 6
recommended reference 8

standards conformance 6
-c, compiler option

stopping after assembly 19
C89 standard 69, 555
C99 standard 64, 69, 555
calling conventions 173
calloc function

definition 467
free function 480
implementation-defined behavior 569
realloc function 512

case
label, implementation-defined behavior 566
statement, configuration language 554

catch C++ keyword 72, 187
catch keyword

disabling exceptions 72
flagging as error 224
if user-defined identifier, may necessitate

modification of program 222
.cc file extension, C++ source 19
ceil function 467, 468
ceilf function 468
char type

See basic data types, table of
bit-fields 164
signed 163
unsigned 163

character
constants

escape sequences, table of 296
constructing internal representation 564
entering integral constants 293
escape sequences for 294
replacing macro arguments in 558
swap, -Xswap-cr-nl 107

I/O function 260
implementation-defined behavior 564
Newline 295
signed, -Xchar-signed 63
unsigned, -Xchar-unsigned 63

character constants, assembler 294
chario.c file 260
__CHAR_UNSIGNED__ preprocessor predefined

macro 116
_chgsign function 468
CIE (Common Information Entry) 68
class

auto storage 565
definition, type_info 225
instantiation, -Ximplicit-templates-off 80
library

abridged C++ 442
C++ iostream.a 441, 442
libcomplex.a

C++ complex math class library 13
directory location 444
supplied with tools 441

libstlstd.a
directory location 445

member
function 226
name qualifiers 171

name mangling 226
register storage 565
templates 223
virtual function table generation, key

functions 169
with destructors 72

class C++ keyword 222
classes

alignment 165
argument passing 176
C++ 165
derived

adding virtual base pointers 168
using the virtual function table

pointer 168
internal data representation 165
local 171
meanings

if inside a function but outside any
class 170

if outside any function and any class 170
if outside any function but inside a C++

class definition 171

 Index

665

Index

if within a local C++ class and inside a
function 171

return type 178
storage

as permitted by scope 171
different classes allowed 170

virtual base
C++ 166

virtual base, with constructors and
destructors 177

clearerr function 468
clock function

definition 468
implementation-defined behavior 569
use in clock.c 262

CLOCKS_PER_SEC constant
clock function 468
defining, time.h function 458

close function
definition 469
RAM-disk support, closing a file 261

code
generating options, controlling 248
location, #pragma section 131

CODE section class. See section classes
COFF

output 370
.coment section. See sections
.comm assembler directive

declaring COMMON sections with 348
definition 309
external symbols 291
indicating use of with string COMM 235
vs. .lcomm 317

COMM section. See sections
command-line length limit 32
command-line options

quoting strings 31
command-line options, writing 30
command-line order 357
commands

dar 407
das 274
dbcnt 413
ddump 417

comment delimiters in assembler 289
COMMENT section. See sections
.comment section. See sections
comments

configuration language, token 549
linker command file 380

common
symbols 292
tail optimization 194

Common Information Entry (CIE) 68
COMMON section. See sections
COMMON sections. See sections
communicating with the target hardware 263
compatibility

C++ 214
compatibility modes

ANSI 555
for C programs, table of for ANSI, Strict ANSI,

K&R, and PCC 556
K&R 555
PCC 555
Strict ANSI 555
table of features 555

compilation
conditional 118
disabling exception handling 72
four stages 112
if speed is crucial 183
older programs, -Xmemory-is-volatile 91
problems 213
separate 113
speed vs. optimization, trade-off 182
stopping, -Xstop-on-warning 105
without optimization corrects execution,

possible causes 216
-Xlint, warnings for suspicious constructs 209

compile function, definition 469
compile regular expression 469
compiler

backward compatibility 214
C++-to-assembly 19
code written for older UNIX 214
compatibility with

older compilers using setjmp /
longjmp 187

Wind River Compiler for SPARC
User’s Guide, 5.4

666

others 6
creating temporary objects not visible 229
C-to-assembly 19
emulating UNIX behavior 556
environment variables 15
flag keywords: try, catch and throw as

errors 224
invoking 29
options 33

-X options 48
producing optimized code 184
register use, table of 178
time

options 249
pragmas 249

compiler frontend 64
compiler limits 561
components of installation 9
concatenate underscore, -Xadd-underscore 56
conf directory, contains linker command files 259
configuration files

assignment statements 542
default.conf

changing⁄ overriding variables stored
in 25

definition 546
exit statement 552
standard version shipped with tools 544
using 11

default.conf, editing 26
dtools.conf

configuration variables 548
description 11
exit statement 552
simplified structure, table of 546
standard version shipped with tools 544

hierarchy of three 544
nesting 553
processing at startup 543
reading at startup 11
relation to command lines and environment

variables 542
site-dependent defaults 542
standard

name, location 544

shipped with tools 547
user.conf

dtools.conf configuration file, simplified
structure 546

providing own 545
variable evaluation, table of 551

configuration language
comments, token 549
how to write 545
options 549
purpose and effect 548
statements 549

break 554
case 554
else

if statement 552
syntax 549

endsw 554
error definiton 552
exit 552
if

defintion 552
syntax 549
with __ERROR__ function 145

include 545
with dtools 545

print 553
switch 553

string constants 550
variables

$$, expands to $ 551
$*, dtools.conf, simplified structure 546
$*, evalutating entire command 551
$, evaluatating value of a variable 550
$, introducing variables 549
DCONFIG

setting, -WC option 542
definiton⁄ explanation 550
DENVIRON

avoiding altering dtools -t option 545
default library search path controlled

by 545
dtools.conf 545
editing default.conf to change 26
overriding with environment variable

 Index

667

Index

of same name 15
setting, -t option 542
-t sets 25

DFLAGS
definition 547

DFP
avoiding altering dtools -t option 545
dtools.conf, simplified structure 546
editing default.conf to change 26
evaluating in configuration files 551
overriding with environment variable

of same name 15, 16
setting, -t option 542
-t sets 25

DOBJECT
avoiding altering dtools, -t

option 545
dtools.conf, simplified structure 546
editing default.conf to change

settings 26
overriding with environment variable

of same name 15
setting, -t option 542
-t sets 25

DTARGET
avoiding altering dtools, -t

option 545
editing default.conf to change 26
overriding with environment variable

of same name 15
setting, -t option 542
-t sets 25

simplified structure 546
UAFLAGS1

definition 548
dtools.conf, simplified structure 546

UAFLAGS2
definition 548
dtools.conf, simplified structure 546

UFLAGS1
definition 547
dtools.conf, simplified structure 546
overriding options set by 548

UFLAGS2
definition 547

dtools.conf, simplified structure 546
occuring after $*, in dtools.conf 548

ULFLAGS1
definiton 548
dtools.conf, simplified structure 546

ULFLAGS2
definition 548
dtools.conf, simplified structure 546

configuration language, assignment statements,
definition 551

configuration, target. See target configuration
__CONFIGURE_EMBEDDED 451
__CONFIGURE_EXCEPTIONS 451
conformance to C and C++ standards 6, 555
CONST

section class
-Xconst-in-text mask bits 243

const
data, -Xstrings-in-text in embedded

development 249
global, default linkage in C and C++ 222
keyword

and compatibility mode 556
help optimizer 185

variable
moving from "text" to "data" 243

CONST section class. See section classes
constants

%, assembler binary prefix 294
@, assembler octal prefix 294
⁄ , assembler hexadecimal prefix 294
0, assembler octal prefix 294
0x, assembler hexidecimal prefix 294
and variable propagation optimization 196
assembler character 294
assembler decimal 294
b, assembler binary suffix 294
binary representation of 145
BUFSIZ

defining required size of buf 517
defining, stdio.h function 457
setvbuf 518

character
escape sequences 294

CLOCKS_PER_SEC

Wind River Compiler for SPARC
User’s Guide, 5.4

668

clock function 468
CLOCKS_PER_SEC, defining, time.h

function 458
DOMAIN 501
EDOM

errno setting, acos function 463
errno setting, asin function 464
errno setting, atan2 function 465
errno setting, matherr function 501

ENTER 487
EOF

defining, studio.h function 457
fscanf function 482
scanf function 514
sscanf function 521
ungetc function 533

ERANGE
setting, exp function 474
setting, matherr function 501

EXIT_FAILURE
defining, stdlib.h function 458
providing, exit function 473

EXIT_SUCCESS
defining, stdlib.h function 458
providing, exit function, successful

termination 473
FIND

hsearch function 487
floating point

assembler support 293
format 295

HUGE_VAL 456, 474
defining, <math.h> header file 454

HUGE_VAL_F 457
integer 294
integral 293
_IOFBF 518
_IOLBF 518
_IONBF 518
LC_ALL 517
LC_COLLATE

setlocale function 517
strcoll function 522

LC_MONETARY 517
LC_NUMERIC 517

LC_TIME 517
locating vs. .data sections 243
locating with -Xonst-in-text, -Xconst-in-

data 66
MB_CUR_MAX 502
NULL

defining, stddef.h function 457
defining, stdio.h function 457
defining, stdlib.h function 458
defining, string.h function 458

o, assembler octal suffix 294
O_APPEND

defining, fcntl.h function 456
O_NDELAY

defining, fcntl.h function 456
O_RDONLY

defining, fcntl.h function 456
setting values, open function 506

O_RDWR
defining, fcntl.h function 456
values of, open function 506

OVERFLOW 501
O_WRONLY

defining , fcntl.h function 456
values, open function 506

PLOSS 501
q, assembler octal suffix 294
RAND_MAX 512
SEEK_CUR 498
SEEK_END 498
SEEK_SET 498
SING 501
supported by assembler 293
TLOSS 501
UNDERFLOW 501

constructor (__attribute__ keyword) 139
constructors

default priority 82
global C++ 81
mangling 227
missing calls to 229
operator 222
with avoiding setjmp, longjmp functions 229

control code generation options 248
copying initial values from "rom" to "ram" 253

 Index

669

Index

_copysign function 469
cos function 469
cosf function 470
cosh function 470
coshf function 470
__cplusplus preprocessor predefined macro

definition 116
using with #ifdef directives 221

.cpp file extension, C++ source 19
cpp preprocessor

defaults 19
with -W compiler option 44

creat function
<fcntl.h>, standard header file 454
definition 470
fdopen function 476
RAM-disk support, opening file 261

cross execution environment 23
cross reference table in link map 362
cross/libc.a library

ELF standard C libraries 12
location 444

cross-module optimization 64, 188
crt0.o startup module

default overridden, -W sfile compiler
option 356

source of standard version crt0.s 12
specify non-standard, -W s 43
start up code 12

crt0.s startup module
details 252
overview 250

crtlibso.c startup module
details 252
overview 250

ctime function 471
ctoa preprocessor 19
ctoa subprogram 11
ctordtor.c startup module

details 252
overview 250

ctype functions
isalnum 567
isalpha 567
iscntr 567

isdigit 567
isgraph 567
islower 567
isprint 567
ispunct 567
isspace 567
isupper 567
isxdigit 567
table of 567
test for characters 567

.cxx file extension, C++ source 19

D
-D linker option 360
-D option 275

ddump 419
+d option

ddump 422
-d option

ddump 419, 422
.d1line assembler directive, using to suppress, -

Xdebug-mode 68
dar

archiver 11
building archive libraries 354
commands

- p print 408
-d delete 408
examples 411
-m move 408
modifiers, table of 409
-q quick append 409
-qf quick update 409
-r replace 408, 409
-s symbol table update 409
syntax 407
-t table of contents 409
-V version 409
-x extract 409

das
assembler, locating executable 10
command 274

das preprocessor 19

Wind River Compiler for SPARC
User’s Guide, 5.4

670

data
basic types 161
binary representation of 145
char, size and alignment 162
constant

-Xstrings-in-text in embedded
development 249

double, size and alignment 162
enum, same as int 162
float, size and alignment 162
global

pure_function pragma 130
initialized

containing in particular section, with
istring 235

in .data section 297
int

size, alignment, and range 162
internal representation 161
locating

in constant vs. .data sections 243
initialized vs. uninitialized 239

long double, size and alignment 162
long long, size and alignment 162
long, size and alignment 162
pointers, size and alignment 162
ptr-to-member-fn, size and alignment 163
reference, size and alignment 162
short, size and alignment 162
signed char, size and alignment 162
static 130
storing in big-endian order 163
type size 164
types, table of C/C++ 161
uninitialized

.bss section 297, 308
containing in particular section, with

ustring 235
unsigned

char, size and alignment 162
int, size and alignment 162
long long, size and alignment 162
long, size and alignment 162
short, size and alignment 162

volatile 249

data
ptr-to-member, type, size and alignment 162

.data assembler directive 310
DATA section class. See section classes
.data section. See sections
database

cross-module optimization 189
__DATA_END, __DATA_RAM, __DATA_ROM

symbols, copy initial values from "rom" to
"ram" 253

__DATA_END, __DATA_RAM, __DATA_ROM
symbols, copy initial values from "rom" to
"ram", in bubble.dld 376

__DATE__ preprocessor predefined macro
precompiled headers 231

__DATE__ preprocessor predefined macro 116
dbcnt

command syntax 413
dbcnt.out file

default 415
environment variable. See environment

variables
examples 415
generating profiling information 11
options 414

-f profile file 414
read from 414

-h high line limit 414
-l low line limit 414
-n number every line 414
-t most frequent lines 414
-V version 414

required functions
__dbexit 416
__dbini 416

dbcnt.out
using if DBCNT is not set 414
with -Xfeedback compiler option 74

__dbexit function, required for dbcnt 416
__dbini function, required for dbcnt 416
dc.b assembler directive 309
__DCC__ preprocessor predefined macro 116
DCC reference 460
dcc. See driver program, dcc
dc.l assembler directive 309

 Index

671

Index

DCONFIG environment variable. See environment
variables

__DCPLUSPLUS__ preprocessor predefined
macro 116

dctrl program
displaying -t options 41
locating executable 11
setting default target 22

alternatives 26
setting default target configuration

variables 15
dc.w assembler directive 310
DCXXOLD 215
ddump

commands
+t symbol table, dump with upper

limit 421
+z line number information, dump with

upper limit 422
-a archive header, dump 418
-B binary format, converting to 418
-C difference file, generate 418
-c string table, dump 419
commands, table of 418
-D DWARF debugging information,

dump 419
examples 423
-F demangle names 419
-f file header, dump 419
-g global symbols, dump 419
-H hex and ASCII, dump 419
-h section headers, dump 419
-l line number information, dump 419
-m write Motorola S-records of a given

type 420
modifiers, table of 422
-N symbol table, dump 419
-o optional header, dump 420
-p write a plain ASCII file in

hexadecimal 420
-R converting to Motorola S-Records 420
-r relocation information, dump 421
-s section contents, dump 421
-S size of sections, display 421
syntax 417

-t symbol table, dump 421
-u write a binary file 420
-v do not output the .bss or .sbss

section 420
-V version 421
-w set the line width of S-records 421
-z line number information, dump 421

converter utility 269
object file converter and dumper 11

ddump -F
demangling utility 228

debugging
Common Information Entry 68
-D option 419
DWARF 67, 275, 279, 419, 579
-g option 37, 275
generating debug information for unreferenced

types 69
local variables, unused 68
selecting levels, DFLAGS 547

declarations
force, -Xforce 76
in header files 219

declarators, implementation-defined behavior 566
declared symbol, definition of 290
default

acc-mode, values for section classes 237
addr-mode

values for section classes 237
istring / ustring values for section classes 237
tab size, -Xtab-size 285

default.conf
default configuration information stored by

dctrl program 15
DENVIRON configuration variable set in 545

default.conf configuration file
changing⁄ overriding variables stored in 25
definition 546
exit statement 552
standard version shipped with tools 544
using 11

default.dld linker command file 259
component in conf subdirectory 11
default overridden, -W m compiler option 356
example use of 356

Wind River Compiler for SPARC
User’s Guide, 5.4

672

__HEAP_START, __HEAP_END defined in
default.dld 255

overriding -Bd and -Bt options 360
present in conf directory 373
serving as model 373
-W m option 43

default.lnk. See default.dld
#define preprocessor directive 35
defined

symbol, definition of 290
variables, types, and constants 455–458

delete
array operators 224
C++ keyword 222
operator 177

demangling utility, ddump -F 228
DENVIRON environment variable. See environment

variables
deprecated (__attribute__ keyword) 140
derived class

adding virtual base pointers 168
using the virtual function table pointer 168

destructor (__attribute__ keyword) 140
destructors

default priority 82
increasing efficiency with -Xexceptions-off 72
mangling 227
missing calls to 229
operator 222
used prior to program termination 222

DFLAGS environment variable. See environment
variables

DFP environment variable. See configuration
language: variables

__diab_alloc_mutex 265
DIABLIB environment variable. See environment

variables
__diab_lib_error function

defining in src/lib_err.c 258
handling errors from library function 258

__diab_lock_mutex 265
_DIAB_TOOL preprocessor predefined macro 116
__diab_unlock_mutex 265
difftime function 471
direct

assignment statements
definition and syntax 291

function for embedding machine code 159
directives

See preprocessor directives
#ident in .comment 579
#pragma, use with asm macro 152

directories
conf, contains linker command files 259
src, source files 259
structure 9

disabling optimization, -g, (-Xoptimized-debug-
off) 95

disassembler, windiss 427
div

part of stdlib.h header file 458
div function

definition 471
div_t type 458, 471
.dld file extension, linker 19
dld linker, locating executable 10
dld preprocessor 19
dmake

“make” utility 11, 425
executable, installation 425
requires startup directory 426
using 426

DMALLOC_CHECK environment variable. See
environment variables

DMALLOC_INIT environment variable. See
environment variables

DOBJECT environment variable. See environment
variables

DOMAIN constant 501
.double float-constant, . . . assembler directive

definition 310
dplus

See driver program, dplus
template instantiation 223

drand48 function
definiton 471
lcong48 function 494
srand48 function 520

driver program
dcc for C, locating executable 10

 Index

673

Index

dplus for C++, locating executable 10
invoking 29
main program flow 17
renaming to access different version 14
table of subprograms and stopping options 19
verbose mode, -v 42
-W control meaning of source file extension 46

ds.b assembler directive 310
.dsect assembler directive 310
DTARGET environment variable. See environment

variables
dtoa preprocessor 589
dtoa subprogram 11
dtools.conf configuration file

$DENVIRON.conf 545
configuration variables 548
description 11
exit statement 552
simplified structure, table of 546
standard version shipped with tools 544

dumper ddump 11
dup function

definition 472
fdopen function 476

DWARF, debug information 67, 275, 279, 419, 579
Common Information Entry 68

dynamic
casts 225
stack space allocation, alloca 144

__DYNAMIC_ symbol created by linker 347
dynamic_cast expression 225

E
-E compiler option

vs. -P compiler option 41
-E complier option

write source to standard output 35
-e linker option

default entry point address 360
-e option 36

and -Xmismatch-warning 37, 92
ecvt function 472
_edata and edata symbols created by linker 346

EDG (Edison Design Group) 64
Edison Design Group 64
EDOM constant

errno setting, acos function 463
errno setting, asin function 464
errno setting, atan2 function 465
errno setting, matherr function 501

.eject assembler directive 310
ELF

files
header fields, table of 575
relocation entry fields, table of 580
section header fields, table of 577
structure, typical 574
symbol fields, table of 581

format 367
header structure 574
object files

convert ing to Motorola S-Records, ddump
command -R 420

object module format 22
absolute sections 299
libraries 12
.org assembler directive, using with 319
section alignment 298

overall structure 573
program header

fields, table of 576
structure 576

relocation
entry structure 580
selecting information format 367

section header structure 577
symbol table section structure 581
typical sections, table of 579

#elif preprocessor directive 119
.else assembler directive 310, 314
else statement, configuration language

if statement 552
syntax 549

.elsec assembler directive 311
definition 311
equivalent to .else, .endif, .endc 314

.elseif assembler directive
definition 311

Wind River Compiler for SPARC
User’s Guide, 5.4

674

equivalent to .else, .endif, .endc 314
embedded

assembly code 149, 150
See also asm string statement
See also assembler macros
methods, table of 150

environment 563
compile time options 248
features facilitating access to the

hardware 263
functions, table of 259
hardware exception handling 257
linker command file 258
miscellaneous functions 262
operating system calls 259
profiling 268
raise function 257
setup program 266
src directory, source files 259
startup and termination 250
using in 247
volatile keyword 265

encoding modifiers, table of type 228
_end and end symbols created by linker 346
.end assembler directive 311
.endc assembler directive 311

definition 311
equivalent to .else, .elsec, .endif 314

.endif assembler directive
definition 311
equivalent to .else, .elsec, .endc 314

#endif preprocessor directive 558
.endm assembler directive 311
.endof.section-name symbol created by linker 346
endsw statement, configuration language 554
ENTER constant 487
.entry assembler directive 311
entry point symbols 292
enum

equivalent to int 71
size of in C, C++ 222
type bit-field 164

enumeration
implementation-defined behavior 565
size of, See -Xenum-is-. . .

environment
embedded 563
implementation-defined behavior 566
variables

See configuration variables
variables. See environment variables

environment variable MAKESTARTUP,
defining 426

environment variables
compiler 15
configuration language 548
dbcnt

naming the profile data file 415
DCONFIG

changing location of main file 545
overriding 543
recognized by compiler, description 15

DCXXOLD 16, 215
DENVIRON

recognized by compiler, description 16
DFLAGS

dtools.conf, simplified structure 546
evaluating in configuration files 551
recognized by compiler, definition 16
using when difficult to change scripts,

makefiles, add an option 183
DFP. See configuration language: variables
DIABLIB

recognized by compiler, definition 16
DIABTMPDIR 16
DMALLOC_CHECK

malloc function 499
DMALLOC_INIT

malloc function 499
DOBJECT

overriding, -WDDOBJECT 277
recognized by compiler, description 15
-WDDOBJECT, assembler option 277

DTARGET
overriding, -WDDTARGET 277
overriding, -WDDTARGET assembler

option 277
recognized by compiler, description 15

pointers to 567

 Index

675

Index

relationship to command lines, configuration
files 542

specify with setup program 254
TMPDIR 410

EOF constant
defining, studio.h function 457
fscanf function 482
scanf function 514
sscanf function 521
ungetc function 533

.equ assembler directive 312
defining a symbol 290
definition 312

ERANGE
constant

setting, expfunction 474
ERANGE constant

setting, matherr function 501
value of errno 568

erf function 472
erfc function 473
erfcf function 473
erff function 472
errno variable 454, 456, 461, 463, 464, 465, 474, 477,

482, 501, 506, 568
See also multi-tasking

support
__errno_fn 461
library functions set on error 257
preserving 461

__errno_fn function 461
error

caught by library function 257
compilation

caused by using try, catch or throw
keyword 72

generating time with __ERROR__
function 145

-Xstop-on-warning 105
compiler flags keywords try, catch and throw as

errors 224
fatal 146
generated if

address of variable, function, string used
by static initializer, -Xstatic-addr-

error 104
double precision operation used, -Xdouble-

error 71
no environment variable or file found, -

@name 48, 278
generated with

#error string 146
exception handling 224

generating
illegal structure references 558
missing parameter name after # in macro

declaration 558
generating if

no environment variable or file found, -
@name 406

parameters redeclared in outer level of
function 559

pointers and integers mismatched 557
prototypes and arguments do not

match 557
output, standard 38
preprocessor, treatment of 558
standard

output, assert function 567
redirect to file, -@E 48
redirecting to file, -@E 278, 358, 406

treat warnings as, -Xlint 209
undervalue 568

.error assembler directive 312
___ERROR__ function, produces compile-time error

or warning 145
error messages 587
error pragma 121
#error preprocessor directive 119
error statement

configuration language, definition 552
_etext and etext symbols created by linker 346
etoa preprocessor 19
__ETOA__ preprocessor predefined macro 116
etoa subprogram 11
__ETOA_IMPLICIT_USING_STD preprocessor

predefined macro 116
__ETOA_NAMESPACES preprocessor predefined

macro 116
.even assembler directive 312

Wind River Compiler for SPARC
User’s Guide, 5.4

676

exception handling 224, 257
and C functions 351
stack unwinding 351

exceptions
disable with -Xexceptions-off in C++ 72
enable with -Xexceptions in C++ 72
-Xjmpbuf-size in C++ 84

__EXCEPTIONS__ preprocessor predefined
macro 116

execution environment
cross 23
rtp 64
simple 23

execution problems 216
exit

function 458, 462, 466, 473
implementation-defined behavior 569

statement, configuration language 552
_exit function 473

in _exit.c termination module 262
_exit.c

profile in an embedded environment 268
termination module, overview 250

exit.c and _exit.c termination module
details 254
overview 250

EXIT_FAILURE constant
defining,h stdlib.h function 458
providing, exit function 473

.exitm assembler directive 312
EXIT_SUCCESS constant

defining, stdlib.h function 458
providing, exit function, successful

termination 473
exp function 474
expf function 474
.export assembler directive 291, 292, 313

declaring ordinary external symbols 291
export keyword 224
expressions

absolute 301
evaluation precedence 303
float 77, 557
linker command file 378
precedence change with parentheses 301

relocatable 301
terms 301
typeid 225
typeinfo& 225

extend
instruction 200
optimization 200

extended keyword, synonym for long double 84,
133

.extern
references, making available to linker using

.global assembler directive 313
extern

“C” use to avoid name mangling 221, 226
keyword 348
variable 171

.extern assembler directive 312
external symbols

common 291
examples 291
global undefined, if not defined in same

file 292
ordinary 291

.externassembler directive 312

F
-F option

ddump 419
-f option 360

ddump 419
fabs function 474
fabsf function 474
far-absolute addressing mode 243
fclose function 475
fcntl function 456, 475

definition under <fcntl.h> header file 454
RAM-disk support, getting information about a

file 261
fcvt function 475
fdopen function 475
feedback optimization 201
feof function

definiton 476

 Index

677

Index

ferror function 476
__ff0 intrinsic function 143
__ff0ll intrinsic function 143
__ff1 intrinsic function 143
__ff1ll intrinsic function 143
fflush function 476
fgetc function 476
fgetpos function 477
fgets function 477
.file assembler directive 313
file extensions

.a, archive library 19

.C, C++ source 19

.cc, C++ source 19

.cpp, C++ source 19

.cxx, C++ source 19

.dld, linker 19

.i, proprocessed source 19

.o, object module 19

.o, preprocessed source 19

.s, assembly source 19
__FILE__ preprocessor predefined macro 116, 465
FILE structure 479, 481, 530
fileno function 477
files

absolute vs. relative pathnames,
implementation-defined
behavior 566

a.out, during compile and link 112
header 38, 453

search order 566
initialize in setup.c in embedded

environment 266
input 274
stderr 481, 513

declaring, stdio.h function 457
stdin 486, 514

declaring, stdio.h function 457
stdout 367, 507, 510, 511

declaring, stdio.h function 457
temporary, DIABTMPDIR 16
types 479

.o 19, 84

.s 84, 150
.fill assembler directive 313

finalalization
.dtors section, -Xinit-section 81
.fini section, -Xinit-section 81

finalization 81
default priority 82

FIND constant, hsearch function 487
.fini section

in crt0.s 253
_finite function 477
.float assembler directive 313
float expressions 77, 557
floating point

- Xfp-min-prec-long-double 78
arguments 77
conformance to IEEE754 standard 74
constants 293
hardware

libraries 14
IEEE, .float assembler directive 313
implementation defined behavior 565
libcfp.a

hardware library 444
stubs library 13, 444

method selection 41
register

not saved by interrupt function 124
selecting type of support, -t option 22
software

libraries 13
specifying with environment variable DFP 16
supporting 21
types

alignments 161
ranges 161
sizes 161

-Xextend-args 73
-Xfp-float-only 77
-Xfp-long-double-off 77
-Xfp-min-prec-float 77
-Xfp-min-prec-long-double 77
-Xieee754-pedantic 79
-Xuse-double

See -Xfp-min-prec-double 77
See -Xfp-min-prec-long-double 78

-Xuse-float

Wind River Compiler for SPARC
User’s Guide, 5.4

678

See -Xfp-min-prec-float 77
floor function 478
floorf function 478
fmod function 478
fmodf function 478
fopen function 267, 479
for statement, scope of initialization part 76
form feed escape sequence, ’\f’ 295
fpos_t type, defining, stdio.h function 457
fprintf function 479, 534

implementation-defined behavior 568
fputc function 480
fputs function 480
.frame_info section

description 351
sorting 370
unused 369

fread function 480
free function 480, 499

thread-safe 265
freopen function 481
frexp function 481
frexpf function 481, 505
friend C++ keyword 222
frontend, compiler 64
fscanf function 482, 534

implementation-defined behavior 568
fseek function 482, 513
fsetpos function 482
fstat function 483
ftel function 483

implementation-defined behavior 568
__FUNCTION__ predefined identifier 116
function-level optimization 4
function-like macros 35
functions

See individual functions
locating specific address 263
modifying errno marked by REERR 461
name encoding with the types of all

arguments 176
no return promised, #pragma no_return 186
no side effects promised, #pragma

no_side_effects 126
#pragma interrupt 124

pure promised, #pragma pure_function 130
standards and definitions, table of 460
templates 223

fwrite function, definition 483

G
-g option 37, 275

ddump 419, 420
line number information ELF 581

gamma function 483, 484
gap in memory, fill value 307
gap in section

creating 390
filling 388

GCC options. See GNU compiler options
gcvt function 484
getc function 477, 484, 533
getchar function 485
getenv function 267, 485

defining target environment variables for 266
implementation-defined behavior 567

getopt function 485
getpid function 262, 485
gets function 486
getw function 486
global

common subexpression elimination
optimization 197

construction and destruction of objects 222
constructors C++ 81
data

#pragma pure_function 130
function

indicator ‘F’ in mangled names 226
optimization 5

no_side_effects pragma promises no
modification of variable 126

optimization 6
register assignments 122
variables

absolute sections 241, 264
allocating to register 122
constructors 222

 Index

679

Index

destructors 222
modifying with asm macro 152
optimizing in conditionals 62
vs. local 184

.global assembler directive 291, 292, 313
declaring ordinary external symbols 291

__GLOBAL_OFFSET_TABLE_ symbol created by
linker 347

global_register pragma
preserve across function calls 122
variable used to control allocation 122

.globl assembler directive 291, 292, 313
declaring ordinary external symbols 291

gmtime function 486
GNU compatibility

GNU local symbols 293
enabling, -Xgnu-locals-on 280

nm 420
phony targets 89
semicolon as statement separator 284

GNU compiler options
translating 218
-Xgcc-options-... 78

GNU extended syntax
assigning variables to registsers 145
inline assembler 150

GNU local symbols
disabling, -Xgnu-locals-off 280

GROUP definition 389

H
@h unary operator 302
-H option 38, 275, 280

ddump 419
-h option

ddump 418, 420
h option

ddump 419
-h, --help command-line options 34
__hardfp preprocessor predefined macro 116
hardware exception handling in an embedded

environment 257
_HAS_TRADITIONAL_IOSTREAMS preprocessor

macro 221
_HAS_TRADITIONAL_STL preprocessor

macro 221
hcreate function 487
hdestroy function 487
hdrstop pragma 122, 230, 231
header

field %T title, -Xtitle option 285
files 38, 453

C++ 219
declarations in 219
missing standard 214
precompiled 229
search order 566
specify search path ,-I option 38
standard, table of 453
treat #include as #import 80
typeinfo.h C++ 225

string
default format, -Xheader-format 281
format specifications, -Xheader-

format 281
HEADERSZ pseudo function, definition 379
heap, sbrk function manages 255
__HEAP_START, __HEAP_END define heap for

sbrk function 255
in bubble.c 376

%hi unary operator 302
hole in memory, fill value 307
hole in section

See gap in section
horizontal tab escape sequence, ’\t’ 294
host_dir subdirectory 10

name under version_path 9
hsearch function 487
HUGE_VAL constant 456, 474

defining, <math.h> header file 454
HUGE_VAL_F constant 457
hypot function 487
hypotf function 488

I
.i file extensions, preprocessed source 19

Wind River Compiler for SPARC
User’s Guide, 5.4

680

-I option 38, 47, 276, 566
-i option 39, 122

-i file1=file2 change name of header file 39, 214
-I@ option 39
I⁄ O functions, table of 261
#ident

directives in C in .comment 579
preprocessor directive 120, 123
strings 79

.ident assembler directive 314
ident pragma 123
identifiers

See symbols
implementation defined behavior 564
maximum length, -Xtruncate 109
underscores added to, -Xunderscore-... 109
user-defined 222
-Xtruncate 109

IEEE floating point
conformance to IEEE754 standard 74
.double assembler directive 310
.float assembler directive 313

.if assembler directive 311, 314
#if preprocessor directive 119

implementation-defined behavior 566
if statement

configuration language
definition 552
syntax 549
with __ERROR__ function 145

.ifc assembler directive 315

.ifdef assembler directive 315
#ifdef preprocessor directives 120, 221
if-else clause optimization 201
.ifendian assembler directive 314
.ifeq assembler directive 315
.ifge assembler directive 315
.ifgt assembler directive 315
.ifle assembler directive 315
.iflt assembler directive 315
.ifnc assembler directive 316
.ifndef assembler directive 316
.ifne assembler directive 316
implementation

specific behavior in code 217

implementation-defined behavior 563–569
abort function 567, 569
absolute vs. relative pathnames 566
arrays 565
bit-fields 565
characters 564
declarators 566
enumerations 565
environment 566

main function C++ 566
floating point 565
fprintf 568
fscanf 568
ftell 568
getenv function 567
identifiers 564
#if preprocessor directive 566
implementation of library functions 567–569
integers 564
library functions

%p conversion 568
%X conversion 568
%x conversion 568
assert 567
calloc 569
clock 569
denoting range of characters 568
exit 569
malloc 569
NULL macro 567
perror message 568
realloc 569
remove 568
rename 568
setenv 569
strerror message 568
system 569

pointers 565
preprocessor directives 566
qualifiers 565
registers 565

struct members 565
union members 565

statements, case labels 566
structures 565

 Index

681

Index

switch statements 566
unions 565

.import assembler directive 316
#import preprocessor directive 120
.incbin assembler directive 316
__inchar function 260
include

subdirectory, standard header files 12
.include assembler directive 316
#include preprocessor directive 39

See also #import preprocessor directive
treat as #import directive 80

include statements, configuration language 545
definition 553
dtools 545

including source in assembly code 95
INF floating point constant 295
info pragma 123
#info preprocessor directive 120
#inform preprocessor directive 120
#informing preprocessor directive 120
.init section

in crt0.s 253
init.c startup module

overview 250
init.c startup module, details 253
initialization

constructors 81
.ctors section, -Xinit-section 81
default priority 82
.init section, -Xinit-section 81
local variables, -Xinit-locals 81
run-time 256

initialized data
containing in particular section, with

istring 235
in .data section 297

__init_main function 252, 253, 262
inline

C++ keyword 222
optimization 186

keyword 84, 133, 191
pragma 123, 186, 191

inline assembly. See asm string statement and
assembler macros

__inline__ keyword 133
inlining 182

changing options to increase 183
cross-module optimization 188
optimization 191, 199, 202

activating with the -XO option 181
-Xexplicit-inline-factor controls expansion 73
-Xparse-size 95
-Xsize-opt option 103

input file 274
input/output

basic character input/output
environ part of -t option, simple 23
library, part of simple/libc.a 444

RAM-disk
environ part of -t option, cross 23
library, part of cross/libc.a 444

installation
components 9
default pathnames, table of 10

install_path directory 9
instantiation

class, -Ximplicit-templates-off 80
explicit 367
of templates, -Ximplicit-templates-off 80

Instruction Set Simulator - see windiss 427
instructions

extend 200
mnemonics 571

int bit-fields 164
plain, sign of 217

integers
constants 294
implementation defined behavior 564
long 564
mismatched 557
mixing different types in an expression 557
types

alignments 161
magic, preceding virtual base classes 168
ranges 161
sizes 161

integral constants 293
intermodule optimization. See cross-module

optimization

Wind River Compiler for SPARC
User’s Guide, 5.4

682

internal data representation 161
classes 165
for aggregates 165
for non-aggregates 165

interprocedural optimizations 95, 182, 183, 199, 562
interrupt

keyword 84, 134
pragma 124, 134

interrupt functions 241
locating at absolute addresses 264
#pragma interrupt 124

__interrupt__ keyword 134
intrinsics

__alloca() function 143
alloca() function 143
__ff0() function 143
__ff0ll() function 143
__ff1() function 143
__ff1ll() function 143
__swapb() function 144

invisible objects in optimized code 229
invoke

a macro 333
the compiler 29

_IOFBF constant 518
_IOLBF constant 518
_IONBF constant 518
iostream C++ class library 13, 444
iostream.a C++ class library 441, 442
irand48 function 488
isalnum ctype function 567
isalnum function 488
isalpha ctype function 567
isalpha function 488
isascii function 489
isatty function 489

RAM-disk support 261
iscntr ctype function 567
iscntrl function 489
isdigit ctype function 567
isdigit function 489
isgraph ctype function 567
isgraph function 489
islowe function 490
islower ctype function 567

_isnan function 490
isprint ctype function 567
isprint function 490
ispunct ctype function 567
ispunct function 490
isspace ctype function 567
isspace function 490
isupper ctype function 567
isupper function 491
isxdigi function 491
isxdigit ctype function 567

J
j0 function 491
j0f function 491
j1 function 492
j1f function 492
jmpbuf type 457
jn function 492
jnf function 492
jrand48 function 493

K
K&R mode 60, 69, 556, 558
kernel mode. See VxWorks
key function for a virtual function table 169
keywords

asm 149, 556
using to embed assembly code 263

catch
disabling exceptions 72
flagging as error 224
if user-defined identifier, may necessitate

modification of program 222
catch C++ 72, 187, 222
const

compatibility mode 556
help optimizer 185

delete C++ 222
extended as synonym for long double 84, 133

 Index

683

Index

extern 348
friend C++ 222
inline 84, 191

C++ 222
optimization, C++ 186

interrupt 84, 134
namespace C++ 93
new C++ 222
operator 222
__packed__ 135

specify structure padding 135
specifying structure padding 127

packed 84, 135, 163
pascal 84, 136
private 171, 222
protected 171, 222
public 171, 222
recognize new 84
register 88

has priority 171
using to declare variables 187

signed
and compatibility mode 556
in basic data types 161
using to make bit-fields signed 164

static 185, 348
template C++ 222
this C++ 222
throw C++ 72, 187, 222, 224
try C++ 72, 187, 222, 224
try, disabling exceptions 72
__typeof__ 136
unsigned, in basic data types 161
using C++ 93
virtual C++ 222
void 222
volatile 91, 185, 216

compatibility mode 556
in an embedded environment 265
use for variables 248

kill function 262, 493
krand48 function 493

L
@l unary assembler operator 302
-l linker option

specify library or process file 40
-L option 40, 276, 283, 310

.eject assembler directive 310

.list assembler directive to turn on listing
lines 317

search path for -l 361
-l option 276, 283, 361

ddump 419
.eject assembler directive 310
example 355
.listassembler directive to turn on listing

lines 317
specifying file extension 283
use with -Y L 364
use with -Y P 364
use with -Y U 364

-l optionl 365
-l:crt0.o startup module

specifyng with -YP option 355
l3tol function 493, 499
l64a function 494
labels 288

See also local symbols
"start", in crt0.s 252
colon optional 289
for branch instructions, generating 292
unique, generating in macros 332

labs absolute value function 494
LC_ALL constant 517
LC_COLLATE constant

setlocale function 517
strcoll function 522

LC_MONETARY constant 517
.lcnt assembler directive 317
LC_NUMERIC constant 517
.lcomm assembler directive 309, 317

indicating use of with string COMM 235
lcong4 function 488
lcong48 function 471, 494, 498, 505
LC_TIME constant 517
__LDBL__ preprocessor predefined macro 116

Wind River Compiler for SPARC
User’s Guide, 5.4

684

ldexp function 494
ldexpf function 494
ldiv function 458, 495
ldiv_t type 458
leaf functions do not use stack space 175
_lessgreater function 495
lfind function 495
libc.a

library 345
standard C library master file 12, 443

libc.a library
-ttof-:cross option 261

libcfp.a floating point library 13, 440, 444
libchar.a basic character I/O library 12, 23, 24, 259,

440, 444
libcomplex.a

C++ complex math class library 13
directory location 444
supplied with tools 441

libd.a C++ additional standard library 13, 441, 444
libdk*.a thread sub-library 13, 442, 444
libdold.a C++ additional standard library 441
libg.a debugger library 13

removing dependency 68
libi.a standard C library 13, 441, 444
libimpfp.a compiler support library 13, 441, 444
libimpl.a compiler support library 13, 441, 444
libios.a math library 13, 444
libm.a math library 13, 442, 444
libpthread.a thread library 13, 442, 444
libram.a RAM disk I/O library 12, 23, 24, 259, 442,

444
libraries

abridged C++ 220, 442
ANSI C, functions disregarded, -Xclib-optim-

off 63
basic character input output, part of libc.a 444
C++

iostream class 442
nonstandard 221
selecting 220

ELF root directory 12
exception handling 257
floating point

hardware 14

libcfp.a 444
software 13
stubs, libcfp.a 13, 444

function, raise 257
iostream C++ class 13, 444
iostream.a, C++ iostream class 441
-L option specifying path for -l 361
libc.a 12, 345

standard C library master file 12, 443
libcfp.a, floating point 13, 440, 444
libchar.a, basic character I/O 12, 23, 24, 259,

440, 444
libcomplex.a

directory location 444
supplied with tools 441

libcomplex.a, C++ complex math class 13
libd.a, additional standard C++ 13, 441, 444
libdk*.a, thread sub-libraries 13, 442, 444
libdold.a, additional standard C++ 441
libg.a, debugger 13

removing dependency 68
libi.a standard C 13, 441, 444
libimpfp.a, compiler support 13, 441, 444
libimpl.a, compiler support 13, 441, 444
libios.a, math 13, 444
libm.a, math 13, 442, 444
libpthread.a, thread 13, 442, 444
libram.a, RAM disk I/O 12, 23, 24, 259, 442,

444
libstl.a 13, 442
libstlabr.a 442

rebuilding 451
libstlstd.a 13, 442

rebuilding 451
libstlstd.a, math

directory location 445
libwindiss.a support for instruction-set

simulator 13
libwindiss.a supporting instruction set

simulator 444
missing symbols 44
object (archives) 10, 11
RAM-disk input output, part of libc.a 444
rebuilding 450
search paths 25

 Index

685

Index

selecting with environ part of -t option 23
shared

.a and .so files 371
-Bsymbolic option 360
-rpath option 363
-soname option 363
-Xbind-lazy option 365
-Xdynamic option 366
-Xexclude-libs option 367
-Xexclude-symbols option 367
-Xshared option 370
-Xstatic option 371

windiss/libwindiss.a with RAM disk I/O 442
libstl.a library 13, 442
libstlabr.a library 442

rebuilding 451
libstlstd.a

directory location 445
libstlstd.a library 13, 442

rebuilding 451
libstlstd.a math library 445
libwindiss.a library support for instruction-set

simulator 13
libwindiss.a library supporting instruction set

simulator 444
license, waiting for 85
#line directive 231
line feed (newline) escape sequence, ’\n 295
__LINE__ preprocessor predefined macro 116, 465
.line section 581
link

function
definition 495
RAM-disk support, causing two filenames

to point to same file 262
linkage and storage allocation 170–171
linker

See also default.dld linker command file
command file

assignment
definition 389
in section-definition 384

comments 380
default set, -Wm option 43
default.dld, example use of 356

definiton 258
example 375
expressions 378
GROUP definition 389
__HEAP_START, __HEAP_END defined

in 255
identifiers, as symbols 377
MEMORY 379, 380
numbers 377
order of sections 384
section-definition 381

address specification 386
ALIGN specification 386
area specification 388
fill specification 388
LOAD specification 386
OVERFLOW specification 387
section-contents 382
STORE statement 388
type specification 385

SECTIONS 379, 381
GROUP used within 381

STORE statement, in section-
definition 384

structure 379
symbols 377

dld, locating executable 10
error messages 644
example 112
options 357
resolving .comm symbols 292

lint facility, -Xlint 86, 209, 547
__lint preprocessor predefined macro 117, 455
.list assembler directive 317
list file

line length
.llen assembler directive 317
.psize assembler directive 320
-Xllen 283

page break margin, -Xpage-skip 284
page length

.lcnt assembler directive 317

.psize assembler directive 320
-Xplen 284

preventing generation, -Xlist-off 283

Wind River Compiler for SPARC
User’s Guide, 5.4

686

__LITTLE_ENDIAN__ preprocessor predefined
macro 116

little-endian, #pragma pack 127
.llen assembler directive 317
.llong assembler directive 318
-lm option 461
.lnk preprocessor 19
%lo unary operator 302
LOAD directive 393
local

optimization 5
symbols 292

generic style 293
GNU style 293

disabling, -Xgnu-locals-off 280
enabling, -Xgnu-locals-on 280

variable 192
local data area 244

and #pragma weak 132
localeconv function 496, 517
localtime function 496
location

alter with Ž = 298
code and variables, #pragma section 131
configuration files, change standard 544
counter 298

alignment, specifying, -Xdefault-align
option 312

header files, version_path/include 453
log function 496
log10 function 497
log10f function 497
_logb function 496
logf function 497
long

integers 564
type bit-fields 164

.long assembler directive 318
long float 556
long long

C dialects 556
constant, specify with LL or ULL suffix 135
parameters in asm macros 153

long long values
returned in r10/r11 178

longjmp function 457, 497, 517
avoiding for safety 229
avoiding to improve optimization 187
definition under <setjmp.h> header file 454
with -Xjumpbuf-size 84

loops
count-down optimization 197
invariant code motion optimization 201
maximum

nodes for loop unrolling 110
size defined 197

statics optimization 200
strength reduction optimization 196
testing, -Xtest-at-bottom, -Xtest-at-top and -

Xtest-at both 108
unrolling

optimization 182, 183, 197, 202
-Xsize-opt 103
-Xunroll-size 182

lpragma.h 36, 41
lpragma.h file 63
lrand4 function 520
lrand48 function 494, 498
lsearch function 495, 498
lseek function 498, 529

RAM-disk support, positioning file
pointer 262

ltol3 function 499

M
-M option 40
-m option 361

ddump 420
-m2 option 361
-m4 option 361
machine instruction statements, operand field

format 289
.macro assembler directive 318
macros 329

See also preprocessor predefined macros
\@ special parameter 332
\0 special parameter 331
assembler 149, 329

 Index

687

Index

assert, <assert.h>, standard header files 453
assert, assert function 465
command-line -D option) 35
concatenating parameters 331
defining 330
dumping symbol information 66
function-like 35
in pragmas 88
invoking 333
labels, generating unique 332
NARG symbol 332
object-like 35
parameters

names, separating from text 331
referencing by name 330
referencing by number 331

va_arg 457
va_end 457
vararg 147
va_start 457, 534, 535

magic integer, preceding virtual base classes 166,
168

main function 253
define arguments for in embedded

environment 266
in setup.c in embedded environment 266
.init code executing before 579
n setup.c in embedded environment 266
three ways to define 566

MAKESTARTUP environment variable,
defining 426

mallinfo function 499
malloc function 480, 499, 512

call with sbrk 255
checking free list 255
__diab_lib_err called by 258
implementation-defined behavior 569
initializing allocated space 255
old definition with <cmalloc.h> header file, use

dlib.h> instead 454
thread-safe 265

__malloc_set_block_size function 500
mallopt function 500
mangling

See name mangling

static data members 226
MATH functions require math library 461
matherr function 500
matherrf function 501
MB_CUR_MAX constant 502
mblen function 501
mbstowcs function 502
mbtowc function 502
mem declaration under <string.h> header file 455
members

alignment 165
functions 177

class name encoded in name 176
constructors 177
destructors 177
pointers to 177

static 171
struct 164

memccpy function 502
memchr function 502
memcmp function 503
memcpy function 503
memfile.c, create with setup program 266
memmove function 503
memory

hole, fill value 307
MEMORY command 379, 380
memset function 503
messages 587
.mexit assembler directive 318
minor transformations optimization 198
__mips16__ preprocessor predefined macro 117
mix C and assembler functions 263
mktemp function 504
mktime function 504
mnemonics

instruction 571
type specify with DOBJECT 16

modf function 504
modff function 504
Motorola

S-Record, ddump commands -R 420
mrand48 function 494, 505, 520
multi-tasking support 265

errno variable, not re-entrant 265

Wind River Compiler for SPARC
User’s Guide, 5.4

688

malloc and free must be thread-safe 265

N
N noload access mode 238
-N option 362

ddump 419
place .data immediately after .text 359

-n option
ddump 422

n$ local symbols 293
.name assembler directive 318
name mangling 221, 225

avoid in function names 263
demangle names with ddump -F 228
for cross-module optimization 190
table of type encodings for C++ 227

namespace C++ keyword 93
namespaces

compiler implementation 225
mangling 226

NAN floating point constant 295
NARG macro symbol 332
NDEBUG preprocessor predefined macro 465
new

array operator 224
C++ keyword 222

new compiler frontend 64
Newline character 295
NEXT pseudo function

definition 379
_nextafter function 505
nm (GNU utility) 420
no_alias pragma 124, 186
nodes

inlining functions 83
loop unrolling 110

__nofp preprocessor predefined macro 117
.nolist assembler directive 318
NOLOAD 386
noload access mode 238
__no_malloc_warning 481, 513
non-static member function 177
non-virtual

member function 165
no_pch pragma 230
no_return pragma 186
no_return pragma function

no return promised, #pragma no_return 125
noreturn, no_return (__attribute__ keyword) 140
no_side_effects (__attribute__ keyword) 141
no_side_effects pragma 126, 186
nrand48 function 505
NULL

constant
defining, stblib.h function 458
defining, stddef.h function 457
defining, stdio.h function 457
defining, string.h function 458

macro, implementation-defined behavior 567
pointer 162

dereferences 217
null pointer-to-member function 169
null-terminated array of pointers 567

O
O COMDAT access mode 238
.o file extension 19

keeping object files 84
object module 19

-O option 40, 45, 46, 85, 113, 183, 216
optimize code 40
with environment variable DFLAGS 16

-o option 40, 113, 274, 276, 362
ddump 419, 422
example 355

o, assembler octal constant suffix 294
O_APPEND constant

defining, fcntl.h function 456
object

files
converter and dumper, ddump 11
converting to Motorola S-Records, ddump -

R command 420
dar archives 408
keeping 84

libraries (archives) 10, 11

 Index

689

Index

module format
ELF 22
selecting 22

object-like macros 35
offsetof function 505
O_NDELAY constant

defining,fcntl.h function 456
opcodes

assembler directives 289
case sensitivity in D-AS 289
instructions 289
syntax rules 289

open function 267, 456, 476, 506
calling with create function 261
definition under <fcntl.h> header file 454
RAM-disk support, opening file 262

operand field 308
operands

addressing modes 572
field, syntax rules 289
spaces between

allowing, -Xspace-on 284
disallowing, -Xspace-off 284

operator keyword 222
operators

assembler
precedence 304

binary
table of 303

compound (like +=) not allowed for volatile
members in packed structures 128

constructor 222
delete 177
delete array 224
destructor 222
new array 224
precedence

assembler, table of 304
sizeof 111, 146

defining, stddef.h function 457
defining, stdio.h function 457
defining, stdlib.h function 458
defining, string.h function 458

optimization

cross-module (intermodule, whole
program) 64, 188

disabling with asm string statements 157
optimizations

access static and global variables
conservatively 66

additional loop 203
argument

address 192
assignment 194
basic reordering 203, 205
branch complex 196
C function calls 63
coding techniques 184
common tail 194
complex branch 204
constant and variable propagation 196, 205
control via parameter setting 75
device driver failure 91
disable with

alloca 145
setjmp and longjmp 187
volatile keyword 185
-Xkill-opt 85, 190
-Xkill-reorder 85, 202

disabling with
-g or -Xoptimized-debug-off 95

effectiveness 185
enable 113

-Xargs-not aliased 58
examples 204
expose uninitialized variables 216
extend 200
failure with parameter modifications in asm

macros 151
feedback 201
for size, -Xsize-opt 103
function-level 4
global 5, 6

common subexpression elimination 197,
204

guidelines for 183
hints 181–187
if-else clause 201
inlining 4, 182, 191, 199, 202

Wind River Compiler for SPARC
User’s Guide, 5.4

690

activating with the -XO option 181
function 204

interprocedural 95, 182, 183, 199, 562
register allocations 4

invoke 40
levels 562
local 5
loop

count-down 197
invariant code motion 201
statics 200
strength reduction 196, 204
unrolling 182, 183, 197, 202

merge
common block entry, exit code 203

minor transformations 198
oop

count-down 204
peephole 11, 203, 204

reaching analysis 203
program-level 4
reaching analysis 4
register, coloring 198
remove entry and exit code 199, 204
selecting levels of, DFLAGS 547
space vs. speed 182
structure members 193
tail call 194
tail recursion 190
target-dependent 202

done by reorder program 202
target-independent 190
undefined variable propagation 198
unused assignment deletion 198, 204
use scratch registers for variables 199, 204
variable live range 195
vs. compilation speed 182
-Xargs-not-aliased 58
-Xblock-count and -Xfeedback used as

guide 182
-Xlint 209
-Xlocal-data-area, operation 244
-Xrestart, start over 100

optimized code, invisible objects 229
optimizer

recompile without -O option 216
remove __ERROR__ function 145

options
appearing more than once 30
assembler 274
case sensitivity 31
compiler 33, 48

-Xoptions 48
disabling 49
displaying 34, 41, 47
linker 357
pragma 126
quoting on command line 31
writing on command line 30

O_RDONLY constant
defining,fcntl.h function 456
setting values, open function 506

O_RDWR constant
defining, fcntl.h function 456
values of, open function 506

.org assembler directive 299, 319
in location counters 299

__outchar function 260
output

assembly 35, 114
standard, redirect to file, -@E 48

OVERFLOW
constant 501
specification 387

OVERLAY 386
O_WRONLY constant

defining, fcntl.h function 456
values of, open function 506

P
-P compiler option

preprocessor, stopping after 19
-P option 34, 41
-p option

ddump 420, 422
-p2 option

ddump 419
.p2align assembler directive 319

 Index

691

Index

pack pragma 127
packed (__attribute__ keyword) 141
__packed__ keyword 135

specify structure padding 127, 135
packed keyword 84, 135, 163
pad sections 298
.page assembler directive 319
.pagelen assembler directive 319
pascal keyword 84, 136
pattern expressions 384
PCC mode 70, 558
PCH files 230
pedantic mode (C/C++) 105
perror

function 506
message, implementation-defined

behavior 568
pipe function 476
.plen assembler directive 319
PLOSS constant 501
pointers

arithmetic 111
basic data type, size and alignment 162
implementation-defined behavior 565
NULL 162
to members

argument passing 177
as arguments and return types 177

to static member function 165
pointers to members types

explanation 168
port programs 266, 555–559
position-independent code (PIC) 104

address initializer
-Xstatic-addr-error 104
-Xstatic-addr-warning 104

POSIX reference 460
pow function 506
powf function 507
#pragma no_side_effects

example 186
pragmas 121–133

align for structures 121
compile-time 249
control code generation 248

directives, use with asm macro 152
error 121
global_register, preserve across function

calls 122
hdrstop 122, 230, 231
ident 123
info 123
inline 123, 186, 191

versus inline keyword in C++ 191
interrupt 124, 134, 257

compiler option for embedded
development 249

macros 88
no_alias 124, 186
no_pch 230
no_return 125, 186
no_side_effects 126, 186
pack for structures 127, 249
pure_function 130
section

C++ limitations 234
section 131

causing compiler to generate sections 347
compiler option for embedded

development 249
in hardware exception handling 257
use to specify a variable be placed at an

absolute address 263
use_section 233
weak 132

COMDAT symbol may be treated as 349
precedence, assembler operators 304
precompiled headers 229
predefined macros

See preprocessor predefined macros
preprocessor 45

assembly files 97
cpp

defaults 19
with -W compiler option 44

ctoa 19
dtoa 589
errors, treatment of 558
selecting 97

preprocessor directives 121–133

Wind River Compiler for SPARC
User’s Guide, 5.4

692

#align 121
#assert 118
#define 35
#elif 119
#endif 558
#error 119
#ident 120, 123
#if 119, 566
#ifdef 120, 221
implementation-defined behavior 566
#import 120
#include 39

See also #import preprocessor directive
treat as #import directive 80

#info 120
#inform 120
#informing 120
#pack 127
#pragma

See pragmas
#unassert 118
#undef 42
#warn 121
#warning 121

preprocessor predefined macros
__BIG_ENDIAN__ 115
__bool 115
__CHAR_UNSIGNED__ 116
__cplusplus

definiton 116
__DATE__ 116
__DCC__ 116
__DCPLUSPLUS__ 116
defaults predefined in dtools 546
_DIAB_TOOL 116
__ETOA__ 116
__ETOA_IMPLICIT_USING_STD 116
__ETOA__NAMESPACES 116
__EXCEPTIONS__ 116
__FILE__ 116, 465
__FUNCTION__ 116
__hardfp 116
__LDBL__ 116
__LINE__ 116, 465
__lint 117, 455

__LITTLE_ENDIAN__ 116
macro arguments replacing in strings 558
__mips16__ 117
name, defining with -D option 35
NDEBUG 465
__nofp 117
__PRETTY_FUNCTION__ 117
__RTTI 117
SBRK_SIZE

See sbrk function 255
__SIGNED_CHARS__ 117
__softfp 117
__STDC__ 117
__STRICT_ANSI__ 117
suppress extra spaces 67
__TIME__ 117
__wchar_t 118

preprocessors
das 19
dld 19
etoa 19
.lnk 19

__PRETTY_FUNCTION__ predefined
identifier 117

.previous assembler directive 319
print statement, configuration language 553
printf function 475, 507
private keyword 171, 222
__PROCEDURE_LINKAGE_TABLE_ symbol

created by linker 347
profiling

in an embedded environment 268
-Xblock-count 60
-Xfeedback 74
-Xprof-exec, with RTA 99
-Xprof-feedback, with RTA 99
-Xprof-snapshot, with RTA 100

profiling information generating, dbcnt 11
program-level optimization 4
programs

port existing 266
reorder 202
setup.c, initializes arguments, variables, and

files in an embedded
environment 266

 Index

693

Index

protected keyword 171, 222
prototypes

force, -Xforce-prototypes 76
placement of sections 242

.psect assembler directive 320

.psize assembler directive 320
ptrdiff_t type 457
public keyword 171, 222
pure, pure_function (__attribute__ keyword) 141
pure_function pragma 130
putc function 480, 510
putchar function 510
putenv function 510
puts function 511
putw function 511

Q
q, assembler octal constant suffix 294
qsort function 511
qualifiers, implementation-defined behavior 565
quoting command-line values 31

R
-R assembler option 276
-R linker option 363
-R option

ddump 420
-r option 362

ddump 420, 421
-r2 option 362
-r3 option 362
-r4 option 362
-r5 option 362
raise function 512

in embedded environment 257
RAM-disk files 261, 266
rand function 512
RAND_MAX constant 512
.rdata assembler directive 320
read function 461, 512

RAM-disk support, reading buffer 262
realloc function 480, 512

implementation-defined behavior 569
rebuilding the libraries 450
REENT functions are reentrant 461
reentrant library functions (multi-tasking

support) 265
REERR functions modify errno 461
register keyword 88

has priority 171
using to declare variables 187

register list line 154
registers 178

assigning variables to 145
attribute 559
coloring optimization 198
global assignments 122
I/O, in absolute sections 241, 264
implementation-defined behavior 565
lower preserved 122
scratch 124

use for variables 199
storage class 565
struct members, implementation-defined

behavior 565
tracking 95
union members, implementation-defined

behavior 565
use, table of 178
variables 122

regular expressions 384
in SECTIONS command 384

relocatable expressions 301
relocation

information, selecting format 367
types, table of 242

remove
entry and exit code optimization 199
unused sections 369

remove function 513
implementation-defined behavior 568

rename function 513
implementation-defined behavior 568

reorder
optimizer subprogram 40, 45, 46, 85

Wind River Compiler for SPARC
User’s Guide, 5.4

694

program
input assumed to be correct 202
target-dependent optimization 202

reserved
storage 298, 299

result passing
See return results

return escape sequence, ’\r’ 295
return results

class 178
struct 178
union 178

returning results
long long returned in r10/r11 178

rewind function 513
.rodata assembler directive 320
-rpath linker option 363
rtp execution environment (VxWorks) 23
RTP. See VxWorks
RTTI

See run-time type information
__RTTI preprocessor predefined macro 117
run-time

error checking, -Xrtc 101
initialization 256

run-time type information
control with -Xrtti, -Xrtti-off 101

RW access mode. See access modes
RX access mode. See access modes

S
.s files, assembly source 19, 84, 150
-S option 40, 41, 84, 114

compiler, stopping after 19
ddump 421
generate assembly file 150

-s option 363
ddump 421
suppress symbol table information 345

sbrk function 255, 376, 513
.sbss

assembler directive 320
section

-R, -v suppressing 420
.sbss section

"small" common blocks appended to 349
.sbttl assembler directive 321
_scalb function 514
scanf function 514, 535
SCOMMON sections 349

explicit placement 383
SCONST section class. See section classes
scope of for statement initialization part 76
scratch register 124

use for variables 199
.sdata

assembler directive 321
_sdata and sdata symbols created by linker 346
.sdata2

assembler directive 321
search path

header files 38
ibrary files 361
libraries 25

.section
assembler directive 298, 321

section (__attribute__ keyword) 141
.section assembler directive

aligning ELF 298
using istring 235

section classes
BTEXT

alternative specifications 385
CODE, default attributes 237
CONST

alternative specifications 385
default attributes 237
value of RW 239
with const variables 243
with -Xconst-in-text option 243

DATA
alternative specifications 385
locating initialized vs. uninitialized 239
with linker created symbol, _edata 346

DATA, default attributes 237
SCONST

value of RW 239
STRING

 Index

695

Index

default attributes 237
with -Xconst-in-text mask bits 243

TEXT
alternative specifications 385

user-defined 237
section classes CONST

-Xconst-in-data same as -Xconst-in-text=0 244
.section n assembler directive 322
section .warning 350
section-definition

See linker command file, section-definition 381
.sectionlink assembler directive 322
sections

.abs.nnnnnnnn
absolute sections 299
definition 319
producing, .org 299

absolute, advantages 241
alignment of output sections 368
.bss

clearing using init.c 253
common blocks appended to 348
common blocks appending to 348
common symbols allocating 290, 292
common symbols allocating for use by

linker 290
controlling allocation of uninitialized

variables 61
displaying size, ddump -S 421
holding common blocks not defined in .text

or .data 345
holds common blocks not defined in .text or

.data 345
.lcomm assembler directive allocating 317
linker allocating storage for common

symbols 292
-R, -v suppressing 420
switching output 308
-Xlocal-data-area may suppress

storage 87
classes

CONST
const-in-text mask bits 243

STRING
"text" or "data" 243

value of RW 239
user-defined 236

COMDAT
definition COMDAT sections. See sections

COMDAT
’o’ type in .section assembler directive 321
incremental linking, -r5 363
treatment by linker 349
with implicit templates 223

COMM, allocation of static variables 237
COMMENT

linker, specifications 385
.comment

with -s linker option 363
.comment, appending character string, .ident

assembler directive 314
COMMON

explicit placement 383
COMMON, linker 348
.data

allocation of
static variables 237

allocation of user-defined sections 237
copying initial values to, using init.c 253
displaying size, ddump -S 421
using -Bd to allocate 359
using -N to allocate immediately after

.text 362
using -N to place immediately after

.text 359
with -Xbss-off compiler option 61
-Xlocal-data-area 87

.fini
in crt0.s 253

.frame_info 351

.init
in crt0.s 253

.line 581
order, ensuring with GROUP 389
padding and fill 298
placement, with prototypes 242
pragma 131
predefined 236
removing unused 369
.sbss

Wind River Compiler for SPARC
User’s Guide, 5.4

696

"small" common blocks appending 349
allocating 320
-R, -v suppressing 420

SCOMMON 349
explicit placement 383

.shstrtab string table 582

.strtab string table 582

.symtab 581

.text
allocation of

const variables 237
allocation of functions 237
displaying size, ddump -S 421
use -N to allocate immediately before

.data 362
use with -Bt 359
-Xstrings-in-text 249

types
BSS 385
TEXT 346

SECTIONS command
and regular expressions in 384

SECTIONS command 379, 381
GROUP used within 381

seed4 function 471
seed48 function 488, 498, 505, 516
SEEK_CUR constant 498
SEEK_END constant 498
SEEK_SET constant 498
select

target 273
target configuration 21, 25

separate compilation 113
.set (equ) assembler directive 323
.set (let) assembler directive 323
.set assembler directive 323

alternative to .equ 323
instead of .equ 312
symbol, define 290
symbol, define, alternative to .equ

directive 323
.set option assembler directives available 323
setbuf function 516
setenv function, implementation-defined

behavior 569

setjmp function 457, 497, 517
avoiding for safety 229
avoiding to improve optimization 187
definition under <setjmp.h> header file 454
with -Xjumpbug-size 84

setjmp function, compatibility 559
setlocale function 517
setup program

initialize arguments, variables and files in an
embedded environment 266

output used by init.c 254
setvbuf function 518
shared libraries

.a and .so files 371
-Bsymbolic option 360
-rpath option 363
-soname option 363
-Xbind-lazy option 365
-Xdynamic option 366
-Xexclude-libs option 367
-Xexclude-symbols option 367
-Xshared option 370
-Xstatic option 371

.short assembler directive 324
short type bit-fields 164
.shstrtab string table section 582
SIGABRT signal 462
sig_atomic_t type 457
sigjmpbuf type 457
siglongjmp function 457
signal function 263, 518
signed keyword

and compatibility mode 556
in basic data types 161
using to make bit-fields signed 164

__SIGNED_CHARS__ preprocessor predefined
macro 117

sigsetjmp function 457
sigset_t type 457
simple execution environment 23
simple libc.a subdirectory 444
simple target execution environment, basic character

input/output 23
simple/libc.a subdirectory 12
simulator windiss 427

 Index

697

Index

sin function 518
sinf function 519
SING constant 501
single quote escape sequence, ’ 295
sinh function 519
sinhf function 519
.size assembler directive 324
size of

character constant in C and C++ 222
enum in C, C++ 222

sizeof
operator 111, 146

defining, stddef.h function 457
defining, stdio.h function 457
defining, stdlib.h function 458

SIZEOF pseudo function
definition 379

.sizeof.section-name symbol created by linker 346
size_t type

stddef.h 457
stdlib.h 458
string.h 458

.skip assembler directive 299, 324

.skip size, p. 34 308

.so files. See libraries, shared libraries
__softfp preprocessor predefined macro 117
-soname linker option 363
sorted sections, input section order, definition 349
source, including in assembly code, -Xpass-

source 95
.space assembler directive 324
space optimization 194
spaces between operands

allowing, -Xspace-on 284
not allowed, -Xspace-off 284

__SP_END symbol, stack end initialized to
in bubble.c 376

__SP_INIT symbol, stack start initialized to 255
in bubble.c 376

sprintf function 519, 535
sqrt function 520
sqrtf function 520
srand function 520
srand48 function 471, 488, 498, 505, 520
src

directory, source files 259
subdirectory 12

-ss option 363
sscanf function 520, 536
ssize_t type

defining, stdio.h function 457
stack

initialization, by __SP_INIT symbol 255
in bubble.c 376

layout 173
overflow check, -Xstack-probe 104

standard
header files, table of 453

standard
addressing mode 243

standards
C++, conformance to 6
conformance to 6, 555

"start" label in crt0.s 252
.startof.section-name symbol created by linker 346
startup

and termination 250
crt0.s 250

module
See crt0.o startup module

startup module
-l:crt0.o, specifying with -YP option 355

statements
asm string, disabling optimizations 157
assignment with -WD compiler option 42
configuration language

break 554
case 554
exit 552
include

definition 553
print 553
switch 553

for initialization part scope 76
switch, implementation-defined behavior 566
switch, table vs. compares 107

static
allocate variables 170
data 130

Wind River Compiler for SPARC
User’s Guide, 5.4

698

function, outside any function, but inside a C++
class definition 171

member 171
mangling 226

member function 165
objects 222
variables 122

constructors 222
destructors 222
modify with asm macro 152
vs. local 184

static
keyword 185, 348

stdarg function
with argument spill area 174

__STDC__ macro 117
stderr 481, 513

buffering 105
declaring,stdio.h function 457
redirect to file, -@E 48

stdin file 486, 514
declaring, stdio.h function 457

stdio function 489
_STD__n termination functions 256
stdout file 367, 507, 510, 511

declaring, stdio.h function 457
stdout redirect to file, -@E 48
step function 469, 521
sterror messages, implementation-defined

behavior 568
_stext and stext symbols created by linker 347
_STI__n initialization functions 256
stop on warning 371
storage

classes, as permitted by scope 170, 171
mode for assembler macro parameters,

con 153
mode line 152
reserve 298, 299

STORE statement 384
str* declaration under <string.h> header file 455
strcat function 521
strchr function 521
strcmp function 498, 521, 527
strcoll function 517, 522, 527

strcpy function 522
strcspn function 522
strdup function 522
strerror function 523
strftime function 517, 523
Strict ANSI

C mode 70
C/C++ mode 105

__STRICT_ANSI__ macro 117
.string assembler directive 324
string constants 66

configuration language 550
-Xcharset-ascii 62
-Xswap-cr 107

STRING section class
"text" or "data" 243
value of RW 239
with -Xconst-in-text mask bits 243
-Xconst-in-data same as -Xconst-in-text=0 244

STRING section class. See section classes
strings

alignment, -Xstring-align 106
#ident 79
location, -Xconst-in-... 66
quoting on command line 31

strlen function 524
strncat function 524
strncmp function 524
strncpy function 525
strpbrk function 525
strrchr function 525
strspn function 525
strstr function 526
.strtab string table section 582
strtod function 526
strtok function 526
strtol function 527
strtoul function 527
struct

lconv 496
member 164
return type 178
scope in C++ versus C 222

structure member alignment
-Xstruct-min-align, set minimum 107

 Index

699

Index

structures
 __packed__ keyword 135
align pragma 121
alignment 165
alignment of members

changing with -Xbit-fields-compress-
... 58

-Xmember-max-align 91
-Xstruct-max-align 91
-Xstruct-min-align 107

assignment, -Xstruct-assign-split-... 106
byte-swapping 135
enum uses smallest type in packed 128
illegal references, error treatment of 558
implementation-defined behavior 565
initialization, -Xbottom-up-init 60
initialized, warning in PCC mode 556
initializers, incomplete parsing 557
maximum alignment 127, 135
members

to registers optimization 193
minimum alignment 127, 135
pack pragma 127
packed keyword 127, 135
padding 127

See also __packed__ keyword
minimize 165
with a zero-length bit-field 164

reducing size with -Xbit-fields-compress-... 58
return type 178
size 165

argument, -Xstruc-arg-warning 106
volatile

member access not atomic in packed
structures 128

strxfrm function 517, 527
.strz assembler directive 324
subdirectories

host_dir 10
name under version_path 9

include, standard header files for user
programs 12

target 12
subprograms run by driver program, table of 19
.subtitle assembler directive 325

subtitle, defining, -Xsubtitle 285
SVID reference 460
swab function 528
__swapb intrinsic function 144
switch statements

configuration language 553
implementation-defined behavior 566

.symbol assembler directive 323
symbol table

including
all locals, -Xstrip-locals-off 285
certain locals, -Xstrip-temps-off 285

suppressing
all locals, -Xstrip-locals 285
certain locals, -Xstrip-temps 285

symbols
"declared" when the assembler recognizes it as a

symbol of the program 290
"defined" when a value is associated with

it 290
.comm treating as undefined global 292
common

declaring, .comm assembler directive 291
storage allocated by linker 292

created by linker 346
entry point 292
external

common 291
examples 291
ordinary 291

forcing linker to define 364
global

defining with =: 291
undefined, if not defined in same file 292

GNU style 293
linker command file 377
local

generic style 293
GNU style 293
n$ 293

renaming in linker output 363
restrictions 290
syntax rules 290
undefined

flagged in symbol table 292

Wind River Compiler for SPARC
User’s Guide, 5.4

700

underscores added, -Xunderscore-... 109
valid characters 290

.symtab section 581
syntax

assembler lines 287
comments 289
constants, integral 293
direct assignment statements 291
external symbols 291
floating point constants 295
format of an assembly language line 287
labels 288
local symbols 292

generic style 293
GNU style 293

opcode 289
operand field 289
symbols 290

SYS functions provided by system 461
sys_errlist variable 506
sys_nerr variable 506
system function, implementation-defined

behavior 569

T
-T option 276
+t option

ddump 421
-t option 41, 277, 364, 545

changing, dctrl 26
ddump 421
setting configuration variables 542
table of values 22

tab stops, default, -Xtab-size 285
tail call optimization 194
tail recursion optimization 190
tan function 528
tanf function 528
tanh function 528
tanhf function 529
target

communicating with 263
configuration

selecting 21, 25
examples 24

configuration, changing the default 25
dependent optimization 202
environment variables 266
input/output support, selecting with environ

part of -t option 23
operating system support, special configuration

file selecting with environ part of -t
option 23

predefined files 266
processor, selecting 22
program arguments 266
select 273
subdirectory 12

target-dependent options
Refer to target User’s Manual
Refer to release notes

tdelete function 529
tell function 529
templates

C++ keywords 222
class 223
function 223
instantiation

in dplus 223
-Ximplicit-templates-off 80

tempnam function 529
temporary

assembly file 84
files, DIABTMPDIR environment variable 16

.text assembler directive 325

.text section
displaying size, ddump -S 421
use -N to allocate immediately before

.data 362
use with -Bt 359
-Xstrings-in-text 249

TEXT section class. See section classes
.text section. See sections
TEXT section type 346
tfind function 530
this C++ keyword 222
thread-safe operation (multi-tasking support) 265
throw C++ keyword 72, 187, 222, 224

 Index

701

Index

time function 263, 504, 530
__TIME__ macro

precompiled headers 231
__TIME__ macro 117
.title assembler directive 325
title, defining, -Xtitle 285
TLOSS constant 501
TMPDIR environment variable 410
tmpfile function 530
tmpnam function 530
toascii function 531
tolower function 531
toupper function 531
try

C++ keyword 222, 224
try C++ keyword 72, 187
try keyword

disabling exceptions 72
tsearch function 532
.ttl assembler directive 325
-ttof 41
-ttof assembler, compiler, linker option 22
-ttof option

target processor component 23
-ttof-:cross option, part of libc.a library 261
twalk function 532
.type assembler directive 325
typedef scope in C++ versus C 222
typeid expression 225
type_info class definition 225
typeinfo& expressions 225
typeinfo.h C++ header file 225
__typeof__ keyword 136
types 457

bool
- Xbool-off disables 60
__bool preprocessor predefined

macro 115
set type for 60

defining, fpos_t function 457
div_t 458, 471
generate debug information for unreferenced

types 69
identification, typeid 225
jmpbuf 457

ldiv_t 458
ptfdiff 457
sig_atomic_t 457
sigjmpbuf 457
sigset_t 457
size_t

defining, stdio.h function 457
stddef.h 457
stdlib.h 458
string.h 458

VISIT 532
wchar, __wchar_t preprocessor predefined

macro 118
tzset function 533

U
-U option 42
-u option 364

ddump 419, 420, 422
.uhalf assembler directive 326
.ulong assembler directive 326
#unassert preprocessor directive 118
#undef preprocessor directive 42
undefined

global symbol 292
symbols, flagging in the symbol table 292
variable propagation optimization 198

UNDERFLOW constant 501
ungetc function 533
uninitialized data

.bss section 297
containing in particular section, with

ustring 235
unions

alignment 165
implementation-defined behavior 565
initialized, warning in PCC mode 556
return type 178
size 165

UNIX
configuration variable DCONFIG 15
default installation pathname 10
directory separator character 551

Wind River Compiler for SPARC
User’s Guide, 5.4

702

environment variable DIABTMPDIR 16
reference 460
setting environment variables 15
standard name, location of main configuration

file 544
unlink function 533

RAM-disk support, removing a file 262
_unordered function 533
unsigned

keyword, in basic data types 161
long long variable type 135

unused assignment deletion optimization 198
use scratch registers for variables optimization 199
user

modifications 249
user.conf configuration file

description 11
dtools.conf configuration file, simplified

structure 546
user-defined section class 236
user-defined section class. See section classes
use_section pragma 233
.ushort assembler directives 326
using C++ keyword 93
.uword assembler directive 326

V
-V option 42, 277, 364

ddump 421
-v option 42

ddump 419, 420, 422
va_arg macro 457
va_end macro 457
va_list type 457
vararg macros 147
varargs function

with argument spill area 174
variable live range optimization 195
variables

absolute, accessing at specific addresses 264
absolute, accesssing with symbolic

debugger 241
access at specific addresses 263

allocation on stack, -Xlocals-on-stack 88
automatic 122
binary representation of 145
configuration language 550
conservative access of static and global

variables 66
const

moving from "text" to "data" 243
constructor 222
destructor 222
embedded environment, initialize in

setup.c 266
errno 454, 456, 461, 463, 464, 465, 474, 477, 482,

501, 506, 568
__errno_fn 461
preserving 461

extern 171
global

absolute sections 241, 264
allocating to register 122
modifying with asm macro 152
optimizing in conditionals 62
vs. local 184

global_register pragma used to control
allocation 122

initial values
copying from "rom" to "ram" 253

initialization of locals, -Xinit-locals 81
local 192
locating initialized vs. uninitialized 239
locating specific address 263
location, #pragma section 131
long long 135
__no_malloc_warning 513
register 122, 171
static 122

modify with asm macro 152
vs. local 184

sys_errlist 506
sys_nerr 506
unsigned long long 135
volatile 91

va_start macro 457, 534, 535
version number, displaying 42
version_path 9

 Index

703

Index

directory 39
subdirectories & important files 10

vertical tab escape sequence, ’\v’ 295
vfprintf function 534
vfscanf function 534
virtual

base class 166
one extra argument added for each 177

function table 166, 168
generation, key functions 169

virtual base class
pointers, added to a derived class 168

virtual C++ keyword 222
virtual function table

array of pointers to functions 168
VISIT type 532
void keyword 222
void pointers

arithmetic 111
volatile

data 249
keyword 91, 185, 216, 265

and compatibility mode 556
inline assembler 151, 156
use for variables 248

member access not atomic in packed
structures 128

vprintf function 534
vscanf function 535
vsprintf function 535
vsscanf function 535
-VV option 42
VxWorks

C libraries 24
C++ libraries 220
execution environment 23
kernel mode 23
RTP applications

-Bsymbolic option 360
-rpath option 363
-soname option 363
-Xbind-lazy option 365
-Xdynamic option 366
-Xexclude-libs option 367
-Xexclude-symbols option 367

-Xshared option 370
-Xstatic option 371

rtp execution environment 23
user mode 23

W
-W a option 42
-W as option 42
-W D option 42
-W l option 43
-W ld option 43
-W m option changes default linker command

file 43, 356
-w option 47

ddump 421
-W s option changes default startup file 43, 252, 356
-W x,arguments option 45
-W x.ext compiler option 46
-W xfilename option 44
#warn preprocessor directive 121
#warning preprocessor directive 121
.warning assembler directive 326
warning messages 587
.warning section 350
-WC option 550

DCONFIG 545
default DCONFIG if not used 15
setting configuration language variables 542
specify configuration file 44
use for DCONFIG 44
vs. -WDDCONFIG 543

__wchar_t preprocessor predefined macro 118
wcstombs function 131, 536
wctomb function 536
-WD environment_variable command-line option

overriding values of variables 26
-WD option 44, 277, 543, 550, 551

overriding environment variable value 15
setting configuration language variable 542

-WD variable option
overriding configuration variable 25

-WDDCONFIG option equivalent to -WC 543
-WDDENVIRON option

Wind River Compiler for SPARC
User’s Guide, 5.4

704

setting library search path 23
-WDDOBJECT option 277
.weak assembler directive 326
weak pragma 132

COMDAT symbol may be treated as 349
whole-program optimization. See cross-module

optimization
.width assembler directive 327
windiss

compiling 429
disassembler mode

batch 433
interactive 434

execution environment, pseudo-value 445
simulator and disassembler 427
simulator mode

-b load binary file 430
-d debug using mask 430
-e entry point 431
-E specify endianity 431
-h load hex file 431
-M memory mask 432
-m memory specification 431
-ma automatic memory allocation 432
-mm memory map 432
-N windows priority 432
-q quiet mode 432
-s clock speed 432
-S stack address 432
-t target processor 432
-V print version 433

windiss/libwindiss.a library 442
Windows

configuration variable DCONFIG 15
directory separator character 551
environment variables

DIABTMPDIR 16
setting 15

installation 10
-Wm compiler option 259
.word assembler directive 327
write function 536

RAM-disk support, writing a buffer 262

X
-x option

ddump 419
-X options

- Xblock-count 60
disable 49
switch-table 107
-X 278, 364
-x 277
-Xa

See -Xdialect-k-and-r 69
-Xadd-underscore 56
-Xalign-... 57
-Xalign-... 57
-Xalign-fill-text 279
-Xalign-min

packed structures 128
-Xalign-power2 279, 307
-Xalign-value 279, 307
-Xansi

See -Xdialect-k-and-r 69
-Xargs-... 58
-Xarray-align-min 58
-Xascii-charset

See -Xcharset-ascii 62
-Xasm-debug-... 279
-Xauto-align 279
-Xbind-lazy 365
-Xbitfield-compress

See --Xbit-fields-compress 59
-Xbit-fields-... 58, 59
-Xbit-fields-signed 164, 217
-Xblock-count 11, 74, 202, 268

D-BCNT requirement 414
__dbini and __dbexit functions

requirement 416
-Xbool-is-... 60
-Xbool-off 115
-Xbottom-up-init 60
-Xbss-... 61
-Xbss-common-off 348
-Xc

See -Xdialect-strict-ansi 70
-Xc++-abr 61

 Index

705

Index

-Xc++-old 62
old preprocessor 97

-Xcga-min-use 62
-Xchar-... 63, 162, 163
-Xcharset-ascii 62
-Xcheck-input-patterns 365
-Xcheck-overlapping 366
-Xclass-type-name-visible 63
-Xclib-optim-off 63
-Xcmo-... 64

and cross-module optimization 189
-Xcnew 64
-Xcomdat

in table of options related to template
instantiation 223

run-time type information collapsed
by 101

-Xcomdat-info-file 65
-Xconservative-static-live 66
-Xconst-in-... 66
-Xconst-in-data 244
-Xconst-in-text 239, 243, 249
-Xcpp-dump-symbols 66

old preprocessor 97
-Xcpp-no-space 67
-Xcpu-... 280
-Xdebug-... 68
-Xdebug-align 67
-Xdebug-dwarf... 67
-Xdebug-inline-on 68
-Xdebug-local-all 68
-Xdebug-local-cie 68
-Xdefault-align 280, 312
-Xdialect-... 69
-Xdialect-ansi 117, 555

See -Xfp-min-prec-long-double 78
-Xdialect-c89 69
-Xdialect-c99 69
-Xdialect-k-and-r 69, 556
-Xdialect-pcc 187, 556
-Xdialect-strict-ansi 70, 117, 150, 555
-Xdigraphs-... 70
-Xdollar-in-ident 70, 248
-Xdont-die 366
-Xdont-link 366

-Xdynamic 366
-Xdynamic-init 71
-Xelf 367
-Xelf-rela-... 367
-Xenum-is-... 71, 162
-Xenum-is-int 163
-Xenum-is-small 162, 163
-Xexception

See -Xexceptions-off 72
-Xexceptions 224
-Xexceptions-... 72
-Xexclude-libs 367
-Xexclude-symbols 367
-Xexplicit-inline-factor 73
-Xexpl-instantiations 367

in table of options related to template
instantiation 224

-Xextend-args 73, 78
-Xfeedback 74, 202, 268
-Xfeedback-... 75
-Xforce 76
-Xforce-prototypes 76
-Xforeign-as-ld 76
-Xfor-init-scope-... 76
-Xfp-... 77
-Xfp-fast 74
-Xfp-normal 74
-Xfp-pedantic 74
-Xframe-info 78
-Xfull-pathname 78
-Xgcc-options-... 78
-Xgenerate-paddr 368
-Xgenerate-vmap 368
-Xglobals-volatile 91
-Xgnu-locals-... 280
-Xgnu-locals-off 293
-Xheader-... 280, 281
-Xheader-format 285
-Xhi-mark

See -Xfeedback-frequent 75
-Xident-... 79
-Xieee754-pedantic 79
-Ximplicit-templates-... 80

in table of options related to template
instantiation 223

Wind River Compiler for SPARC
User’s Guide, 5.4

706

-Ximport 80
-Xincfile-missing-ignore 80
-Xinit-... 81
-Xinit-section-default-pri 82
-Xinit-value 82
-Xinline 82, 182

inlining method 191
-Xinline-explicit-force 83
-Xintrinsic-mask 83
-Xjmpbuf-size 84
-Xk-and-r

See -Xdialect-k-and-r 69
-Xkeep-assembly-file 84
-Xkeep-object-file 84
-Xkeywords 84, 136
-Xkill-opt 85, 190
-Xkill-reorder 85, 202
-Xlabel-colon 281, 289, 305
-Xlabel-colon, allowing assembler directives to

start in column one 157
-Xlabel-colon-off 281, 305
-Xleading-underscore

See -Xunderscore-... 109
-Xlicense-wait 85
-Xline-format 282
-Xlint 86, 209
-Xlist-... 283
-Xlist-file-extension=... 283
-Xllen 283
-Xlocal-data-area 87, 244
-Xlocal-data-area-static-only 88
-Xlocals-on-stack 88, 171
-Xlocal-struct

See Xlocal-data-area 87
-Xlo-mark

See -Xfeedback-seldom 75
-Xmacro-arg-space-... 283, 333
-Xmacro-in-pragma 88

old preprocessor 97
-Xmacro-undefined-warn 88
-Xmake-dependency 88

old preprocessor 97
-Xmake-dependency-... 90

old preprocessor 97
-Xmax-inst-level 90

-Xmember-max-align 91, 127, 249
-Xmemory-is-volatile 91, 248
-Xmin-align

See -Xalign-min 58
-Xmismatch-warning 92, 557

and -e option 37, 92
-Xmnem-diab 284
-Xname-... 92
-Xnamespace-... 93
-Xno-bool

See -Xbool-off 60
-Xno-bss

See -Xbss-off 61
-Xno-common

See -Xbss-common-off 61
-Xno-diagraphs

See -Xdigraphs-off 70
-Xno-double

See -Xfp-float-only 77
-Xno-ident

See -Xident-off 79
-Xno-implicit-templates

See -Ximplicit-templates... 80
-Xno-long-double

See -Xfp-long-double-off 77
-Xno-optimized-debug

See -X optimized-debug . . . 95
-Xno-recognize-lib

See -Xclib-optim-off 64
-Xno-rtti

See -Xrtti-... 101
-Xno-wchar

See -Xwchar-t-... 111
-XO 16, 40, 45, 46, 74, 85, 93, 94, 95, 100, 108,

183
inlines functions 191
sets -Xinline 83

-Xold-align 368
-Xold-inline-asm-casting 94
-Xold-scoping

See -Xfor-init-scope-... 76
-Xopt-count 94
-Xoptimized-debug-... 95
-Xoptimized-load 368
-Xpage-skip 284

 Index

707

Index

-Xparse-size 95, 182, 562
-Xpass-source 35, 95, 114
-Xpcc

See -Xdialect-pcc 70
-Xpch-... 96
-Xplen 284
-Xpointers-volatile 91
-Xpragma-section-... 96
-Xprefix-underscore-... 369
-Xprepare-compress 284
-Xpreprocess-assembly 97
-Xpreprocessor-lineno-off 97
-Xpreprocessor-old 97
-Xprof-all 97
-Xprof-all-fast 98
-Xprof-count 98
-Xprof-coverage 98
-Xprof-exec 99
-Xprof-feedback 99
-Xprof-snapshot 100
-Xprof-time 98
-Xprof-time-fast 98
-Xremove-unused-sections 369
-Xrescan-... 369
-Xrescan-libraries 354
-Xrestart 100
-Xrtc 101
-Xrtc=4 equivalent to -Xstack-probe 104
-Xrtti-... 101
-Xsection-align 370
-Xsection-pad 101
-Xsection-split 102
-Xsect-pri-... 102
-Xsemi-is-newline 284
-Xshared 370
-Xshow-configuration 103
-Xshow-inst 103
-Xshow-target 103
-Xsigned-bitfields

See -Xbit-fields-signed 59
-Xsigned-char

See -Xchar-signed 63
-Xsize-opt 103, 183, 249
-Xsoft-float 104
-Xsort-frame-info 370

-Xspace-... 284
-Xspace-off 287, 305
-Xstack-probe 104
-Xstatic 371
-Xstatic-addr-... 104
-Xstatics-volatile 91
-Xstderr-fully-buffered 105
-Xstop-on-redeclaration 371
-Xstop-on-warning 105, 371
-Xstrict-ansi 105

See -Xdialect-strict-ansi 70
-Xstrict-bitfield-promotions 105
-Xstring-align 106
-Xstrings-in-text 244
-Xstrip-... 285
-Xstruct-... 106
-Xstruct-max-align

See -Xmember-max-align 91
-Xstruct-min-align 107, 249
-Xsubtitle 285
-Xsuppress-dot-... 371
-Xsuppress-path 371
-Xsuppress-section-names 371
-Xsuppress-underscore-... 372
-Xsuppress-warnings 107
-Xswap-cr-nl 107
-Xsyntax-warning-... 108
-Xt

See -Xdialect-k-and-r 69
-Xtab-size 285
-Xtarget 108
-Xtest-at-... 108
-Xtitle 285
-Xtrailing-underscore

See -Xunderscore-... 109
-Xtruncate 109
-Xunaligned-slow

See -Xalign-min 58
-Xunderscore-... 109
-Xunroll 110, 197
-Xunroll-size 110, 182, 197
-Xunsigned-bit-fields

See -Xbit-fields-unsigned 59
-Xunsigned-bitfields

See -Xbit-fields-unsigned 59

Wind River Compiler for SPARC
User’s Guide, 5.4

708

-Xunsigned-char
See -Xchar-unsigned 63

-Xunused-sections-... 372
-Xuse-double

See -Xfp-min-prec-double 77
See -Xfp-min-prec-long-double 78

-Xuse-float
See -Xfp-min-prec-float 77

-Xuse-.init
See -Xinit-section 82

-Xusing-std-... 110
-Xvoid-ptr-arith-ok 111
-Xwchar-off 118
-Xwchar_t-... 111

.xdef assembler directive 291, 292, 327
declaring ordinary external symbols 291

.xref assembler directive 327, 348

Y
-Y I option 47
-Y L option 47
-Y L option, search path for -l 361, 364
-y option

ddump 422
-Y P option 47
-Y P option, search path for -l 355, 361, 364
-Y U option 47
-Y U option, search path for -l 361, 364
y0 function 537
y0f function 537
y1 function 537
y1f function 537
-YI option 39
yn function 538
ynf function 538
yvals.h 221

Z
+z option

ddump 422

-z option
ddump 421

	Wind River Compiler for SPARC User's Guide
	Contents
	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Overview of the Tools
	Important Compiler Features and Extensions
	High Performance Optimizations
	Portability

	1.3 Documentation
	This User’s Guide
	Additional Documentation

	2 Configuration and Directory Structure
	2.1 Components and Directories
	2.2 Accessing Current and Other Versions of the Tools
	2.3 Environment Variables
	2.3.1 Environment Variables Recognized by the Compiler

	3 Drivers and Subprogram Flow
	4 Selecting a Target and Its Components
	4.1 Selecting a Target
	4.2 Selected Startup Module and Libraries
	4.3 Alternatives for Selecting a Target Configuration

	Part II Wind River Compiler
	5 Invoking the Compiler
	5.1 The Command Line
	5.2 Rules for Writing Command-Line Options
	Same Option More Than Once
	Command-Line Options are Case-sensitive
	Spaces In Command-Line Options
	Quoting Values
	Unrecognized Options, Passing Options to the Assembler or Linker
	Length Limit

	5.3 Compiler Command-Line Options
	5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)
	5.3.2 Ignore Predefined Macros and Assertions (-A-)
	5.3.3 Define Assertion (-A assertion)
	5.3.4 Pass Along Comments (-C)
	5.3.5 Stop After Assembly, Produce Object (-c)
	5.3.6 Define Preprocessor Macro Name (-D name=definition)
	5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)
	5.3.8 Change Diagnostic Severity Level (-e)
	5.3.9 Generate Symbolic Debugger Information (-g)
	5.3.10 Print Pathnames of Header Files (-H)
	5.3.11 Specify Directory for Header Files (-I dir)
	5.3.12 Control Search for User-Defined Header Files (-I@)
	5.3.13 Modify Header File Processing (-i file1=file2)
	5.3.14 Specify Directory For -l Search List (-L dir)
	5.3.15 Specify Library or Process File (-l name)
	5.3.16 Specify Pathname of Target-Spec File (-M target-spec)
	5.3.17 Optimize Code (-O)
	5.3.18 Specify Output File (-o file)
	5.3.19 Stop After Preprocessor, Produce Source (-P)
	5.3.20 Stop After Compilation, Produce Assembly (-S)
	5.3.21 Select the Target Processor (-t tof:environ)
	5.3.22 Undefine Preprocessor Macro Name (-U name)
	5.3.23 Display Current Version Number (-V, -VV)
	5.3.24 Run Driver in Verbose Mode (-v)
	5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)
	5.3.26 Define Configuration Variable (-W Dname=value)
	5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)
	5.3.28 Specify Linker Command File (-W mfile)
	5.3.29 Specify Startup Module (-W sfile)
	5.3.30 Substitute Program or File for Default (-W xfile)
	5.3.31 Pass Arguments to Subprogram (-W x,arguments)
	5.3.32 Associate Source File Extension (-W x.ext)
	5.3.33 Suppress All Compiler Warnings (-w)
	5.3.34 Set Detailed Compiler Control Options (-X option)
	5.3.35 Specify Default Header File Search Path (-Y I,dir)
	5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)
	5.3.37 Specify Search Directory for crt0.o (-Y S,dir)
	5.3.38 Print Subprograms With Arguments (-#, -##, -###)
	5.3.39 Read Command-Line Options from File or Variable (-@name, -@@name)
	5.3.40 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	5.4 Compiler -X Options
	5.4.1 Option Defaults
	5.4.2 Compiler -X Options by Function
	5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore)
	5.4.4 Align Functions On n-byte Boundaries (-Xalign-functions=n)
	5.4.5 Specify Minimum Alignment for Single Memory Access to Multi-byte Values (-Xalign-min=n)
	5.4.6 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)
	5.4.7 Specify Minimum Array Alignment (-Xarray-align-min)
	5.4.8 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)
	5.4.9 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)
	5.4.10 Insert Profiling Code (-Xblock-count)
	5.4.11 Set Type for Bool (-Xbool-is-...)
	5.4.12 Control Use of Bool, True, and False Keywords (-Xbool-...)
	5.4.13 Parse Initial Values Bottom-up (-Xbottom-up-init)
	5.4.14 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections (-Xbss-off, -Xbss-common-off)
	5.4.15 Use Abridged C++ Libraries (-Xc++-abr)
	5.4.16 Use Old C++ Compiler (-Xc++-old)
	5.4.17 Optimize Global Assignments in Conditionals (-Xcga-min-use)
	5.4.18 Generate Code Using ASCII Character Set (-Xcharset-ascii)
	5.4.19 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)
	5.4.20 Use Old for Scope Rules (-Xclass-type-name-visible)
	5.4.21 Disregard ANSI C Library Functions (-Xclib-optim-off)
	5.4.22 Enable Cross-module Optimization (-Xcmo-...)
	5.4.23 Use the ‘new’ Compiler Frontend (-Xcnew)
	5.4.24 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)
	5.4.25 Maintain Project-wide COMDAT List (-Xcomdat-info-file)
	5.4.26 Optimize Static and Global Variable Access Conservatively (-Xconservative-static-live)
	5.4.27 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)
	5.4.28 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)
	5.4.29 Suppress Preprocessor Spacing (-Xcpp-no-space)
	5.4.30 Align .debug Sections (-Xdebug-align=n)
	5.4.31 Select DWARF Format (-Xdebug-dwarf...)
	5.4.32 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)
	5.4.33 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)
	5.4.34 Generate Local CIE for Each Unit (-Xdebug-local-cie)
	5.4.35 Disable debugging information Extensions (-Xdebug-mode=mask)
	5.4.36 Disable Debug Information Optimization (-Xdebug-struct-...)
	5.4.37 Specify C Dialect (-Xdialect-...)
	5.4.38 Disable Digraphs (-Xdigraphs-...)
	5.4.39 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)
	5.4.40 Control Use of Type “double” (-Xdouble...)
	5.4.41 Generate Initializers for Static Variables (-Xdynamic-init)
	5.4.42 Specify enum Type (-Xenum-is-...)
	5.4.43 Enable Exceptions (-Xexceptions-...)
	5.4.44 Control Inlining Expansion (-Xexplicit-inline-factor)
	5.4.45 Force Precision of Real Arguments (-Xextend-args)
	5.4.46 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic)
	5.4.47 Optimize Using Profile Data (-Xfeedback=file)
	5.4.48 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent, -Xfeedback-seldom)
	5.4.49 Use Old for Scope Rules (-Xfor-init-scope-...)
	5.4.50 Generate Warnings on Undeclared Functions (-Xforce-declarations, -Xforce-prototypes)
	5.4.51 Suppress Assembler and Linker Parameters (-Xforeign-as-ld)
	5.4.52 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)
	5.4.53 Specify Minimum Floating Point Precision (-Xfp-min-prec...)
	5.4.54 Generate .frame_info for C functions (-Xframe-info)
	5.4.55 Include Filename Path in Debug Information (-Xfull-pathname)
	5.4.56 Control GNU Option Translator (-Xgcc-options-...)
	5.4.57 Treat All Global Variables as Volatile (-Xglobals-volatile)
	5.4.58 Do Not Pass #ident Strings (-Xident-off)
	5.4.59 Enable Strict implementation of IEEE754 Floating Point Standard (-Xieee754-pedantic)
	5.4.60 Control Template Instantiation (-Ximplicit-templates...)
	5.4.61 Treat #include As #import (-Ximport)
	5.4.62 Ignore Missing Include Files (-Xincfile-missing-ignore)
	5.4.63 Initialize Local Variables (-Xinit-locals=mask)
	5.4.64 Control Generation of Initialization and Finalization Sections (-Xinit-section)
	5.4.65 Control Default Priority for Initialization and Finalization Sections (-Xinit-section-default-pri)
	5.4.66 Define Initial Value for -Xinit-locals (-Xinit-value=n)
	5.4.67 Inline Functions with Fewer Than n Nodes (-Xinline=n)
	5.4.68 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)
	5.4.69 Enable Intrinsic Functions (-Xintrinsic-mask)
	5.4.70 Set longjmp Buffer Size (-Xjmpbuf-size=n)
	5.4.71 Create and Keep Assembly or Object File (-Xkeep-assembly-file, -Xkeep-object-file)
	5.4.72 Enable Extended Keywords (-Xkeywords=mask)
	5.4.73 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)
	5.4.74 Wait For License (-Xlicense-wait)
	5.4.75 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)
	5.4.76 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)
	5.4.77 Restrict Local Data Area Optimization to Static Variables (-Xlocal-data-area-static-only)
	5.4.78 Do Not Assign Locals to Registers (-Xlocals-on-stack)
	5.4.79 Expand Macros in Pragmas (-Xmacro-in-pragma)
	5.4.80 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)
	5.4.81 Show Make Rules (-Xmake-dependency)
	5.4.82 Specify Dependency Name or Output File (-Xmake-dependency-...)
	5.4.83 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)
	5.4.84 Set Maximum Structure Member Alignment (-Xmember-max-align=n)
	5.4.85 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)
	5.4.86 Warn On Type and Argument Mismatch (-Xmismatch-warning)
	5.4.87 Specify Section Name (-Xname-...)
	5.4.88 Disable C++ Keywords namespace and Using (-Xnamespace-...)
	5.4.89 Enable Extra Optimizations (-XO)
	5.4.90 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)
	5.4.91 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)
	5.4.92 Disable Most Optimizations With -g (-Xoptimized-debug-...)
	5.4.93 Specify Optimization Buffer Size (-Xparse-size)
	5.4.94 Output Source as Comments (-Xpass-source)
	5.4.95 Use Precompiled Headers (-Xpch-...)
	5.4.96 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)
	5.4.97 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)
	5.4.98 Preprocess Assembly Files (-Xpreprocess-assembly)
	5.4.99 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off)
	5.4.100 Use Old Preprocessor (-Xpreprocessor-old)
	5.4.101 Generate Profiling Code for the RTA Run-Time Analysis Tool Suite (-Xprof-...)
	5.4.102 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)
	5.4.103 Optimize Using RTA Profile Data (-Xprof-feedback)
	5.4.104 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)
	5.4.105 Restart Optimization From Scratch (-Xrestart)
	5.4.106 Generate Code for the Run-Time Error Checker (-Xrtc=mask)
	5.4.107 Enable Run-time Type Information (-Xrtti, -Xrtti-off)
	5.4.108 Pad Sections for Optimized Loading (-Xsection-pad)
	5.4.109 Generate Each Function in a Separate CODE Section Class (-Xsection-split)
	5.4.110 Disable Generation of Priority Section Names (-Xsect-pri-...)
	5.4.111 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)
	5.4.112 Print Instantiations (-Xshow-inst)
	5.4.113 Show Target (-Xshow-target)
	5.4.114 Optimize for Size Rather Than Speed (-Xsize-opt)
	5.4.115 Select Software Floating Point Emulation (-Xsoft-float)
	5.4.116 Enable Stack Checking (-Xstack-probe)
	5.4.117 Diagnose Static Initialization Using Address (-Xstatic-addr-...)
	5.4.118 Treat All Static Variables as Volatile (-Xstatics-volatile)
	5.4.119 Buffer stderr (-Xstderr-fully-buffered)
	5.4.120 Terminate Compilation on Warning (-Xstop-on-warning)
	5.4.121 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)
	5.4.122 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions)
	5.4.123 Align Strings on n-byte Boundaries (-Xstring-align=n)
	5.4.124 Warn on Large Structure (-Xstruct-arg-warning=n)
	5.4.125 Control Optimization of Structure Member Assignments (-Xstruct-assign-split-...)
	5.4.126 Set Minimum Structure Member Alignment (-Xstruct-min-align=n)
	5.4.127 Suppress Warnings (-Xsuppress-warnings)
	5.4.128 Swap ‘\n’ and ‘\r’ in Constants (-Xswap-cr-nl)
	5.4.129 Set Threshold for a Switch Statement Table (-Xswitch-table...)
	5.4.130 Disable Certain Syntax Warnings (-Xsyntax-warning-...)
	5.4.131 Select Target Processor (-Xtarget)
	5.4.132 Specify Loop Test Location (-Xtest-at-...)
	5.4.133 Truncate All Identifiers After m Characters (-Xtruncate)
	5.4.134 Append Underscore to Identifier (-Xunderscore-...)
	5.4.135 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)
	5.4.136 Runtime Declarations in Standard Namespace (-Xusing-std-...)
	5.4.137 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)
	5.4.138 Define Type for wchar (-Xwchar=n)
	5.4.139 Control Use of wchar_t Keyword (-Xwchar_t-...)

	5.5 Examples of Processing Source Files
	5.5.1 Compile and Link
	5.5.2 Separate Compilation
	5.5.3 Assembly Output
	5.5.4 Precompiled Headers

	6 Additions to ANSI C and C++
	6.1 Preprocessor Predefined Macros
	6.2 Preprocessor Directives
	#assert and #unassert Preprocessor Directives
	#error Preprocessor Directive
	#ident Preprocessor Directive (C only)
	#import Preprocessor Directive
	#info, #inform, and #informing Preprocessor Directives
	#warn and #warning Preprocessor Directives

	6.3 Pragmas
	align Pragma
	error Pragma
	global_register Pragma
	hdrstop Pragma
	ident Pragma
	info Pragma
	inline Pragma
	interrupt Pragma
	no_alias Pragma
	no_pch Pragma
	no_return Pragma
	no_side_effects Pragma
	option Pragma
	pack Pragma
	pure_function Pragma
	section Pragma
	use_section Pragma
	warning Pragma
	weak Pragma

	6.4 Keywords
	__asm and asm Keywords
	__attribute__ Keyword
	extended Keyword (C only)
	__inline__ and inline Keywords
	__interrupt__ and interrupt Keywords (C only)
	long long Keyword
	__packed__ and packed Keywords
	pascal Keyword (C only)
	__typeof__ Keyword (C only)

	6.5 Attribute Specifiers
	absolute Attribute (C only)
	aligned(n) Attribute
	constructor, constructor(n) Attribute
	deprecated, deprecated(string) Attribute (C only)
	destructor, destructor(n) Attribute
	noreturn, no_return Attribute
	no_side_effects Attribute
	packed Attribute
	pure, pure_function Attribute
	section(name) Attribute

	6.6 Intrinsic Functions
	6.7 Other Additions
	C++ Comments Permitted
	Dynamic Memory Allocation with alloca
	Binary Representation of Data
	Assigning Global Variables to Registers
	__ERROR__ Function
	sizeof Extension
	vararg Macros

	7 Embedding Assembly Code
	7.1 Introduction
	7.2 asm Macros
	Comments in asm Macros
	Examples of asm Macros

	7.3 asm String Statements
	7.4 Reordering in asm Code
	7.5 Direct Functions

	8 Internal Data Representation
	8.1 Basic Data Types
	8.2 Byte Ordering
	8.3 Arrays
	8.4 Bit-fields
	8.5 Classes, Structures, and Unions
	8.6 C++ Classes
	Pointers to Members
	Virtual Function Table Generation-Key Functions

	8.7 Linkage and Storage Allocation

	9 Calling Conventions
	9.1 Introduction
	9.2 Stack Layout
	9.3 Argument Passing
	9.4 C++ Argument Passing
	Pointer to Member as Arguments and Return Types
	Member Function
	Constructors and Destructors

	9.5 Returning Results
	Class, Struct, and Union Return Types

	9.6 Register Use

	10 Optimization
	10.1 Optimization Hints
	What to Do From the Command Line
	What to Do With Programs

	10.2 Cross-Module Optimization
	10.3 Target-Independent Optimizations
	Tail Recursion (0x2)
	Inlining (0x4)
	Argument Address Optimization (0x8)
	Structure Members to Registers (0x10)
	Assignment Optimization (0x80)
	Tail Call Optimization (0x100)
	Common Tail Optimization (0x200)
	Variable Live Range Optimization (0x400)
	Constant and Variable Propagation (0x800)
	Complex Branch Optimization (0x1000)
	Loop strength reduction (0x2000)
	Loop Count-Down Optimization (0x4000)
	Loop Unrolling (0x8000)
	Global Common Subexpression Elimination (0x10000)
	Undefined variable propagation (0x20000)
	Unused assignment deletion (0x40000)
	Minor Transformations to Simplify Code Generation (0x80000)
	Register Coloring (0x200000)
	Interprocedural Optimizations (0x400000)
	Remove Entry and Exit Code (0x800000)
	Use Scratch Registers for Variables (0x1000000)
	Extend Optimization (0x2000000)
	Loop Statics Optimization (0x4000000)
	Loop Invariant Code Motion (0x8000000)
	Live-Variable Analysis (0x40000000)
	Local Data Area Optimization (0x80000000)
	Feedback Optimization

	10.4 Target-Dependent Optimizations
	Basic Reordering (0x1)
	General Peephole Optimization (0x8)
	Peephole Reaching Analysis (0x20)
	Merge Common Block Entry or Exit Code (0x200)
	Additional Loop Optimizations (0x400)
	Delay Slot Optimization (0x1000)
	Leaf Optimization (0x2000)

	10.5 Example of Optimizations

	11 The Lint Facility
	11.1 Introduction
	11.2 Examples

	12 Converting Existing Code
	12.1 Introduction
	12.2 Compilation Issues
	Older C Code
	Older Versions of the Compiler

	12.3 Execution Issues
	12.4 GNU Command-Line Options

	13 C++ Features and Compatibility
	13.1 Header Files
	13.2 C++ Standard Libraries
	Nonstandard Functions

	13.3 Migration From C to C++
	13.4 Implementation-Specific C++ Features
	Construction and Destruction of C++ Static Objects
	Templates
	Exceptions
	Array New and Delete
	Type Identification
	Dynamic Casts in C++
	Namespaces
	Undefined Virtual Functions

	13.5 C++ Name Mangling
	Demangling utility

	13.6 Avoid setjmp and longjmp
	13.7 Precompiled Headers
	PCH Files
	Limitations and Trade-offs
	Diagnostics

	14 Locating Code and Data, Access
	14.1 Controlling Access to Code and Data
	section and use_section Pragmas
	Section Classes and Their Default Attributes

	14.2 Access Mode - Read, Write, Execute
	14.3 Local Data Area (-Xlocal-data-area)

	15 Use in an Embedded Environment
	15.1 Introduction
	15.2 Compiler Options for Embedded Development
	15.3 User Modifications
	15.4 Startup and Termination Code
	15.4.1 Location of Startup and Termination Sources and Objects
	15.4.2 Notes for crt0.s
	15.4.3 Notes for crtlibso.c and ctordtor.c
	15.4.4 Notes for init.c
	15.4.5 Notes for Exit Functions
	15.4.6 Stack Initialization and Checking
	15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()
	15.4.8 Run-time Initialization and Termination

	15.5 Hardware Exception Handling
	15.6 Library Exception Handling
	15.7 Linker Command File
	15.8 Operating System Calls
	15.8.1 Character I/O
	15.8.2 File I/O
	15.8.3 Miscellaneous Functions

	15.9 Communicating with the Hardware
	15.9.1 Mixing C and Assembler Functions
	15.9.2 Embedding Assembler Code
	15.9.3 Accessing Variables and Functions at Specific Addresses

	15.10 Reentrant and “Thread-Safe” Library Functions
	15.11 Target Program Arguments, Environment Variables, and Predefined Files
	15.12 Profiling in An Embedded Environment

	Part III Wind River Assembler
	16 The Wind River Assembler
	16.1 Selecting the Target
	16.2 The das Command
	16.3 Assembler Command-Line Options
	Show Option Summary (-?)
	Define Symbol Name (-Dname=value)
	Generate Debugging Information (-g)
	Include Header in Listing (-H)
	Set Header Files Directory (-I path)
	Generate Listing File (-l, -L)
	Set outpUt File (-o file)
	Remove the Input File on Termination (-R)
	Specify Assembler Description (.ad) File (-T ad-file)
	Select Target (-ttof:environ)
	Print Version Number (-V)
	Define Configuration Variable (-WDname=value)
	Select Object Format and Mnemonic Type (-WDDOBJECT=object-format)
	Select Target Processor (-WDDTARGET=target)
	Discard All Local Symbols (-x)
	Discard All Symbols Starting With .L (-X)
	Print Command-Line Options on Standard Output (-#)
	Read Command-Line Options from File or Variable (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	16.4 Assembler -X Options
	Specify Value to Fill Gaps Left by .align or .alignn Directive (-Xalign-fill-text)
	Interpret .align Directive (-Xalign-value, -Xalign-power2)
	Generate Debugging Information (-Xasm-debug-...)
	Align Program Data Automatically Based on Size (-Xauto-align)
	Set Instruction Type (-Xcpu-...)
	Set Default Value for Section Alignment (-Xdefault-align)
	Enable Local GNU Labels (-Xgnu-locals-...)
	Include Header in Listing (-Xheader...)
	Set Header Format (-Xheader-format="string")
	Set Label Definition Syntax (-Xlabel-colon...)
	Set Format of Assembly Line in Listing (-Xline-format="string")
	Generate a Listing File (-Xlist-...)
	Specify File Extension for Assembly Listing (-Xlist-file-extension="string")
	Set Line Length of Listing File (-Xllen=n)
	Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)
	Set Page Break Margin (-Xpage-skip=n)
	Set Lines Per Page (-Xplen=n)
	Limit Length of Conditional Branch (-Xprepare-compress=n)
	Treat Semicolons As Statement Separators (-Xsemi-is-newline)
	Enable Spaces Between Operands (-Xspace-...)
	Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)
	Set Subtitle (-Xsubtitle="string")
	Set Tab Size (-Xtab-size=n)
	Set Title (-Xtitle="string")

	17 Syntax Rules
	17.1 Format of an Assembly Language Line
	Labels
	Opcode
	Operand Field
	Comment

	17.2 Symbols
	17.3 Direct Assignment Statements
	17.4 External Symbols
	17.5 Local Symbols
	Generic Style Locals
	GNU-Style Locals

	17.6 Constants
	Integral Constants
	Floating Point Constants
	String Constants

	18 Sections and Location Counters
	18.1 Program Sections
	18.2 Location Counters

	19 Assembler Expressions
	20 Assembler Directives
	20.1 Introduction
	20.2 List of Directives
	symbol[:] = expression
	symbol[:] =: expression
	.2byte
	.4byte
	.align expression
	.alignn expression
	.ascii "string"
	.asciz "string"
	.balign expression
	.blkb expression
	.bss
	.bsect
	.byte expression ,...
	.comm symbol, size [,alignment]
	dc.b expression
	dc.l expression
	dc.w expression
	ds.b size
	.data
	.double float-constant ,...
	.dsect
	.eject
	.else
	.elseif expression
	.elsec
	.end
	.endc
	.endif
	.endm
	.entry symbol ,...
	symbol[:] .equ expression
	.error "string"
	.even
	.exitm
	.extern symbol ,...
	.export symbol ,...
	.file "file"
	.fill count,[size[,value]]
	.float float-constant ,...
	.global symbol ,...
	.globl symbol ,...
	.ident "string"
	.if expression
	.ifendian
	.ifeq expression
	.ifc "string1","string2"
	.ifdef symbol
	.ifge expression
	.ifgt expression
	.ifle expression
	.iflt expression
	.ifnc "string1","string2"
	.ifndef symbol
	.ifne expression
	.import symbol ,...
	.incbin "file"[,offset[,size]]
	.include "file"
	.lcnt expression
	.lcomm symbol, size [,alignment]
	.list
	.llen expression
	.llong expression ,...
	.long expression ,...
	name.macro [parameter ,...]
	.mexit
	.name "file"
	.nolist
	.org expression
	.p2align expression
	.page
	.pagelen expression
	.plen expression
	.previous
	.psect
	.psize page-length [,line-length]
	.rdata
	.rodata
	.sbss [symbol, size [,alignment]]
	.sbttl "string"
	.sdata
	.sdata2
	.section name, [alignment], [type]
	.section n
	.sectionlink section-name
	.set option
	.set symbol, expression
	symbol[:] .set expression
	.short expression ,...
	.size symbol, expression
	.skip size
	.space expression
	.string "string"
	.strz "string"
	.subtitle "string"
	.text
	.title "string"
	.ttl "string"
	.type symbol, type
	.uhalf
	.ulong
	.ushort
	.uword
	warning "string"
	.weak symbol ,...
	.width expression
	.word expression, ...
	.xdef symbol ,...
	.xref symbol ,...
	.xopt

	21 Assembler Macros
	21.1 Introduction
	21.2 Macro Definition
	Separating Parameter Names From Text
	Generating Unique Labels
	NARG Symbol

	21.3 Invoking a Macro
	21.4 Macros to “Define” Structures

	22 Example Assembler Listing

	Part IV Wind River Linker
	23 The Wind River Linker
	23.1 The Linking Process
	Linking Example

	23.2 Symbols Created By the Linker
	23.3 .abs Sections
	23.4 COMMON Sections
	23.5 COMDAT Sections
	23.6 Sorted Sections
	23.7 Warning Sections
	23.8 .frame_info sections

	24 The dld Command
	24.1 The dld Command
	Linker Command Structure

	24.2 Defaults
	24.3 Order on the Command Line
	24.4 Linker Command-Line Options
	Show Option Summary (-?, -?X)
	Read Options From an Environment Variable or File (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)
	Link Files From an Archive (-A name, -A...)
	Allocate Memory for Common Variables When Using -r (-a)
	Set Address for Data and tExt (-Bd=address, -Bt=address)
	Bind Function Calls to Shared Library (-Bsymbolic)
	Define a Symbol At An Address (-Dsymbol=address)
	Define a Default Entry Point Address (-e symbol)
	Specify “fill” Value (-f value, size, alignment)
	Specify Directory for -l search List (-L dir)
	Specify Library or File to Process (-lname, -l:filename)
	Generate link map (-m, -m2, -m4)
	Allocate .data Section Immediately After .text Section (-N)
	Change the Default Output File (-o file)
	Perform Incremental Link (-r, -r2, -r3, -r4, -r5)
	Rename Symbols (-R symbol1=symbol2)
	Search for Shared Libraries on Specified Path (-rpath)
	Do Not Output Symbol Table and Line Number Entries (-s, -ss)
	Specify Name for Shared Library (-soname)
	Select Target Processor and Environment (-t tof:environ)
	Define a Symbol (-u symbol)
	Print version number (-V)
	Do Not Output Some Symbols (-X)
	Specify Search Directories for -l (-Y L, -Y P, -Y U)

	24.5 Linker -X options
	Use Late Binding for Shared Libraries (-X)
	Check Input Patterns (-Xcheck-input-patterns)
	Check for Overlapping Output Sections (-Xcheck-overlapping)
	Force Linker to Continue After Errors (-Xdont-die)
	Do Not Create Output File (-Xdont-link)
	Use Shared Libraries (-Xdynamic)
	Use ELF Format for Output File (-Xelf)
	ELF Format Relocation Information (-Xelf-rela-...)
	Do Not Export Symbols from Specified Libraries (-Xexclude-libs)
	Do Not Export Specified Symbols (-Xexclude-symbols)
	Write Explicit Instantiations File (-Xexpl-instantiations)
	Store Segment Address in Program Header (-Xgenerate-paddr)
	Generate RTA Information (-Xgenerate-vmap)
	Do Not Align Output Section (-Xold-align)
	Pad Input Sections to Match Existing Executable File (-Xoptimized-load)
	Add Leading Underscore “_” to All Symbols (-Xprefix-underscore)
	Remove Unused Sections (-Xremove-unused-sections)
	Re-scan Libraries (-Xrescan-libraries...)
	Re-scan Libraries Restart (-Xrescan-restart...)
	Align Sections (-Xsection-align=n)
	Build Shared Libraries (-Xshared)
	Sort .frame_info Section (-Xsort-frame-info)
	Link to Static Libraries (-Xstatic)
	Stop on Redeclaration (-Xstop-on-redeclaration)
	Stop on Warning (-Xstop-on-warning)
	Suppress Leading Dots “.” (-Xsuppress-dot)
	Suppress Section Names (-Xsuppress-section-names)
	Suppress Paths in Symbol Table (-Xsuppress-path)
	Suppress Leading Underscores ‘_’ (-Xsuppress-underscore)
	Remove/Keep Unused Sections (-Xunused-sections...)

	25 Linker Command Language
	25.1 Example “bubble.dld”
	25.2 Syntax Notation
	25.3 Numbers
	25.4 Symbols
	25.5 Expressions
	25.6 Command File Structure
	25.7 MEMORY Command
	25.8 SECTIONS Command
	Section-Definition
	GROUP Definition

	25.9 Assignment Command
	25.10 Examples

	Part V Wind River Compiler Utilities
	26 Utilities
	26.1 Common Command-Line Options
	Show Option Summary (-?)
	Read Command-Line Options from File or Variable (-@name, -@@name)
	Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

	27 D-AR Archiver
	27.1 Synopsis
	27.2 Syntax
	27.3 Description
	27.3.1 dar Commands

	27.4 Examples

	28 D-BCNT Profiling Basic Block Counter
	28.1 Synopsis
	28.2 Syntax
	28.3 Description
	28.3.1 dbcnt Options

	28.4 Files
	28.4.1 Output File for Profile Data

	28.5 Examples
	28.6 Coverage
	28.7 Notes

	29 D-DUMP File Dumper
	29.1 Synopsis
	29.2 Syntax
	29.3 Description
	29.3.1 ddump commands

	29.4 Examples

	30 dmake Makefile Utility
	30.1 Introduction
	30.2 Installation
	30.3 Using dmake

	31 WindISS Simulator and Disassembler
	31.1 Synopsis
	31.2 Simulator Mode
	31.2.1 Compiling for the WindISS Simulator
	31.2.2 Simulator Mode Command and Options

	31.3 Batch Disassembler Mode
	31.3.1 Syntax (Disassembler Mode)
	31.3.2 Description

	31.4 Interactive Disassembler Mode
	31.4.1 Syntax (Interactive Disassembler Mode)
	31.4.2 Description

	31.5 Examples

	Part VI C Library
	32 Library Structure, Rebuilding
	32.1 Introduction
	32.2 Library Structure
	32.2.1 Libraries Supplied
	32.2.2 Library Directory Structure
	32.2.3 libc.a
	32.2.4 Library Search Paths

	32.3 Library Sources, Rebuilding the Libraries
	32.3.1 Sources
	32.3.2 Rebuilding the Libraries
	32.3.3 C++ Libraries

	33 Header Files
	33.1 Files
	33.1.1 Standard Header Files

	33.2 Defined Variables, Types, and Constants
	errno.h
	fcntl.h
	float.h
	limits.h
	math.h
	mathf.h
	setjmp.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h
	time.h

	34 C Library Functions
	34.1 Format of Descriptions
	34.1.1 Operating System Calls
	34.1.2 References

	34.2 Reentrant Versions
	34.3 Function Listing
	a64l()
	abort()
	abs()
	access()
	acos()
	acosf()
	advance()
	asctime()
	asin()
	asinf()
	assert()
	atan()
	atanf()
	atan2()
	atan2f()
	atexit()
	atof()
	atoi()
	atol()
	bsearch()
	calloc()
	ceil()
	ceilf()
	_chgsign()
	clearerr()
	clock()
	close()
	compile()
	_copysign()
	cos()
	cosf()
	cosh()
	coshf()
	creat()
	ctime()
	difftime()
	div()
	drand48()
	dup()
	ecvt()
	erf()
	erff()
	erfc()
	erfcf()
	exit()
	_exit()
	exp()
	expf()
	fabs()
	fabsf()
	fclose()
	fcntl()
	fcvt()
	fdopen()
	feof()
	ferror()
	fflush()
	fgetc()
	fgetpos()
	fgets()
	fileno()
	_finite()
	floor()
	floorf()
	fmod()
	fmodf()
	fopen()
	fprintf()
	fputc()
	fputs()
	fread()
	free()
	freopen()
	frexp()
	frexpf()
	fscanf()
	fseek()
	fsetpos()
	fstat()
	ftell()
	fwrite()
	gamma()
	gammaf()
	gcvt()
	getc()
	getchar()
	getenv()
	getopt()
	getpid()
	gets()
	getw()
	gmtime()
	hcreate()
	hdestroy()
	hsearch()
	hypot()
	hypotf()
	irand48()
	isalnum()
	isalpha()
	isascii()
	isatty()
	iscntrl()
	isdigit()
	isgraph()
	islower()
	_isnan()
	isprint()
	ispunct()
	isspace()
	isupper()
	isxdigit()
	j0()
	j0f()
	j1()
	j1f()
	jn()
	jnf()
	jrand48()
	kill()
	krand48()
	l3tol()
	l64a()
	labs()
	lcong48()
	ldexp()
	ldexpf()
	ldiv()
	_lessgreater()
	lfind()
	link()
	localeconv()
	localtime()
	log()
	_logb()
	logf()
	log10()
	log10f()
	longjmp()
	lrand48()
	lsearch()
	lseek()
	ltol3()
	mallinfo()
	malloc()
	__malloc_set_block_size()
	mallopt()
	matherr()
	matherrf()
	mblen()
	mbstowcs()
	mbtowc()
	memccpy()
	memchr()
	memcmp()
	memcpy()
	memmove()
	memset()
	mktemp()
	mktime()
	modf()
	modff()
	mrand48()
	_nextafter()
	nrand48()
	offsetof()
	open()
	perror()
	pow()
	powf()
	printf()
	putc()
	putchar()
	putenv()
	puts()
	putw()
	qsort()
	raise()
	rand()
	read()
	realloc()
	remove()
	rename()
	rewind()
	sbrk()
	_scalb()
	scanf()
	seed48()
	setbuf()
	setjmp()
	setlocale()
	setvbuf()
	signal()
	sin()
	sinf()
	sinh()
	sinhf()
	sprintf()
	sqrt()
	sqrtf()
	srand()
	srand48()
	sscanf()
	step()
	strcat()
	strchr()
	strcmp()
	strcoll()
	strcpy()
	strcspn()
	strdup()
	strerror()
	strftime()
	strlen()
	strncat()
	strncmp()
	strncpy()
	strpbrk()
	strrchr()
	strspn()
	strstr()
	strtod()
	strtok()
	strtol()
	strtoul()
	strxfrm()
	swab()
	tan()
	tanf()
	tanh()
	tanhf()
	tdelete()
	tell()
	tempnam()
	tfind()
	time()
	tmpfile()
	tmpnam()
	toascii()
	tolower()
	_tolower()
	toupper()
	_toupper()
	tsearch()
	twalk()
	tzset()
	ungetc()
	unlink()
	_unordered()
	vfprintf()
	vfscanf()
	vprintf()
	vscanf()
	vsprintf()
	vsscanf()
	wcstombs()
	wctomb()
	write()
	y0()
	y0f()
	y1()
	y1f()
	yn()
	ynf()

	Part VII Appendices
	A Configuration Files
	A.1 Configuration Files
	A.2 How Commands, Environment Variables, and Configuration Files Relate
	A.2.1 Configuration Variables and Precedence
	A.2.2 Startup

	A.3 Standard Configuration Files
	A.3.1 DENVIRON Configuration Variable
	A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables
	A.3.3 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2 Configuration Variables

	A.4 The Configuration Language
	A.4.1 Statements and Options
	A.4.2 Comments
	A.4.3 String Constants
	A.4.4 Variables
	A.4.5 Assignment Statement
	A.4.6 Error Statement
	A.4.7 Exit Statement
	A.4.8 If Statement
	A.4.9 Include Statement
	A.4.10 Print Statement
	A.4.11 Switch Statement

	B Compatibility Modes: ANSI, PCC, and K&R C
	C Compiler Limits
	D Compiler Implementation Defined Behavior
	D.1 Introduction
	D.2 Translation
	D.3 Environment
	D.4 Library functions

	E Assembler Coding Notes
	E.1 Instruction Mnemonics
	E.2 Operand Addressing Modes
	E.2.1 Registers
	E.2.2 Expressions

	F Object and Executable File Format
	F.1 Executable and Linking Format (ELF)
	F.1.1 Overall Structure
	F.1.2 ELF Header
	F.1.3 Program Header
	ELF Program Header Fields

	F.1.4 Section Headers
	F.1.5 Special Sections
	F.1.6 ELF Relocation Information
	ELF Relocation Entry Fields

	F.1.7 Line Number Information
	F.1.8 Symbol Table
	ELF Symbol Table Fields

	F.1.9 String Table

	G Compiler -X Options Numeric List
	H Messages
	H.1 Introduction
	H.2 Compiler Messages
	H.2.1 Compiler Message Format
	H.2.2 Errors in asm Macros and asm Strings
	H.2.3 C Compiler Message Detail
	H.2.4 C++ Messages

	H.3 Assembler Messages
	H.4 Linker Messages
	H.4.1 Linker Message Format
	H.4.2 Linker Message Detail

	Index

